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Abstract Kinetic integration of large and stiff chemical mechanisms is a computational bottleneck in
models of atmospheric chemistry. It requires implicit solution of the coupled system of kinetic differential
equations with time-consuming construction and inversion of the Jacobian matrix. We present here a new
version of the Kinetic Pre-Processor (KPP 3.0.0) for fast integration of chemical kinetics featuring a range

of improvements over previous versions in performance, diagnostics, versatility, and community openness.
KPP 3.0.0 includes a new adaptive auto-reduction solver to decrease the size of any mechanism locally and
on the fly under conditions where full complexity is not needed, by partitioning species as “fast” or “slow”
based on their local production and loss rates. Previous implementations of this adaptive solver suffered from
excessive overhead in the repeated construction of the local Jacobian matrix or were hard-wired to specific
mechanisms. Here we retain the general applicability of the method to any mechanism and avoid overhead by
using pre-computed Jacobian matrix terms for the full mechanism and cropping the matrix locally to remove
the slow species with no change in memory allocation. We apply this adaptive solver within KPP 3.0.0 to the
GEOS-Chem global 3-D model of atmospheric chemistry and demonstrate a 32% reduction in solver time while
maintaining a mean error lower than 1% for key species in the troposphere.

Plain Language Summary Calculating chemical evolution in global atmospheric chemistry
models is computationally expensive because the chemical mechanisms typically include hundreds of species
to account for all conditions from urban to remote. However, the full chemical complexity is not needed

under most conditions. Here we have developed an adaptive auto-reduction chemical solver that reduces any
mechanism on the fly depending on local conditions and without significant computational overhead. We apply
this adaptive solver as an option in a new version 3.0.0 of the Kinetic Pre-Processor (KPP) chemical solver
software package that also includes a number of updates relative to previous versions. The adaptive solver
achieves a 32% reduction in solver time in a global model simulation while incurring less than 1% average
errors for key species.

1. Introduction

Modeling atmospheric chemistry is a grand computational challenge. Current global 3-D models of oxidant-aerosol
chemistry use chemical mechanisms that may involve hundreds of coupled chemical species with lifetimes rang-
ing from less than a second to many years. Chemical evolution in such a mechanism is computed by solving a
large, stiff system of coupled non-linear ordinary differential equations (ODEs) expressing the chemical kinet-
ics of individual species. Implicit solvers are required to accommodate the coexistence of short and long time
constants but are computationally expensive because of the need for repeated construction and inversion of the
Jacobian matrix (Brasseur & Jacob, 2017). Chemical integration often dominates the overall computational cost
of global 3-D atmospheric chemistry model simulations, even in massively parallel environments or using graph-
ics processing units (GPUs) (Alvanos & Christoudias, 2017; Dawson et al., 2022; Eastham et al., 2018; Zhuang
et al., 2020).
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Considerable research has gone into devising algorithms to speed up chemistry solvers. A common strategy
is to split the mechanism species by time scales in order to decrease the stiffness of the system (Djouad &
Sportisse, 2002; Gong & Cho, 1993; Young & Boris, 1977), but this tends to be mechanism-specific and is
difficult to apply in global models because of the wide range of conditions that may be experienced. Wholesale
reduction of the mechanism, such as in the Super-Fast mechanism used in some climate models (Brown-Steiner
et al., 2018), may lead to large errors (Kelp et al., 2022) and incorrect chemical responses to perturbations.
Machine learning methods can in principle speed up chemical integration by orders of magnitude but have
met with little success because of the large dimensionality of the problem resulting in error growth, in addi-
tion to requiring re-training and re-evaluation after even minor updates to the chemical mechanism (Keller &
Evans, 2019; Kelp et al., 2020, 2022).

A promising approach for global models is to recognize that the full complexity of the mechanism is not needed
everywhere. For example, reactions involving volatile organic compounds (VOCs) and their short-lived prod-
ucts typically account for much of the complexity but may be unimportant outside of continental boundary
layers where the VOCs are emitted. Jacobson (1995) thus applied separate mechanisms in a global model for
the urban boundary layer, the global troposphere, and the stratosphere. However, fixed geographical separation
between domains can result in errors and inefficiencies by not accounting for the interactions at chemical bound-
aries between domains (Rastigejev et al., 2007) and not allowing for a continuum of chemical regimes from
source regions to the remote atmosphere. Santillana et al. (2010) developed an adaptive mechanism reduction
method in which the size of the mechanism is adjusted at each grid cell and time step, classifying species as
fast (coupled) or slow (uncoupled) on the basis of their total production and loss rates. However, the overhead
involved in local definition of the reduced mechanism offset the computational gains. Sander et al. (2019) and
Shen et al. (2020, 2022) improved the method by pre-compiling a limited ensemble of chemical sub-mechanisms
and selecting the most appropriate sub-mechanism for use based on local conditions at each timestep, thus avoid-
ing the overhead. Shen et al. achieved a 30%—50% reduction in computational cost compared to the full parent
mechanism in a global simulation of the troposphere and stratosphere, but the selection of sub-mechanisms had
to be customized to the parent mechanism.

Here we develop a mechanism-agnostic, ready-to-use method for adaptive auto-reduction of any chemical mech-
anism and implement it as an option in a new version 3.0.0 of the Kinetic Pre-Processor (KPP). Originally devel-
oped by Damian et al. (2002) and Sandu and Sander (2006), KPP is a software tool that automatically generates
code to efficiently integrate chemical mechanisms. KPP takes in a set of human-readable input files describing
the mechanism and generates Fortran 90, C, or MATLAB code to solve the corresponding system of ODEs using
any of a suite of integration methods. KPP is used in many atmospheric chemistry models including MECCA
within MESSy (Jockel et al., 2010; Sander et al., 2019), WRF-Chem (Fast et al., 2006; Grell et al., 2005), the
forward and adjoint GEOS-Chem models (Henze et al., 2007), and the adjoint for the CMAQ model (Hakami
et al., 2007; Zhao et al., 2020). Our new version KPP 3.0.0 incorporates several performance and diagnostic
updates over the previous version KPP 2.1 (Sandu & Sander, 2006) in addition to the adaptive solver option.

2. Adaptive Solver for Chemical Kinetics

Atmospheric chemistry models alternate chemical integration and transport calculations through operator split-
ting (Brasseur & Jacob, 2017), The chemistry solver is called for a time interval of length Az, referred to as the
external time step, and returns a vector of updated concentrations C at the end of that time step to be operated on
by transport. The kinetic integration of the mechanism by the chemistry solver is done over internal time steps
h < At to reach the desired accuracy.

The chemistry solver integrates a system of N coupled nonlinear first-order ODEs of the form

= PO-LOG=12...N) (1)
where N is the number of coupled species in the mechanism, C is the vector of species concentrations of dimen-
sion N, and P(C) and L(C) are the production and loss rates of species i that depend on the concentrations of

other species in the mechanism through the reaction rate expressions.

The external time step in a global model is typically ~103 s, but many species in the mechanism have lifetimes
~1 s or shorter. An explicit solver would require internal time steps shorter than the lifetime of the shortest-lived
species in order to achieve stability, but this is not computationally practical. An implicit solver is required. The
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simplest such solver is the first-order backward Euler method, which approximates the solution to Equation 1 over
the internal time step A with

C(t+h)=C@)+s(Ct+ h)h 2)

where we define the net source term s = P — L as a vector of functions (P, — L,). Solving Equation 2 for the
unknown quantity C(7 + h) using the Newton-Raphson method requires the repeated construction and inversion
of the N X N Jacobian matrix J:

_ 0s

I=3c

3

The construction and inversion of this Jacobian matrix is computationally expensive. Higher-order solvers gener-
ally used in atmospheric chemistry models, such as Rosenbrock (Hairer & Wanner, 1991; Rosenbrock, 1963;
Sandu et al., 1997) or Gear (Jacobson & Turco, 1994), similarly require the repeated construction and inversion of
the Jacobian over internal time steps. The Jacobian is typically ~90% sparse allowing for efficient sparse-matrix
inversion methods (Sandu et al., 1997), so that the overall cost of construction and inverting the Jacobian scales
as ~N rather than a higher power.

A way to reduce the dimensionality N of the problem is to split the mechanism into “fast” species for which the
coupled implicit solution is necessary and “slow” species that may be solved independently over the external
time step using a fast explicit method. Young and Boris (1977) and Gong and Cho (1993) separate species
into fast and slow based on their lifetimes compared with the integration time step. However, the separation
results in non-conservation of mass because the reaction rates are not computed consistently. This may not be of
consequence in a regional model (as used in those applications) where the domain is ventilated by the boundary
conditions, so that errors do not accumulate, but it is more problematic in a global model. Santillana et al. (2010)
separated instead “fast” and “slow” species on the basis of their production and loss rates, with the slow species
having sufficiently low rates that their non-conservation of mass would be inconsequential. This is more relevant
for global models where concentrations and rates of short-lived VOCs become very small and they have negligi-
ble influence on other species outside of their source regions. Shen et al. (2020, 2022) used the same approach to
partition species between fast and slow.

Here we also follow the partitioning method of Santillana et al. (2010). At the beginning of each external time
step we calculate P and L and classify species i as fast if max(P;, L;) > 6 and as slow otherwise, where
is a user-selected partitioning threshold. Fast species are assigned to the coupled implicit solver as a subset
(sub-mechanism) of the full mechanism, while the evolution of slow species over the external time step beginning
at t, is calculated using an explicit first-order approximation with first-order loss rate constant k; (t,) = L, (t,)/C;
(t):
Pi(t0) Pi(t0) \ _k(1)ar

Cilto+ 40 = =05 + (C,-(to) - m)e i(t0) )
In the Santillana et al. (2010) implementation, the Jacobian had to be reconstructed locally at every external time
step for the identified subset of fast species and that incurred large overhead, canceling the benefit of the method.
Here we avoid the overhead by taking advantage of the pre-computed Jacobian matrix terms for the full mecha-
nism in the KPP solver to simply remove rows and columns corresponding to the slow species. This is explained
in Section 3.2 and is the key new development to make the method computationally practical.

The partitioning threshold § is set prior to integration and is tuned to balance performance and accuracy. Previous
work (Santillana et al., 2010; Shen et al., 2020, 2022) considered that in a typical tropospheric chemistry mecha-
nism, much of the coupling is associated directly or indirectly with cycling of the hydroxyl radical (OH). OH has
a daytime concentration of ~10% molecules cm™ and a lifetime ~1 s, so its production and loss rates are ~10°
molecules cm™3 s~!. A species with production and loss rates that are several orders of magnitude smaller would
not be expected to contribute significantly to the coupling. They found § ~ 10> — 10° molecules cm™ s~! to be
adequate after testing for performance and accuracy.

Here we include the option to dynamically define & instead of specifying a uniform value over the domain, to
account for rates varying with local conditions. This is done by identifying a target species which is considered
central to the mechanism and scaling its production and loss rates to define a local partitioning threshold:

o= Qtarget maX(Plargeu Llargel) ®)
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#INTEGRATOR  rosenbrock_autoreduce KPP Options
#LANGUAGE Fortrande

Integrator, target language, and other

HIINVERSION  3.6.0 code generation options

#AUTOREDUCE on

#FAMILIES

POx : 03 + NO2 + HNO3; Production and Loss Families

LOx : 03 + NO2 + HNO3;

HDEFVAR Definition of species

03 = IGNORE; “IGNORE” if mass balance checks are not required
NO = IGNORE; Otherwise specify stoichiometric composition
#EQUATIONS

03 + hv =20H + 02 : PHOTOL(1);

NO + 03 = NO2 + 02 : ARR(1.8d-12, -1370.0);

CO + OH = C02 + HO2 : 2.4d-13; List of reactions

HO2 + NO = OH + NO2 : ARR(3.7d-12, 240.0); L Reactants = Products : Rate constant
NO2 + hv = NO + 03 : PHOTOL(2); - .

HO2 + HO2 = H202 + 02 : ARR(1.2d-13, 749.8); Fortran 90 expressions are supported in rate constants
H202 + hv = 20H : PHOTOL(3);

CH4 + OH = CO + HO2 : ARR(3.1d-12, -187.0);

Figure 1. Example KPP input file. The KPP input file includes options for code generation, adaptive auto-reduction,
diagnostics for production and loss rates of chemical families, and a list of species and reactions. Reaction rate constants
can be specified as expressions in the target language (in this case Fortran 90), here showing calls to functions calculating
photolysis and Arrhenius rate expressions.

where Pireer and Liaree; are the local production and loss rates of the target species, and aareer << 115 a user-selected
coefficient that depends on the target species but is otherwise fixed for the model domain. For example, a model
may use OH as target species for daytime, and NO, or the nitrate radical (NO,) for nighttime. When using OH as
a target species and with max(Pon, Lon) ~ 10° molecules cm=3s~', a value aoy ~ 10~ — 10~ would correspond
to the criteria for o used by Santillana et al. (2010). But max(Pon, Lon) can in fact vary over orders of magnitude
depending on pressure, UV flux, and other factors, and our local specification of & accounts for this variability.
We find that this specification of dynamic threshold improves accuracy with no significant overhead since P,
and L, ., are computed at the beginning of each external time step in any case.

We also include two new options in the algorithm. First is to force individual species to remain in the coupled
implicit solver even if max(P;, L;) < 6. As we will see, this may be helpful for inorganic halogen species that
cycle between radical and non-radical forms across sunrise/sunset. Second is to include an “append” functionality
in the algorithm so that a species initially diagnosed as slow at the beginning of the external time step can be
transferred into the coupled implicit solver if it becomes fast over the course of the integration. This increases
accuracy with minimum overhead.

3. Kinetic Pre-Processor (KPP) Version 3.0.0
3.1. KPP 3.0.0 Overview

KPP (Damian et al., 2002; Sandu & Sander, 2006) generates code for solving the chemical kinetics for a given
chemical mechanism defined by a list of species, reactions, and rate constants. It is designed for speed by exploit-
ing sparse matrix algebra and pre-computation of terms. We have made several improvements to KPP relative to
the previous version 2.1 (Sandu & Sander, 2006), including the adaptive solver option. We present these improve-
ments as KPP version 3.0.0, available for download from https://github.com/KineticPreProcessor/KPP/ (https://
doi.org/10.5281/zenodo.7308373) with detailed documentation at https://kpp.readthedocs.io. Existing features in
the previous versions of KPP are maintained in KPP version 3.0.0. Our new version has zero numerical differ-
ences compared to KPP version 2.1 when using the same configuration as verified using the “saprc2006.kpp”
example.

KPP takes in as input one or more text files, with an example shown in Figure 1. The input is not necessarily in
one single file; it may be split into several files for readability. The files describe the chemical mechanism, the
choice of numerical solver (e.g., Rosenbrock), target language (i.e., Fortran 90, C, or MATLAB), floating point
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type (single- or double-precision), production and loss diagnostics for selected chemical families (optional), and
whether to use the adaptive solver option (optional). Some inputs are not part of the KPP code generation and
are instead left for users to adjust at runtime, including convergence criteria (absolute and relative tolerance),
numerical order of the solver, and adaptive solver options, in order to enable the user to experiment with different
thresholds for performance and accuracy.

Based on the specifications in the KPP input file(s), KPP creates files in the target language containing a descrip-
tion of the system of ODEs (number of species, reactions, and a numbered list of species), code to calculate the
time derivatives, Jacobian matrix, and solution by back-substitution, along with a copy of the numerical solver
(such as Rosenbrock) and supporting routines for sparse linear algebra. This set of files can be either run stan-
dalone as a box model or can be included in a 3-D model to update concentrations locally over external time
steps.

Auto-reduction of the mechanism with the adaptive solver described in Section 2 is an option in KPP 3.0.0 using
the Fortran 90 language, enabled in the configuration file by # AUTOREDUCE on and specifying the correspond-
ing integrator (e.g., #INTEGRATOR rosenbrock autoreduce). This sets up the capability for the user
to reduce the mechanism locally through specification of the partitioning threshold § between fast and slow
species, listing any species for which this partitioning should not be applied. These specifications are done at
runtime for flexibility. Even when the auto-reduction solver is used, mechanism auto-reduction can be disabled
at runtime, defaulting to the behavior of the original integrator, to check for accuracy. A test case box model for
auto-reduction is included as part of KPP 3.0.0 documentation.

In addition to the option for adaptive mechanism auto-reduction, several additional features and improvements
were added to KPP 3.0.0 relative to the previous version 2.1 (Sandu & Sander, 2006). These include:

1. Redeployment of KPP source code, continuous integration, and documentation for community develop-
ment. KPP 3.0.0 source code has been redeployed on GitHub for community development. The GitHub
repository incorporates continuous integration (CI) tests which automatically compile the KPP source
code to build and run combinations of sample chemistry mechanisms and integrators into box models at
every code revision. This helps to ensure that new features and updates added to KPP do not break existing
functionality and that numerical results for existing configurations are not affected. The documentation has
also been relocated to https://kpp.readthedocs.io where it is automatically built with each code revision on
GitHub.

2. New diagnostics. The following diagnostic features have been added to KPP 3.0.0:

e Production and loss rates for chemical families. KPP 3.0.0 allows for the definition of families of chemical
species for computing production and loss for that family, ignoring interconversion reactions within the
family. This is useful in models for example, to keep track of odd oxygen (Bates & Jacob, 2020) or nitrogen
oxides. Families are defined in the #FAMILIES section of the KPP input file.

e Stoichiometric numbers. The stoichiometric numbers of all reactions in the mechanism are now available
in the CalcStoichNum subroutine in the KPP-generated code. This feature is used to calculate the impor-
tance of chemical species in a mechanism for the skeletal mechanism reduction in Sander et al. (2019).

e Individual reaction rates and time derivatives. The reaction rates and their time derivatives are now avail-
able as optional outputs from the KPP-generated code.

3. Addition of new solvers. Several solvers have been added as options for integrating chemical kinetics including
VODE (Brown et al., 1989), SDIRK (Hairer & Wanner, 1991), 3-stage Runge-Kutta, and forward and back-
ward Euler methods.

4. Addition of new rate law functions. Rate law functions for three-body reactions using the formulas proposed
by JPL (https://jpldataeval.jpl.nasa.gov) and IUPAC (https://iupac.aeris-data.fr/) have been added to the
built-in rate laws in KPP 3.0.0. Rate law functions are not limited to those built in KPP and can be added by
including extra source code files in the KPP input.

5. Miscellaneous performance improvements in Fortran 90. KPP 3.0.0 optimizes for Fortran 90 performance by
applying several guidelines in coding, particularly in reaction rate calculations that are computed repeatedly
in loops:

e Unifying number precision. Previous inputs to KPP used both single- and double-precision numbers. KPP
input files and code now do not mix number precision to avoid conversion, which loses precision and costs
computational time.
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e Switch to control update of reaction rate constants. Previously, KPP called subroutines to update reaction
rate constants at every internal time step, but this is computationally expensive and may not be needed in
most model applications where the variables affecting rate constants are not updated between internal time
steps. An optional switch has been added so that rate constants are updated only at the beginning of the
external time step.

e Optimized rate law functions. Rate law functions have been split to avoid computation of unnecessary
terms. For example, previously a single function with Arrhenius temperature dependence was used for
all reactions: ARRyc(A, B,C) = A * exp(B/T) % (300/T)C. Many reactions may have B =0 or C =0
but the expressions 300/7 or exp(0) are still needlessly computed. Separate rate functions such as
ARR,(A, B) = A * exp(B/T) have been added, leading to a 44% performance improvement of reaction
rate computations in a full-chemistry GEOS-Chem model run.

e Avoiding conditionals and optional arguments. Conditional clauses such as IF, ELSE, and SELECT
CASE, and testing for optional arguments add significant computational cost if called thousands of times.
If a conditional clause or optional argument is present in a frequently called subroutine, the subroutine is
split into different functions for each case.

e Thread safety for generated code. The code generated is now thread safe, so that calls for updating rate
constants and running the integrator can be placed in an OpenMP parallel loop for parallelization.

e Improved expressions for vector and array functions. Several functions for basic vector and array opera-
tions originally used reference BLAS (Basic Linear Algebra Subprograms) implementations. These have
been replaced with Fortran 90 expressions to allow for compilers to better optimize the code.

6. Miscellaneous code improvements in KPP. The C source code of KPP has been improved so that no compiler
warnings are generated. A more consistent memory allocation helps to avoid buffer overflow problems. The

KPP language is now parsed by bison instead of yacc.

3.2. Adaptive Solver Implementation in KPP 3.0.0

We implemented the adaptive solver as an option within KPP's Fortran 90 version of the Rosenbrock solver
using sparse matrix algebra. KPP is computationally efficient because the functions to compute the time deriva-
tives for each species and the Jacobian matrix (expressed in terms of reaction rates and species concentrations),
along with all sparse matrix algebra routines, are pre-generated and use fixed indices to access species vectors
and matrices. This means that the problem size and memory space is fixed at compile time, avoiding expensive
memory allocation operations. However, this also yields a fixed problem structure that is difficult to manipu-
late. One major source of overhead in locally defined sub-mechanisms as in Santillana et al. (2010) is associ-
ated with repeatedly re-allocating and de-allocating memory to accommodate changing problem sizes for each
sub-mechanism (Shen et al., 2020). Our adaptive solver implementation in KPP 3.0.0 uses a mapping operation
to project the full mechanism into sub-mechanisms, thus reusing the same memory space to avoid expensive
resizing operations.

Figure 2a shows the sparse Jacobian data as stored within KPP. In this example mechanism, there are three
species (NVAR) and eight non-zero entries in the Jacobian (LU_NONZERO) of the full mechanism. The row and
column indices of these eight non-zero entries in Jacobian matrix are correspondingly specified in LU_IROW,
LU_ICOL in row-compressed form. At the beginning of every external time step, the production and loss rates
of each species are calculated and compared to the partitioning threshold to separate species into fast and slow.
Figure 2b shows an example where species B is slow. The entries in the Jacobian corresponding to B no longer
need to be computed, and a mapping operation is performed: JVS_MAP corresponds to the non-zero Jacobian
matrix entries still present in the sub-mechanism consisting of fast species. The smaller sub-mechanism can now
be described by two species (rNVAR) and four non-zero entries in the reduced Jacobian (cNONZERO) with indi-
ces described by cLU_IROW and cLU_ICOL. The data structure of the smaller sub-mechanism is identical to
the full mechanism, and the same routines are used to solve it, without the need to generate extra code, or resizing
memory.

The mechanism auto-reduction is performed once at the beginning of every external time step. The set of
fast and slow species are established according to the runtime options for the partitioning threshold § and the
list of species to be excluded from partitioning and kept in the fast subset under all conditions (keepSp-—
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Figure 2. Mechanism auto-reduction in KPP. Panel (a) shows the data structure of the sparse Jacobian data within KPP for a
sample 3-species mechanism. If species B is diagnosed as slow, then the corresponding rows and columns of the Jacobian are
no longer calculated (panel (b)), and the indices pointing to the sparse Jacobian data (LU_IROW, LU _ ICOL) are adjusted
to remove the slow species (cLU _IROW, cLU_ ICOL) through a mapping array (JVS_MAP) while preserving the sparse
matrix in row-compressed form. The result is a reduced mechanism with the same data structure as the original one, but with
smaller dimensions.

cActive). Based on the list of species in the fast set, the mapping (JVS_MAP) from the full mechanism to
the fast sub-mechanism is created. Because KPP generates hard-coded source code to compute each term of
the Jacobian matrix and back-substitution for computational efficiency, two logical control vectors, DO_JVS
and DO_SLV, are created to skip computation of terms corresponding to slow species as these are no longer
necessary.

The separation between fast and slow species is controlled by the initial conditions at the beginning of the
external time step, but an optional “append” function is added to account for an initially slow species becoming
fast over the course of the internal time steps. This function appends new species to the fast sub-mechanism
and adjusts the logical control vectors if these species are initially partitioned as slow but their production or
loss rate exceed the partitioning threshold over the course of the internal time stepping. Diagnosing this has
little overhead, because the production and loss rates of all species are already computed at every internal time
step.

We used a box model integration of the GEOS-Chem chemical mechanism (described below) to analyze the
overhead of the adaptive solver implemented within KPP. By forcing the adaptive solver routines to run with
a threshold of 0, we determined that the KPP overhead added by the auto-reduction is 10%—16%. The main
source of overhead is the copying of data between the full and reduced sub-mechanism (Figure 2), where
the worst-case scenario is when all species are partitioned as fast and all species' data need to be copied
between the full to the “reduced” data structures. Profiling tests show that other steps such as the partitioning
of species between fast and slow, or the first-order approximation for slow species, contribute negligible
overhead.

We also used the box model to verify that our adaptive solver introduces minimal mass non-conservation
compared to the full solver. Integrating the box model over four sets of initial conditions from the GEOS-Chem
model over 10,000 time steps shows that the total masses of odd oxygen, reactive nitrogen, chlorine, and bromine
(defined in Table S1 in Supporting Information S1) are conserved within 0.30% in the standard configuration of
the adaptive solver as compared with the full mechanism solver. Figure S2 in Supporting Information S1 shows
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the geographical distribution of mass non-conservation for these four families at a snapshot in time in a global
GEOS-Chem model simulation, again comparing the adaptive solver in its standard configuration to the full
solver. Mass conservation is within 0.01% for odd oxygen and reactive nitrogen and at worst within 0.2% for
bromine.

4. Adaptive Mechanism Auto-Reduction in the GEOS-Chem Model Using KPP
Version 3.0.0

We demonstrate the adaptive solver capability in KPP version 3.0.0 with the GEOS-Chem global 3-D atmos-
pheric chemistry model version 13.4.0 (Bey et al., 2001; https://doi.org/10.5281/zenodo.6511970). The chemical
mechanism includes comprehensive oxidant-aerosol chemistry in the troposphere and the stratosphere with 291
chemical species and 913 reactions. Recent updates to the mechanism include Cl-Br-I tropospheric halogen
chemistry (Wang et al., 2021), isoprene chemistry (Bates & Jacob, 2019), aromatic chemistry (Bates et al., 2021),
hydroxymethanesulfonate cloud chemistry (Moch et al., 2020), and NO, cloud and aerosol chemistry (Holmes
et al., 2019). Heterogeneous sulfur chemistry that was previously simulated with a separate module was brought
into KPP in GEOS-Chem version 13.4.0 with the addition of new rate functions.

GEOS-Chem has been structured to interact with the KPP-generated solver code through the FlexChem interface
which prepares data for the solver code, executes the code, and retrieves concentrations at the end of the time
step. FlexChem allows GEOS-Chem to use modules outside of KPP for computing reaction rates, for example,
interfacing with Fast-JX for photolysis rates (Bian & Prather, 2002; Mao et al., 2010). FlexChem also includes
a derived type object, State Het, which passes state variables from GEOS-Chem model for calculating
heterogeneous chemistry reaction rates including cloud liquid water content, aerosol size distribution, pH, and
alkalinity. This derived type object holds common intermediate quantities necessary for heterogeneous reaction
rate computations, such as aerosol area, avoiding repeated computation and memory use. FlexChem also allows
GEOS-Chem users to modify the chemical mechanism input into KPP without modifying the GEOS-Chem
source code.

We evaluate the accuracy and computational performance of the adaptive solver in KPP version 3.0.0 using
global GEOS-Chem simulations at 2° X 2.5° resolution with 72 vertical levels extending up to 0.1 hPa. The
model is driven by the Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2)
meteorological fields from the NASA Global Modeling and Assimilation Office (GMAO). The external time step
for the chemistry solver is 20 min. All simulations are conducted on the same single-node hardware with 24 Intel
Cascade Lake physical cores (Intel(R) Xeon (TM) Platinum 8268 CPUs with a base clock speed of 2.90 GHz, no
hyper-threading logical cores), 100 GB of RAM, and a high-performance Luster parallel file system. The model
was compiled using Intel(R) Fortran Compiler (ifort) version 2021.2.0.

We select as the standard configuration of the adaptive solver within the GEOS-Chem model a dynamically
defined threshold with OH as target species during daytime, and NO, during nighttime, with coefficients
aon = 5% 107 and ano, = 1 X 10~*. We find that using NO, as an alternative nighttime target species results
in higher accuracy but lower speed-up (Table S3 in Supporting Information S1). We do not force any species to
remain in the implicit KPP solver as fast and we do not use the append functionality. We find that we achieve a
net 32% reduction in integration time in this standard configuration.

Figure 3 shows the percentage of species partitioned as fast (and hence retained in the KPP integration) using
the adaptive solver's standard configuration. Starting from the ensemble of 291 species in the GEOS-Chem
full mechanism, we find that over 60% are partitioned as fast in surface air over land, reflecting VOC sources,
whereas only 10%-50% are partitioned as fast over the ocean. The fraction of retained species decreases with
altitude, and fewer than 40% are partitioned as fast in the stratosphere where VOC chemistry is mainly limited
to methane. Fewer species are partitioned as fast at night than in daytime. These results are consistent with Shen
et al. (2020).

We evaluate the accuracy of the adaptive solver (AS) relative to the full mechanism solver over the global GEOS-
Chem domain using the relative root mean squared (RRMS) error metric. For each species i, the RRMS error is:

G Cijran — Ci :
RRMS; = \/ Ly <—~f~f““ ~f~AS> ©)
N,‘ j=1 Ci,j,full
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Figure 3. Percentage of GEOS-Chem species retained in the fast sub-mechanism when using the adaptive solver. The full GEOS-Chem mechanism has 291 species

to describe tropospheric and stratospheric oxidant-aerosol chemistry. Only a fraction of species is retained as fast in the KPP solver, while the other species are solved
individually using Equation 4. Results are shown for a snapshot in time on 1 July 2014, 12:00 UTC at different altitudes. The adaptive solver uses a dynamically defined
threshold (Equation 5) with target species OH in daytime (aoy = 5 X 107°) and NO, at night (ano, = 1% 1074.

where C Ll

solver. The RRMS is computed over the ensemble N, of ordered grid boxes that account for 99% of the total mass

C;; as are the concentrations of species i in grid box j for simulations without and with the adaptive

of species i in the boundary layer (surface to PBL height from MERRA?2), free troposphere (boundary layer

height to tropopause), and stratosphere, respectively, and where C;; ,, is greater than 10 molecules cm™3,

Figure 4a shows the mean errors at the end of a 1-year simulation for species in different chemical categories
(Table S4 in Supporting Information S1) and Figures 4b—4d shows the time evolution of errors over the 1-year
simulation for all species in the standard configuration of the adaptive solver within the GEOS-Chem model,
respectively. The mean error for most categories is below 1% within the boundary layer and the free troposphere.
There is no error growth in the troposphere but there is some in the stratosphere. Figure 5 shows the geographical
distribution of relative errors (absolute errors shown in Figure S6 in Supporting Information S1) for ozone, OH,
and NO, at the surface and 500 hPa for the end of the 1-year simulation. Errors are generally lower than 1% except
for OH at high latitudes and NO, over the Southern Ocean, where errors are up to 3% for OH and 6 ~ 10% for
NO,. Errors over land for these species are minimal.

The largest errors in Figure 4 are found for inorganic halogen radicals and their reservoirs. Halogen radicals
cycle rapidly during the day but become locked in reservoirs at sunset, to be released again at sunrise (Wang
et al., 2021). Partitioning between fast and slow species at sunrise/sunset leads to large errors and mass balance
issues associated with the use of the first-order approximation (Equation 4). These problems were previously
identified by Shen et al. (2020, 2022). Long residence times in the stratosphere compound the problem and drive
slow error growth for other species. The impact is much less in the troposphere where the inorganic halogens are
removed by wet deposition.

Our results in Figure 4 indicate that halogen species should be kept in the implicit solver as fast species if the
primary interest of the simulation is the stratosphere. Figure S5 in Supporting Information S1 shows the mean
errors and time evolution of errors over the 1-year simulation when halogen species are kept as fast in the adaptive
solver. In this configuration, the performance improvement of the adaptive mechanism is 23%, as compared to
32% in the standard configuration. Keeping the halogen radicals and their reservoir species as fast prevents large
errors from developing in the stratosphere, in addition to avoiding error growth and spikes in errors as shown in
Figure 4d. A similar problem though not of the same magnitude is found for hydrogen oxide radicals controlling
the concentration of OH in the stratosphere, and this causes high errors in stratospheric sulfate exceeding 10%
above 85 hPa. The list of species to be kept in the implicit solver in the GEOS-Chem model can be configured
in the FlexChem interface and passed to KPP 3.0.0 as a runtime option. An alternative to customizing the list of
species to be kept in the implicit solver is to disable the adaptive solver in the stratosphere while retaining it in the
troposphere. In this case, the performance improvement from using the adaptive mechanism decreases from 32%
to 20%. Such ad hoc adjustments to the fast/slow species partitioning would be mechanism-specific and can be
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Figure 4. Accuracy of the adaptive solver in a 1-year GEOS-Chem simulation. Panel (a) shows the mean RRMS errors for species in different categories at the end

of the 1-year simulation starting on 1 July 2014. The categories are as defined in the standard GEOS-Chem benchmarking output diagnostics (Table S4 in Supporting

Information S1). Panels (b—d) show the time evolution of RRMS errors for all species in the boundary layer, free troposphere, and stratosphere, respectively, with
colored lines for species of particular interest.
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Figure 5. Accuracy of the adaptive solver for ozone, OH, and NO, global distributions. The figure shows the percent errors relative to the full solver for the daily mean
concentrations on 1 July 2015, the last day of the 1-year simulation, in surface air and at 500 hPa. The absolute error values corresponding to this figure are shown in

Figure S6 in Supporting Information S1.

experimented with by users. We find in GEOS-Chem that they are not needed for standard applications focusing
on tropospheric chemistry.

We find in this application that the append functionality (allowing species to switch from slow to fast over inter-
nal time steps) does not provide significant error reduction, in particular for the halogen species, and degrades
the performance improvement of the adaptive mechanism to 24% instead of 32%. We retain it as an option in
the adaptive solver code as it may be helpful for longer external time steps (here 20 min) or other chemical
mechanisms.

The adaptive solver uses a dynamically defined threshold (Equation 5) with target species OH in daytime
(aon = 5% 107°) and NO, at night (ano, = 1 X 107, and does not force any species below that threshold to
remain as fast.

Our analysis of the performance and accuracy of the adaptive solver is based on 20-min external time steps for
the chemistry solver in the GEOS-Chem standard 2° X 2.5° configuration, but regional models with finer grid
resolution would use finer external time steps for operator splitting with transport (Philip et al., 2016). We tested
the sensitivity of our results to the size of the external time step within the GEOS-Chem 2° X 2.5° environment as
shown in Table S3 in Supporting Information S1. We find that finer external time steps result in higher accuracy
but lower speed-up, which makes sense in terms of the overhead required at the beginning of each external time
step to define the sub-mechanism and cull the Jacobian, but also the opportunity to update the separation between
fast and slow species more frequently for better accuracy. Ultimately, this sensitivity to external time-stepping
will need to be tested by users in their own model environment (and their own mechanism).

5. Conclusions

We presented an updated version of the (KPP 3.0.0) to integrate stiff chemical mechanism kinetics typical of
atmospheric chemistry models. KPP was originally designed for flexibility and speed. KPP 3.0.0 features several
improvements for performance, diagnostics, choice of solvers, and code openness. It includes an adaptive solver
capability for mechanism auto-reduction where and when the full mechanism is not needed.

The adaptive solver performs auto-reduction of the chemical mechanism locally and on-the-fly at runtime, by
comparing the local production and loss rates of each species with a partitioning threshold (6). Species with
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production and loss rates higher than the threshold are considered fast and are solved as a coupled sub-mechanism
within KPP, while other species are considered slow and solved individually by an explicit method. Previous
application of this adaptive solver method suffered from large overhead due to the need for local reconstruction
of the reduced Jacobian matrix and the associated memory allocation and deallocation. We solved this problem
here by using pre-computed Jacobian terms for the full mechanism with a mapping operation to crop rows and
columns corresponding to the slow species without changing the memory allocation.

KPP 3.0.0 features additional improvements for performance, diagnostics, versatility, and openness. Improved
performance includes more efficient calculation of reaction rates from the KPP rate functions and thread safety
for parallelization. New diagnostics include individual reaction rates, production and loss rates for chemical fami-
lies, and stoichiometric numbers. Improved versatility includes expanded choice of chemical solvers. KPP 3.0 is
now hosted on GitHub (https://github.com/KineticPreProcessor/KPP) to enable community access, development,
and testing.

We evaluated the adaptive solver implemented in KPP 3.0.0 by conducting a 1-year simulation with the global
3-D GEOS-Chem atmospheric chemistry model including 291 species in the full mechanism for oxidant-aerosol
chemistry in the troposphere and stratosphere. Results show that a 32% performance improvement in the solver
can be achieved with a target error of 1% for key species in the troposphere. Errors in the stratosphere can be
larger, driven by halogen chemistry. Lower errors especially in halogen species can be achieved by keeping these
species within the fast sub-mechanism but this reduces the performance improvement to 23% and is mainly bene-
ficial in the stratosphere.

The release of KPP 3.0.0 introduces improvements in development infrastructure, diagnostics, and perfor-
mance, particularly in Fortran 90 applications. However, one of the strengths of the KPP software is the capa-
bility to generate code for different programming languages. Development directions for future versions include
(a) adding support for modern languages such as Python and Julia; (b) refactoring of the generated code to
avoid global data structures for easier parallelization; (c) streamlining inputs and outputs of all integrators for
consistency; (d) supporting the adaptive solver option in other integrators and programming languages; and (e)
improving interaction and compatibility with the Master Chemical Mechanism (http://mcm.york.ac.uk). These
improvements will allow KPP to better serve the community as a versatile tool for solving chemical kinetics
within atmospheric chemistry models and other applications.

Data Availability Statement

Model Code Availability: Source code for KPP 3.0.0 is available at https://github.com/KineticPre-
Processor/KPP (Sandu et al.,, 2022; https://doi.org/10.5281/zenodo.7308373). The adaptive solver box
model is available at https://github.com/KineticPreProcessor/KPP-AR-boxmodel/ (Long & Lin, 2022;
https://doi.org/10.5281/zenodo.6791657). The adaptive solver implementation within the GEOS-Chem atmos-
pheric chemistry model used in this work is available at https://github.com/jimmielin/geos-chem/tree/staging/
autoreducekpp (The International GEOS-Chem Community, 2022; https://doi.org/10.5281/zenodo.6791655).
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