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1. Introduction. In this paper, we propose a Bayesian nonparametric model for estima-

tion of conditional discrete-continuous distributions. We show that the model has outstanding

asymptotic properties and compares favorably to standard parametric and nonparametric al-

ternatives in an application to forecasting of stock trade counts. More generally, we provide a

practical and optimal adaptive nonparametric alternative to workhorse econometric parametric

models such as probit, ordered probit and Poisson regression.

Nonparametric modeling of conditional distributions is especially important in the Bayesian

framework. Conditional distributions can fully describe dependence of one set of variables on

another. However, even if the main object of interest is not the whole conditional distribution but

a conditional mean or quantiles, a Bayesian econometrician has to specify at least a conditional

distribution in order to define a likelihood. The use of nonparametric or very flexible models

ameliorates the risk of invalid inference due to misspecification.

The theory and practical implementation of Bayesian nonparametric methods for continuous

data are very well developed at this point, see Ghosal and van der Vaart (2017) for aets thor-

ough exposition of theoretical developments and Dey, Muller, and Sinha (1998), Chamberlain

and Hirano (1999), Burda, Harding, and Hausman (2008), Chib and Greenberg (2010), and

Jensen and Maheu (2014) among many others for applications. In most applications in eco-

nomics, the data contain both continuous and discrete variables. Nonparametric methods for

conditional discrete-continuous distributions and their theoretical properties are less understood

and developed.

Starting from Aitchison and Aitken (1976), researchers observed that smoothing discrete

data in nonparametric estimation improves estimation results. Hall and Titterington (1987)

provided a theoretical justification for improvements resulting from smoothing in estimation of

a univariate discrete distribution with a support that can increase with the sample size. Norets

and Pelenis (2018) extended these results to estimation of joint multivariate discrete-continuous

distributions. In their framework, discrete variables have the support that can become finer with

the sample size; the data generating joint distribution can be smooth to a different degree (and

not smooth at all) with respect to different discrete and continuous variables. They derived

optimal estimation rates for these settings and show that smoothing is beneficial only for a

subset of discrete variables with a quickly growing number of support points and/or a high level

of smoothness. They also show that a Bayesian nonparametric model based on latent variables

and mixtures of multivariate normal distributions has posterior contraction rates that are no
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larger than the derived optimal estimation rates with an additional log factor. In the present

paper, we adopt a similar asymptotic framework and apply it to estimation of conditional

discrete-continuous distributions. Simply extracting conditional distributions from optimally

estimated joint distributions does not in general result in the optimal estimation of conditional

distributions since the joint and conditional distributions can have different smoothness and

other properties. Therefore, in the present paper, we model the conditional distributions directly.

There are additional important reasons for constructing nonparametric priors for conditional

distributions directly. First, in regression settings, a ubiquitous problem of covariate selection

can be conveniently addressed by standard means (special priors and Bayesian model selection

and comparison). Second, nonparametric priors for conditional distributions can also be used for

modeling of Markov transition probabilities, and, thus for nonparametric modeling of Markovian

time series. Such nonparametric time series models have a wide range of applications in empirical

macroeconomics and, especially, in empirical finance with its abundance of large datasets.

Our nonparametric model for conditional discrete-continuous distributions is based on a mix-

ture of normal distributions with covariate dependent mixing weights and a variable number of

mixture components. It is closely related to mixture-of-experts or smoothly mixing regressions

(Jacobs, Jordan, Nowlan, and Hinton (1991), Jordan and Xu (1995), Peng, Jacobs, and Tanner

(1996), Wood, Jiang, and Tanner (2002), Geweke and Keane (2007), Villani et al. (2009), Norets

(2010), Norets and Pelenis (2014), Norets and Pati (2017)). Discrete dependent variables in our

model are represented by continuous latent variables, which jointly with continuous dependent

variables are modeled by the mixture of multivariate normals. The covariate dependent mixing

weights are proportional to a normal density and an integral of a normal density for continu-

ous and discrete covariates correspondingly. The model can be thought of as a generalization

of a covariate dependent mixture model for continuous data from Norets and Pati (2017) to

mixed discrete-continuous data. Posterior simulation for our covariate dependent mixture with

a variable number of components is performed by a reversible jump algorithm from Norets

(2020).

There are potentially many different ways of handling discrete variables, especially covari-

ates, in a covariate dependent mixture model. The main practical contribution of our paper is

to develop a model specification that has optimal asymptotic properties. Specifically, we show

that the posterior contraction rates in our model are equal (up to a log factor) to the opti-

mal estimation rates. In our framework, it means that the model optimally takes advantage
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of smoothness in the data generating conditional distribution in both continuous and discrete

variables. If the data generating conditional distribution is not sufficiently smooth or does not

have a sufficiently fine support for some discrete variables, then the resulting posterior contrac-

tion rate corresponds to the standard estimation rate for (the smoothness and dimension of)

the continuous and the rest of the discrete variables. The derived posterior contraction rates

are adaptive as the prior distribution does not depend on the smoothness and the support of

the data generating process. Our results for conditional distributions also imply the same con-

vergence rates for predictive distributions when our prior is used for nonparametric modeling of

Markov transition distributions for ergodic Markovian time series. To the best of our knowledge,

such asymptotic guarantees for estimation of conditional discrete-continuous distributions are

not currently available for any other Bayesian model or a frequentist nonparametric estimator.

We evaluate the practical performance of our model in an out-of-sample forecasting exer-

cise for stock trades count data and two additional applications to cross-sectional data. The

model compares favorably with a parametric Poisson regression and a nonparametric discrete-

continuous conditional density estimator based on discrete and continuous kernels with a cross-

validation procedure for bandwidth selection (Li and Racine (2008)).

Let us briefly review additional related references in the literature. Our posterior contrac-

tion results are derived from general sufficient conditions for posterior contraction introduced

by Ghosal et al. (2000). Optimal adaptive posterior contraction rates for joint densities were

obtained in Scricciolo (2006), Rousseau (2010), Kruijer et al. (2010), Shen, Tokdar, and Ghosal

(2013) among others. Shen and Ghosal (2016) and Norets and Pati (2017) obtained optimal

adaptive posterior contraction rates for nonparametric conditional density models for contin-

uous observations. Norets and Pelenis (2012), DeYoreo and Kottas (2017), and Canale and

Dunson (2015) derived posterior consistency and non-optimal bounds on posterior contraction

rates for nonparametric models of joint discrete-continuous distributions in asymptotic settings

without smoothness for discrete variables. Albert and Chib (1993) and McCulloch and Rossi

(1994) pioneered the use of continuous latent variables for handling discrete observations in

Markov chain Monte Carlo algorithms for parametric limited dependent variable models. In

frequentist framework, nonparametric estimation of discrete distributions with and without

smoothness assumptions was considered in Aitchison and Aitken (1976), Hall and Titterington

(1987), Burman (1987), Dong and Simonoff (1995), Aerts et al. (1997), and Efromovich (2011)

among many others.
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The rest of the paper is organized as follows. Section 2 describes the data generating pro-

cess and the asymptotic framework. The model and main posterior concentration results are

presented in Section 3. Sections 4 and 5 evaluate the model performance in out-of-sample fore-

casting exercises. Technical assumptions, intermediate results, and proofs are given in Sections

6 and 7. Additional proof details are delegated to the Appendix.

2. Data Generating Process. Let us denote the response space by Y × X and the co-

variate space by Z ×W . The continuous part of observations is denoted by x ∈ X ⊂ Rdx and

w ∈ W ⊂ Rdw and the discrete part by y = (y1, . . . , ydy) ∈ Y and z = (zdy+1, . . . , zdy+dz) ∈ Z,

where

Y =

dy∏
j=1

Yj , with Yj =

{
1− 1/2

Nj
,

2− 1/2

Nj
, . . . ,

Nj − 1/2

Nj

}
,

Z =

dy+dz∏
j=dy+1

Zj , with Zj =

{
1− 1/2

Nj
,

2− 1/2

Nj
, . . . ,

Nj − 1/2

Nj

}
,

are grids on [0, 1]dy and [0, 1]dz (a product symbol Π applied to sets hereafter denotes a Carte-

sian product). The number of values that the discrete coordinates yj or zj can take, Nj , can

potentially grow with the sample size or stay constant.

For y = (y1, . . . , ydy) ∈ Y and z = (zdy+1, . . . , zdy+dz) ∈ Z, let Ay =
∏dy
j=1Ayj and Az =∏dy+dz

j=dy+1Azj , where

Ayj =


(−∞, yj + 0.5/Nj ] if yj = 0.5/Nj

(yj − 0.5/Nj ,∞) if yj = 1− 0.5/Nj

(yj − 0.5/Nj , yj + 0.5/Nj ] otherwise

and Azj is defined analogously.

Let us represent the data generating density-probability mass function as an integral of a

density over latent variables

p0(y, x, z, w) =

∫
Ay

∫
Az

f0(ỹ, x|z̃, w)g0(z̃, w)dỹdz̃, (2.1)

where f0 is a conditional probability density function on Rdx+dy+dz+dw and g0 is a probability

density function on Rdz+dw with respect to the Lebesgue measure, and the discrete part of the

observation (y, z) is mapped into the latent variables (ỹ, z̃) ∈ Ay ×Az. The representation of a

mixed discrete-continuous distribution in (2.1) is so far without a loss of generality since for any
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given p0 one could always define f0 and g0 using a mixture of densities with non-overlapping

supports included in Ay ×Az, (y, z) ∈ Y × Z.

Suppose that (Y n, Xn, Zn,Wn) = (Y1, X1, Z1,W1, . . . , Yn, Xn, Zn,Wn) is a random sample

from the joint density p0(y, x|z, w)p0(z, w). Let P0 and Pn0 represent the probability measures

corresponding to p0 and its product pn0 . When Nj ’s grow with the sample size then it is pos-

sible that the generality of the representation in (2.1) can be diminished if one imposed some

assumption on f0(·|·)g0(·) such as smoothness. Nonetheless, in what follows we do allow for

smoothness in f0 to formalize the scenarios where for ordered discrete variables borrowing of

information from nearby discrete points can be beneficial in estimation.

To get more refined results, we allow for anisotropic smoothness, which means that smooth-

ness can vary across coordinate j, and we consider the possibility of Nj ’s growing at different

rates for different j’s. Let Z+ denote the set of non-negative integers. For smoothness coefficients

βi > 0, i = 1, . . . , d, d = dx+dy+dz+dw, and an envelope function L : R2d → R, an anisotropic

(β1, . . . , βd)-Holder class, Cβ1,...,βd,L, is defined as follows.

Definition 2.1. f ∈ Cβ1,...,βd,L if for any k = (k1, . . . , kd) ∈ Zd+,
∑d

i=1 ki/βi < 1, mixed

partial derivative of order k, Dkf , is finite and

|Dkf(z + ∆z)−Dkf(z)| ≤ L(z,∆z)

d∑
j=1

|∆zj |βj(1−
∑d
i=1 ki/βi), (2.2)

where ∆zj = 0 when
∑d

i=1 ki/βi + 1/βj < 1.

This definition of the Holder class has been proposed in Norets and Pelenis (2018) and its

similarities and slight differences with other Holder smoothness definitions are discussed in that

paper. It allows for functions that can be differentiated with respect to different coordinates

different number of times. If all βj ’s are the same, then the definition reduces to standard Holder

smoothness.

Let A denote a collection of all subsets of indices for discrete coordinates {1, . . . , dy, dy +

1, . . . , dy + dz}. For J ∈ A, define Jc = {1, . . . , d} \ J ,

NJ =
∏
i∈J

Ni, βJc =

[∑
i∈Jc

β−1
i

]−1

,

N∅ = 1, β∅ =∞, and β∅/(2β∅ + 1) = 1/2.

Norets and Pelenis (2018) show that for joint distributions with underlying densities for

continuous and latent variables variables that belong to the anisotropic Holder class Cβ1,...,βd,L,
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lower bounds on estimation rates in total variation distance are given by

min
J∈A

[
NJ

n

] βJc
2βJc+1

(2.3)

(no estimator can have a faster rate of convergence for this class of data generating processes).

They also show that in a model based on a mixture of normal distributions for the underlying

density, posterior contraction rates are equal (up to a log factor) to the lower bounds, and thus

are optimal up to a log factor. Since the distance between joint distributions can be bounded by

the sum of the distances between the corresponding conditional and marginal distributions (by

the triangle inequality), (2.3) also provides a lower bound on the estimation rates for conditional

distributions with underlying conditional densities in Cβ1,...,βd,L. Expression [NJ/n]
βJc

2βJc+1 in (2.3)

is the standard estimation rate for a card(Jc)-dimensional density with anisotropic smoothness

coefficients {βj , j ∈ Jc} and the sample size n/NJ (Ibragimov and Hasminskii (1984)). One

interpretation of this expression is that smoothing is performed only over coordinates in Jc and

the coordinates in J are treated as discrete. The minimum over J in (2.3) suggests that an

estimator that achieves this lower bound rate needs in a sense to optimally choose a subset of

discrete coordinates over which smoothing is beneficial.

3. Model and Main Results on Posterior Concentration. We propose the following

model for conditional discrete-continuous distributions

p(y, x|z, w; θ,m) =

∫
Ay×Az f(ỹ, z̃, x, w|θ,m)dỹdz̃∫

Az

[∫
f(ỹ, z̃, x, w|θ,m)dỹdx

]
dz̃
, (3.1)

where

f(ỹ, z̃, x, w|θ,m) =

m∑
j=1

αjφ(ỹ, z̃, x, w;µj , σ) (3.2)

is a mixture of multivariate normal distributions with a variable number of components m and

parameters collected in θ = (σ, µj , αj , j = 1, 2, . . .). The multivariate normal distributions in the

mixture, φ(·;µj , σ), have a diagonal variance matrix with the square roots of diagonal elements

contained in σ ∈ Rd+. Thus, this conditional density-probability mass function can be expressed

explicitly through standard univariate normal densities and cumulative distribution functions.

This model can be thought of as a generalization of a covariate dependent mixture model for

continuous data from Norets and Pati (2017) to mixed discrete-continuous data.

Under standard assumptions on the priors for (θ,m) and some additional technical conditions

on the data generating process presented in Section 6, the posterior contraction rate for this

model is equal up to a log factor to the lower bound on estimation rate given in (2.3).
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Theorem 3.1. Suppose the assumptions from Sections 6.1 and 6.2 hold for every J ∈ A.

Let

εn = min
J∈A

[
NJ

n

]βJc/(2βJc+1)

(log n)tJ , (3.3)

where tJ > 0 is defined in Section 7. Suppose also nε2n → ∞. Then, there exists a constant

M̄ > 0 such that

Π
(
p : dTV (p, p0) > M̄εn|Y n, Xn, Zn,Wn

) Pn0→ 0,

where dTV denotes the total variation distance between conditional distributions integrated over

the data generating distributions of covariates.

The proof of the theorem verifies the sufficient conditions for the posterior contraction from

Ghosal et al. (2000). It is conceptually similar to the proof of related results for continuous

data in Norets and Pati (2017). In order to show that Kullback-Leibler neighborhoods of the

data generating distribution have sufficient prior probability, which is one of the main sufficient

conditions, Norets and Pati (2017) bound a distance between conditional distributions by a

distance between the appropriate joint distributions and then exploit approximation results for

mixtures of multivariate normal distributions from Shen et al. (2013). Similarly, here we also

bound a distance between conditional distributions by a distance between the appropriate joint

distributions and then exploit approximation results from Norets and Pelenis (2018). The actual

proof contains new additional arguments handling the discrete variables in the conditioning set;

it is rather long, and we present it in Section 7 and the Appendix.

Our results on the bounds for the prior probabilities of Kullback-Leibler neighborhoods imply

that εn defined in the theorem is also a posterior contraction rate for predictive distributions

when our model and prior are used for nonparametric modeling of the Markov transition dis-

tributions for Markovian time series. We provide details in Section 7.2.

4. Application to Trade Counts.

4.1. Model Specification and Forecasting Performance. In this section, we compare forecast-

ing performance of our Bayesian nonparametric model for conditional discrete-continuous distri-

bution with a parametric Poisson regression and a classical nonparametric discrete-continuous

conditional density estimator from Li and Racine (2008) who use discrete and continuous kernels

with a cross-validation procedure for bandwidth selection.
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We use the following version of our model

p(y|w, θ,m) =

∫
Ay

m∑
j=1

αj exp{−0.5
∑dw

k=1(wk − µwjk)2/(σwk s
w
jk)

2}∑m
i=1 αi exp{−0.5

∑dw
k=1(wk − µwik)2/(σwk s

w
ik)

2}
φw′βj ,σysyj (ỹ)dỹ, (4.1)

where discrete y is one-dimensional and w ∈ Rdw . The location parameters for ỹ have a specifica-

tion linear in covariates, w′βj , and the scale parameters can differ across the mixture components

but also have a common factor. Such richer specifications for mixture components lead to better

finite sample performance (Villani et al. (2009)). The asymptotic results are not affected by the

presence of linear coefficients βj and component specific scales (swjk, s
y
j ) under standard priors,

see Norets and Pati (2017) for a proof for the version of the model without discrete variables.

We specify the prior as follows,

βj
iid∼ N(β,H−1

β ), µj
iid∼ N(µ,H−1

µ ),

(syj )
−2 iid∼ G(Asy, Bsy), (swjk)

−2 iid∼ G(Aswk, Bswk), k = 1, . . . , dw,

(σy)−1 iid∼ G(Aσy, Bσy), (σwk )−1 iid∼ G(Aσwk, Bσwk), k = 1, . . . , dw,

(α1, . . . , αm)|m iid∼ D(a/m, . . . , a/m),

Π
(
m = k

)
= (eAm − 1)e−Am·k,

where G(A,B) stands for a Gamma distribution with shape A and rate B.

Similarly to Norets and Pati (2017), we use the following (data-dependent) values for prior

hyper-parameters,

β =

(∑
i

wiw
′
i

)−1∑
i

wiyi, H
−1
β = cβ

(∑
i

wiw
′
i

)−1∑
i

(yi − w′iβ)2/n,

µ =
∑
i

wi/n, H
−1
µ =

∑
i

(wi − µ)(wi − µ)′/n,

Aσy = Bσy = Aσwl = Bσwl = Aswk = Bswk = Asy = Bsy = 1,

a = 15, Am = 1,

where cβ = 100. Thus, a modal prior draw would have one mixture component with linear

coefficients and scale parameters estimated by the ordinary least squares. Scricciolo (2015)

shows that in a related conditional distribution model for continuous data from Norets and

Pati (2017), such dependence of prior hyperparameters on data does not affect the posterior

contraction rates; we conjecture that such a result holds for our model as well.

For evaluating forecast performance, we use the time series count data from Jung et al. (2011).

The dataset contain the number of trades on the New York Stock Exchange in 5 minute intervals
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for Geltfelter Company (GLT) over 39 trading days Jan 3 - Feb 18 2005. Cameron and Trivedi

(2013) estimated an autoregressive Poisson model for these data using lagged trade counts for

GLT and trigonometric terms, like cos(2πt/75), where t is time period, to account for intraday

seasonality in the data. The total number of observations is 2925. We use a rolling window of

T = 1125 observations (15 days) for model estimation and the subsequent T ∗ = 75 observations

(1 day) for one period ahead forecasts. We move the window by 75 observations at a time, for

a total of 23 estimation/forecast exercises. Following common practice in the literature, see,

for example, Geweke and Keane (2007), we measure forecasting performance by the pseudo

out-of-sample log score (the log of the predictive distribution evaluated at the forecast portion

of the data):

LS(c) =
75c+T+T ∗∑
t=75c+T+1

log p̂c(yt|wt, y75c+1, w75c+1, . . . , y75c+T , w75c+T ),

where c ∈ {0, 1, . . . , 22} is the rolling window index. For our nonparametric Bayesian procedure,

the predictive distribution is approximated by

p̂c(yt|wt, y75c+1, w75c+1, . . . , y75c+T , w75c+T ) =
1

S

S∑
s=1

p(yt|wt, θ(s,c),m(s,c)),

where {θ(s,c),m(s,c), s = 1, . . . , S} are MCMC draws obtained for the rolling window c,

{y75c+1, w75c+1, . . . , y75c+T , w75c+T }.

We found that including more than 5 lags and more than one trigonometric term did

not improve out-of-sample predictive performance. Hence, we present results below for wt =

(cos(2πt/75), yt−1, . . . , yt−5)′. To obtain estimation results for our model we use a reversible

jump MCMC algorithm developed in Norets (2020) with an additional Gibbs block that simu-

lates the latent variables ỹi’s. For each MCMC run c ∈ {0, 1, . . . , 22}, we perform 104 iterations,

of which the first 103 are discarded for burn-in. We present some evidence of MCMC convergence

in Section 4.2.

The obtained predictive log scores are presented in Table 1. The kernel estimation results are

obtained by the publicly available R package np (Hayfield and Racine (2008)).

It can be seen from Table 1 that the Bayesian nonparametric approach delivers the largest

average predictive log score. It outperforms the kernel and Poisson estimators in 70% and 96%

of cases correspondingly. The results are qualitatively the same for moderate changes in prior

hyperparameters.

In addition to the out of sample performance of the whole predictive density (evaluated

through the predictive log scores), the performance of point estimators could also be of interest.
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Table 1. Predictive Log Scores

c LSBayes(c) LSKernel(c) LSPoisson(c)

0 -198.6982 -195.738 -216.583
1 -185.4372 -186.642 -181.545
2 -195.8008 -196.904 -206.36
3 -172.3776 -173.985 -172.69
4 -193.9293 -193.067 -201.649
5 -221.9528 -229.703 -242.763
6 -178.8345 -179.163 -183.172
7 -198.9912 -198.492 -210.458
8 -162.9572 -166.119 -168.421
9 -166.4577 -167.01 -170.67
10 -173.5684 -172.923 -174.255
11 -178.9721 -182.575 -189.41
12 -186.3612 -190.602 -191.57
13 -202.8732 -216.146 -221.549
14 -181.3866 -181.912 -181.497
15 -190.1113 -193.053 -204.388
16 -211.9176 -213.484 -227.713
17 -209.3348 -210.05 -232.783
18 -198.495 -198.441 -215.227
19 -198.0299 -200.466 -210.714
20 -202.8891 -202.121 -233.747
21 -200.7652 -199.856 -220.487
22 -188.0144 -197.366 -220.697

Average -191.22 -193.30 -203.41

Table 2 shows the root mean squared error (RMSE) for the three methods computed for the

prediction part of the sample and averaged over the 23 estimation/forecast exercises. The point

estimator is the mean of the predictive distribution. As can be seen from the table, the Bayesian

point estimator performs slightly better than the classical parametric and nonparametric alter-

natives.

Table 2. Average RMSE for the prediction part of the sample

Bayes Kernel Poisson

RMSE 3.4495 3.4615 3.4595

These results suggest that our model provides an attractive and feasible alternative to stan-

dard parametric and nonparametric estimation procedures for conditional discrete-continuous

distributions, including Markov transition distributions for time series.

4.2. Evidence of MCMC Convergence. Figures 1 and 2 below show MCMC draws of m and

the in-sample log likelihood for 105 MCMC iterations for the first rolling window c = 0 in the

forecast evaluation exercise in Section 4.1 above.
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Fig 1. MCMC draws of m.

Fig 2. In-sample log likelihood evaluated at MCMC draws.

It is clear from the figures that while posterior probabilities for larger values of m would not be

very precisely estimated even with 105 iterations, 104 MCMC iterations appear to be sufficient

for exploring the posterior of the in-sample log likelihood (a label invariant function of param-

eters). Hence, we use 104 MCMC iteration for each rolling window in our forecast evaluation

exercise.

5. Additional Applications. This section presents applications of the proposed method

to two standard datasets in the literature on count data analysis (Cameron and Trivedi (2013)).
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In the first application, we estimate the distribution of the number of patents filed by a firm

in 1979 conditional on the logarithm of the total research and development expenditures over

the previous six years, the logarithm of firm’s capital, and an indicator of weather the firm is in

the scientific sector. The data is originally from Hall et al. (1986), it “covers almost all of the

firms doing appreciable amounts of R and D in the manufacturing sector” in the 1970ies. The

sample size is 311.

In the second application, we estimate the distribution of the total number of children condi-

tional on the mother’s income at the time of the interview and a college degree dummy variable.

The data is from Swiss Household Panel W1 (1999), it was originally analyzed in Cameron and

Trivedi (2013). The sample size is 1878.

For both applications, the model and prior specifications are the same as for the application

to trade counts in Section 4. The number of estimation/forecast exercises is 50 and for each of

these exercises, the prediction part of the sample is a randomly selected 10 % of the available

observations.

Tables 3 and 4 provide predictive log scores and RMSEs for the three methods averaged over

the 50 estimation/forecast exercises.

Table 3. Average Predictive Performance for Fertility Data

Bayes Kernel Poisson

Average Predictive Log Score -124.6969 -128.2933 -133.5551
Average RMSE 1.3890 1.3987 1.3893

Table 4. Average Predictive Performance for Patents Data

Bayes Kernel Poisson

Average Predictive Log Score -114.1826 -133.3086 -361.1469
Average RMSE 34.4523 37.5913 41.9626

The results from both applications in this section confirm the results from the main appli-

cation to the trade count data: our Bayesian model is an attractive approach to estimation of

conditional discrete-continuous distributions.

6. Technical Assumptions.

6.1. Assumptions on Prior. The prior Π for (θ,m) is assumed to satisfy the conditions

outlined below and matches the assumptions on the prior considered in Norets and Pelenis
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(2018). The prior for σi satisfies

Π(σ−2
i ≥ s) ≤ a1 exp{−a2s

a3} for all sufficiently large s > 0 (6.1)

Π(σ−2
i < s) ≤ a4s

a5 for all sufficiently small s > 0 (6.2)

Π{s < σ−2
i < s(1 + t)} ≥ a6s

a7ta8 exp{−a9s
1/2}, s > 0, t ∈ (0, 1) (6.3)

for some positive constants a1, a2, . . . , a9 and for each i ∈ {1, . . . , d}. The inverse Gamma prior

for σi is an example of a prior that satisfies the proposed requirements.

Conditional on m, the prior for (α1, . . . , αm) is Dirichlet(a/m, . . . , a/m), a > 0. Prior for the

number of mixture components m is

Π(m = i) ∝ exp(−a10i(log i)τ1), i = 2, 3, . . . , a10 > 0, τ1 ≥ 0. (6.4)

The components of each µj , µj,i, i = 1, . . . , d, are independent from each other, other pa-

rameters, and across j. A sufficient condition on the prior is that the prior density for µj,i is

bounded below for some a12, τ2 > 0 by

a11 exp(−a12|µj,i|τ2), (6.5)

and for some a13, τ3 > 0 and all sufficiently large µ > 0,

Π(µj,i /∈ [−µ, µ]) ≤ exp(−a13µ
τ3). (6.6)

6.2. Technical Assumptions on the Data Generating Process. In this subsection, we formu-

late technical assumptions on the data generating process for a fixed subset of indices for discrete

variables J ∈ A. In the main posterior contraction result in Theorem 3.1, these assumptions

are assumed to hold for every J ∈ A.

Let dJ = card(J), I = {1, . . . , dy + dz} \ J , Jc = {1, . . . , d} \ J , and dJc = card(Jc).

Similarly to Y, Z, Ay and Az defined in Section 2, we define YJ =
∏
j∈J Yj , ZJ =

∏
j∈J Zj ,

AyJ =
∏
i∈J Ayi and AzJ =

∏
i∈J Azi . Also, let yJ = {yi}i∈J , ỹI = {ỹi}i∈I , zJ = {zi}i∈J ,

z̃I = {z̃i}i∈I , x̃ = (ỹI , z̃I , x, w) ∈ X̃ = RdJc . In the proofs, we use the following notation for

subsets of Jc and I: Jc(x) denotes a set of indices of components of x that belong to Jc; I(z),

Jc(w), Jc(z), Jc(x,w) are defined similarly.

The assumptions we formulate below are key to deriving optimal approximation results for the

conditional data generating distribution that deliver (up to a log factor) the optimal posterior

contraction rates. The approximation results for the conditional distribution are obtained by
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constructing a mixture of normals approximation to the following artificial joint distribution

first

f̄0(ỹ, x, z̃, w) = f0(ỹ, x|z̃, w)ḡ0(z̃, w).

This artificial joint distribution has to have the conditional distribution equal to the data

generating conditional distribution, but its marginal distribution, which we denote ḡ0(z̃, w) does

not have to be equal to the data generating marginal distribution g0(z̃, w). Importantly, we can

choose ḡ0(z̃, w) to be sufficiently smooth so that f̄0(ỹ, x, z̃, w) and f0(ỹ, x|z̃, w) belong to the

same smoothness class, and, hence, optimal approximations for f̄0(ỹ, x, z̃, w) can deliver optimal

approximations for f0(ỹ, x|z̃, w). The simplest way to interpret the following assumptions is to

consider Z̃ × W = [0, 1]dz+dw . In this case, one could take uniform ḡ0(z̃, w) = 1[0,1]dz+dw (z̃, w)

and f̄0(ỹ, x, z̃, w) = f0(ỹ, x|z̃, w), and the following assumptions on f̄0 are straightforward to

interpret in terms of f0. Alternatively, if g0(z̃, w) is more smooth than f0(ỹ, x|z̃, w), then one can

consider ḡ0 = g0 and the Holder smoothness assumptions below would essentially restrict only

f0(ỹ, x|z̃, w). If g0(z̃, w) has a lower smoothness level than f0(ỹ, x|z̃, w), then the assumptions

below effectively require a well behaved and smooth ḡ0 that bounds g0 from above up to a

multiplicative constant. We use the general form of assumptions below in order to accommodate

unbounded Z̃ ×W and arbitrary smoothness in g0.

Let us introduce the notation for marginal and conditional distributions implied by f̄0,

f̄0|J(x̃|yJ , zJ) =
f̄0J(yJ , zJ , x̃)

π̄0J(yJ , zJ)
,

f̄0J(yJ , zJ , x̃) =

∫
AyJ×AzJ

f̄0(ỹJ , z̃J , x̃)dỹJdz̃J ,

π̄0J(yJ , zJ) =

∫
X̃
f̄0J(yJ , zJ , x̃)dx̃,

where the conditional density f̄0|J(x̃|yJ , zJ) can be defined arbitrarily when π̄0J(yJ , zJ) = 0.

Also, let F̄0|J denote the conditional probability corresponding to the conditional density f̄0|J .

Assumption 6.1. Assume that there exists a constant η > 0 and a probability density

function ḡ0(z̃, w) with respect to the Lebesque measure such that ηḡ0(z̃, w) ≥ g0(z̃, w) for all

(z̃, w) ∈ Z̃ ×W.

Assumption 6.2. There are positive finite constants b, f̄0, τ such that for any (yJ , zJ) ∈

YJ ×ZJ and x̃ ∈ X̃

f̄0|J(x̃|yJ , zJ) ≤ f̄0 exp (−b||x̃||τ ) . (6.7)
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Similar tail conditions on data generating densities are imposed in most of the papers on

(near) optimal posterior contraction rates for mixtures of normal densities.

Assumption 6.3. We assume that

f̄0|J ∈ CβdJ+1,...,βd,L, (6.8)

where for some τ0 ≥ 0 and any (x̃,∆x̃) ∈ R2dJc

L(x̃,∆x̃) = L̃(x̃) exp
{
τ0||∆x̃||2

}
, (6.9)

L̃(x̃+ ∆x̃) ≤ L̃(x̃) exp
{
τ0||∆x̃||2

}
. (6.10)

Simple sufficient conditions for f̄0|J ∈ CβdJ+1,...,βd,L for all J ∈ A are f̄0 is bounded away from

zero, has bounded support and belongs to Cβ1,...,βd,L (Lemma 5.8. in Norets and Pelenis (2018)).

Assumption 6.4. There are positive finite constants ε and F̄ , such that for any (yJ , zJ) ∈

YJ ×ZJ and k = {ki}i∈Jc ∈ NdJc0 ,
∑

i∈Jc ki/βi < 1,

∫ [ |Dkf̄0|J(x̃|yJ , zJ)|
f̄0|J(x̃|yJ , zJ)

] (2+εβ−1
Jc

d−1
Jc

)∑
i∈Jc ki/βi

f̄0|J(x̃|yJ , zJ)dx̃ < F̄ , (6.11)

∫ [
L̃(x̃)

f̄0|J(x̃|yJ , zJ)

]2+εβ−1
Jc d

−1
Jc

f̄0|J(x̃|yJ , zJ)dx̃ < F̄ . (6.12)

This assumption is mostly relevant for the case of the unbounded support and the proposed

condition suggests that the envelope function L̃ should be comparable to f̄0|J .

Assumption 6.5. There exists a positive and finite ȳ such that for any (yI , yJ) ∈ Y, z ∈ Z,

w ∈ W and x ∈ X

sup
ỹI∈AyI∩{||ỹI ||≤ȳ}

f0(ỹI , yJ , x|z, w) ≤ f̄∫
AyI∩{||ỹI ||≤ȳ}

f0(ỹI , yJ , x|z, w)dỹI ≥
∫
AyI∩{||ỹI ||>ȳ}

f0(ỹI , yJ , x|z, w)dỹI

The second inequality in the assumption always holds for AyI contained within the unit cube.

When AyI is a rectangle with at least one infinite side, an interpretation of this assumption is

that the tail probabilities for the latent variable ỹI conditional on (x, yJ , z, w) decline uniformly

in (x, yJ , z, w). A simple sufficient condition for this is a bounded support for ỹI .
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Assumption 6.6. We assume that g0 satisfies∫
eκ||w||

2
g0(w, z̃)dz̃dw ≤ B <∞

for some constant κ > 0 and B > 0.

This assumption of sub-Gaussian tails for the data generating distribution of continuous

covariates w allows us to handle an unbounded support as in Norets and Pati (2017).

Assumption 6.7. For some small ν > 0,

NJ = o(n1−ν). (6.13)

As some parts of the proof require log(1/εn) to be of order log n this condition is imposed to

exclude the case of NJ implying very slow (non-polynomial) rates.

7. Proofs and Intermediate Results for Posterior Contraction Rates. Let

tJ0 =


dJc [1+1/(βJcdJc )+1/τ ]+max{τ1,1,τ2/τ}

2+1/βJc
if Jc 6= ∅

max{τ1, 1}/2 if Jc = ∅
(7.1)

where (τ, τ1, τ2) are defined in Section 6.

Theorem 7.1. Suppose the assumptions from Sections 6.1 and 6.2 hold for a given J ∈ A.

Let

εn =

[
NJ

n

]βJc/(2βJc+1)

(log n)tJ , (7.2)

where tJ > tJ0 + max{0, (1 − τ1)/2}. Suppose also nε2n → ∞. Then, there exists M̄ > 0 such

that

Π
(
p : dTV (p, p0) > M̄εn|Y n, Xn, Zn,Wn

) Pn0→ 0.

As in Section 2, when Jc = ∅, βJc can be defined to be infinity and βJc/(2βJc + 1) = 1/2 in

(7.2).

Theorem 7.1 provides a valid upper bound on the posterior contraction rate under the as-

sumptions for a fixed J . Theorem 3.1 imposes the same assumptions for every J ∈ A; hence,

the smallest bound over J from Theorem 7.1 applies, and Theorem 3.1 is immediately implied

by Theorem 7.1.
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7.1. Proof of Theorem 7.1. Let us introduce some additional notation,

p0(z, w) =

∫
Az

g0(z̃, w)dz̃

p0(y, x|z, w) =
p0(y, x, z, w)

p0(z, w)

f0(ỹI , yJ , x, z, w) =

∫
AyJ

∫
Az

f0(ỹ, x|z̃, w)g0(z̃, w)dỹJdz̃

f0(ỹI , yJ , x|z, w) =
f0(ỹI , yJ , x, z, w)

p0(z, w)

To prove Theorem 7.1, we use the sufficient conditions for posterior contraction from Theorem

2.1. in Ghosal and van der Vaart (2001). As was previously noted in Shen and Ghosal (2016) and

Norets and Pati (2017), the results in Ghosal and van der Vaart (2001) for joint distributions

do not require any substantive modifications for the case of conditional distributions as long as

the expected total variation distance, dTV , is used. Let εn and ε̃n be positive sequences with

ε̃n ≤ εn, εn → 0, and nε̃2n →∞, and c1, c2, c3, and c4 be some positive constants. Let ρ be the

expected total variation or Hellinger distance and suppose Fn ⊂ F is a sieve with the following

bound on the metric entropy Me(εn,Fn, ρ)

logMe(εn,Fn, ρ) ≤ c1nε
2
n, (7.3)

Π(Fcn) ≤ c3 exp{−(c2 + 4)nε̃2n}. (7.4)

Suppose also that the prior thickness condition holds

Π(K(p0, ε̃n)) ≥ c4 exp{−c2nε̃
2
n}, (7.5)

where the generalized Kullback-Leibler neighborhood K(p0, ε̃n) is defined by

K(p0, ε) =

p :
∑
y∈Y

∑
z∈Z

∫
X×W

p0(y, x|z, w)p0(z, w) log
p0(y, x|z, w)

p(y, x|z, w)
dxdw < ε2,

∑
y∈Y

∑
z∈Z

∫
X×W

p0(y, x|z, w)p0(z, w)

[
log

p0(y, x|z, w)

p(y, x|z, w)

]2

dxdw < ε2

 .

Then, there exists M̄ > 0 such that

Π
(
p : ρ(p, p0) > M̄εn|Y n, Xn

) Pn0→ 0.

The choice of the sieve and verification of the conditions (7.3) and (7.4) are similar to a number

of comparable results in the literature on posterior contraction rates for mixture models. The
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details with the adjustments to the present set-up are given in Lemma 8.6 in the Appendix. The

prior thickness condition requires a bit more effort to verify and therefore we formulate and prove

it as a separate theorem. Parts of the proof employ the results obtained in the corresponding

proof of Theorem 4.2. in Norets and Pelenis (2018).

Theorem 7.2. Suppose the assumptions from Sections 6.1 and 6.2 hold for a given J ∈ A.

Let tJ > tJ0, where tJ0 is defined in (7.1), and

ε̃n =

[
NJ

n

]βJc/(2βJc+1)

(log n)tJ . (7.6)

For any C > 0 and all sufficiently large n,

Π(K(p0, ε̃n)) ≥ exp{−Cnε̃2n}. (7.7)

Proof. By Lemma 8.1 for p(·|·, θ,m) defined in (3.2)

d2
h (p(y, x|z, w, θ,m)p0(z, w), p0(y, x|z, w)p0(z, w))

≤ 4ηd2
h

(∫
Ay

p(ỹ, x|z, w, θ,m)p(z, w|θ,m)dỹ,

∫
Ay

∫
Az

f0(ỹ, x|z̃, w)ḡ0(z̃, w)dz̃dỹ

)
= 4ηd2

h (p(y, x|z, w, θ,m)p(z, w|θ,m), p0(y, x|z, w)p̄0(z, w)) .

With this inequality, we can exploit approximation results derived for joint discrete-continuous

distributions.

Define β = dJc
[∑

k∈Jc β
−1
k

]−1
, βmin = minj∈Jc βj , and σn = [ε̃n/ log(1/ε̃n)]1/β . For ε de-

fined in (6.11)-(6.12), b and τ defined in (6.7), and a sufficiently small δ > 0, let a0 =

{(8β + 4ε + 8 + 8β/βmin)/(bδ)}1/τ , aσn = a0{log(1/σn)}1/τ , and b1 > max{1, 1/2β} satisfy-

ing ε̃b1n {log(1/ε̃n)}5/4 ≤ ε̃n. The proofs of Theorems 4 and 6 in Shen et al. (2013) imply the

following claim for each (yJ , zJ) = k ∈ YJ ×ZJ under the assumptions of Section 6.2.

There exists a partition {Uj|k, j = 1, . . . ,K} of {x̃ ∈ X̃ : ||x̃|| ≤ 2aσn}, such that for j =

1, . . . , N , Uj|k is contained within an ellipsoid with center µ?j|k and radii {σβ/βin ε̃2b1n , i ∈ Jc}

Uj|k ⊂

{
x̃ :

dJc∑
i=1

[
(x̃i − µ?j|k,i)/(σ

β/βdJ+i
n ε̃2b1n )

]2

≤ 1

}
;

for j = N + 1, . . . ,K, Uj|k is contained within an ellipsoid with radii {σβ/βin , i ∈ Jc}, and

1 ≤ N < K ≤ C1σ
−dJc
n {log(1/ε̃n)}dJc+dJc/τ , where C1 > 0 does not depend on n and yJ .
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Furthermore, by Lemma 5.10 in Norets and Pelenis (2018), there exists a constant B0 > 0

such that for all (yJ , zJ) ∈ YJ ×ZJ

F̄0|J

(
||X̃|| > aσn |yJ , zJ

)
≤ B0σ

4β+2ε
n σ8

n, (7.8)

where

σn = min
i∈Jc

σβ/βin .

For m = NJK we define θ? and Sθ? as

θ? =

{
{µ?1, . . . , µ?m} =

{
(k, µ?j|k), j = 1, . . . ,K, k ∈ YJ ×ZJ

}
,

{α?1, . . . , α?m} =
{
α?jk = α?j|kπ̄0J(k), j = 1, . . . ,K, k ∈ YJ ×ZJ

}
,

σ?2J = {σ?2i = 1/[64N2
i β log(1/σn)], i ∈ J}

σ?Jc = {σ?i = σβ/βin , i ∈ Jc},
}

Sθ? =

{
{µ1, . . . , µm} = {(µjk,J , µjk,Jc), j = 1, . . . ,K, k ∈ YJ ×ZJ} ,

µjk,Jc ∈ Uj|k, µjk,i ∈
[
ki −

1

4Ni
, ki +

1

4Ni

]
, i ∈ J,

σ2
i ∈

(
0, σ?2i

)
, i ∈ J,

σ2
i ∈

(
σ?2i (1 + σ2β

n )−1, σ?2i

)
, i ∈ Jc,

(α1, . . . , αm) = {αjk, j = 1, . . . ,K, k ∈ YJ ×ZJ} ∈ ∆m−1,

m∑
r=1

|αr − α?r | ≤ 2σ2β
n , min

j≤K,k∈YJ×ZJ
αjk ≥

σ2β+dJc
n

2m2

}
.

If the assumptions from Section 6.2 hold, then it is shown in equation (4.27) in Norets and

Pelenis (2018) that for m = NJK and θ ∈ Sθ∗

d2
h (p(y, x|z, w, θ,m)p(z, w|θ,m), p0(y, x|z, w)p̄0(z, w)) ≤ σ2β

n . (7.9)

Next, let us consider a lower bound on the ratio p(y, x|z, w, θ,m)/p0(y, x|z, w) for θ ∈ Sθ?

and m = NJK. In Lemma 8.3 in the Appendix we show that for any (x,w) ∈ X × W with

‖(x,w)‖ ≤ aσn ,

p(y, x|z, w, θ,m)

p0(y, x|z, w)
≥ C2

σ2β
n

2m2

∏
i∈Jc(w,zI)

σ
β
βi
n = λn. (7.10)
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for some constant C2 > 0; and for any (x,w) ∈ X ×W with ‖(x,w)‖ > aσn ,

p(y, x|z, w, θ,m)

p0(y, x|z, w)
≥ exp

{
−8 ‖(x,w)‖2

σ2
n

− C3 log n

}
(7.11)

for some constant C3 > 0.

Consider all sufficiently large n such that λn < e−1 and (7.10) and (7.11) hold. Then, for any

θ ∈ Sθ? ,∑
y∈Y

∑
z∈Z

∫
X×W

(
log

p0(y, x|z, w)

p(y, x|z, w, θ,m)

)2

1

{
p(y, x|z, w, θ,m)

p0(y, x|z, w)
< λn

}
p0(y, z, x, w)dwdx

=
∑
y∈Y

∑
z∈Z

∫
X×W×YI×ZI

(
log

p0(y, x|z, w)

p(y, x|z, w, θ,m)

)2

1

{
p(y, x|z, w, θ,m)

p0(y, x|z, w)
< λn, ||(x′, w′)′|| > aσn , ỹI ∈ AyI , z̃I ∈ AzI

}
f0(yJ , zJ , z̃I , ỹI , w, x)dx̃

≤
∑
y∈Y

∑
z∈Z

∫
{x̃:||(x′,w′)′||>aσn}

(
log

p0(y, x|z, w)

p(y, x|z, w, θ,m)

)2

1 {ỹI ∈ AyI , z̃I ∈ AzI} f0(yJ , zJ , x̃)dx̃

≤
∑
y∈Y

∑
z∈Z

∫
{x̃:||(x′,w′)′||>aσn}

[
128

σ4
n

||x̃||4 + 2(C3 log n)2

]
f0|J(x̃|yJ , zJ)dx̃π̄0J(yJ , zJ)

≤ 128

σ4
n

∑
yJ∈YJ

∑
zJ∈ZJ

E0|yJ ,zJ

(∥∥∥X̃∥∥∥8
)1/2 (

F0|yJ ,zJ

(∥∥∥X̃∥∥∥ > aσn

))1/2
π̄0J(yJ , zJ)

+ 2(C3 log n)2B0σ
4β+2ε
n σ8

n

≤ C4σ
2β+ε
n (7.12)

for some constant C4 > 0 and all sufficiently large n, where the last inequality holds by the tail

condition in (6.7), (7.8), and (log n)2σ2β+ε
n σ8

n → 0.

Furthermore, for n large enough such that λn < e−1,

log
p0(y, x|z, w)

p(y, x|z, w, θ,m)
1

{
p(y, x|z, w, θ,m)

p0(y, x|z, w)
< λn

}
≤
(

log
p0(y, x|z, w)

p(y, x|z, w, θ,m)

)2

1

{
p(y, x|z, w, θ,m)

p0(y, x|z, w)
< λn

}
and, therefore,∑
y∈Y

∑
z∈Z

∫
X×W

log
p0(y, x|z, w)

p(y, x|z, w, θ,m)
1

{
p(y, x|z, w, θ,m)

p0(y, x|z, w)
< λn

}
p0(y, z, x, w)dwdx ≤ C4σ

2β+ε
n .

(7.13)

Inequalities (7.9), (7.12), and (7.13) combined with Lemma 8.2 imply

E0

(
log

p0(y, x|z, w)

p(y, x|z, w, θ,m)

)
≤ Aε̃2n, E0

([
log

p0(y, x|z, w)

p(y, x|z, w, θ,m)

]2
)
≤ Aε̃2n
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for any θ ∈ Sθ? , m = NJK, and some positive constant A (details are provided in Lemma 8.4

in the Appendix).

Since the definition of Sθ∗ is adapted from the corresponding definition in Norets and Pelenis

(2018), Lemma 5.16 in the Appendix of Norets and Pelenis (2018) delivers that for all sufficiently

large n, s = 1 + 1/β + 1/τ , and some C5 > 0,

Π(K(p0, ε̃n)) ≥ Π(m = NJK, θ ∈ Sθ?) ≥ exp
[
−C5NJ ε̃

−dJc/β
n {log(n)}dJcs+max{τ1,1,τ2/τ}

]
.

The right hand side in the inequality above is bounded below by exp{−Cnε̃2n} for any C > 0,

ε̃n =
[
NJ
n

]β/(2β+dJc )
(log n)tJ , any tJ > (dJcs+max{τ1, 1, τ2/τ})/(2+dJc/β), and all sufficiently

large n. As the inequality in the definition of tJ is strict the theorem is immediately implied.

When J = ∅ and NJ = 1, the theorem can be proved by the same argument if we add an

artificial discrete coordinate with only one possible value to the vector of observables.

7.2. Extension to Markov processes. Our model can be used for specifying a prior on Markov

transition probabilities as one could just set (zt, wt) = (yt−1, xt−1). General sufficient conditions

for posterior contraction rates for Markov transition probabilities were obtained in Ghosal and

van der Vaart (2007a); however, they appear to be too strong for models based mixtures of

normals. Martin and Hong (2012) provide very weak sufficient conditions for convergence rates of

predictive distributions in the context of ergodic Markov processes. Specifically, their theoretical

results in Section 7 and their Proposition 5 imply that n−1
∑n

i=1E
[
KYi−1(fθ∗ , f̂i−1)

]
= OP (ε2n),

where K is the Kullback-Leibler divergence, θ∗ is the “true” value of the parameter and f̂i−1

is the predictive distribution with respect to the posterior density Πi−1 for an ergodic Markov

process (Yn : n ≥ 0). A prior thickness condition for εn and εn → 0 and nε2n →∞ are sufficient

for this result. Thus, our prior thickness results in Theorem 7.2 also deliver convergence rates for

predictive distributions when our prior is used for modeling transition probability of an ergodic

Markov process.

8. Conclusions and Future Work. In this paper, we propose and analyze a Bayesian

nonparametric model for conditional discrete-continuous distributions. The model possesses

outstanding asymptotic properties: it can fully exploit the smoothness in continuous and discrete

variables if it is present in the data and delivers (up to a log term) optimal posterior contraction

rates. The model is feasible to estimate by MCMC. In our applications, it performers better than

standard classical parametric and nonparametric methods. Thus, it is an attractive alternative
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to workhorse limited dependent variable models such as probit, ordered probit and Poisson

regression.

Discovering different model specifications for conditional discrete-continuous distributions

that deliver optimal adaptive posterior contraction rates and that are feasible to estimate is an

interesting direction for future work. More extensive simulation studies and applications of the

model proposed in this paper are also of interest.
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Appendix.

Lemma 8.1. Let p0(y, x|z, w) and p(y, x|z, w, θ,m) be conditional discrete continuous dis-

tributions. Let g be a density on Z ×W and g0 be a density on Z̃ ×W g0 satisfying ηḡ0(z̃, w) ≥

g0(z̃, w) for all (z̃, w). Then

d2
h (p(y, x|z, w, θ,m)p0(z, w), p0(y, x|z, w)p0(z, w))

≤ 4ηd2
h (p(y, x|z, w, θ,m)g(z, w), p0(y, x|z, w)p̄0(z, w)) .

Proof. Let p̄0(z, w) =
∫
Az
ḡ0(z̃, w)dz̃. Then

d2
h (p(y, x|z, w, θ,m)p0(z, w), p0(y, x|z, w)p0(z, w))

= d2
h

(∫
Ay

p(ỹ, x|z, w, θ,m)

∫
Az

g0(z̃, w)dz̃dỹ,

∫
Ay

∫
Az

f0(ỹ, x|z̃, w)g0(z̃, w)dz̃dỹ

)

≤ ηd2
h

(∫
Ay

p(ỹ, x|z, w, θ,m)

∫
Az

ḡ0(z̃, w)dz̃dỹ,

∫
Ay

∫
Az

f0(ỹ, x|z̃, w)ḡ0(z̃, w)dz̃dỹ

)

≤ ηd2
h

(∫
Ay

p(ỹ, x|z, w, θ,m)p̄0(z, w)dỹ,

∫
Ay

∫
Az

f0(ỹ, x|z̃, w)ḡ0(z̃, w)dz̃dỹ

)

≤ 2η

[
d2
h

(∫
Ay

p(ỹ, x|z, w, θ,m)p̄0(z, w)dỹ,

∫
Ay

p(ỹ, x|z, w, θ,m)g(z, w)dỹ

)
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+ d2
h

(∫
Ay

p(ỹ, x|z, w, θ,m)g(z, w)dỹ,

∫
Ay

∫
Az

f0(ỹ, x|z̃, w)ḡ0(z̃, w)dz̃dỹ

)]
≤ 2η(I + II),

where

I = d2
h

(∫
Ay

p(ỹ, x|z, w, θ,m)p̄0(z, w)dỹ,

∫
Ay

p(ỹ, x|z, w, θ,m)g(z, w)dỹ

)

II = d2
h

(∫
Ay

p(ỹ, x|z, w, θ,m)g(z, w)dỹ,

∫
Ay

∫
Az

f0(ỹ, x|z̃, w)ḡ0(z̃, w)dz̃dỹ

)
.

Note that

I = d2
h

(∫
Ay

p(ỹ, x|z, w, θ,m)p̄0(z, w)dỹ,

∫
Ay

p(ỹ, x|z, w, θ,m)g(z, w)dỹ

)

= d2
h (p̄0(z, w), g(z, w)) =

∑
z∈Z

∫
W

(√
p̄0(z, w)−

√
g(z, w)

)2
dw

= 2

(
1−

∑
z∈Z

∫
W

√
p̄0(z, w)g(z, w)dw

)
≤ II,

where the final inequality follows from

II =
∑
y∈Y

∑
z∈Z

∫
W×X

(∫
Ay

p(ỹ, x|z, w, θ,m)g(z, w)dỹ +

∫
Ay

∫
Az

f0(ỹ, x|z̃, w)ḡ0(z̃, w)dz̃dỹ

−2

√∫
Ay

p(ỹ, x|z, w, θ,m)g(z, w)dỹ

∫
Ay

∫
Az

f0(ỹ, x|z̃, w)ḡ0(z̃, w)dz̃dỹ

)
dwdx

= 2

(
1−

∑
y∈Y

∑
z∈Z

∫
W×X

√∫
Ay

p(ỹ, x|z, w, θ,m)g(z, w)dỹ

·
√∫

Ay

∫
Az

f0(ỹ, x|z̃, w)ḡ0(z̃, w)dz̃dỹdwdx

)

= 2

(
1−

∑
y∈Y

∑
z∈Z

∫
W×X

√√√√∫
Ay

p(ỹ, x|z, w, θ,m)dỹ

∫
Ay

∫
Az
f0(ỹ, x|z̃, w)ḡ0(z̃, w)dz̃dỹ

p̄0(z, w)

·
√
g(z, w)p̄0(z, w)

)
dwdx

≥ 2

(
1−

∑
z∈Z

∫
W

√
g(z, w)p̄0(z, w)

)
dw

as for all z, w

∑
y∈Y

∫
X

√√√√∫
Ay

p(ỹ, x|z, w, θ,m)dỹ

∫
Ay

∫
Az
f0(ỹ, x|z̃, w)ḡ0(z̃, w)dz̃dỹ

p̄0(z, w)
dx

≤ 1

2

∑
y∈Y

∫
X

(
p(y, x|z, w, θ,m)) +

∫
Ay

∫
Az
f0(ỹ, x|z̃, w)ḡ0(z̃, w)dz̃dỹ

p̄0(z, w)

)
dx = 1.
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Combining the inequalities above

d2
h (p(y, x|z, w, θ,m)p0(z, w), p0(y, x|z, w)p0(z, w)) ≤ 4ηII

= 4ηd2
h

(∫
Ay

p(ỹ, x|z, w, θ,m)g(z, w)dỹ,

∫
Ay

∫
Az

f0(ỹ, x|z̃, w)ḡ0(z̃, w)dz̃dỹ

)
= 4ηd2

h (p(y, x|z, w, θ,m)g(z, w), p0(y, x|z, w)p̄0(z, w)) .

Lemma 8.2. There is a λ0 ∈ (0, 1) such that for any λ ∈ (0, λ0) and any two conditional

densities p, q ∈ F , a probability measure P on Z that has a conditional density equal to p, and

dh defined with the distribution on X implied by P ,

P log
p

q
≤ d2

h(p, q)

(
1 + 2 log

1

λ

)
+ 2P

{(
log

p

q

)
1

(
q

p
≤ λ

)}
,

P

(
log

p

q

)2

≤ d2
h(p, q)

(
12 + 2

(
log

1

λ

)2
)

+ 8P

{(
log

p

q

)2

1

(
q

p
≤ λ

)}
,

Proof. The proof is exactly the same as the proof of Lemma 4 of Shen et al. (2013), which

in turn, follows the proof of Lemma 7 in Ghosal and van der Vaart (2007b).

Lemma 8.3. Under the assumptions and notation of Section 7, for any (y, z, x, w) ∈ Y ×

Z × X ×W, some constants C1, C2 > 0 and all sufficiently large n,

p(y, x|z, w, θ,m)

p0(y, x|z, w)
≥ C1

σ2β
n

2m2

∏
i∈Jc(w,zI)

σ
β
βi
n = λn.

when ‖(x,w)‖ ≤ aσn and

p(y, x|z, w, θ,m)

p0(y, x|z, w)
≥ exp

{
−8 ‖(x,w)‖2

σ2
n

− C2 log n

}

when ‖(x,w)‖ > aσn,

Proof. For n large enough so that aσn > ȳ and by Assumption 6.5

p(y, x|z, w, θ,m)

p0(y, x|z, w)
=

∫
AyI

f(yJ , ỹI , x|z, w, θ,m)dỹI∫
AyI

f0(yJ , ỹI , x|z, w)dỹI

≥

∫
AyI

⋂
{||ỹI ||≤aσn}

f(yJ , ỹI , x|z, w, θ,m)dỹI

2
∫
AyI

⋂
{||ỹI ||≤aσn}

f0(yJ , ỹI , x|z, w)dỹI

≥ f̄−1

2
inf

ỹI∈AyI
⋂
{||ỹI ||≤aσn}

f(yJ , ỹI , x|z, w, θ,m)
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=
f̄−1

2
inf

ỹI∈AyI
⋂
{||ỹI ||≤aσn}

f(yJ , ỹI , x, z, w, θ,m)

p(z, w, θ,m)

=
f̄−1

2
inf

ỹI∈AyI
⋂
{||ỹI ||≤aσn}

∫
AyJ×AZ

∑m
j=1 αjφj(ỹ, x, z̃, w)dỹJdz̃∫

AZ

∑m
j=1 αjφj(z̃, w)dz̃

≥ f̄−1

2
inf

ỹI∈AyI
⋂
{||ỹI ||≤aσn}

∫
AyJ×AZ

αj∗φj∗(ỹJ)φj∗(ỹI)φj∗(x)φj∗(z̃J)φj∗(z̃I)φj∗(w)dỹJdz̃∫
AZ

∑m
j=1 αjφj(z̃J)φj(z̃I)φj(w)dz̃

.

Notation: φj is dependent on it’s arguments contained within θ and j ∈ {1, . . . ,m}. To derive

the bounds on the ratio we will consider two cases conditional on whether ||(x,w)|| ≤ aσn or

not.

For ||(x,w)|| ≤ aσn choose j∗ such that for all i ∈ I(z)∫
AyJ

φj∗(ỹJ)dỹJ ≥
1

2∫
AzJ

φj∗(z̃J)dz̃J ≥
1

2

if AZi ⊆


(
−∞, 1

2Ni

]
, P roj(Uj∗) ⊂ (−∞, 0)

(0, 1), zi ∈ Proj(Uj∗)(
1− 1

2Ni
,+∞

]
, P roj(Uj∗) ⊂ (1,∞)

(8.1)

As ||(x,w)|| ≤ aσn and ỹI ≤ aσn , then there exists an ellipsoid U∗j|k such that it contains

(x,w, ỹI). Furthermore, by the construction of ellipsoid U∗j|k

φj∗(ỹI)φj∗(x)φj∗(w) ≥ (2π)−1/2
∏

i∈Jc(x,w,ỹI)

σ−1
i exp{−1}

For Azi ⊂ [0, 1] we consider two cases with σi ≥ 1/2Ni and σi < 1/2Ni. When σi ≥ 1/2Ni, then

for the chosen j∗ and all j∫
Azi

φj∗(z̃i)dz̃i ≥ e−1λ(Azi)√
2πσi

and

∫
Azi

φj(z̃i)dz̃i ≤
λ(Azi)√

2πσi
.

When σi < 1/2Ni, then for the chosen j∗ and all j∫
Azi

φj(z̃i)dz̃i ≤ 1

∫
Azi

φj∗(z̃i)dz̃i =

∫ zi+
1

2Ni

zi− 1
2Ni

φ(z̃i, µj∗ , σi)dz̃i =

∫ (zi+
1

2Ni
−µj∗ )/σi

(zi− 1
2Ni
−µj∗ )/σi

φ(z̃i, 0, 1)dz̃i

=

∫ ∆+ 1
2Ni

σi

∆− 1
2Ni

σi

φ(z̃i, 0, 1)dz̃i ≥
∫ 1

0
φ(z̃i, 0, 1)dz̃i ≈ 0.34,

where last inequality is true since ∆ = (zi − µj∗)/σi < 1 by design of the ellipsoid Uj∗ and

1
2Ni

σi > 1.
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For Azi 6⊂ [0, 1] and for the chosen j∗ and all j∫
Azi

φj(z̃i)dz̃i ≤ 1∫
Azi

φj∗(z̃i)dz̃i ≥
∫ ∞

0
φ(z̃i, 0, 1)dz̃i = 0.5

as µj∗ ∈ Azi . In all these cases we obtain that for all j∫
Azi

φj(z̃i)dz̃i∫
Azi

φj∗(z̃i)dz̃i
≤ max{e−1, 0.34, 0.5} = 0.5.

Then, combining the above results, we obtain that for ||(x,w)|| ≤ aσn the ratio is bounded by

p(y, x|z, w, θ,m)

p0(y, x|z, w)

≥ f̄−1

2
inf

ỹI∈AyI
⋂
{||ỹI ||≤aσn}

∫
AyJ×Az

αj∗φj∗(ỹJ)φj∗(ỹI)φj∗(x)φj∗(z̃J)φj∗(z̃I)φj∗(w)dỹJdz̃∫
Az

∑m
j=1 αjφj(z̃J)φj(z̃I)φj(w)dz̃

=
f̄−1

2
inf

ỹI∈AyI
⋂
{||ỹI ||≤aσn}

∫
AyJ×AzJ

αj∗φj∗(ỹJ)φj∗(ỹI)φj∗(x)φj∗(z̃J)φj∗(w)dỹJdz̃J∫
Az

∑m
j=1 αjφj(z̃J)

φj(z̃I)∫
AzI

φj∗ (z̃I)
φj(w)dz̃

≥ C∗1
minj αj

∏
i∈Jc(x,w,ỹI) σ

−1
i∫

Azj

∑m
j=1 αjφj(z̃J)φj(w)dz̃

≥ C1

minj αj
∏
i∈Jc(x,w,ỹI) σ

−1
i∏

i∈Jc(w) σ
−1
i

∫
AzJ

∑m
j=1 αjφj(z̃J)dz̃

≥ C1 min
j
αj

∏
i∈Jc(x,ỹI)

σ−1
i ≥ C1 min

j
αj

∏
i∈Jc(x,ỹI)

σ
− β
βi

n ≥ C1
σ2β+dJc
n

2m2

∏
i∈Jc(x,ỹI)

σ
− β
βi

n

= C1
σ2β
n

2m2

∏
i∈Jc(w,z̃I)

σ
β
βi
n = λn.

Therefore, for sufficiently large n and ||(x,w)|| ≤ aσn

p(y, x|z, w, θ,m)

p0(y, x|z, w)
≥ C1

σ2β
n

2m2

∏
i∈Jc(w,zI)

σ
β
βi
n = λn.

For ||(x,w)|| > aσn , we will derive a comparable bound for the ratio. First note, that by

construction of ellipsoids Uj|k for any j ≤ K and any k ∈ YJ × ZJ , ||(x′, w′) − µjk,Jc(w,x)||2 ≤

||x̃ − µjk||2 ≤ 12||(x′, w′)||2, where x̃ = (ỹ′I , z̃
′
I , x
′, w′)′ with ||ỹI || ≤ ȳ < aσn and z̃I = 0.

Therefore, for sufficiently large n such that 1 + σ2β
n < 8/6, and, thus, σ2

i > σ2
n6/8,

φj(ỹI)φj(x)φj(w) ≥ C∗2
∏

i∈Jc(x,w,ỹI)

σ
− β
βi

n exp

{
−8||(x′, w′)||2

σ2
n

}
,

where σn = mini∈Jc σ
β/βi
n . Then, for n large enough

f(yJ , zJ , ỹI , z̃I , x, w|θ,m) = Σk∈YJ×ZJΣK
j=1αjk

∫
AyJ×AzJ

φjk(ỹJ)φjk(z̃J)dỹJdz̃J
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· φj(ỹI)φj(x)φj(w)φj(z̃I)

≥ C∗2
∏

i∈Jc(x,w,ỹI)

σ
− β
βi

n exp

{
−8||(x′, w′)||2

σ2
n

}

· ΣK
j=1Σk∈YJ×ZJαjk

∫
AyJ×AzJ

φjk(ỹJ)φjk(z̃J)dỹJdz̃Jφj(z̃I)

≥ C∗2
∏

i∈Jc(x,w,ỹI)

σ
− β
βi

n exp

{
−8||(x′, w′)||2

σ2
n

}
minαjkKφj(z̃I).

Next, pick j∗ so that equation (8.1) is satisfied and by definition α∗ ≥ minαjk. Then, similarly

to the previous case,

p(y, x|z, w, θ,m)

p0(y, x|z, w)

≥ f̄−1

2
inf

ỹI∈AyI
⋂
{||ỹI ||≤aσn}

∫
AyJ×AZ

αj∗φj∗(ỹJ)φj∗(ỹI)φj∗(x)φj∗(z̃J)φj∗(z̃I)φj∗(w)dỹJdz̃∫
AZ

∑m
j=1 αjφj(z̃J)φj(z̃I)φj(w)dz̃

≥ C∗2
σ2β
n

2m2

∏
i∈Jc(w,z̃I)

σ
β
βi
n K exp

{
−8||(x′, w′)||2

σ2
n

}
≥ exp

{
−8||(x′, w′)||2

σ2
n

− C2 log n

}

as for n large enough such that

∣∣∣∣log

(
K σ

2β+σi∈Jc(w,z̃I )
β/βi

n
m2

)∣∣∣∣ ≤ log n. Therefore, for sufficiently

large n and ||(x,w)|| > aσn

p(y, x|z, w, θ,m)

p0(y, x|z, w)
≥ exp

{
−8 ‖(x,w)‖2

σ2
n

− C2 log n

}
.

Lemma 8.4. Under the assumptions and notation of Section 7, for λn < λ0, where λ0 is

defined in Lemma 8.2,

E0

(
log

p0(y, x|z, w)

p(y, x|z, w, θ,m)

)
≤ Aε̃2n,

E0

([
log

p0(y, x|z, w)

p(y, x|z, w, θ,m)

]2
)
≤ Aε̃2n.

Proof.

E0

([
log

p0(y, x|z, w)

p(y, x|z, w, θ,m)

]2
)

≤ d2
H(p0(·|·), p(·|·, θ,m))

(
12 + 2

(
log

1

λn

)2
)

+ 8P

{(
log

p0(·|·)
p(·|·, θ,m)

)2

1

{
p(·|·, θ,m)

p0(·|·)
< λn

}}
. σ2β

n (12 + 2 log(1/λn)2) + σ2β+ε
n . log(1/λn)2σ2β

n ,
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where first inequality is derived using Lemma 8.2 and penultimate inequality is derived using

inequalities (7.9) and (7.13). Similarly,

E0

(
log

p0(y, x|z, w)

p(y, x|z, w, θ,m)

)
≤ d2

H(p0(·|·), p(·|·, θ,m))

(
1 + 2

(
log

1

λn

))
+ 2P

{(
log

p0(·|·)
p(·|·, θ,m)

)
1

{
p(·|·, θ,m)

p0(·|·)
< λn

}}
. σ2β

n (1 + 2 log(1/λn)) + σ2β+ε
n . log(1/λn)σ2β

n .

Furthermore,

log(1/λn)σ2β
n ≤ log(1/λn)2σ2β

n = log

2NJK
2

σ2β
n

∏
i∈Jc(w,zI)

σ
− β
βi

n

2

ε̃2n(log(ε̃−1
n ))−2

≤

 log

[
2N2

J (C1σ
−dJc
n {log(ε̃−1

n )}dJc+dJc/τ )2σ−2β
n

∏
i∈Jc(w,zI) σ

− β
βi

n

]
log(ε̃−1

n )


2

ε̃2n,

where the term multiplying ε̃2n on the right hand side is bounded by Assumption 6.7 (NJ =

o(n1−ν)) and definitions of ε̃n and σn.

Lemma 8.5. Under the assumptions and notation of Section 7, for H ∈ N, 0 < σ < σ, and

µ > 0, let us define a sieve

F = {p(y, x|θ,m) : m ≤ H, µj ∈ [−µ, µ]d, j = 1, . . . ,m, σi ∈ [σ, σ], i = 1, . . . , d}. (8.2)

For 0 < ε < 1 and σ ≤ 1,

Me(ε,F , dTV ) ≤H ·
⌈

16µ(dy + dx)

σε

⌉H)(dy+dx)

·
⌈

384(dw + dz)µ
2

σ2ε

⌉H(dw+dz)

·H
⌈

log(α−1)

log(1 + ε/[12H])

⌉H−1

·
⌈

log(σ/σ)

log(1 + σ2ε/[768(µx)2 max{dx + dy, dz + dw}])

⌉
.

For all sufficiently large H, large σ and small σ,

Π(Fc) ≤H2d exp{−a13µ
τ3}+ exp{−a10H(logH)τ1}

+ da1 exp{−a2σ
−2a3}+ da4 exp{−2a5 log σ}.

Proof. The proof is similar to proofs of related results in Norets and Pati (2017), Shen et al.

(2013), and Ghosal and van der Vaart (2001) among others.

For a fixed value of m, define set Smµy,x to contain centers of |Smµy,x | = d16µ(dy + dx)/(σε)e

equal length intervals partitioning [−µ, µ]. Then define set Smµw to contain centers of |Smµw | =
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d384µ2(dw)/(σ2ε)e equal length intervals partitioning [−µ, µ]. Similarly, define set Smµz to contain

centers of |Smµz | = d384µ2(dz)/(σ
2ε)e equal length intervals partitioning [−µ, µ]

Define set Smσ as in Theorem 4.1. by Norets and Pati (2017), for Nα = dlog(α−1)/ log(1 +

ε/(12m))e define

Qα = {γj , j = 1, . . . , Nα : γ1 = α, (γj+1 − γj)/γj = ε/(12m), j = 1, . . . , Nα − 1}

and let Smα = {(α̃1, . . . , α̃m) ∈ ∆m−1 : α̃jk ∈ Qα, 1 ≤ j1 < j2 < . . . < jm−1 ≤ m}.

Define

Sσ = {σl, l = 1, . . . , Nσ = dlog(σ/σ)/(log(1 + σ2ε/(768(µ)2 max{dx + dy, dz + dw})e, σ1 = σ,

(σl+1 − σl)/σl = σ2ε/(768(µ)2 max{dx + dy, dz + dw})}.

Let us show that

SF = {p(y, x|z, w, θ,m) : m ≤ H, α ∈ Smα , σi ∈ Sσ, µ
y
jiy
∈ Smµy,x , µxjix ∈ S

m
µy,x , µ

w
jiw ∈ S

m
µw ,

µwjiz ∈ S
m
µz , j ≤ m, i ≤ d, iy ≤ dy, ix ≤ dx, iw ≤ dw, iz ≤ dz}

is an ε-net for F in dTV . For a given p(·|θ,m) ∈ F with σli ≤ σi ≤ σli+1, i = 1, . . . , d find

α̃ ∈ Smα , µ̃yjiy ∈ S
m
µy,x , µ̃xjix ∈ S

m
µy,x , µ̃wjiw ∈ S

m
µw , µ̃zjiz ∈ S

m
µz and σ̃i = σli ∈ Sσ such that for all

j = 1, . . . ,m, i = 1, . . . , d, iy = 1, . . . , dy, ix = 1, . . . , dx, iw = 1, . . . , dw and iz = 1, . . . , dz

αj − α̃j
αj

≤ ε

12
,
|σi − σ̃i|

σi
≤ σ2ε

768µ2 max{dx + dy, dz + dw}
, |µyjiy − µ̃

y
jiy
| ≤ σε

16(dy + dx)
,

|µxjix − µ̃
x
jix | ≤

σε

16(dy + dx)
, |µwjiw − µ̃

w
jiw | ≤

σ2ε

384µdw
, |µzjiz − µ̃

z
jiz | ≤

σ2ε

384µdz
.

Applying Lemma 5.4 and equation (5.12) of Norets and Pelenis (2018) for each (z, w) we

obtain that

dTV (p(y, x|z, w, θ,m), p(y, z|z, w, θ̃,m)) ≤ dTV (f(ỹ, x|z, w, θ,m), f(ỹ, x|z, w, θ̃,m)).

Similarly to the proof of Theorem 4.1 in Norets and Pati (2017) for each (z, w) ∈ Z ×W∫
|p(ỹ, x|z, w, θ,m)− p(ỹ, x|z, w, θ̃,m)|dy ≤ 2 max

j=1,...,m
||φµy,xj ,σ − φµ̃y,xj ,σ̃||1

+ 2

(
max
j

|Kj − K̃j |
Kj

+ max
j

|αj − α̃j |
αj

+ max
j

|Kj − K̃j ||αj − α̃j |
αjKj

)
where

Kj =

dw∏
i=1

exp

{
−

(wi − µwji)2

2(σzi )2

}
dz∏
i=1

∫
Azi

φi(z̃i)dz̃i.
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As in Theorem 4.1. in Norets and Pati (2017) note that ||φµy,xj ,σ − φµ̃y,xj ,σ̃||1 ≤ ε
4 . Then note

that

|Kj − K̃j |
Kj

≤
|Kw

j − K̃w
j |

Kw
j

+

dz∑
i=1

|Kz
ji − K̃z

ji|
Kz
ji

, where

Kw
j =

dw∏
i=1

exp

{
−

(wi − µwji)2

2(σzi )2

}
and Kz

ji =

∫
Azi

φi(z̃i)dz̃i.

The proof of Corrolary 5.1 in Norets and Pati (2017) delivers that∫ |Kw
j − K̃w

j |
Kw
j

g0(w)dw ≤ ε

24

For Kz
ji we consider two separate cases. First, if Azi ⊂ [0, 1], then we show that

|Kz
ji − K̃z

ji|
Kz
ji

=

∣∣∣∣∣1− K̃z
ji

Kz
ji

∣∣∣∣∣ = sup
z̃i∈Azi

∣∣∣∣∣1− φ(z̃i, µ̃
z
ji, σ̃i)

φ(z̃i, µzji, σi)

∣∣∣∣∣ ≤ ε

24dz
.

To obtain the above result note that for any z̃i ∈ [0, 1]∣∣∣∣∣1− φ(z̃i, µ̃
z
ji, σ̃i)

φ(z̃i, µzji, σi)

∣∣∣∣∣ ≤
∣∣∣∣1− σi

σ̃i

∣∣∣∣+
σi
σ̃i

∣∣∣∣∣1− exp

{
(z̃i − µzji)2

2σ2
i

−
(z̃i − µ̃zji)2

2σ̃2
i

}∣∣∣∣∣
≤ 2

σ̃i − σi
σi

+ 4

∣∣∣∣∣(z̃i − µzji)2

2σ2
i

−
(z̃i − µ̃zji)2

2σ̃2
i

∣∣∣∣∣
≤ 2

σ̃i − σi
σi

+ 4

∣∣∣∣12
(

1

σ2
i

− 1

σ̃2
i

)
(z̃i − µzji)2 +

1

2σ̃2
i

(
(z̃i − µzji)2 − (z̃i − µ̃zji)2

)∣∣∣∣
≤ 2

σ̃i − σi
σi

+ 4

∣∣∣∣∣
σi−σ̃i
σi

σ2

∣∣∣∣∣ ∣∣z̃i − µzji∣∣2 +
4

2σ2

(∣∣(µzji)2 − (µ̃zji)
2
∣∣+ 2|z̃i|

∣∣µzji − µ̃zji∣∣)
≤ 2

σ2ε

768µ2 max{dx + dy, dz + dw}

+ 4

(
σ2ε

768µ2 max{dx + dy, dz + dw}
4µ̄2

σ2
+

1

σ2

(∣∣µzji − µ̃zji∣∣ (µ̄+ 1)
))

≤ ε

386dz
+

ε

92dz
+

8µ̄

σ2

σ2ε

384µdz
<

ε

24dz
,

where we have used that σi/σ̃i ≤ 2 and that |1− ex| ≤ 2|x| for |x| < 1.

Second, let, without loss of generality, Azi = [1−1/2Ni,+∞) and let a = (1−1/2Ni−µzji)/σi

and ã = (1− 1/2Ni − µ̃zji)/σ̃i. Also, suppose, without loss of generality, that ã > a. Then∣∣∣∣∣1− K̃z
ji

Kz
ji

∣∣∣∣∣ =

∫ ã
a φ(t, 0, 1)dt∫∞
ã φ(t, 0, 1)dt

=
|ã− a|φ(˜̃a, 0, 1)∫∞
ã φ(t, 0, 1)dt

for some ˜̃a ∈ [a, ã] by the mean value theorem. For ã < 1

|ã− a|φ(˜̃a, 0, 1)∫∞
ã φ(t, 0, 1)dt

≤ |ã− a|√
2π(1− Φ(1))

.
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For ã ≥ 1

|ã− a|φ(˜̃a, 0, 1)∫∞
ã φ(t, 0, 1)dt

≤ |ã− a|φ(˜̃a, 0, 1)

φ(ã, 0, 1)

(
ã+
√
ã+ 4

)
≤ |ã− a|4ãφ(˜̃a, 0, 1)

φ(ã, 0, 1)
.

Note that ã ≤ 2µ̄/σ and that

φ(˜̃a, 0, 1)

φ(ã, 0, 1)
=
φ(˜̃µzji, 1− 1/2Ni, σ̃i)

φ(µ̃zji, 1− 1/2Ni, σ̃i)
≤ exp{ ε

24
} ≤ 2

for some ˜̃µzji ∈ [µ̃zji, µ
z
ji] using the result in Equation (4.2) from Norets and Pati (2017). In both

cases we find that ∣∣∣∣∣1− K̃z
ji

Kz
ji

∣∣∣∣∣ =
|ã− a|φ(˜̃a, 0, 1)∫∞
ã φ(t, 0, 1)dt

≤ |ã− a|8 µ̄
σ
.

Furthermore,

|ã− a| ≤
∣∣∣∣(1− 1

2N
− µzji)

σ̃i − σi
σ̃iσi

∣∣∣∣+

∣∣∣∣µzji − µ̃zjiσ̃i

∣∣∣∣ ≤ 2µ̄

σ

σ̃i − σi
σi

+
|µzji − µ̃zji|

σ

≤ σε

384µ̄max{dx + dy, dz + dw}
+

σε

384µdz
≤ σε

192µ̄max{dx + dy, dz + dw}

and, therefore, ∣∣∣∣∣1− K̃z
ji

Kz
ji

∣∣∣∣∣ ≤ |ã− a|8 µ̄σ ≤ ε

24 max{dx + dy, dz + dw}
<

ε

24dz
.

Combining all the above results we obtain that dTV (p(y, x|z, w, θ,m), p(y, z|z, w, θ̃,m)) ≤ ε as

desired. This concludes the proof for the covering number.

The upper bound on Π(Fc) is obtained in the same way as in the proof of Theorem 4.1 in

Norets and Pati (2017) with the only difference being that the dimension d appears in front of

some of the terms in the bound due to coordinate specific scale parameters and slightly different

choice of the prior tail condition (6.6).

Lemma 8.6. Consider εn = (NJ/n)βJc/(2βJc+1)(log n)tJ and ε̃n = (NJ/n)βJc/(2βJc+1)(log n)t̃J

with tJ > t̃J + max{0, (1 − τ1)/2} and t̃J > tJ0, where tJ0 is defined in (7.1). Define Fn as in

(8.2) with ε = εn, H = nε2n/(log n), α = e−nH , σ = n−1/(2a3), σ = en, and µ = n1/τ3. Then, for

some constants c1, c3 > 0 and every c2 > 0, Fn satisfies (7.3) and (7.4) for all large n.

Proof. From Lemma 8.5,

logMe(εn,Fn, ρ) ≤ c1H log n = c1nε
2
n.
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Also,

Π(Fcn) ≤ H2d exp{−a13n}+ exp{−a10H(logH)τ1}

+ da1 exp{−a2n}+ da4 exp{−2a5n}.

Hence, Π(Fcn) ≤ e−(c2+4)nε̃2n for any c2 if ε2n(log n)τ1−1/ε̃2n → ∞, which holds for tJ > t̃J +

max{0, (1− τ1)/2}.
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