
1.  Introduction
Modeling atmospheric chemistry is a grand computational challenge. Current global 3-D models of oxidant-aerosol 
chemistry use chemical mechanisms that may involve hundreds of coupled chemical species with lifetimes rang-
ing from less than a second to many years. Chemical evolution in such a mechanism is computed by solving a 
large, stiff system of coupled non-linear ordinary differential equations (ODEs) expressing the chemical kinet-
ics of individual species. Implicit solvers are required to accommodate the coexistence of short and long time 
constants but are computationally expensive because of the need for repeated construction and inversion of the 
Jacobian matrix (Brasseur & Jacob, 2017). Chemical integration often dominates the overall computational cost 
of global 3-D atmospheric chemistry model simulations, even in massively parallel environments or using graph-
ics processing units (GPUs) (Alvanos & Christoudias, 2017; Dawson et al., 2022; Eastham et al., 2018; Zhuang 
et al., 2020).

Abstract  Kinetic integration of large and stiff chemical mechanisms is a computational bottleneck in 
models of atmospheric chemistry. It requires implicit solution of the coupled system of kinetic differential 
equations with time-consuming construction and inversion of the Jacobian matrix. We present here a new 
version of the Kinetic Pre-Processor (KPP 3.0.0) for fast integration of chemical kinetics featuring a range 
of improvements over previous versions in performance, diagnostics, versatility, and community openness. 
KPP 3.0.0 includes a new adaptive auto-reduction solver to decrease the size of any mechanism locally and 
on the fly under conditions where full complexity is not needed, by partitioning species as “fast” or “slow” 
based on their local production and loss rates. Previous implementations of this adaptive solver suffered from 
excessive overhead in the repeated construction of the local Jacobian matrix or were hard-wired to specific 
mechanisms. Here we retain the general applicability of the method to any mechanism and avoid overhead by 
using pre-computed Jacobian matrix terms for the full mechanism and cropping the matrix locally to remove 
the slow species with no change in memory allocation. We apply this adaptive solver within KPP 3.0.0 to the 
GEOS-Chem global 3-D model of atmospheric chemistry and demonstrate a 32% reduction in solver time while 
maintaining a mean error lower than 1% for key species in the troposphere.

Plain Language Summary  Calculating chemical evolution in global atmospheric chemistry 
models is computationally expensive because the chemical mechanisms typically include hundreds of species 
to account for all conditions from urban to remote. However, the full chemical complexity is not needed 
under most conditions. Here we have developed an adaptive auto-reduction chemical solver that reduces any 
mechanism on the fly depending on local conditions and without significant computational overhead. We apply 
this adaptive solver as an option in a new version 3.0.0 of the Kinetic Pre-Processor (KPP) chemical solver 
software package that also includes a number of updates relative to previous versions. The adaptive solver 
achieves a 32% reduction in solver time in a global model simulation while incurring less than 1% average 
errors for key species.
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Considerable research has gone into devising algorithms to speed up chemistry solvers. A common strategy 
is to split the mechanism species by time scales in order to decrease the stiffness of the system (Djouad & 
Sportisse,  2002; Gong & Cho, 1993; Young & Boris,  1977), but this tends to be mechanism-specific and is 
difficult to apply in global models because of the wide range of conditions that may be experienced. Wholesale 
reduction of the mechanism, such as in the Super-Fast mechanism used in some climate models (Brown-Steiner 
et  al.,  2018), may lead to large errors (Kelp et  al.,  2022) and incorrect chemical responses to perturbations. 
Machine learning methods can in principle speed up chemical integration by orders of magnitude but have 
met with little success because of the large dimensionality of the problem resulting in error growth, in addi-
tion to requiring re-training and re-evaluation after even minor updates to the chemical mechanism (Keller & 
Evans, 2019; Kelp et al., 2020, 2022).

A promising approach for global models is to recognize that the full complexity of the mechanism is not needed 
everywhere. For example, reactions involving volatile organic compounds (VOCs) and their short-lived prod-
ucts typically account for much of the complexity but may be unimportant outside of continental boundary 
layers where the VOCs are emitted. Jacobson (1995) thus applied separate mechanisms in a global model for 
the urban boundary layer, the global troposphere, and the stratosphere. However, fixed geographical separation 
between domains can result in errors and inefficiencies by not accounting for the interactions at chemical bound-
aries between domains (Rastigejev et  al.,  2007) and not allowing for a continuum of chemical regimes from 
source regions to the remote atmosphere. Santillana et al. (2010) developed an adaptive mechanism reduction 
method in which the size of the mechanism is adjusted at each grid cell and time step, classifying species as 
fast (coupled) or slow (uncoupled) on the basis of their total production and loss rates. However, the overhead 
involved in local definition of the reduced mechanism offset the computational gains. Sander et al. (2019) and 
Shen et al. (2020, 2022) improved the method by pre-compiling a limited ensemble of chemical sub-mechanisms 
and selecting the most appropriate sub-mechanism for use based on local conditions at each timestep, thus avoid-
ing the overhead. Shen et al. achieved a 30%–50% reduction in computational cost compared to the full parent 
mechanism in a global simulation of the troposphere and stratosphere, but the selection of sub-mechanisms had 
to be customized to the parent mechanism.

Here we develop a mechanism-agnostic, ready-to-use method for adaptive auto-reduction of any chemical mech-
anism and implement it as an option in a new version 3.0.0 of the Kinetic Pre-Processor (KPP). Originally devel-
oped by Damian et al. (2002) and Sandu and Sander (2006), KPP is a software tool that automatically generates 
code to efficiently integrate chemical mechanisms. KPP takes in a set of human-readable input files describing 
the mechanism and generates Fortran 90, C, or MATLAB code to solve the corresponding system of ODEs using 
any of a suite of integration methods. KPP is used in many atmospheric chemistry models including MECCA 
within MESSy (Jöckel et al., 2010; Sander et al., 2019), WRF-Chem (Fast et al., 2006; Grell et al., 2005), the 
forward and adjoint GEOS-Chem models (Henze et al., 2007), and the adjoint for the CMAQ model (Hakami 
et al., 2007; Zhao et al., 2020). Our new version KPP 3.0.0 incorporates several performance and diagnostic 
updates over the previous version KPP 2.1 (Sandu & Sander, 2006) in addition to the adaptive solver option.

2.  Adaptive Solver for Chemical Kinetics
Atmospheric chemistry models alternate chemical integration and transport calculations through operator split-
ting (Brasseur & Jacob, 2017), The chemistry solver is called for a time interval of length 𝐴𝐴 Δ𝑡𝑡𝑡 referred to as the 
external time step, and returns a vector of updated concentrations C at the end of that time step to be operated on 
by transport. The kinetic integration of the mechanism by the chemistry solver is done over internal time steps 

𝐴𝐴 𝐴 ≤ Δ𝑡𝑡 to reach the desired accuracy.

The chemistry solver integrates a system of N coupled nonlinear first-order ODEs of the form

d𝐶𝐶𝑖𝑖

d𝑡𝑡
= 𝑃𝑃𝑖𝑖 (𝐂𝐂) − 𝐿𝐿𝑖𝑖(𝐂𝐂) (𝑖𝑖 = 1, 2, . . . , 𝑁𝑁)� (1)

where N is the number of coupled species in the mechanism, C is the vector of species concentrations of dimen-
sion N, and Pi(C) and Li(C) are the production and loss rates of species i that depend on the concentrations of 
other species in the mechanism through the reaction rate expressions.

The external time step in a global model is typically ∼10 3 s, but many species in the mechanism have lifetimes 
∼1 s or shorter. An explicit solver would require internal time steps shorter than the lifetime of the shortest-lived 
species in order to achieve stability, but this is not computationally practical. An implicit solver is required. The 
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simplest such solver is the first-order backward Euler method, which approximates the solution to Equation 1 over 
the internal time step 𝐴𝐴 𝐴 with

𝐂𝐂(𝑡𝑡 + ℎ) = 𝐂𝐂(𝑡𝑡) + 𝐬𝐬(𝐂𝐂(𝑡𝑡 + ℎ))ℎ� (2)

where we define the net source term 𝐴𝐴 𝐬𝐬 = 𝐏𝐏 − 𝐋𝐋 as a vector of functions (Pi − Li). Solving Equation 2 for the 
unknown quantity 𝐴𝐴 𝐂𝐂(𝑡𝑡 + ℎ) using the Newton-Raphson method requires the repeated construction and inversion 
of the N × N Jacobian matrix J:

𝐉𝐉 =
𝜕𝜕𝐬𝐬

𝜕𝜕𝐂𝐂
� (3)

The construction and inversion of this Jacobian matrix is computationally expensive. Higher-order solvers gener-
ally used in atmospheric chemistry models, such as Rosenbrock (Hairer & Wanner, 1991; Rosenbrock, 1963; 
Sandu et al., 1997) or Gear (Jacobson & Turco, 1994), similarly require the repeated construction and inversion of 
the Jacobian over internal time steps. The Jacobian is typically ∼90% sparse allowing for efficient sparse-matrix 
inversion methods (Sandu et al., 1997), so that the overall cost of construction and inverting the Jacobian scales 
as ∼N rather than a higher power.

A way to reduce the dimensionality N of the problem is to split the mechanism into “fast” species for which the 
coupled implicit solution is necessary and “slow” species that may be solved independently over the external 
time step using a fast explicit method. Young and Boris  (1977) and Gong and Cho  (1993) separate species 
into fast and slow based on their lifetimes compared with the integration time step. However, the separation 
results in non-conservation of mass because the reaction rates are not computed consistently. This may not be of 
consequence in a regional model (as used in those applications) where the domain is ventilated by the boundary 
conditions, so that errors do not accumulate, but it is more problematic in a global model. Santillana et al. (2010) 
separated instead “fast” and “slow” species on the basis of their production and loss rates, with the slow species 
having sufficiently low rates that their non-conservation of mass would be inconsequential. This is more relevant 
for global models where concentrations and rates of short-lived VOCs become very small and they have negligi-
ble influence on other species outside of their source regions. Shen et al. (2020, 2022) used the same approach to 
partition species between fast and slow.

Here we also follow the partitioning method of Santillana et al. (2010). At the beginning of each external time 
step we calculate P and L and classify species 𝐴𝐴 𝐴𝐴  as fast if 𝐴𝐴 max(𝑃𝑃𝑖𝑖, 𝐿𝐿𝑖𝑖) > 𝛿𝛿 and as slow otherwise, where δ 
is a user-selected partitioning threshold. Fast species are assigned to the coupled implicit solver as a subset 
(sub-mechanism) of the full mechanism, while the evolution of slow species over the external time step beginning 
at t0 is calculated using an explicit first-order approximation with first-order loss rate constant ki (t0) = Li (t0)/Ci 
(t0):

𝐶𝐶𝑖𝑖(𝑡𝑡0 + Δ𝑡𝑡) =
𝑃𝑃𝑖𝑖(𝑡𝑡0)

𝑘𝑘𝑖𝑖(𝑡𝑡0)
+

(

𝐶𝐶𝑖𝑖(𝑡𝑡0) −
𝑃𝑃𝑖𝑖(𝑡𝑡0)

𝑘𝑘𝑖𝑖(𝑡𝑡0)

)

𝑒𝑒−𝑘𝑘𝑖𝑖(𝑡𝑡0)Δ𝑡𝑡� (4)

In the Santillana et al. (2010) implementation, the Jacobian had to be reconstructed locally at every external time 
step for the identified subset of fast species and that incurred large overhead, canceling the benefit of the method. 
Here we avoid the overhead by taking advantage of the pre-computed Jacobian matrix terms for the full mecha-
nism in the KPP solver to simply remove rows and columns corresponding to the slow species. This is explained 
in Section 3.2 and is the key new development to make the method computationally practical.

The partitioning threshold 𝐴𝐴 𝐴𝐴 is set prior to integration and is tuned to balance performance and accuracy. Previous 
work (Santillana et al., 2010; Shen et al., 2020, 2022) considered that in a typical tropospheric chemistry mecha-
nism, much of the coupling is associated directly or indirectly with cycling of the hydroxyl radical (OH). OH has 
a daytime concentration of ∼10 6 molecules cm −3 and a lifetime ∼1 s, so its production and loss rates are ∼10 6 
molecules cm −3 s −1. A species with production and loss rates that are several orders of magnitude smaller would 
not be expected to contribute significantly to the coupling. They found 𝐴𝐴 𝐴𝐴 ∼ 10

2
− 10

3 molecules cm −3 s −1 to be 
adequate after testing for performance and accuracy.

Here we include the option to dynamically define δ instead of specifying a uniform value over the domain, to 
account for rates varying with local conditions. This is done by identifying a target species which is considered 
central to the mechanism and scaling its production and loss rates to define a local partitioning threshold:

𝛿𝛿 = 𝛼𝛼target max
(

𝑃𝑃target , 𝐿𝐿target

)

� (5)
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where 𝐴𝐴 𝐴𝐴target and 𝐴𝐴 𝐴𝐴target are the local production and loss rates of the target species, and 𝐴𝐴 𝐴𝐴target ≪ 1 is a user-selected 
coefficient that depends on the target species but is otherwise fixed for the model domain. For example, a model 
may use OH as target species for daytime, and NO2 or the nitrate radical (NO3) for nighttime. When using OH as 
a target species and with 𝐴𝐴 max(𝑃𝑃OH, 𝐿𝐿OH) ∼ 10

6 molecules cm −3 s −1, a value 𝐴𝐴 𝐴𝐴OH ∼ 10
−4

− 10
−3 would correspond 

to the criteria for δ used by Santillana et al. (2010). But 𝐴𝐴 max(𝑃𝑃OH, 𝐿𝐿OH) can in fact vary over orders of magnitude 
depending on pressure, UV flux, and other factors, and our local specification of δ accounts for this variability. 
We find that this specification of dynamic threshold improves accuracy with no significant overhead since Ptarget 
and Ltarget are computed at the beginning of each external time step in any case.

We also include two new options in the algorithm. First is to force individual species to remain in the coupled 
implicit solver even if 𝐴𝐴 max(𝑃𝑃𝑖𝑖, 𝐿𝐿𝑖𝑖) ≪ 𝛿𝛿 . As we will see, this may be helpful for inorganic halogen species that 
cycle between radical and non-radical forms across sunrise/sunset. Second is to include an “append” functionality 
in the algorithm so that a species initially diagnosed as slow at the beginning of the external time step can be 
transferred into the coupled implicit solver if it becomes fast over the course of the integration. This increases 
accuracy with minimum overhead.

3.  Kinetic Pre-Processor (KPP) Version 3.0.0
3.1.  KPP 3.0.0 Overview

KPP (Damian et al., 2002; Sandu & Sander, 2006) generates code for solving the chemical kinetics for a given 
chemical mechanism defined by a list of species, reactions, and rate constants. It is designed for speed by exploit-
ing sparse matrix algebra and pre-computation of terms. We have made several improvements to KPP relative to 
the previous version 2.1 (Sandu & Sander, 2006), including the adaptive solver option. We present these improve-
ments as KPP version 3.0.0, available for download from https://github.com/KineticPreProcessor/KPP/ (https://
doi.org/10.5281/zenodo.7308373) with detailed documentation at https://kpp.readthedocs.io. Existing features in 
the previous versions of KPP are maintained in KPP version 3.0.0. Our new version has zero numerical differ-
ences compared to KPP version 2.1 when using the same configuration as verified using the “saprc2006.kpp” 
example.

KPP takes in as input one or more text files, with an example shown in Figure 1. The input is not necessarily in 
one single file; it may be split into several files for readability. The files describe the chemical mechanism, the 
choice of numerical solver (e.g., Rosenbrock), target language (i.e., Fortran 90, C, or MATLAB), floating point 

Figure 1.  Example KPP input file. The KPP input file includes options for code generation, adaptive auto-reduction, 
diagnostics for production and loss rates of chemical families, and a list of species and reactions. Reaction rate constants 
can be specified as expressions in the target language (in this case Fortran 90), here showing calls to functions calculating 
photolysis and Arrhenius rate expressions.
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type (single- or double-precision), production and loss diagnostics for selected chemical families (optional), and 
whether to use the adaptive solver option (optional). Some inputs are not part of the KPP code generation and 
are instead left for users to adjust at runtime, including convergence criteria (absolute and relative tolerance), 
numerical order of the solver, and adaptive solver options, in order to enable the user to experiment with different 
thresholds for performance and accuracy.

Based on the specifications in the KPP input file(s), KPP creates files in the target language containing a descrip-
tion of the system of ODEs (number of species, reactions, and a numbered list of species), code to calculate the 
time derivatives, Jacobian matrix, and solution by back-substitution, along with a copy of the numerical solver 
(such as Rosenbrock) and supporting routines for sparse linear algebra. This set of files can be either run stan-
dalone as a box model or can be included in a 3-D model to update concentrations locally over external time 
steps.

Auto-reduction of the mechanism with the adaptive solver described in Section 2 is an option in KPP 3.0.0 using 
the Fortran 90 language, enabled in the configuration file by #AUTOREDUCE on and specifying the correspond-
ing integrator (e.g., #INTEGRATOR rosenbrock_autoreduce). This sets up the capability for the user 
to reduce the mechanism locally through specification of the partitioning threshold δ between fast and slow 
species, listing any species for which this partitioning should not be applied. These specifications are done at 
runtime for flexibility. Even when the auto-reduction solver is used, mechanism auto-reduction can be disabled 
at runtime, defaulting to the behavior of the original integrator, to check for accuracy. A test case box model for 
auto-reduction is included as part of KPP 3.0.0 documentation.

In addition to the option for adaptive mechanism auto-reduction, several additional features and improvements 
were added to KPP 3.0.0 relative to the previous version 2.1 (Sandu & Sander, 2006). These include:

1.	 �Redeployment of KPP source code, continuous integration, and documentation for community develop-
ment. KPP 3.0.0 source code has been redeployed on GitHub for community development. The GitHub 
repository incorporates continuous integration (CI) tests which automatically compile the KPP source 
code to build and run combinations of sample chemistry mechanisms and integrators into box models at 
every code revision. This helps to ensure that new features and updates added to KPP do not break existing 
functionality and that numerical results for existing configurations are not affected. The documentation has 
also been relocated to https://kpp.readthedocs.io where it is automatically built with each code revision on 
GitHub.

2.	 �New diagnostics. The following diagnostic features have been added to KPP 3.0.0:
•	 �Production and loss rates for chemical families. KPP 3.0.0 allows for the definition of families of chemical 

species for computing production and loss for that family, ignoring interconversion reactions within the 
family. This is useful in models for example, to keep track of odd oxygen (Bates & Jacob, 2020) or nitrogen 
oxides. Families are defined in the #FAMILIES section of the KPP input file.

•	 �Stoichiometric numbers. The stoichiometric numbers of all reactions in the mechanism are now available 
in the CalcStoichNum subroutine in the KPP-generated code. This feature is used to calculate the impor-
tance of chemical species in a mechanism for the skeletal mechanism reduction in Sander et al. (2019).

•	 �Individual reaction rates and time derivatives. The reaction rates and their time derivatives are now avail-
able as optional outputs from the KPP-generated code.

3.	 �Addition of new solvers. Several solvers have been added as options for integrating chemical kinetics including 
VODE (Brown et al., 1989), SDIRK (Hairer & Wanner, 1991), 3-stage Runge-Kutta, and forward and back-
ward Euler methods.

4.	 �Addition of new rate law functions. Rate law functions for three-body reactions using the formulas proposed 
by JPL (https://jpldataeval.jpl.nasa.gov) and IUPAC (https://iupac.aeris-data.fr/) have been added to the 
built-in rate laws in KPP 3.0.0. Rate law functions are not limited to those built in KPP and can be added by 
including extra source code files in the KPP input.

5.	 �Miscellaneous performance improvements in Fortran 90. KPP 3.0.0 optimizes for Fortran 90 performance by 
applying several guidelines in coding, particularly in reaction rate calculations that are computed repeatedly 
in loops:
•	 �Unifying number precision. Previous inputs to KPP used both single- and double-precision numbers. KPP 

input files and code now do not mix number precision to avoid conversion, which loses precision and costs 
computational time.
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•	 �Switch to control update of reaction rate constants. Previously, KPP called subroutines to update reaction 
rate constants at every internal time step, but this is computationally expensive and may not be needed in 
most model applications where the variables affecting rate constants are not updated between internal time 
steps. An optional switch has been added so that rate constants are updated only at the beginning of the 
external time step.

•	 �Optimized rate law functions. Rate law functions have been split to avoid computation of unnecessary 
terms. For example, previously a single function with Arrhenius temperature dependence was used for 
all reactions: 𝐴𝐴 ARRabc(𝐴𝐴𝐴𝐴𝐴𝐴 𝐴𝐴) = 𝐴𝐴 ∗ exp(𝐵𝐵∕𝑇𝑇 ) ∗ (300∕𝑇𝑇 )

𝐶𝐶 . Many reactions may have 𝐴𝐴 𝐴𝐴 = 0 or 𝐴𝐴 𝐴𝐴 = 0 
but the expressions 𝐴𝐴 300∕𝑇𝑇  or 𝐴𝐴 exp(0) are still needlessly computed. Separate rate functions such as 

𝐴𝐴 ARRab(𝐴𝐴𝐴𝐴𝐴) = 𝐴𝐴 ∗ exp(𝐵𝐵∕𝑇𝑇 ) have been added, leading to a 44% performance improvement of reaction 
rate computations in a full-chemistry GEOS-Chem model run.

•	 �Avoiding conditionals and optional arguments. Conditional clauses such as IF, ELSE, and SELECT 
CASE, and testing for optional arguments add significant computational cost if called thousands of times. 
If a conditional clause or optional argument is present in a frequently called subroutine, the subroutine is 
split into different functions for each case.

•	 �Thread safety for generated code. The code generated is now thread safe, so that calls for updating rate 
constants and running the integrator can be placed in an OpenMP parallel loop for parallelization.

•	 �Improved expressions for vector and array functions. Several functions for basic vector and array opera-
tions originally used reference BLAS (Basic Linear Algebra Subprograms) implementations. These have 
been replaced with Fortran 90 expressions to allow for compilers to better optimize the code.

6.	 �Miscellaneous code improvements in KPP. The C source code of KPP has been improved so that no compiler 
warnings are generated. A more consistent memory allocation helps to avoid buffer overflow problems. The 
KPP language is now parsed by bison instead of yacc.

3.2.  Adaptive Solver Implementation in KPP 3.0.0

We implemented the adaptive solver as an option within KPP's Fortran 90 version of the Rosenbrock solver 
using sparse matrix algebra. KPP is computationally efficient because the functions to compute the time deriva-
tives for each species and the Jacobian matrix (expressed in terms of reaction rates and species concentrations), 
along with all sparse matrix algebra routines, are pre-generated and use fixed indices to access species vectors 
and matrices. This means that the problem size and memory space is fixed at compile time, avoiding expensive 
memory allocation operations. However, this also yields a fixed problem structure that is difficult to manipu-
late. One major source of overhead in locally defined sub-mechanisms as in Santillana et al. (2010) is associ-
ated with repeatedly re-allocating and de-allocating memory to accommodate changing problem sizes for each 
sub-mechanism (Shen et al., 2020). Our adaptive solver implementation in KPP 3.0.0 uses a mapping operation 
to project the full mechanism into sub-mechanisms, thus reusing the same memory space to avoid expensive 
resizing operations.

Figure  2a shows the sparse Jacobian data as stored within KPP.  In this example mechanism, there are three 
species (NVAR) and eight non-zero entries in the Jacobian (LU_NONZERO) of the full mechanism. The row and 
column indices of these eight non-zero entries in Jacobian matrix are correspondingly specified in LU_IROW, 
LU_ICOL in row-compressed form. At the beginning of every external time step, the production and loss rates 
of each species are calculated and compared to the partitioning threshold to separate species into fast and slow. 
Figure 2b shows an example where species B is slow. The entries in the Jacobian corresponding to B no longer 
need to be computed, and a mapping operation is performed: JVS_MAP corresponds to the non-zero Jacobian 
matrix entries still present in the sub-mechanism consisting of fast species. The smaller sub-mechanism can now 
be described by two species (rNVAR) and four non-zero entries in the reduced Jacobian (cNONZERO) with indi-
ces described by cLU_IROW and cLU_ICOL. The data structure of the smaller sub-mechanism is identical to 
the full mechanism, and the same routines are used to solve it, without the need to generate extra code, or resizing 
memory.

The mechanism auto-reduction is performed once at the beginning of every external time step.  The set of 
fast and slow species are established according to the runtime options for the partitioning threshold δ and the 
list of species to be excluded from partitioning and kept in the fast subset under all conditions (keepSp-
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cActive). Based on the list of species in the fast set, the mapping (JVS_MAP) from the full mechanism to 
the fast sub-mechanism is created. Because KPP generates hard-coded source code to compute each term of 
the Jacobian matrix and back-substitution for computational efficiency, two logical control vectors, DO_JVS 
and DO_SLV, are created to skip computation of terms corresponding to slow species as these are no longer 
necessary.

The separation between fast and slow species is controlled by the initial conditions at the beginning of the 
external time step, but an optional “append” function is added to account for an initially slow species becoming 
fast over the course of the internal time steps. This function appends new species to the fast sub-mechanism 
and adjusts the logical control vectors if these species are initially partitioned as slow but their production or 
loss rate exceed the partitioning threshold over the course of the internal time stepping. Diagnosing this has 
little overhead, because the production and loss rates of all species are already computed at every internal time 
step.

We used a box model integration of the GEOS-Chem chemical mechanism (described below) to analyze the 
overhead of the adaptive solver implemented within KPP. By forcing the adaptive solver routines to run with 
a threshold of 0, we determined that the KPP overhead added by the auto-reduction is 10%–16%. The main 
source of overhead is the copying of data between the full and reduced sub-mechanism (Figure 2), where 
the worst-case scenario is when all species are partitioned as fast and all species' data need to be copied 
between the full to the “reduced” data structures. Profiling tests show that other steps such as the partitioning 
of species between fast and slow, or the first-order approximation for slow species, contribute negligible 
overhead.

We also used the box model to verify that our adaptive solver introduces minimal mass non-conservation 
compared to the full solver. Integrating the box model over four sets of initial conditions from the GEOS-Chem 
model over 10,000 time steps shows that the total masses of odd oxygen, reactive nitrogen, chlorine, and bromine 
(defined in Table S1 in Supporting Information S1) are conserved within 0.30% in the standard configuration of 
the adaptive solver as compared with the full mechanism solver. Figure S2 in Supporting Information S1 shows 

Figure 2.  Mechanism auto-reduction in KPP. Panel (a) shows the data structure of the sparse Jacobian data within KPP for a 
sample 3-species mechanism. If species B is diagnosed as slow, then the corresponding rows and columns of the Jacobian are 
no longer calculated (panel (b)), and the indices pointing to the sparse Jacobian data (LU_IROW, LU_ICOL) are adjusted 
to remove the slow species (cLU_IROW, cLU_ICOL) through a mapping array (JVS_MAP) while preserving the sparse 
matrix in row-compressed form. The result is a reduced mechanism with the same data structure as the original one, but with 
smaller dimensions.
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the geographical distribution of mass non-conservation for these four families at a snapshot in time in a global 
GEOS-Chem model simulation, again comparing the adaptive solver in its standard configuration to the full 
solver. Mass conservation is within 0.01% for odd oxygen and reactive nitrogen and at worst within 0.2% for 
bromine.

4.  Adaptive Mechanism Auto-Reduction in the GEOS-Chem Model Using KPP 
Version 3.0.0
We demonstrate the adaptive solver capability in KPP version 3.0.0 with the GEOS-Chem global 3-D atmos-
pheric chemistry model version 13.4.0 (Bey et al., 2001; https://doi.org/10.5281/zenodo.6511970). The chemical 
mechanism includes comprehensive oxidant-aerosol chemistry in the troposphere and the stratosphere with 291 
chemical species and 913 reactions. Recent updates to the mechanism include Cl-Br-I tropospheric halogen 
chemistry (Wang et al., 2021), isoprene chemistry (Bates & Jacob, 2019), aromatic chemistry (Bates et al., 2021), 
hydroxymethanesulfonate cloud chemistry (Moch et al., 2020), and NOy cloud and aerosol chemistry (Holmes 
et al., 2019). Heterogeneous sulfur chemistry that was previously simulated with a separate module was brought 
into KPP in GEOS-Chem version 13.4.0 with the addition of new rate functions.

GEOS-Chem has been structured to interact with the KPP-generated solver code through the FlexChem interface 
which prepares data for the solver code, executes the code, and retrieves concentrations at the end of the time 
step. FlexChem allows GEOS-Chem to use modules outside of KPP for computing reaction rates, for example, 
interfacing with Fast-JX for photolysis rates (Bian & Prather, 2002; Mao et al., 2010). FlexChem also includes 
a derived type object, State_Het, which passes state variables from GEOS-Chem model for calculating 
heterogeneous chemistry reaction rates including cloud liquid water content, aerosol size distribution, pH, and 
alkalinity. This derived type object holds common intermediate quantities necessary for heterogeneous reaction 
rate computations, such as aerosol area, avoiding repeated computation and memory use. FlexChem also allows 
GEOS-Chem users to modify the chemical mechanism input into KPP without modifying the GEOS-Chem 
source code.

We evaluate the accuracy and computational performance of the adaptive solver in KPP version 3.0.0 using 
global GEOS-Chem simulations at 2° × 2.5° resolution with 72 vertical levels extending up to 0.1 hPa. The 
model is driven by the Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2) 
meteorological fields from the NASA Global Modeling and Assimilation Office (GMAO). The external time step 
for the chemistry solver is 20 min. All simulations are conducted on the same single-node hardware with 24 Intel 
Cascade Lake physical cores (Intel(R) Xeon (TM) Platinum 8268 CPUs with a base clock speed of 2.90 GHz, no 
hyper-threading logical cores), 100 GB of RAM, and a high-performance Luster parallel file system. The model 
was compiled using Intel(R) Fortran Compiler (ifort) version 2021.2.0.

We select as the standard configuration of the adaptive solver within the GEOS-Chem model a dynamically 
defined threshold with OH as target species during daytime, and NO2 during nighttime, with coefficients 

𝐴𝐴 𝐴𝐴OH = 5 × 10
−5 and 𝐴𝐴 𝐴𝐴NO2

= 1 × 10
−4 . We find that using NO3 as an alternative nighttime target species results 

in higher accuracy but lower speed-up (Table S3 in Supporting Information S1). We do not force any species to 
remain in the implicit KPP solver as fast and we do not use the append functionality. We find that we achieve a 
net 32% reduction in integration time in this standard configuration.

Figure 3 shows the percentage of species partitioned as fast (and hence retained in the KPP integration) using 
the adaptive solver's standard configuration. Starting from the ensemble of 291 species in the GEOS-Chem 
full mechanism, we find that over 60% are partitioned as fast in surface air over land, reflecting VOC sources, 
whereas only 10%–50% are partitioned as fast over the ocean. The fraction of retained species decreases with 
altitude, and fewer than 40% are partitioned as fast in the stratosphere where VOC chemistry is mainly limited 
to methane. Fewer species are partitioned as fast at night than in daytime. These results are consistent with Shen 
et al. (2020).

We evaluate the accuracy of the adaptive solver (AS) relative to the full mechanism solver over the global GEOS-
Chem domain using the relative root mean squared (RRMS) error metric. For each species i, the RRMS error is:

RRM𝑆𝑆𝑖𝑖 =

√

1

𝑁𝑁𝑖𝑖

𝑁𝑁𝑖𝑖
∑

𝑗𝑗=1

(

𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖full − 𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖AS

𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖full

)2

� (6)
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where Ci,j,full, Ci,j,AS are the concentrations of species i in grid box j for simulations without and with the adaptive 
solver. The RRMS is computed over the ensemble Ni of ordered grid boxes that account for 99% of the total mass 
of species i in the boundary layer (surface to PBL height from MERRA2), free troposphere (boundary layer 
height to tropopause), and stratosphere, respectively, and where Ci,j,full is greater than 10 molecules cm −3.

Figure 4a shows the mean errors at the end of a 1-year simulation for species in different chemical categories 
(Table S4 in Supporting Information S1) and Figures 4b–4d shows the time evolution of errors over the 1-year 
simulation for all species in the standard configuration of the adaptive solver within the GEOS-Chem model, 
respectively. The mean error for most categories is below 1% within the boundary layer and the free troposphere. 
There is no error growth in the troposphere but there is some in the stratosphere. Figure 5 shows the geographical 
distribution of relative errors (absolute errors shown in Figure S6 in Supporting Information S1) for ozone, OH, 
and NO2 at the surface and 500 hPa for the end of the 1-year simulation. Errors are generally lower than 1% except 
for OH at high latitudes and NO2 over the Southern Ocean, where errors are up to 3% for OH and 6 ∼ 10% for 
NO2. Errors over land for these species are minimal.

The largest errors in Figure 4 are found for inorganic halogen radicals and their reservoirs. Halogen radicals 
cycle rapidly during the day but become locked in reservoirs at sunset, to be released again at sunrise (Wang 
et al., 2021). Partitioning between fast and slow species at sunrise/sunset leads to large errors and mass balance 
issues associated with the use of the first-order approximation (Equation 4). These problems were previously 
identified by Shen et al. (2020, 2022). Long residence times in the stratosphere compound the problem and drive 
slow error growth for other species. The impact is much less in the troposphere where the inorganic halogens are 
removed by wet deposition.

Our results in Figure 4 indicate that halogen species should be kept in the implicit solver as fast species if the 
primary interest of the simulation is the stratosphere. Figure S5 in Supporting Information S1 shows the mean 
errors and time evolution of errors over the 1-year simulation when halogen species are kept as fast in the adaptive 
solver. In this configuration, the performance improvement of the adaptive mechanism is 23%, as compared to 
32% in the standard configuration. Keeping the halogen radicals and their reservoir species as fast prevents large 
errors from developing in the stratosphere, in addition to avoiding error growth and spikes in errors as shown in 
Figure 4d. A similar problem though not of the same magnitude is found for hydrogen oxide radicals controlling 
the concentration of OH in the stratosphere, and this causes high errors in stratospheric sulfate exceeding 10% 
above 85 hPa. The list of species to be kept in the implicit solver in the GEOS-Chem model can be configured 
in the FlexChem interface and passed to KPP 3.0.0 as a runtime option. An alternative to customizing the list of 
species to be kept in the implicit solver is to disable the adaptive solver in the stratosphere while retaining it in the 
troposphere. In this case, the performance improvement from using the adaptive mechanism decreases from 32% 
to 20%. Such ad hoc adjustments to the fast/slow species partitioning would be mechanism-specific and can be 

Figure 3.  Percentage of GEOS-Chem species retained in the fast sub-mechanism when using the adaptive solver. The full GEOS-Chem mechanism has 291 species 
to describe tropospheric and stratospheric oxidant-aerosol chemistry. Only a fraction of species is retained as fast in the KPP solver, while the other species are solved 
individually using Equation 4. Results are shown for a snapshot in time on 1 July 2014, 12:00 UTC at different altitudes. The adaptive solver uses a dynamically defined 
threshold (Equation 5) with target species OH in daytime (𝐴𝐴 𝐴𝐴OH = 5 × 10

−5 ) and NO2 at night (𝐴𝐴 𝐴𝐴NO2
= 1 × 10

−4 ).
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Figure 4.  Accuracy of the adaptive solver in a 1-year GEOS-Chem simulation. Panel (a) shows the mean RRMS errors for species in different categories at the end 
of the 1-year simulation starting on 1 July 2014. The categories are as defined in the standard GEOS-Chem benchmarking output diagnostics (Table S4 in Supporting 
Information S1). Panels (b–d) show the time evolution of RRMS errors for all species in the boundary layer, free troposphere, and stratosphere, respectively, with 
colored lines for species of particular interest.
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experimented with by users. We find in GEOS-Chem that they are not needed for standard applications focusing 
on tropospheric chemistry.

We find in this application that the append functionality (allowing species to switch from slow to fast over inter-
nal time steps) does not provide significant error reduction, in particular for the halogen species, and degrades 
the performance improvement of the adaptive mechanism to 24% instead of 32%. We retain it as an option in 
the adaptive solver code as it may be helpful for longer external time steps (here 20 min) or other chemical 
mechanisms.

The adaptive solver uses a dynamically defined threshold (Equation  5) with target species OH in daytime 
(𝐴𝐴 𝐴𝐴OH = 5 × 10

−5 ) and NO2 at night (𝐴𝐴 𝐴𝐴NO2
= 1 × 10

−4 ), and does not force any species below that threshold to 
remain as fast.

Our analysis of the performance and accuracy of the adaptive solver is based on 20-min external time steps for 
the chemistry solver in the GEOS-Chem standard 2° × 2.5° configuration, but regional models with finer grid 
resolution would use finer external time steps for operator splitting with transport (Philip et al., 2016). We tested 
the sensitivity of our results to the size of the external time step within the GEOS-Chem 2° × 2.5° environment as 
shown in Table S3 in Supporting Information S1. We find that finer external time steps result in higher accuracy 
but lower speed-up, which makes sense in terms of the overhead required at the beginning of each external time 
step to define the sub-mechanism and cull the Jacobian, but also the opportunity to update the separation between 
fast and slow species more frequently for better accuracy. Ultimately, this sensitivity to external time-stepping 
will need to be tested by users in their own model environment (and their own mechanism).

5.  Conclusions
We presented an updated version of the (KPP 3.0.0) to integrate stiff chemical mechanism kinetics typical of 
atmospheric chemistry models. KPP was originally designed for flexibility and speed. KPP 3.0.0 features several 
improvements for performance, diagnostics, choice of solvers, and code openness. It includes an adaptive solver 
capability for mechanism auto-reduction where and when the full mechanism is not needed.

The adaptive solver performs auto-reduction of the chemical mechanism locally and on-the-fly at runtime, by 
comparing the local production and loss rates of each species with a partitioning threshold (δ). Species with 

Figure 5.  Accuracy of the adaptive solver for ozone, OH, and NO2 global distributions. The figure shows the percent errors relative to the full solver for the daily mean 
concentrations on 1 July 2015, the last day of the 1-year simulation, in surface air and at 500 hPa. The absolute error values corresponding to this figure are shown in 
Figure S6 in Supporting Information S1.

 19422466, 2023, 2, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2022M

S003293, W
iley O

nline Library on [18/05/2023]. See the Term
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline Library for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons License



Journal of Advances in Modeling Earth Systems

LIN ET AL.

10.1029/2022MS003293

12 of 14

production and loss rates higher than the threshold are considered fast and are solved as a coupled sub-mechanism 
within KPP, while other species are considered slow and solved individually by an explicit method. Previous 
application of this adaptive solver method suffered from large overhead due to the need for local reconstruction 
of the reduced Jacobian matrix and the associated memory allocation and deallocation. We solved this problem 
here by using pre-computed Jacobian terms for the full mechanism with a mapping operation to crop rows and 
columns corresponding to the slow species without changing the memory allocation.

KPP 3.0.0 features additional improvements for performance, diagnostics, versatility, and openness. Improved 
performance includes more efficient calculation of reaction rates from the KPP rate functions and thread safety 
for parallelization. New diagnostics include individual reaction rates, production and loss rates for chemical fami-
lies, and stoichiometric numbers. Improved versatility includes expanded choice of chemical solvers. KPP 3.0 is 
now hosted on GitHub (https://github.com/KineticPreProcessor/KPP) to enable community access, development, 
and testing.

We evaluated the adaptive solver implemented in KPP 3.0.0 by conducting a 1-year simulation with the global 
3-D GEOS-Chem atmospheric chemistry model including 291 species in the full mechanism for oxidant-aerosol 
chemistry in the troposphere and stratosphere. Results show that a 32% performance improvement in the solver 
can be achieved with a target error of 1% for key species in the troposphere. Errors in the stratosphere can be 
larger, driven by halogen chemistry. Lower errors especially in halogen species can be achieved by keeping these 
species within the fast sub-mechanism but this reduces the performance improvement to 23% and is mainly bene-
ficial in the stratosphere.

The release of KPP 3.0.0 introduces improvements in development infrastructure, diagnostics, and perfor-
mance, particularly in Fortran 90 applications. However, one of the strengths of the KPP software is the capa-
bility to generate code for different programming languages. Development directions for future versions include 
(a) adding support for modern languages such as Python and Julia; (b) refactoring of the generated code to 
avoid global data structures for easier parallelization; (c) streamlining inputs and outputs of all integrators for 
consistency; (d)  supporting the adaptive solver option in other integrators and programming languages; and (e) 
improving interaction and compatibility with the Master Chemical Mechanism (http://mcm.york.ac.uk). These 
improvements will allow KPP to better serve the community as a versatile tool for solving chemical kinetics 
within atmospheric chemistry models and other applications.

Data Availability Statement
Model Code Availability: Source code for KPP 3.0.0 is available at https://github.com/KineticPre-
Processor/KPP (Sandu et  al.,  2022; https://doi.org/10.5281/zenodo.7308373). The adaptive solver box 
model is available at https://github.com/KineticPreProcessor/KPP-AR-boxmodel/ (Long & Lin,  2022; 
https://doi.org/10.5281/zenodo.6791657). The adaptive solver implementation within the GEOS-Chem atmos-
pheric chemistry model used in this work is available at https://github.com/jimmielin/geos-chem/tree/staging/
autoreducekpp (The International GEOS-Chem Community, 2022; https://doi.org/10.5281/zenodo.6791655).
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