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1. Introduction. In this paper, we propose a Bayesian nonparametric model for estima-
tion of conditional discrete-continuous distributions. We show that the model has outstanding
asymptotic properties and compares favorably to standard parametric and nonparametric al-
ternatives in an application to forecasting of stock trade counts. More generally, we provide a
practical and optimal adaptive nonparametric alternative to workhorse econometric parametric
models such as probit, ordered probit and Poisson regression.

Nonparametric modeling of conditional distributions is especially important in the Bayesian
framework. Conditional distributions can fully describe dependence of one set of variables on
another. However, even if the main object of interest is not the whole conditional distribution but
a conditional mean or quantiles, a Bayesian econometrician has to specify at least a conditional
distribution in order to define a likelihood. The use of nonparametric or very flexible models
ameliorates the risk of invalid inference due to misspecification.

The theory and practical implementation of Bayesian nonparametric methods for continuous
data are very well developed at this point, see Ghosal and van der Vaart (2017) for aets thor-
ough exposition of theoretical developments and Dey, Muller, and Sinha (1998), Chamberlain
and Hirano (1999), Burda, Harding, and Hausman (2008), Chib and Greenberg (2010), and
Jensen and Maheu (2014) among many others for applications. In most applications in eco-
nomics, the data contain both continuous and discrete variables. Nonparametric methods for
conditional discrete-continuous distributions and their theoretical properties are less understood
and developed.

Starting from Aitchison and Aitken (1976), researchers observed that smoothing discrete
data in nonparametric estimation improves estimation results. Hall and Titterington (1987)
provided a theoretical justification for improvements resulting from smoothing in estimation of
a univariate discrete distribution with a support that can increase with the sample size. Norets
and Pelenis (2018) extended these results to estimation of joint multivariate discrete-continuous
distributions. In their framework, discrete variables have the support that can become finer with
the sample size; the data generating joint distribution can be smooth to a different degree (and
not smooth at all) with respect to different discrete and continuous variables. They derived
optimal estimation rates for these settings and show that smoothing is beneficial only for a
subset of discrete variables with a quickly growing number of support points and/or a high level
of smoothness. They also show that a Bayesian nonparametric model based on latent variables

and mixtures of multivariate normal distributions has posterior contraction rates that are no
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larger than the derived optimal estimation rates with an additional log factor. In the present
paper, we adopt a similar asymptotic framework and apply it to estimation of conditional
discrete-continuous distributions. Simply extracting conditional distributions from optimally
estimated joint distributions does not in general result in the optimal estimation of conditional
distributions since the joint and conditional distributions can have different smoothness and
other properties. Therefore, in the present paper, we model the conditional distributions directly.

There are additional important reasons for constructing nonparametric priors for conditional
distributions directly. First, in regression settings, a ubiquitous problem of covariate selection
can be conveniently addressed by standard means (special priors and Bayesian model selection
and comparison). Second, nonparametric priors for conditional distributions can also be used for
modeling of Markov transition probabilities, and, thus for nonparametric modeling of Markovian
time series. Such nonparametric time series models have a wide range of applications in empirical
macroeconomics and, especially, in empirical finance with its abundance of large datasets.

Our nonparametric model for conditional discrete-continuous distributions is based on a mix-
ture of normal distributions with covariate dependent mixing weights and a variable number of
mixture components. It is closely related to mixture-of-experts or smoothly mixing regressions
(Jacobs, Jordan, Nowlan, and Hinton (1991), Jordan and Xu (1995), Peng, Jacobs, and Tanner
(1996), Wood, Jiang, and Tanner (2002), Geweke and Keane (2007), Villani et al. (2009), Norets
(2010), Norets and Pelenis (2014), Norets and Pati (2017)). Discrete dependent variables in our
model are represented by continuous latent variables, which jointly with continuous dependent
variables are modeled by the mixture of multivariate normals. The covariate dependent mixing
weights are proportional to a normal density and an integral of a normal density for continu-
ous and discrete covariates correspondingly. The model can be thought of as a generalization
of a covariate dependent mixture model for continuous data from Norets and Pati (2017) to
mixed discrete-continuous data. Posterior simulation for our covariate dependent mixture with
a variable number of components is performed by a reversible jump algorithm from Norets
(2020).

There are potentially many different ways of handling discrete variables, especially covari-
ates, in a covariate dependent mixture model. The main practical contribution of our paper is
to develop a model specification that has optimal asymptotic properties. Specifically, we show
that the posterior contraction rates in our model are equal (up to a log factor) to the opti-

mal estimation rates. In our framework, it means that the model optimally takes advantage
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of smoothness in the data generating conditional distribution in both continuous and discrete
variables. If the data generating conditional distribution is not sufficiently smooth or does not
have a sufficiently fine support for some discrete variables, then the resulting posterior contrac-
tion rate corresponds to the standard estimation rate for (the smoothness and dimension of)
the continuous and the rest of the discrete variables. The derived posterior contraction rates
are adaptive as the prior distribution does not depend on the smoothness and the support of
the data generating process. Our results for conditional distributions also imply the same con-
vergence rates for predictive distributions when our prior is used for nonparametric modeling of
Markov transition distributions for ergodic Markovian time series. To the best of our knowledge,
such asymptotic guarantees for estimation of conditional discrete-continuous distributions are
not currently available for any other Bayesian model or a frequentist nonparametric estimator.

We evaluate the practical performance of our model in an out-of-sample forecasting exer-
cise for stock trades count data and two additional applications to cross-sectional data. The
model compares favorably with a parametric Poisson regression and a nonparametric discrete-
continuous conditional density estimator based on discrete and continuous kernels with a cross-
validation procedure for bandwidth selection (Li and Racine (2008)).

Let us briefly review additional related references in the literature. Our posterior contrac-
tion results are derived from general sufficient conditions for posterior contraction introduced
by Ghosal et al. (2000). Optimal adaptive posterior contraction rates for joint densities were
obtained in Scricciolo (2006), Rousseau (2010), Kruijer et al. (2010), Shen, Tokdar, and Ghosal
(2013) among others. Shen and Ghosal (2016) and Norets and Pati (2017) obtained optimal
adaptive posterior contraction rates for nonparametric conditional density models for contin-
uous observations. Norets and Pelenis (2012), DeYoreo and Kottas (2017), and Canale and
Dunson (2015) derived posterior consistency and non-optimal bounds on posterior contraction
rates for nonparametric models of joint discrete-continuous distributions in asymptotic settings
without smoothness for discrete variables. Albert and Chib (1993) and McCulloch and Rossi
(1994) pioneered the use of continuous latent variables for handling discrete observations in
Markov chain Monte Carlo algorithms for parametric limited dependent variable models. In
frequentist framework, nonparametric estimation of discrete distributions with and without
smoothness assumptions was considered in Aitchison and Aitken (1976), Hall and Titterington
(1987), Burman (1987), Dong and Simonoff (1995), Aerts et al. (1997), and Efromovich (2011)

among many others.
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The rest of the paper is organized as follows. Section 2 describes the data generating pro-
cess and the asymptotic framework. The model and main posterior concentration results are
presented in Section 3. Sections 4 and 5 evaluate the model performance in out-of-sample fore-
casting exercises. Technical assumptions, intermediate results, and proofs are given in Sections

6 and 7. Additional proof details are delegated to the Appendix.

2. Data Generating Process. Let us denote the response space by JV x X and the co-
variate space by Z x W. The continuous part of observations is denoted by € X € R% and

w € W C R%™ and the discrete part by y = (y1,...,yq,) € Y and z = (24,41, - -, 2d,+d.) € Z,

where
dy
, 1-1/2 2—1/2  N;—1/2
y:Hyj7W1thyj:{ N; ) N; IR JN]‘ }a
j=1
dy+d.
, 1-1/2 2—1/2  N; —1/2
Z = Z;, with Z; = R
Il 2. with 2, {Nj SN TN }

j=dy+1

are grids on [0, 1]% and [0, 1]% (a product symbol II applied to sets hereafter denotes a Carte-

sian product). The number of values that the discrete coordinates y; or z; can take, Nj, can
potentially grow with the sample size or stay constant.

For y = (y1,-.-,%a,) € Y and z = (2q,41,---,2d,+d.) € 2, let A, = H;lil Ay and A, =

dy+d
Hjidyil A,;, where

(—OO7yj+O.5/Nj] if Yj :0.5/Nj
Ay; = (g5 — 0.5/Nj,0) if yj =1 —0.5/N;
(y; —0.5/Nj,y; +0.5/N;] otherwise
and A, is defined analogously.

Let us represent the data generating density-probability mass function as an integral of a

density over latent variables
po(y,:r,Z,w) - / / fO(g7x’27w)90(§aw)dgd’ga (21)
Ay JA.

where f; is a conditional probability density function on R%tdvtd=tdw and ¢, is a probability
density function on R%T% with respect to the Lebesgue measure, and the discrete part of the
observation (y, z) is mapped into the latent variables (7, %) € A, x A,. The representation of a

mixed discrete-continuous distribution in (2.1) is so far without a loss of generality since for any
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given pg one could always define fy and gg using a mixture of densities with non-overlapping
supports included in A, x A, (y,2) € Y x Z.

Suppose that (Y™, X" Z" W) = (Y1, X1, Z1,Wh,..., Y, Xy, Z,,, W,,) is a random sample
from the joint density po(y, x|z, w)po(z,w). Let Py and P represent the probability measures
corresponding to pg and its product py. When N;’s grow with the sample size then it is pos-
sible that the generality of the representation in (2.1) can be diminished if one imposed some
assumption on fy(-|-)go(-) such as smoothness. Nonetheless, in what follows we do allow for
smoothness in fy to formalize the scenarios where for ordered discrete variables borrowing of
information from nearby discrete points can be beneficial in estimation.

To get more refined results, we allow for anisotropic smoothness, which means that smooth-
ness can vary across coordinate j, and we consider the possibility of N;’s growing at different
rates for different j’s. Let Z denote the set of non-negative integers. For smoothness coefficients
Bi>0,i=1,...,d,d=d;+dy+d,+dy,, and an envelope function L : R2¢ 5 R, an anisotropic
(B, ..., Bq)-Holder class, CPPaL is defined as follows.

DEFINITION 2.1.  f € CPvBal if for any k = (k1,...,kg) € 72, Zle ki/Bi < 1, mized

partial derivative of order k, D*f, is finite and

U

ID*f(z + Az) — DF f(2)] < L(z, Az) Z | Az | P (=X kil Bi) (2.2)

where Azj = 0 when Z?:l ki/Bi+1/8; < 1.

This definition of the Holder class has been proposed in Norets and Pelenis (2018) and its
similarities and slight differences with other Holder smoothness definitions are discussed in that
paper. It allows for functions that can be differentiated with respect to different coordinates
different number of times. If all 3;’s are the same, then the definition reduces to standard Holder
smoothness.

Let A denote a collection of all subsets of indices for discrete coordinates {1,...,dy,d, +

., dy+d.}. For J € A, define J¢={1,...,d} \ J,

-1
Ny=][™N  Bre= [Zﬁi_l] ;

iceJ ieJe
Ny =1, fy = 00, and By/ (26 +1) = 1/2.
Norets and Pelenis (2018) show that for joint distributions with underlying densities for

continuous and latent variables variables that belong to the anisotropic Holder class CP1fal,
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lower bounds on estimation rates in total variation distance are given by

B(]C
. NJ 2B je+1
min | —
JeA | n

(2.3)
(no estimator can have a faster rate of convergence for this class of data generating processes).
They also show that in a model based on a mixture of normal distributions for the underlying
density, posterior contraction rates are equal (up to a log factor) to the lower bounds, and thus
are optimal up to a log factor. Since the distance between joint distributions can be bounded by
the sum of the distances between the corresponding conditional and marginal distributions (by
the triangle inequality), (2.3) also provides a lower bound on the estimation rates for conditional
distributions with underlying conditional densities in C%1#4:L Expression [N /n] % in (2.3)
is the standard estimation rate for a card(J¢)-dimensional density with anisotropic smoothness
coefficients {f;, j € J°} and the sample size n/N; (Ibragimov and Hasminskii (1984)). One
interpretation of this expression is that smoothing is performed only over coordinates in J¢ and
the coordinates in J are treated as discrete. The minimum over J in (2.3) suggests that an

estimator that achieves this lower bound rate needs in a sense to optimally choose a subset of

discrete coordinates over which smoothing is beneficial.

3. Model and Main Results on Posterior Concentration. We propose the following

model for conditional discrete-continuous distributions

[, 2,2, w|0,m)djdz
p(y, x|z, w; 0, m) = fAyXAZ — - -, (3.1)
To U £@,2,2,w]0, m)djda] dz

where
m
f(g,2,z,w|0,m) = Zaj(;ﬁ(gj,é,x,w;uj, o) (3.2)
j=1
is a mixture of multivariate normal distributions with a variable number of components m and
parameters collected in 6 = (o, 15, 5,7 = 1,2, ...). The multivariate normal distributions in the
mixture, ¢(-; 15, 0), have a diagonal variance matrix with the square roots of diagonal elements
contained in o € R‘i. Thus, this conditional density-probability mass function can be expressed
explicitly through standard univariate normal densities and cumulative distribution functions.
This model can be thought of as a generalization of a covariate dependent mixture model for
continuous data from Norets and Pati (2017) to mixed discrete-continuous data.
Under standard assumptions on the priors for (6, m) and some additional technical conditions
on the data generating process presented in Section 6, the posterior contraction rate for this

model is equal up to a log factor to the lower bound on estimation rate given in (2.3).
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THEOREM 3.1. Suppose the assumptions from Sections 6.1 and 6.2 hold for every J € A.
Let
(log n)", (3.3)

€, = Min

JeA

N B/ (28e+1)
n

2

o — 00. Then, there exists a constant

where t; > 0 is defined in Section 7. Suppose also ne
M > 0 such that

— P’i’l
I (p: drv(p,po) > Men|Y"™, X", Z",W") 30,

where dpy denotes the total variation distance between conditional distributions integrated over

the data generating distributions of covariates.

The proof of the theorem verifies the sufficient conditions for the posterior contraction from
Ghosal et al. (2000). It is conceptually similar to the proof of related results for continuous
data in Norets and Pati (2017). In order to show that Kullback-Leibler neighborhoods of the
data generating distribution have sufficient prior probability, which is one of the main sufficient
conditions, Norets and Pati (2017) bound a distance between conditional distributions by a
distance between the appropriate joint distributions and then exploit approximation results for
mixtures of multivariate normal distributions from Shen et al. (2013). Similarly, here we also
bound a distance between conditional distributions by a distance between the appropriate joint
distributions and then exploit approximation results from Norets and Pelenis (2018). The actual
proof contains new additional arguments handling the discrete variables in the conditioning set;
it is rather long, and we present it in Section 7 and the Appendix.

Our results on the bounds for the prior probabilities of Kullback-Leibler neighborhoods imply
that €, defined in the theorem is also a posterior contraction rate for predictive distributions
when our model and prior are used for nonparametric modeling of the Markov transition dis-

tributions for Markovian time series. We provide details in Section 7.2.
4. Application to Trade Counts.

4.1. Model Specification and Forecasting Performance. In this section, we compare forecast-
ing performance of our Bayesian nonparametric model for conditional discrete-continuous distri-
bution with a parametric Poisson regression and a classical nonparametric discrete-continuous
conditional density estimator from Li and Racine (2008) who use discrete and continuous kernels

with a cross-validation procedure for bandwidth selection.
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We use the following version of our model

aj exp{—0.5 Zk 1 (wr — M?k)z/(ﬁi”sfk)Q}

(ylw, 8, m) Z Py — Doy 'Bj,0Vs! v(9)dy, (4.1)
Ay j= > inq o exp{— 05Zk V(wr — g )2/ (o) sip)?}

where discrete y is one-dimensional and w € R% . The location parameters for § have a specifica-
tion linear in covariates, w’'(;, and the scale parameters can differ across the mixture components
but also have a common factor. Such richer specifications for mixture components lead to better
finite sample performance (Villani et al. (2009)). The asymptotic results are not affected by the
presence of linear coefficients §; and component specific scales (s;"k, ]) under standard priors,

see Norets and Pati (2017) for a proof for the version of the model without discrete variables.
We specify the prior as follows,
B W N (B HE"). s ™ N (p ),
()72 % G4y Boy). (55072 % Gldun Boun): k=1, du,
(6") " " G4y Boy). (o) W G(A
D(a/m,...,a/m),

H(m = k) = (eAm - 1)6_AM'k,

E )7k:17"'7dw’

owk» Zowk

id
(1,...,« )|mzrzv

where G(A, B) stands for a Gamma distribution with shape A and rate B.
Similarly to Norets and Pati (2017), we use the following (data-dependent) values for prior

hyper-parameters,

1 .
8= (Z wmué) Zwiyi, ﬂgl =cCg (Z wiw§> z:(yZ — wL)Q/n,
p= wifn, Byt = (wi— p)(wi = p)/n,

7

Lts

y =B,y =4

2oy Aowl = le -

5, A =1,

= A B A =B, =1,

Ak = Lswk = Asy sy

S}
I
—

where ¢z = 100. Thus, a modal prior draw would have one mixture component with linear
coefficients and scale parameters estimated by the ordinary least squares. Scricciolo (2015)
shows that in a related conditional distribution model for continuous data from Norets and
Pati (2017), such dependence of prior hyperparameters on data does not affect the posterior
contraction rates; we conjecture that such a result holds for our model as well.

For evaluating forecast performance, we use the time series count data from Jung et al. (2011).

The dataset contain the number of trades on the New York Stock Exchange in 5 minute intervals
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for Geltfelter Company (GLT) over 39 trading days Jan 3 - Feb 18 2005. Cameron and Trivedi
(2013) estimated an autoregressive Poisson model for these data using lagged trade counts for
GLT and trigonometric terms, like cos(27t/75), where ¢ is time period, to account for intraday
seasonality in the data. The total number of observations is 2925. We use a rolling window of
T = 1125 observations (15 days) for model estimation and the subsequent 7 = 75 observations
(1 day) for one period ahead forecasts. We move the window by 75 observations at a time, for
a total of 23 estimation/forecast exercises. Following common practice in the literature, see,
for example, Geweke and Keane (2007), we measure forecasting performance by the pseudo
out-of-sample log score (the log of the predictive distribution evaluated at the forecast portion

of the data):

75c+T+T*
LS(c) = Z log Pe(Yt|wt, Yz5e+1, Wrset1s -+ + 5 Y7564+T, Wise+T),
t=75¢+T+1
where ¢ € {0,1,...,22} is the rolling window index. For our nonparametric Bayesian procedure,

the predictive distribution is approximated by

n

N s,c
De(Yt|We, Yr5e-+1, WTse41, - - - 3 Y756+T WT5cAT) 5 (yelwy, 0, m59)),

where {0(5’0),m(5"3), s=1,...,8} are MCMC draws obtained for the rolling window ¢,
{Y75c+1, WrBC415 - -+ Y754+ T WTBeAT }-

We found that including more than 5 lags and more than one trigonometric term did
not improve out-of-sample predictive performance. Hence, we present results below for w; =
(cos(2mt/T5), yt—1,- .., yt—5)". To obtain estimation results for our model we use a reversible
jump MCMC algorithm developed in Norets (2020) with an additional Gibbs block that simu-
lates the latent variables §;’s. For each MCMC run ¢ € {0, 1,...,22}, we perform 10* iterations,
of which the first 10® are discarded for burn-in. We present some evidence of MCMC convergence
in Section 4.2.

The obtained predictive log scores are presented in Table 1. The kernel estimation results are
obtained by the publicly available R package np (Hayfield and Racine (2008)).

It can be seen from Table 1 that the Bayesian nonparametric approach delivers the largest
average predictive log score. It outperforms the kernel and Poisson estimators in 70% and 96%
of cases correspondingly. The results are qualitatively the same for moderate changes in prior
hyperparameters.

In addition to the out of sample performance of the whole predictive density (evaluated

through the predictive log scores), the performance of point estimators could also be of interest.
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TABLE 1. Predictive Log Scores

LSBayes (C) LSKernel (C) LSPoisson (C)

o

0 -198.6982 -195.738 -216.583
1 -185.4372 -186.642 -181.545
2 -195.8008 -196.904 -206.36
3 -172.3776 -173.985 -172.69
4 -193.9293 -193.067 -201.649
5 -221.9528 -229.703 -242.763
6 -178.8345 -179.163 -183.172
7 -198.9912 -198.492 -210.458
8 -162.9572 -166.119 -168.421
9 -166.4577 -167.01 -170.67
10 -173.5684 -172.923 -174.255
11 -178.9721 -182.575 -189.41
12 -186.3612 -190.602 -191.57
13 -202.8732 -216.146 -221.549
14 -181.3866 -181.912 -181.497
15 -190.1113 -193.053 -204.388
16 -211.9176 -213.484 -227.713
17 -209.3348 -210.05 -232.783
18 -198.495 -198.441 -215.227
19 -198.0299 -200.466 -210.714
20 -202.8891 -202.121 -233.747
21 -200.7652 -199.856 -220.487
22 -188.0144 -197.366 -220.697
Average -191.22 -193.30 -203.41

Table 2 shows the root mean squared error (RMSE) for the three methods computed for the
prediction part of the sample and averaged over the 23 estimation /forecast exercises. The point
estimator is the mean of the predictive distribution. As can be seen from the table, the Bayesian
point estimator performs slightly better than the classical parametric and nonparametric alter-
natives.

TABLE 2. Average RMSE for the prediction part of the sample

Bayes Kernel Poisson

RMSE 3.4495 3.4615  3.4595

These results suggest that our model provides an attractive and feasible alternative to stan-
dard parametric and nonparametric estimation procedures for conditional discrete-continuous

distributions, including Markov transition distributions for time series.

4.2. FEwvidence of MCMC Convergence. Figures 1 and 2 below show MCMC draws of m and
the in-sample log likelihood for 10> MCMC iterations for the first rolling window ¢ = 0 in the

forecast evaluation exercise in Section 4.1 above.
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14 -
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Fic 1. MCMC draws of m.
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Fic 2. In-sample log likelihood evaluated at MCMC' draws.

It is clear from the figures that while posterior probabilities for larger values of m would not be
very precisely estimated even with 10° iterations, 10* MCMC iterations appear to be sufficient
for exploring the posterior of the in-sample log likelihood (a label invariant function of param-
eters). Hence, we use 10 MCMC iteration for each rolling window in our forecast evaluation

exercise.

5. Additional Applications. This section presents applications of the proposed method

to two standard datasets in the literature on count data analysis (Cameron and Trivedi (2013)).
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In the first application, we estimate the distribution of the number of patents filed by a firm
in 1979 conditional on the logarithm of the total research and development expenditures over
the previous six years, the logarithm of firm’s capital, and an indicator of weather the firm is in
the scientific sector. The data is originally from Hall et al. (1986), it “covers almost all of the
firms doing appreciable amounts of R and D in the manufacturing sector” in the 1970ies. The
sample size is 311.

In the second application, we estimate the distribution of the total number of children condi-
tional on the mother’s income at the time of the interview and a college degree dummy variable.
The data is from Swiss Household Panel W1 (1999), it was originally analyzed in Cameron and
Trivedi (2013). The sample size is 1878.

For both applications, the model and prior specifications are the same as for the application
to trade counts in Section 4. The number of estimation /forecast exercises is 50 and for each of
these exercises, the prediction part of the sample is a randomly selected 10 % of the available
observations.

Tables 3 and 4 provide predictive log scores and RMSEs for the three methods averaged over

the 50 estimation/forecast exercises.

TABLE 3. Awverage Predictive Performance for Fertility Data

Bayes Kernel Poisson

Average Predictive Log Score -124.6969 -128.2933 -133.5551
Average RMSE 1.3890 1.3987 1.3893

TABLE 4. Average Predictive Performance for Patents Data

Bayes Kernel Poisson

Average Predictive Log Score -114.1826 -133.3086 -361.1469
Average RMSE 34.4523 37.5913 41.9626

The results from both applications in this section confirm the results from the main appli-
cation to the trade count data: our Bayesian model is an attractive approach to estimation of

conditional discrete-continuous distributions.
6. Technical Assumptions.

6.1. Assumptions on Prior. The prior II for (0, m) is assumed to satisfy the conditions

outlined below and matches the assumptions on the prior considered in Norets and Pelenis
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(2018). The prior for o; satisfies

M(o;2>s) < ajexp{—azs®} for all sufficiently large s > 0 (6.1)

M(o;2<s) < ays* for all sufficiently small s > 0 (6.2)

M{s <o, <s(l+1)} > ags™t® exp{—ags'/?}, s>0, te(0,1) (6.3)

for some positive constants ai,as, ..., a9 and for each i € {1,...,d}. The inverse Gamma prior

for o; is an example of a prior that satisfies the proposed requirements.
Conditional on m, the prior for (aq,...,ay,) is Dirichlet(a/m,...,a/m), a > 0. Prior for the

number of mixture components m is
II(m = i) x exp(—ajpi(logi)™),i =2,3,..., ao>0,7 >0. (6.4)

The components of each pj, pj;, ¢ = 1,...,d, are independent from each other, other pa-
rameters, and across j. A sufficient condition on the prior is that the prior density for s, ; is

bounded below for some ajo, 7 > 0 by

ar1 exp(—ai2|pjq| ™), (6.5)

and for some a13,73 > 0 and all sufficiently large u > 0,

(ki & [=p, 1) < exp(—aizp™). (6.6)

6.2. Technical Assumptions on the Data Generating Process. In this subsection, we formu-
late technical assumptions on the data generating process for a fixed subset of indices for discrete
variables J € A. In the main posterior contraction result in Theorem 3.1, these assumptions
are assumed to hold for every J € A.

Let dj = card(J), I = {1,...,dy +d.} \ J, J° = {1,...,d} \ J, and dje = card(J°).
Similarly to Y, Z, A, and A, defined in Section 2, we define Yy = HjeJ Vi, 25 = HjeJ Z;,
Ay, = TlLies Ay, and Az, = Jlicj Az Also, let yy = {yitics, §r = {Uitier, 27 = {zi}ies,
zr = {ZiYier, & = (1,21, ¢,w) € X = R%°. In the proofs, we use the following notation for
subsets of J¢ and I: J¢(x) denotes a set of indices of components of x that belong to J¢; I(z),
J(w), J¢(2), J¢(x,w) are defined similarly.

The assumptions we formulate below are key to deriving optimal approximation results for the
conditional data generating distribution that deliver (up to a log factor) the optimal posterior

contraction rates. The approximation results for the conditional distribution are obtained by
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constructing a mixture of normals approximation to the following artificial joint distribution

first

fo(y, @, 2,w) = fo(y,%|2,w)go(Z, w).

This artificial joint distribution has to have the conditional distribution equal to the data
generating conditional distribution, but its marginal distribution, which we denote go (2, w) does
not have to be equal to the data generating marginal distribution go(Z,w). Importantly, we can
choose go(Z,w) to be sufficiently smooth so that fo(7,,Z,w) and fo(7, z|Z,w) belong to the
same smoothness class, and, hence, optimal approximations for fo(, z, Z, w) can deliver optimal
approximations for fy(g, x|z, w). The simplest way to interpret the following assumptions is to
consider Z x W = [0,1]%*%  In this case, one could take uniform go(Z,w) = 1101z +aw (2, W)
and fo(,z,2,w) = fo(7,z|Z,w), and the following assumptions on fy are straightforward to
interpret in terms of fp. Alternatively, if go(Z, w) is more smooth than fo(g, z|Z, w), then one can
consider gg = go and the Holder smoothness assumptions below would essentially restrict only
fo(g,z|Z,w). If go(Z,w) has a lower smoothness level than fyo(g, z|Z,w), then the assumptions
below effectively require a well behaved and smooth gg that bounds gg from above up to a
multiplicative constant. We use the general form of assumptions below in order to accommodate
unbounded Z x W and arbitrary smoothness in go.

Let us introduce the notation for marginal and conditional distributions implied by fq,

P for(ys, 27, %)
fO|J(x|yJaZJ): _ )
7oY., 27)

fos(ys. 27, &) =/ fol9y, 27, 2)dgsdz,,
Ay]xAzJ
707 (Y, 27) = / for(ys, 2, 7)dz,
X

where the conditional density f0| 7(Z|ys, z5) can be defined arbitrarily when 7os(ys,z75) = 0.

Also, let I:’O‘ 7 denote the conditional probability corresponding to the conditional density f_‘o‘ J-

ASSUMPTION 6.1. Assume that there exists a constant 1 > 0 and a probability density
function go(Z,w) with respect to the Lebesque measure such that ngo(Z,w) > go(Z,w) for all

(Z,w) € Z x W.

ASSUMPTION 6.2. There are positive finite constants b, fo, T such that for any (ys,z;) €

V;x Z;and & € X

fors &y, 27) < foexp (—bl|Z]]7). (6.7)
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Similar tail conditions on data generating densities are imposed in most of the papers on

(near) optimal posterior contraction rates for mixtures of normal densities.
ASSUMPTION 6.3.  We assume that
Jojg € CPtgrial, (6.8)
where for some 19 > 0 and any (%, AF) € R?de
L(%,A%) = L(%) exp {70]|AZ|*} (6.9)
L(7 + A%) < L(%) exp { || AZ[|*} . (6.10)

Simple sufficient conditions for f0| JE CPagrimBal for all J € A are fo is bounded away from

zero, has bounded support and belongs to CP1r--Pa.L (Lemma 5.8. in Norets and Pelenis (2018)).

ASSUMPTION 6.4. There are positive finite constants € and F, such that for any (yg,27) €

Vi xZy and k = {k;}icje € Nﬁ“t Yicge ki/Bi <1,

|D* for1(Z|yy, 20)| | Ziesekel® o
/ fos(Zlys, zr) fOIJ(ZE|yJ72J)dSL' < F, (6.11)
I 7 2+eBldye
L(:Z’) Efjcdy _ ) )
m f0|J(SU‘yJ,ZJ)dﬂj‘ < F. (612)

This assumption is mostly relevant for the case of the unbounded support and the proposed

condition suggests that the envelope function L should be comparable to f0| J-

ASSUMPTION 6.5. There ezists a positive and finite § such that for any (yr,ys) € YV, z € Z,
weWandzr e X

sup fO(gI7yJ7x’27w>§f_
GreAy N{I1911<7}

/ Jo(G1,ys, 2|2, w)dgr > / Jo(Ur, Y7, 7|2, w)dyr
Ay {91 l1<y} Ay O {|9rl1>9}

The second inequality in the assumption always holds for A,, contained within the unit cube.
When A, is a rectangle with at least one infinite side, an interpretation of this assumption is
that the tail probabilities for the latent variable §; conditional on (z,y, z, w) decline uniformly

in (z,y7,2,w). A simple sufficient condition for this is a bounded support for ;.
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ASSUMPTION 6.6. We assume that go satisfies
/e”"w”Zgo(w,E)dZdw <B <o
for some constant k > 0 and B > 0.

This assumption of sub-Gaussian tails for the data generating distribution of continuous

covariates w allows us to handle an unbounded support as in Norets and Pati (2017).

ASSUMPTION 6.7. For some small v > 0,
Ny =o(n'™). (6.13)

As some parts of the proof require log(1/e,) to be of order logn this condition is imposed to

exclude the case of N; implying very slow (non-polynomial) rates.

7. Proofs and Intermediate Results for Posterior Contraction Rates. Let

dye[l+1/(Byedye)+1/rlmax{n Lra/7} ¢ g 2 g
tro = B (7.1)
max{ry,1}/2 if Jo =0

where (7,71, 72) are defined in Section 6.

THEOREM 7.1. Suppose the assumptions from Sections 6.1 and 6.2 hold for a given J € A.
Let
(log n)", (7.2)

B N; Be/(2Be+1)
€n = -

where ty > tjo + max{0, (1 — 71)/2}. Suppose also ne2 — oo. Then, there exists M > 0 such
that
II (p sdryv(p,po) > Men|Y™, X™, 2™, W") ﬁ 0.
As in Section 2, when J¢ = (), S can be defined to be infinity and Sjc/(28jc +1) = 1/2 in
(7.2).
Theorem 7.1 provides a valid upper bound on the posterior contraction rate under the as-
sumptions for a fixed J. Theorem 3.1 imposes the same assumptions for every J € A; hence,

the smallest bound over J from Theorem 7.1 applies, and Theorem 3.1 is immediately implied

by Theorem 7.1.
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7.1. Proof of Theorem 7.1. Let us introduce some additional notation,

PO(Z,UJ)Z/A go(Z,w)dz

po(y, z, 2z, w)
po(z,w)

Joliin v, 2 w) = / / Folih, 217, w)go(, w)dj sz

po(y, x|z, w) =

fo(yf Y, T, 2, W)
p0(27w)

fo(ir, v, 2]z, w) =

To prove Theorem 7.1, we use the sufficient conditions for posterior contraction from Theorem
2.1. in Ghosal and van der Vaart (2001). As was previously noted in Shen and Ghosal (2016) and
Norets and Pati (2017), the results in Ghosal and van der Vaart (2001) for joint distributions
do not require any substantive modifications for the case of conditional distributions as long as
the expected total variation distance, dry, is used. Let €, and €, be positive sequences with
€n < €n, €n — 0, and né2 — oo, and c1, c2, c3, and ¢4 be some positive constants. Let p be the
expected total variation or Hellinger distance and suppose F,, C F is a sieve with the following

bound on the metric entropy Me(€éy,, Fn, p)

log Me(fm Fa, ﬂ) < 017161217 (73)

II(FS) < ezexp{—(ca + 4)né%}. (7.4)
Suppose also that the prior thickness condition holds
(K (po, €,)) > cqexp{—cané’}, (7.5)

where the generalized Kullback-Leibler neighborhood KC(po, €,) is defined by

K(po, €) Z Z/ po(y, x|z, w)po(z, w) log Mda:dw <é

yey e Z X><W p(y, |z, w)
ZZ po(y,fL'|Z,U)) ? 2
po(y, x|z, w)po(z,w) |log —F———"—"| dadw <€
et p(y, |z, w)

Then, there exists M > 0 such that
_ pn
II(p: p(p,po) > Men|Y", X™) 5 0.

The choice of the sieve and verification of the conditions (7.3) and (7.4) are similar to a number

of comparable results in the literature on posterior contraction rates for mixture models. The
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details with the adjustments to the present set-up are given in Lemma 8.6 in the Appendix. The
prior thickness condition requires a bit more effort to verify and therefore we formulate and prove
it as a separate theorem. Parts of the proof employ the results obtained in the corresponding

proof of Theorem 4.2. in Norets and Pelenis (2018).

THEOREM 7.2. Suppose the assumptions from Sections 6.1 and 6.2 hold for a given J € A.

Let tj > tjo, where tjg is defined in (7.1), and

N, Boe/(2Bse+1)
En = ["] (logn)". (7.6)
n
For any C > 0 and all sufficiently large n,
(K (po, €n)) > exp{—Cné2}. (7.7)

PrROOF. By Lemma 8.1 for p(-|-,0,m) defined in (3.2)

d%L (p(y7 x|z, w, 07 m)pO(za w)aPO(ya .%"Z, w)po(z, w))

< 4dnd;, (/
A

= 477d% (p<y7 ‘T‘Za w, 97 m)p<27 ’LU‘H, m)apO(y7 .%"Z, W)[j()(z, 'U})) .

p(§, 212, w, 0, m)p(z, w]0, m)d, /A /A fo@,xz,w)go(z,w)dzdg)
y z

Y

With this inequality, we can exploit approximation results derived for joint discrete-continuous
distributions.

Define 8 = dje [ cje ﬁk_l]il, Bmin = minjege B, and o, = [€,/log(1/&,)]"/8. For & de-
fined in (6.11)-(6.12), b and 7 defined in (6.7), and a sufficiently small 6 > 0, let a9 =
{(88 + 4e + 8 + 8B/ Bmin)/ (b0}, a,, = ag{log(1/0,)}/7, and by > max{1,1/26} satisfy-
ing & {log(1/&,)}*/* < &,. The proofs of Theorems 4 and 6 in Shen et al. (2013) imply the
following claim for each (ys,25) = k € V5 x Z; under the assumptions of Section 6.2.

There exists a partition {Uj,j = 1,..., K} of {T € X . ||Z|| < 2a4,}, such that for j =

L,..., N, Uy, is contained within an ellipsoid with center ujﬁ ., and radii {ag/ Ai &b e Jey
S 8/8 2
~, ~, d e,
Ui © 4@+ 3 @ = (@ am)] <1t
i=1

for j = N +1,...,K, Uy is contained within an ellipsoid with radii {05/’&, i € J°, and

1< N < K < Cyop%e {log(1/€n)}dJc+dJc/T, where C7 > 0 does not depend on n and .
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Furthermore, by Lemma 5.10 in Norets and Pelenis (2018), there exists a constant By > 0
such that for all (ys,25) € Yy X Z;

Fog (HXH > a0n|yJ72J) < Byop %48, (7.8)

where
2 = ipoal™
For m = N;jK we define 6* and Sy« as
= Lttt = {(b ) s = 1o K k€Y x 20
{af,...;a} = {a;k :a;|k7?0J(k), ji=1,....K, ke Yy x ZJ},
o = {02 = 1/[64N?Blog(1/o)], i € J)

o%e ={or =ol/Bi ic Jc},}

Sor = {{m,.--,um} = {(wjk,0s bjkge)s G=1,..., K, k € Yy x Z;},

1 1 .
Wik,ge € Ujj, Mgk, € [kz - rNi’ki + 41\7@] 1€,

ol e (0,02‘2),16 J,
o2 e (0;2(1 + agﬁ)*l,af) ieJe
(a1,...,0m) ={ajp, j=1,..., K, keYyx Z;} e AmL

m 0_2,8—0—(1]0

E loy, — af| < 2028, min ajp > n72 .
1 JSKkEY X2, 2m

r=

If the assumptions from Section 6.2 hold, then it is shown in equation (4.27) in Norets and

Pelenis (2018) that for m = NyK and 6 € Sy«

d%L (p(y7 x’zu w, 97 m)p(z7 ww’ m)7p0(y7 l"Z, 'U})ﬁo(z, ’lU)) < 0—1215 (79)

Next, let us consider a lower bound on the ratio p(y, z|z,w,0,m)/po(y, x|z, w) for § € Sy«

and m = NyK. In Lemma 8.3 in the Appendix we show that for any (z,w) € X x W with

Iz, w)|| < ac,,,

p(y,x|z,w,9,m) > C 0-7215 H 0.5% — )\ (7 10)
po(y, x|z, w) — 2om?2 " " ’

eJe(w,zr)
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for some constant Cy > 0; and for any (z,w) € X x W with ||(z,w)| > as,,

2
p(y,x!z,w,&,m) > exp _M _ 03 logn (711)
pU(yvm‘va) g

for some constant Cs > 0.
Consider all sufficiently large n such that \, < e~! and (7.10) and (7.11) hold. Then, for any
0 € Sy,

>y

poly x|z, w) \?. [ p(y,z|z,w,60,m)
< el e ) 1{ S <>\n}p0(y,z,x,w)dwdx

stz o\ Py alz e, 6,m) po(y, x|z, w)
2
po(y, x|z, w)
=) log
yey sez JXXWxYIxZ; p(y, x|z, w,0,m)
p y"/'v Zaw,97m ~ ~ i ~ )
1{ (po(y |z, w) | Ans (@' W)l > ag,., 51 € Ay 21 € AZI} fo(ys, 27, 21, 91, w, )dE

pO(y7x|va) 2 ~ ~ N\ 7~
< E E 1 1 A AZ s ~#J d
/z [[(x! w")||>ac,, } < o8 p(y,x|z,w,0,m)) {yI & A1 € I}fO(yJ I x) !

yeY z€Z

<>y

yey ez AT|@w')||>ac, }
128 ) s

S Eoy,n (HXH ) (Fagpes (X[ > a0 ) Fosturs20)
on Y€V 27€EZ5

+2(Cslog n)QBoaflﬁJrQagi

128 N L
[ |1Z||* + 2(Cslog n) } for1(Elys, 27)dE7m0s (Y5 2)

< C4J%5+8 (7.12)

for some constant Cy > 0 and all sufficiently large n, where the last inequality holds by the tail
condition in (6.7), (7.8), and (logn)2c2’"* o8 —0.
Furthermore, for n large enough such that \, < e™!,

pO(yvx’sz) p(y7x|z7w797m)
1 < A
p(y,m|z,w,9,m) po(y,33|z,w)

2
< (log (po(y,x!z,w) > 1{p(y,x|z,w,9,m) g )\n}
p

y,$|z,w,9,m) pO(yvx‘va)

log

and, therefore,

0
ZZ/ Po y,IL’|Z w) 1{p(y7x‘sz7 7m) < )\ }po(y,z P w)dwda: < 040.2,3+5

yey zez AW p(y, x|z, w,0,m) po(y, |z, w)

(7.13)

Inequalities (7.9), (7.12), and (7.13) combined with Lemma 8.2 imply

2
B (1og po(y, x|z, w) < 42, By ( [log po(y, x|z, w) < A2
p(y7m|z7w797m) p(y7m|z7w797m)
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for any 6 € Sp», m = NjK, and some positive constant A (details are provided in Lemma 8.4
in the Appendix).

Since the definition of Sy« is adapted from the corresponding definition in Norets and Pelenis
(2018), Lemma 5.16 in the Appendix of Norets and Pelenis (2018) delivers that for all sufficiently
large n, s =1+ 1/ 4 1/7, and some C5 > 0,

(K (po, &) > T(m = NJK, 0 € Sge) > exp [—05N Jg;dﬂ/B{1og(n)}dlcs+max{m1ﬂ/T}] .

The right hand side in the inequality above is bounded below by exp{—Cné2} for any C > 0,

~ M 5/(2B+dJC) t; .
(logn)*7, any ty > (djes+max{r,1,72/7})/(2+d e /5), and all sufficiently

€n = |5
large n. As the inequality in the definition of ¢ is strict the theorem is immediately implied.
When J = () and Ny = 1, the theorem can be proved by the same argument if we add an
artificial discrete coordinate with only one possible value to the vector of observables.

d

7.2. Extension to Markov processes. Our model can be used for specifying a prior on Markov
transition probabilities as one could just set (z¢,w:) = (y¢—1,x¢—1). General sufficient conditions
for posterior contraction rates for Markov transition probabilities were obtained in Ghosal and
van der Vaart (2007a); however, they appear to be too strong for models based mixtures of
normals. Martin and Hong (2012) provide very weak sufficient conditions for convergence rates of
predictive distributions in the context of ergodic Markov processes. Specifically, their theoretical
results in Section 7 and their Proposition 5 imply that n=! Y% | E | Ky, , (fo-, fi—l)] = Op(e2),
where K is the Kullback-Leibler divergence, 0* is the “true” value of the parameter and fi_l
is the predictive distribution with respect to the posterior density II;, 1 for an ergodic Markov
process (Y;, : n > 0). A prior thickness condition for €, and €, — 0 and ne2 — oo are sufficient
for this result. Thus, our prior thickness results in Theorem 7.2 also deliver convergence rates for
predictive distributions when our prior is used for modeling transition probability of an ergodic

Markov process.

8. Conclusions and Future Work. In this paper, we propose and analyze a Bayesian
nonparametric model for conditional discrete-continuous distributions. The model possesses
outstanding asymptotic properties: it can fully exploit the smoothness in continuous and discrete
variables if it is present in the data and delivers (up to a log term) optimal posterior contraction
rates. The model is feasible to estimate by MCMC. In our applications, it performers better than

standard classical parametric and nonparametric methods. Thus, it is an attractive alternative
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to workhorse limited dependent variable models such as probit, ordered probit and Poisson
regression.

Discovering different model specifications for conditional discrete-continuous distributions
that deliver optimal adaptive posterior contraction rates and that are feasible to estimate is an
interesting direction for future work. More extensive simulation studies and applications of the

model proposed in this paper are also of interest.
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Appendix.

LEMMA 8.1. Let po(y, x|z, w) and p(y,x|z,w,0,m) be conditional discrete continuous dis-
tributions. Let g be a density on Z X W and gy be a density on Z x W go satisfying ngo(Z,w) >
go(Z,w) for all (Z,w). Then

d]2’L (p(ya CL'|Z, w, 97 m)pO(zv w)7p0(y7 $|Z> w)po(z, w))

< 477d%z (p(ya x!z, w, 97 m)g(z, w)>p0(y7 .Z"Z, 'U))ﬁ()(z, w)) .
PROOF. Let po(z,w) = [, Go(Z,w)dZz. Then

d%z (p(ya l”Z, w, 07 m)po(z, w)7p0(ya .’L"Z, w)po(z, w))

:d}% / p(gaﬁlzawaeam)/ go(%,w)d%d@,/

/ fo(ih, 2|, w)go(Z, w)dzdj
Ay A, Ay A,

<udi ([ s@alzwom) [ gz wazd, /A /A fol, 212, w)go (2, w)dzdg
y z

y Az

<o ( [ ol w6, mipo(z w)ds /A /A fol, 212, w)go (2, w)dzdg
y z

Ay

<oy |@2 /A D7 2] w, 6, m)polz, w)di, /A p(§ 22w, 0,m)g(=, w)dj

Yy Yy
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+dj, </A p(ﬂawlzaw,H,m)g(z,W)dﬂ,A /A f()(gvx‘ng)g[)(gaw)dgdg>] < 2n(I+ 1),
Yy Yy 2

where
I=d ( /A PG> 12w, 0, m)po (2, w)d, /A p<g,x|z,w,e,m>g<z,w>d@)
Yy Y
I =a ( / p(il ]2, w0, 6,m)g(2, w)d, / / fo(?%ﬂfaw)go(i,w)d?@)-
Ay Ay JA,
Note that

I=d} ( /A P57l w,0,m)po (=, w)dy, /A p@,x|z,w,e,m>g<z,w>dg>
Yy Y

=d? (po(z,w), g Z/ \/pozw \/gzw> dw
z€EZ
—2<1— /\/ z,w)g zwdw><II
z€Z

where the final inequality follows from

n-y3

yeY z€Z WxX

_2\//4yp(ﬂ,x\z,w,ﬁ,m)g(z,w)dﬂ/Ay /Az fo(ﬂ,x!é,w)go(zjw)dgdy) dwda
_2<1_ZZ/W X\//A p(gal‘|zaw79,m)g(z,w)dgj

yeY zeZ
¢ / / fo@,m|z,w>go<z,w>dzdgdwdx)
Ay A,

J / Lo, L. (G212, w)a0(, w)dzdg
(7, x|z, w, 0, m)dyg—~

pO(za w)

( / (5, ]2, w,0,m)g (2, w)dj + / / fol@> 1%, w)5o(Z, w)dzdg

—(-Tx

9(z,w)po(z, w)) dwdx

>2<1_2/ W)m

zEZ

as for all z,w

N’ ~’ g ~7 dzZdy
Z/ \l/ ya$|Z,IU,0,m)dngy Ja. fo(y _96|Z w)go(Z, w)dz ydx

pg(Z,’lU)

1 fA fA fo(g w)go(Z, w)dzdy
22;/ ( (y, x|z, w,0,m)) + po(z,w) )

dr = 1.
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Combining the inequalities above
d% (p(yv l’|Z, w, 97 m)pO('Z’ w)7p0(y7 ZL’|Z, w)pO('Z’ w)) < 47711
= and? ( | vt sl w0 myg oy, [ f0<g,x|z,w>go<z,w>dzdg)
Ay Ay JA,
= 477d% (p(y7 x’za w, 07 m)g(zv w)apO(yv .CI?‘Z, ’U))ﬁ()(z, ’U))) .
O

LEMMA 8.2. There is a A9 € (0,1) such that for any A € (0,\9) and any two conditional
densities p,q € F, a probability measure P on Z that has a conditional density equal to p, and

dy, defined with the distribution on X implied by P,

Plog? < d&(p,q) <1+2log1> +2P{<logp> 1 (q < A)}
q A q P
p\? 1\2 N2 /g
P <10g > <d(p,q) [12+2 (log > + 8P <log > 1 ( < A) ,
q A q P

PROOF. The proof is exactly the same as the proof of Lemma 4 of Shen et al. (2013), which

in turn, follows the proof of Lemma 7 in Ghosal and van der Vaart (2007b). O

LEMMA 8.3. Under the assumptions and notation of Section 7, for any (y,z,x,w) € Y X

Zx X xW, some constants C1,Ca > 0 and all sufficiently large n,

Py, xlzw,0.m) _ o 5 _
(y,z|z,w)  — ' 2m? H o = A
Ppoly, ) i Je(w,21)

when ||(z,w)|| < a,, and

po(y, x|z, w) 2

=n

when ||(z, w)|| > ag,,

ProoF. For n large enough so that a,, > ¢ and by Assumption 6.5

p(y, x|z, w, 8, m) fAyI [, 91, 2|z, w,0,m)dyr
pg(y,fc|z,w) B fAyI fO(yJagfux"sz)dg[

S Sy, 0111 0wy F W 91 2250, 8, m)dgy
~ 2, Ntlnl<an,y oW 9n w12 w)dg
ffl
2

> f(yJ,gjj,x|z,w,9,m)

} inf
gr€Ay; (llgrll<aoy, }
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T f s, 91,2, 2,w,6,m)
2 grea, Nlllal<ao,} Pz, w,0,m)
_ E g fAnyAZ > jd(§, @, 2, w)djydZ
2 greAy, Nlarl1<aon} Ja, 205 @o;(Z,w)dz
! - Jay,xa, aj*¢j*(gJ)¢j*(?31)%*(93)%*(ZJ)ﬁbj*(fI)ﬂﬁj*(W)d@?Jd%.
~ 2 greay, Mllirl<ao,} Ja, 251 @ 0i(20)95(21) 8 (w)dz
Notation: ¢; is dependent on it’s arguments contained within 6 and j € {1,...,m}. To derive

the bounds on the ratio we will consider two cases conditional on whether ||(z,w)|| < a,, or

not.

For ||(z,w)|| < a,, choose j* such that for all i € I(2)

N = N =

<—oo, QLNJ ., Proj(Uj+) C (—=00,0)
if Az, C (0,1), zi € Proj(Uj») (8.1)
(1= sk +o0] . Proj(Uy) € (1,00)
As ||(z,w)|]| < as, and §;r < a,,, then there exists an ellipsoid U i, such that it contains

J
(z,w,yr). Furthermore, by the construction of ellipsoid U;‘ &

bje (1) dse (2) g (w) = (2m)" 2 T o7 " exp{-1}
Z’EJC(x7u)7:gI)
For A,, C [0,1] we consider two cases with o; > 1/2N; and o; < 1/2N;. When o; > 1/2N;, then
for the chosen j* and all j

e 1 MAL) / s MAz)
i+ (Z)dZ; > e 5= and (Zi)dz; < =
/Azi ¢J (Z ) R Z € \/%O'i an Azi ¢.7 (Z ) Z \/%0’7;

When o; < 1/2Nj, then for the chosen j* and all j

Zi+2+\fi (ZiJr%Ni*uj*)/Ui
| orGiz= [ o onin = [ 0(2.0,1)d%
Azi z

Ly (Zi*%Ni*Mj*)/Ui

A+2711V7‘U'L 5 5 1 B 5
= / #(2;,0,1)dz; > / ?(2:,0,1)dz; ~ 0.34,
0

A——Lt o
2N; 7t

where last inequality is true since A = (z; — p;+)/0; < 1 by design of the ellipsoid U;- and

1 5.
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For A,, ¢ [0,1] and for the chosen j* and all j

0

as 1+ € A,,. In all these cases we obtain that for all j

fA ¢;(Zi)dz;
fAzi ;= (Zi)d%

Then, combining the above results, we obtain that for ||(z,w)|| < a,, the ratio is bounded by

< max{e 1,0.34,0.5} = 0.5.

p(y, x|z, w,0,m)
po(y, x|z, w)
! . Ja,, xa. @505 (00)05= (G1)bj+ ()5 (25) b5+ (21) = (w) 1 d2
2 gredy; N{llgrl1<ao, } Ja 2051 @95(20)¢5(Z1) ¢ (w)dz
I Jay, xa., @05 (0.0) 05 (G1)bj= (2) b+ (27) 9+ (w)dg 1dZ
2

>

= inf -

gr€Ay, NIl <an, } [ aj¢j(zj)%¢j(w)dz
2]

-1

. . -1
min; aj HieJC (z,w,j1) Ti Ml o Hz‘eJC(z w,gr) %i

> Cf - >0 = -
fA Ty aoi(2)¢;(w)dz [icsew) - fA T api(Zy)dz
1 _Bﬁ U%B‘Fdjc _%

Cunina, ] o'z Comine, [[ ot 20Tt [ o

i€Je(z,gr) ieJe(z,3r) ieJe(xz,ir)

23 B
— 0 B _
—Cl2m2 ]_‘[~ On — An.
ieJe(w,Zr)
Therefore, for sufficiently large n and ||(z,w)|| < a,
p(y, x|z, w,0,m) o2f £
pO(y x\z ’U)) 12m2 H ont = )\n
’ ’ i€Je(w,zr)

For ||(z,w)|| > ag,, we will derive a comparable bound for the ratio. First note, that by

construction of ellipsoids Uy for any j < K and any k € Y x Zj, ||(/,w') — pjp, e |]* <

!/

& — el 2 < 120|(o )|, where & = (§;. 2.2/, w') with [[gr]] < § < ag, and 5 = 0.

Therefore, for sufficiently large n such that 1 + o <8 /6, and, thus, o? > 026/8,
5 2
. ~ 5 8 (2, w)|
s =c; T o eo{- ,
iGJc(IﬂU@I)

where g,, = min;e je an/ A Then, for n large enough

f(Wa, 25,91, 21, 2, 0|0, m) = EkenyzJEleajk/ Gk (9)Pjk(25)dgdZ,

yy XAz
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- 05(Ur)p;(x) @5 (w)e; (21)
_8 !y 2
ZCS H O,nﬁi exp{—8||(m’w)” }

, ) al
16]6(%“’,3/1)

: EJK:leGJJJXZJOCjk/ Gk (9.)Pjk(25)dG1dZ,65(Z1)

AnyAzJ

B AR AT
—5 8
> | | on exp{—W}minaijd)j(ZI).

i€Je(zw,ijr) In

Next, pick j* so that equation (8.1) is satisfied and by definition a* > min a;. Then, similarly
to the previous case,

p(y7 $|Z, w, 97 m)

pO(yv (L"Z, ’LU)
I . Ja,, xa, @5 G5 (0.0) 05+ (G1)bj= (@) b= (2) 85+ (1) b5+ (w) iy d2
— in - = =

2 gredy; Nllarli<eo,} Jay, 225 ajd(20)5(Z1) b5 (w)dz

28 B AN ’oN 12
n 8 8
ST || mﬁkkmp{_\K$7w>H:}Zexp{_!Kx’w>H<_Cbbgn}

2 2
g g
ieJe(w,zr) -n -

2B+0c ge(w,zp)P/Pi

log <K In — )’ < logn. Therefore, for sufficiently

as for n large enough such that

large n and ||(z, w)|| > a4,

2
p(y, 2|z, w,0,m) > exp 8@ w)|”
pg(y,x|z,w)

d

LEMMA 8.4. Under the assumptions and notation of Section 7, for A\, < Ao, where Ay is

defined in Lemma 8.2,

pO(y7x|va) ~2
IR < A
0 (Og p(y,x|z,w,e,m>> =

2
5 ( [10g po(y, x|z, w) < A2,
p(y, x|z, w,0,m)

PROOF.
2
EO log pO(yvx‘Zaw)
p(y, x|z, w,0,m)

2 2
< & (po(1), p(1-6,m) (12+2 (1ogjn) ) +8P{(1ogM) 1 {W - A}}

< 028(12 4 210g(1/An)?) + 028+ <log(1/An)%0 22,
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where first inequality is derived using Lemma 8.2 and penultimate inequality is derived using
inequalities (7.9) and (7.13). Similarly,

B (1og po(y, x|z, w)
p(y, x|z, w,0,m)

< onh)op0om) (142 (1og - ) ) 2p { (1og - MO Ya fotlsfom) o

S o7’ (14 2log(1/An)) + 0777 S log(1/An)o7

Furthermore,

2

IN ;K2 -£
log(1/An)02? < log(1/An)%02% = log | =2 [T o | &ogEh))

283
On i€J(w,zr)
8 2
—d e = c c/T —2 B
log 2N3(Clo-n / {log(€n1)}dJ e/ )20'n BHiGJC(w,zI) On ’
S ~—1 giv
log(én )

where the term multiplying €2 on the right hand side is bounded by Assumption 6.7 (N; =

o(n'=")) and definitions of &, and o,,. O

LEMMA 8.5. Under the assumptions and notation of Section 7, for H € N, 0 < g < &, and

>0, let us define a sieve
F=A{p(y,z|0,m): m < H, p; € -t j=1,....m0; €lo,5],i=1,...,d}. (8.2)

ForO0<e<1lando <1,

167(d,, + dx)“ H)dyda) [384((110 + dz)uﬂ Hidutdz)

g€

ME(Eyfu dTV) SH ’7

H[ log(a™?) T’[ log(7/) w
log(1 + ¢/[12H]) log(1 + o2¢/[768(7%)2 max{d, + dy,d. + dw}]) |

o%e

For all sufficiently large H, large & and small o,

I1(F°) §H2dexp{—a13ﬁT3} + exp{—aioH (log H)™}

+ day exp{—a2g_2“3} + dag exp{—2a5loga}.

ProoF. The proof is similar to proofs of related results in Norets and Pati (2017), Shen et al.
(2013), and Ghosal and van der Vaart (2001) among others.
For a fixed value of m, define set S}y to contain centers of |S}jy.=| = [167(dy + dz)/(ce€)]

equal length intervals partitioning [, z]. Then define set Sji, to contain centers of |Sju| =
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[38472%(du)/(c?€)] equal length intervals partitioning [z, 7z]. Similarly, define set S7% to contain
centers of [S}t| = [3847°(d.)/(c?¢)] equal length intervals partitioning [—7z, 7]

Define set S™ as in Theorem 4.1. by Norets and Pati (2017), for N, = [log(a~!)/log(1 +
€/(12m))] define

Qa:{’Yj?j:lv"‘:Noc: M = Q, (7j+1_7j)/7j:6/(12m)7j:17"'7N04_1}

and let ST = {(a1,...,0m) €A™ L @, € Qa, 1 <j1 <j2<...< jm—1 <m}.

Define

Sy ={ol,1=1,...,N, = [log(@/a)/(log(1 + a’¢/(768(f)? max{d, + dy,d, + dy})],0" = g,

(0" — o) /o' = o?¢/(768 () max{d, + dy, . + i, })}.
Let us show that

Sr = {ply,z|z,w,0,m): m < H, a € S, o, €Sy, ,u?’iy € Sty 13, € Siiyas pj, € S,

Pl € Sm, g <m, i < dyiy < dy,ip < dgyig < dy,iz < ds}

is an e-net for F in dry. For a given p(:|,m) € F with 0% < o; < olit! i =1,...,d find
ae S, ﬂ?iy € Siles [, € Silyes B, € Sjlw, 5, € St and &; = 0y, € Sy such that for all
=1, omi=1,.. . .d iy =1, .. dy ig=1. . dg iw=1...,dyandi,=1,. .. d.
o — @ € |oi— o’e .
: : < 100 : : < —92 ’ ‘/ﬁz _U?i
a; 12 o; 76871° max{d, + dy,d, + d} g g

ol 2 e

gre
T %< = wo_avl < = Al << =
|Iu’jlr,; M‘]Zz‘ — 16(dy +dx)7 |M‘]7,w /’l’jlw| — 384ﬂdw7 |Mjlz /‘I’jlz| — 384ﬁdz

oe€

P e
= 16(dy + d;)’

Applying Lemma 5.4 and equation (5.12) of Norets and Pelenis (2018) for each (z,w) we

obtain that
dTV<p(y7x’27wa67m>7p(yaz‘z7w7§7 m)) < dTV(f(g7x’Z7w707m)v f(ﬂvx‘szaé7m))'

Similarly to the proof of Theorem 4.1 in Norets and Pati (2017) for each (z,w) € Z x W

/ ]p(@,:dz,w,@,m) _p(gax‘sz70~>m)|dy < 2].:H113Xm H(Z);f;.”“c,a - qbﬂ?’m,& ’1

K; - K; N K — Killos — as
+ 2 maXM-i—maXM—f—maX‘ J jlloy — ayl
J K; i J a;K;

where

dw o w)2) d:
Kj = HleXp {—(w;(ggj;) } 1:11/A ¢i(zi)dz;.
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As in Theorem 4.1. in Norets and Pati (2017) note that [|¢,v.= , — @5 ye sll1 < ¢ Then note
7 k)
that
* % d: z 73
K — K| _ K — K7 K5 — il
< E ————— _wh
K, ~ K" +Z, <K » WHeEe

ex 'uﬂ) an A (2)d3:
H p{ Pt } d K7, Aqqﬁz(z)dl.

The proof of Corrolary 5.1 in Norets and Pati (2017) delivers that

/‘K;)_K;U o(w)dw < £
KY 24

For K7, we consider two separate cases. First, if A, C [0, 1], then we show that

K5 K%\ zea, O(Zi 3, 00) | — 24d
To obtain the above result note that for any z; € [0, 1]
1-— U, i 91) < ‘1 T2 —exp Sl N e
< 25'1 — 0; (27, - M;z‘)Z (27, - ﬂsz)Q
< +4 T —
oi 20; 20;
5‘1' g; 1 1 1 - 2 1 - 2 - 2 \2
0; — O, 9i=0; 2 4
Y i 5 2 2 \2 - _
<2 zai iy ;2 |2 — 1] +T‘2(y<u;i> — (i5)%] + 20z |1é — i13)
a’e

768,u max{d, + dy,d, + dw}

o’e 4?1
4 = (- | (a1
* <768u2max{d +dy,d, +dy} o2 + o2 (|sz ,"le| (B + )))

€ 8 o€ €

< -
= 3864, T 92d, o2 3347d. - 24d,’

where we have used that ¢;/6; <2 and that |1 — e®| < 2|z| for |z] < 1.
Second, let, without loss of generality, A,, = [1—1/2N;, +00) and let a = (1—-1/2N; —MJZ-Z')/Uz‘
and a = (1 — 1/2N; — [szl) /;. Also, suppose, without loss of generality, that @ > a. Then

12

z
sz‘

f(f ¢(t7 07 l)dt _ ‘d B CL‘(}S(&, 07 1)
f&oo ¢(t7 07 1)dt a f&oo (rb(tv 07 1)dt

for some a € [a,d] by the mean value theorem. For @ < 1

@ —al$(@0,1) _ la—al
[ 0(t,0,1)dt — 2r(1— (1))
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Fora>1

@ — al¢(@,0,1) _ |a—a|¢(@0,1) /. - C sGE0)
fdoo ¢<t7071>dt S 1) (Cl+ \/m) S |a—a|4aa701‘

Note that a < 2p1/0 and that

$(,0,1)  ¢(i3;,1—1/2N;,6;) €
¢(&70’ 1) B qj)(/]jzz, 1- 1/2Ni75i) = eXp{ﬂ} =2

for some ﬁ;‘z € [@3;, 115;] using the result in Equation (4.2) from Norets and Pati (2017). In both

cases we find that

K5| |a - al¢(a,0,1 T
o 7]274 _ ’aoo CL|¢(CL, ) ) < ‘a . a]8ﬁ
K3; J7 o(t,0,1)dt fos
Furthermore,
1 ;i — 0y Wi — i 25 — oy M — i
i—al <|(1-— —p2) "¢ gji — Hji| o 21 0i — Ti ji — i
g€ o€ o€

_l’_

< = = < =
~ 384pmax{d, +dy,d, +dy}  384ud. — 192pmax{d, +dy,d. + dy}

and, therefore,
¢
1-— 2

n € €

<la—al8= < < .
<la-al o = 24max{d, +dy,d, +d,} ~ 24d,

Combining all the above results we obtain that dpy (p(y, x|z, w,0,m), p(y, z|z, w, 0, m)) < € as
desired. This concludes the proof for the covering number.

The upper bound on II(F¢) is obtained in the same way as in the proof of Theorem 4.1 in
Norets and Pati (2017) with the only difference being that the dimension d appears in front of
some of the terms in the bound due to coordinate specific scale parameters and slightly different
choice of the prior tail condition (6.6).

d

LEMMA 8.6.  Consider e, = (N;/n)P7¢/2Bse+) (logn)ts and &, = (N /n)P7e/(2Bre+1) (1og n)ts
with t; > t; +max{0, (1 — 71)/2} and t; > tjq, where tyq is defined in (7.1). Define F,, as in
(8.2) with € = €y, H = ne/(logn), a = e ™, g = n=1/(w) G =¢" and i =n'/™. Then, for

some constants c1,c3 > 0 and every co > 0, F,, satisfies (7.3) and (7.4) for all large n.
PrOOF. From Lemma 8.5,

log M. (€, Fn,p) < c1Hlogn = clnei.
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Also,

II(FS) < H*dexp{—a13n} + exp{—aioH (log H)™}
+ daj exp{—agn} + dag exp{—2asn}.

Hence, II(FS) < e~ (@T9& for any ¢y if €2(logn)™ /e — oo, which holds for t; > ; +

max{0, (1 —71)/2}.
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