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Abstract— Estimation in few-bit MIMO systems is challenging,
since the received signals are nonlinearly distorted by the low-
resolution ADCs. In this paper, we propose a deep learning
framework for channel estimation, data detection, and pilot
signal design to address the nonlinearity in such systems. The
proposed channel estimation and data detection networks are
model-driven and have special structures that take advantage of
domain knowledge in the few-bit quantization process. While the
first data detection network, B-DetNet, is based on a linearized
model obtained from the Bussgang decomposition, the channel
estimation network and the second data detection network,
FBM-CENet and FBM-DetNet respectively, rely on the original
quantized system model. To develop FBM-CENet and FBM-
DetNet, the maximum-likelihood channel estimation and data
detection problems are reformulated to overcome the indeter-
minant gradient issue. An important feature of the proposed
FBM-CENet structure is that the pilot matrix is integrated into
the weight matrices of its channel estimator. Thus, training
the proposed FBM-CENet enables a joint optimization of both
the channel estimator at the base station and the pilot signal
transmitted from the users. Simulation results show significant
performance gains in estimation accuracy by the proposed deep
learning framework.

Index Terms— Deep learning, deep neural network, massive
MIMO, low-resolution ADCs, channel estimation, data detection.

I. INTRODUCTION

ONE practical solution for reducing hardware cost and
power consumption in massive MIMO systems is to

use low-resolution (e.g., 1–3 bits) analog-to-digital converters
(ADCs), due to their simple structure and very low power con-
sumption. In particular, the number of comparators in a b-bit
ADC grows exponentially with b, which means both the hard-
ware complexity and the power consumption of an ADC scales
exponentially with the resolution [1]. Therefore, the cost and
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power consumption of low-resolution ADCs are substantially
lower than for high-resolution ADCs. Furthermore, the hard-
ware structure of other components in an RF chain can also
be simplified or removed when low-resolution ADCs are used.
For example, the simplest architecture involving one-bit ADCs
does not require an automatic gain control (AGC) since only
the sign of the real and imaginary parts of the received signals
is retained. The stringent linearity requirement of the low-noise
amplifier (LNA) can be relaxed and a simpler low-cost ampli-
fier can be used instead. These benefits on the hardware side
make it possible to deploy low-resolution ADCs in practical
massive MIMO systems. However, the lower-complexity and
lower-power-consumption hardware necessitates special care
in the subsequent signal processing. More specifically, the
nonlinearities introduced by the low-resolution ADCs makes
signal processing tasks such as channel estimation and data
detection in few-bit MIMO systems much more challenging
compared to those in unquantized systems. Therefore, it is
crucial that efficient signal processing methods for channel
estimation and data detection be developed for such systems
so that they can be transitioned to commercial systems.

Channel estimation for massive MIMO systems with
low-resolution ADCs has attracted significant research
interest and has been studied intensively. The majority
of the proposed approaches focus on one-bit systems in
different scenarios, e.g., [2]–[17]. For example, a one-bit
maximum-likelihood (ML) channel estimator was proposed
in [2]. The work in [3] exploits the Bussgang decomposition
to form a one-bit Bussgang-based minimum mean-squared
error (BMMSE) channel estimator. Another BMMSE
channel estimator was also proposed in [4] but for one-bit
spatial sigma-delta ADCs in a spatially oversampled array.
Channel estimation with temporally oversampled one-bit
ADCs is studied in [5] and [6]. It has been shown that
one-bit ADCs with spatial and temporal oversampling
can help improve the channel estimation accuracy but
more resources and computation are required due to the
oversampling process. Angular-domain channel estimation
for one-bit massive MIMO systems was studied in [7]–[9].
Spatially/temporally correlated channels and multi-cell
processing with pilot contamination were investigated in [10]
and [11], respectively. For sparse millimeter-wave MIMO
channels, ML and maximum a posteriori (MAP) channel
estimation were examined in [12] and [13], respectively.
Taking into account the sparsity of such channels, the one-bit
ADC channel estimation problem has been formulated as
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a compressed sensing problem in [14]–[16]. Performance
bounds on the channel estimation of mmWave one-bit
massive MIMO channels were reported in [17]. The Bussgang
decomposition was exploited in [18] to derive two linear
channel estimators for few-bit ADCs including an extension
of the BMMSE approach as well as a Bussgang-based
weighted zero-forcing (BWZF) algorithm.

Recently, machine learning techniques have been studied to
address massive MIMO channel estimation for low-resolution
ADCs [19]–[25]. For example, the work in [19] shows
that support-vector machine (SVM) models can be applied
to estimate massive MIMO channels with one-bit observa-
tions. A DNN-based joint pilot signal and channel estimator
design is proposed in [23]. The work in [24], [25] stud-
ied mixed-resolution channel estimation where low-resolution
ADCs were used for only some of the receive antennas, while
the rest are equipped with conventional ADCs.

Data detection for low-resolution massive MIMO systems
has also been studied intensively in the literature. Again, most
of the results have been reported for the case of one-bit ADCs,
e.g., [2], [26]–[36]. In particular, a one-bit ML detector and
a one-bit sphere decoding (OSD) technique were proposed
in [2] and [26], respectively. The very high computational
complexity of the ML and OSD methods nevertheless make
them impractical for large-scale systems. A near-ML (nML)
data detection method for large-scale MIMO systems was
proposed in [2]. However, the nML method is not robust
at high signal-to-noise ratios (SNRs) when the channel state
information (CSI) is not perfectly known. The learning-based
method in [27] is a blind detection method for which CSI is
not required, but it is only applicable to MIMO systems with a
small number of transmit antennas and only low-dimensional
constellations. Various one-bit linear detectors were intro-
duced in [28], [29]. These linear detectors are applicable
for large-scale systems but often suffer from high detection-
error floors. The authors in [31] proposed a one-bit detection
method based on the alternating direction method of multipli-
ers (ADMM) algorithm that takes hardware impairments into
account. The SVM-based and DNN-based one-bit detectors
proposed in [19] and [29] were shown to be robust, applicable
to large-scale systems, and also to outperform other existing
one-bit detectors. Another DNN-based one-bit detector was
proposed in [30] but it requires online training since the
network has to be retrained whenever the channel changes.
This significantly increases the computational complexity and
resources as well as the pilot overhead. Several other one-bit
data detection approaches can be found in [33]–[36], but
they are only applicable in systems where either a cyclic
redundancy check (CRC) [33]–[35] or an error correcting
code such as a low-density parity-check (LDPC) code [36]
is available.

Data detection in few-bit massive MIMO systems has been
studied in recent papers [18], [37]–[40]. Generalized approx-
imate message passing (GAMP) and Bayes inference were
exploited in [37], while the work in [38] employed variational
Bayesian (VB) inference and belief propagation (BP) for
soft symbol decoding. However, the resulting methods are
complicated and expensive to implement. Unlike the blind

detection method in [27] which was developed for one-bit sys-
tems, the learning-based blind detection methods in [39], [40]
are applicable for few-bit systems, but they are also restricted
to MIMO systems with a small number of transmit antennas
and only low-dimensional constellations. The BMMSE and
BWZF detection methods in [18] are linear detectors and thus
simple and applicable for large-scale MIMO systems, but their
performance is limited.

In this paper, we develop a deep learning framework for
channel estimation and data detection for massive MIMO
systems with low-resolution ADCs. Using deep unfolding of
the first-order optimization iterations, we propose a chan-
nel estimator and two data detectors that are applicable for
both one-bit and few-bit ADCs as well as large-scale sys-
tems without the need for CRC or error correcting codes.
The proposed channel estimation and data detection net-
works are model-driven and have special structures that
can take advantage of domain knowledge in few-bit MIMO
systems.

We first reformulate the ML channel estimation problem
by exploiting the approximation of the cumulative distribution
function (cdf) of a normal random variable as a Sigmoid acti-
vation function. Unlike the original problem, the reformulated
channel estimation approach does not lead to occasionally
indeterminant gradients. Based on the reformulated problem
and a deep unfolding technique, we propose a Few-Bit massive
MIMO Channel Estimation Network, referred to as FBM-
CENet. An interesting feature of the proposed FBM-CENet
is that the pilot signal matrix is directly integrated in the
weight matrices of the estimation network. When the pilot
matrix is not given, it can be treated as additional trainable
parameters and therefore training FBM-CENet is equivalent
to jointly optimizing both the channel estimator at the base
station and the pilot signal transmitted from the users. This is
a significant advantage of the proposed FBM-CENet structure
since existing channel estimators are often designed only for
a known pilot matrix. The proposed DNN is based on a novel
reformulation of the network layers, and is shown via several
simulation results to significantly outperform the conventional
DNN architecture in [23] as well as other existing channel
estimation methods.

For data detection, we first propose a Bussgang-based few-
bit massive MIMO Data Detection Network, referred to as
B-DetNet, that is based on a linearized system model obtained
through the Bussgang decomposition. Then we propose a Few-
Bit massive MIMO Data Detection Network, referred to as
FBM-DetNet. Previously presented in [41], FBM-DetNet is
developed based on the original quantized system model. The
special structure of FBM-DetNet is also obtained through a
reformulated ML data detection problem that parallels the
reformulated channel estimation problem. We stress that the
proposed B-DetNet and FBM-DetNet are highly adaptive to
the channel since their weight matrices and the bias vectors
are defined by the channel matrix and the received signal
vector, respectively. The proposed detection networks have rel-
atively few parameters and are thus easier to train. Simulation
results also show that they significantly outperform existing
methods.
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The rest of this paper is organized as follows: Section II
introduces the assumed system model. Channel estimation is
considered in Section III, where the FBM-CENet estimator is
proposed. The two proposed data detection networks B-DetNet
and FBM-DetNet are presented in Section IV. Numerical
results are given in Section V. Finally, Section VI concludes
the paper.
Notation: Upper-case and lower-case boldface letters denote

matrices and column vectors, respectively. E[·] represents
expectation. The operator | · | denotes the absolute value of
a number and the operator ‖ · ‖ denotes the �2-norm of a
vector. The transpose is denoted by [·]T . The notation �{·}
and �{·} respectively indicates the real and imaginary parts
of the complex argument. If �{·} and �{·} are applied to a
matrix or vector, they are applied separately to every element
of that matrix or vector. The operator vec(A) vectorizes A by
stacking its columns on top of one another. The operator ⊗
denotes the Kronecker product, R and C denote the set of real
and complex numbers, respectively, and j is the unit imaginary
number satisfying j2 = −1. The symbols N (·, ·) and CN (·, ·)
represent the real and the circular complex normal distributions
respectively, where the first argument is the mean and the
second argument is the variance or the covariance matrix. The
functions Φ(t) =

∫ t

−∞
1√
2π

e−
τ2
2 dτ and φ(t) = 1√

2π
e−

1
2 t2 are

the cdf and pdf of the standard normal random variable.

II. SYSTEM MODEL

We consider an uplink massive MIMO system with K
single-antenna users and an N -antenna base station (BS),
where it is assumed that N ≥ K . Let x̄ = [x̄1, x̄2, . . . , x̄K ]T ∈
CK denote the transmitted signal vector, where x̄k is the
signal transmitted from the kth user under the power constraint
E[|x̄k|2] = ptx

k . The signal x̄k is drawn from a constellation
M̄. Let H̄ ∈ C

N×K denote the channel, which is assumed to
be block flat fading. Let r̄ = [r̄1, r̄2, . . . , r̄N ]T ∈ CN be the
unquantized received signal vector at the base station, which
is given as

r̄ = H̄x̄ + z̄ (1)

where z̄ = [z̄1, z̄2, . . . , z̄N ]T ∈ CN is a noise vector whose
elements are assumed to be independent and identically dis-
tributed (i.i.d.) as CN (0, N0) with noise power N0. Each
received analog signal is then quantized by a pair of b-bit
ADCs to produce the quantized received signal:

ȳ = Qb (r̄) = Qb (�{r̄}) + jQb (�{r̄}) . (2)

For vector or matrix arguments, the operator Qb(·) is applied
separately to every element.

It is assumed that the ADCs perform b-bit uniform scalar
quantization. The b-bit ADC model is characterized by a set
of 2b − 1 thresholds denoted as {τ1, . . . , τ2b−1}. Without loss
of generality, we assume −∞ = τ0 < τ1 < · · · < τ2b−1 <
τ2b = ∞. Let Δ be the step size, so the thresholds of the
uniform quantizer are given as

τl = (−2b−1 + l)Δ, for l ∈ L = {1, . . . , 2b − 1}. (3)

The quantized output is then defined as

Qb(r) = ql =

{
τl − Δ

2 if r ∈ (τl−1, τl] with l ∈ L
(2b − 1)Δ

2 if r ∈ (τ2b−1, τ2b ].
(4)

III. CHANNEL ESTIMATION IN FEW-BIT MIMO SYSTEMS

In order to estimate the channel, a pilot sequence X̄t ∈
CK×Tt of length Tt is used to generate the training data

Ȳt = Qb

(
H̄X̄t + Z̄t

)
(5)

where Ȳt ∈ C
N×Tt and Z̄t ∈ C

N×Tt . The subscript ‘t’ in this
paper indicates the training phase where channel estimation is
performed. We vectorize the received signal in (5) to obtain

ȳt = Qb(P̄h̄ + z̄t), (6)

where ȳt = vec(Ȳt) ∈ CNTt×1, P̄ = X̄T
t ⊗ IN ∈ CNTt×NK ,

h̄ = vec(H̄) ∈ C
NK×1, and z̄t = vec(Z̄t) ∈ CNTt×1. For

convenience in later derivations, we convert the notation in (6)
into the real domain as

yt = Qb(Ph + zt) (7)

where

yt =
[�{ȳt}
�{ȳt}

]
, h =

[�{h̄}
�{h̄}

]
, and P =

[�{P̄} −�{P̄}
�{P̄} �{P̄}

]
.

Note that yt ∈ R2NTt×1, h ∈ R2NK×1, P ∈ R2NTt×2NK ,
and zt ∈ R2NTt×1.

A. Bussgang-Based Linear Channel Estimators

We first revisit the Bussgang-based linear channel estimators
including BMMSE and BWZF for low-resolution massive
MIMO systems [3], [18]. The system model in (7) can be
linearized by the Bussgang decomposition as follows:

yt = VtPh + Vtzt + dt

= Ath + nt (8)

where At ≡ VtP ∈ R2NTt×2NK , nt ≡ Vtzt + dt combines
the receiver and equivalent quantization noise, and Vt ∈
R2NTt×2NTt is a diagonal matrix and given as [18]

Vt =
Δ√
2π

diag(Σrt)
− 1

2

×
2b−1∑
i=1

exp
{
− 1

2
Δ2(i − 2b−1)2 diag(Σrt)

−1
}

where Σrt = PΣhPT + N0
2 I ∈ R2NTt×2NTt is the covariance

matrix of rt = Ph + zt. For the case of one-bit ADCs with
Δ =

√
2, Vt reduces to the form reported in [3, Eq. (10)].

The BMMSE channel estimator is given as [3], [18]

ĥBMMSE = ΣhytΣ
−1
yt

yt

= ΣhAT
t Σ−1

yt
yt (9)

where Σhyt ∈ R
2NK×2NTt is the cross-covariance matrix

between h and yt, and Σyt ∈ R2NTt×2NTt is the covariance
matrix of yt. For the case of one-bit ADCs, Σyt is given as [3]

Σyt =
Δ2

2π
arcsin

(
diag(Σrt)

− 1
2 Σrt diag(Σrt)

− 1
2

)
. (10)
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TABLE I

OPTIMUM UNIFORM QUANTIZER FOR N (0, 1) GAUSSIAN INPUTS [42]

For the case of two-bit or higher resolution ADCs, Σyt is
given as [18]

Σyt = VtΣrtV
T
t + Σdt , (11)

where Σdt ∈ R
2NTt×2NTt is the covariance matrix of dt and

can be approximated as Σdt ≈ ηb diag(Σrt). The distortion
factor ηb depending on the number of quantization bits b is
given in Table I.

A BWZF channel estimator was also proposed in [18] as
follows:

ĥBWZF =
(
AT

t diag(w)At

)−1
AT

t diag(w)yt (12)

where diag(w) is a diagonal matrix with w =
[w1, w2, . . . , w2NTt ] on the diagonal, and

wi =
1

E[z2
t,i] + E[d2

t,i|yt,i]
, i = 1, . . . , 2NTt.

Here, yt,i, zt,i, and dt,i are the i-th elements of yt, zt, and dt,
respectively. The key idea of BWZF is that given an observed
quantized signal vector yt, the elements of rt have different
variances. Exploiting this fact, the BWZF estimator sets the
signals with lower variances to have higher weights.

B. Proposed FBM-CENet

1) Maximum-Likelihood Channel Estimation Problem: Let
P = [p1,p2, . . . ,p2NTt ]

T , yt = [yt,1, yt,2, . . . , yt,2NTt ]
T ,

and zt = [zt,1, . . . , zt,2NTt ]T , then we have

yt,i = Qb

(
pT

i h + zt,i

)
, i = 1, 2, . . . , 2NTt. (13)

Let sup
t,i =

√
2ρ(qup

t,i − pT
i h) and slow

t,i =
√

2ρ(qlow
t,i − pT

i h),
where ρ = 1/N0, and

qup
t,i =

{
yt,i + Δ

2 if yt,i < τ2b−1

∞ otherwise,

qlow
t,i =

{
yt,i − Δ

2 if yt,i > τ1

−∞ otherwise.

Hence, qup
t,i and qlow

t,i are the upper and lower quantization
thresholds of the bin to which yt,i belongs.

The ML channel estimator is given as follows:

ĥML = arg max
h

f(yt |h)

= arg max
h

2NTt∑
i=1

log
[
Φ

(
sup
t,i

) − Φ
(
slow
t,i

)]
. (14)

Let Pt(h) be the objective function of (14). Since Pt(h)
is a concave function [43], the unconstrained optimization
problem (14) is convex, and therefore an iterative gradient

Fig. 1. Overall structure of the proposed FBM-CENet, FBM-DetNet, and
B-DetNet. For FBM-CENet, v plays the role of h and M = 2NK . For
FBM-DetNet and B-DetNet, v plays the role of x and M = 2K .

ascent method can be used to solve it. However, the gradient
of Pt(h), given by

∇Pt(h) =
2NTt∑
i=1

−√
2ρpi

(
φ

(
sup
t,i

) − φ
(
slow
t,i

) )
Φ

(
sup
t,i

) − Φ
(
slow
t,i

) , (15)

is undefined at certain points, since the function Φ(·) very
rapidly approaches zero or one. Specifically, as the iterative
gradient descent method sequentially updates the estimated
channel ĥ, there exist instances of ĥ that make both Φ

(
sup
t,i

)
and Φ

(
slow
t,i

)
equal to zero or one. Thus, the denominator

in (15) can be zero for some ĥ causing the gradient to become
unbounded. In addition, a lack of a closed-form expression for
Φ(·) complicates the evaluation in (14).

These observations motivate us to reformulate the ML
channel estimation problem (14) to address the indeterminant
gradient issue as well as the complicated evaluation of the
objective function in (14). We exploit a result in [44], which
shows that the function Φ(t) can be accurately approximated
by the Sigmoid function σ(t) = 1/(1 + e−t) as follows:

Φ(t) ≈ σ(ct) =
1

1 + e−ct
(16)

where c = 1.702 is a constant. It was shown in [44] that
|Φ(t) − σ(ct)| ≤ 0.0095, ∀t ∈ R. Using this approximation,
the objective function Pt(h) can be re-written as

Pt(h) ≈ P̃t(h) =
∑2NTt

i=1 log
[

1

1+e
−cs

up
t,i

− 1

1+e
−cslowt,i

]
(17)

and the reformulated ML channel estimation problem is

ĥ = arg max
h

P̃t(h). (18)

The gradient of P̃t(h) is

∇P̃t(h) =
2NTt∑
i=1

c
√

2ρpi

(
1 − 1

1 + ecsup
t,i

− 1

1 + ecslow
t,i

)

= c
√

2ρPT
[
1− σ

(
c
√

2ρ (Ph− qup
t )

)
− σ

(
c
√

2ρ
(
Ph− qlow

t

)) ]
(19)

in which qup
t = [qup

t,1, . . . , q
up
t,2NTt

]T and qlow
t =

[qlow
t,1 , . . . , qlow

t,2NTt
]T . Here, it should be noted that, for a matrix

or vector argument, σ(·) is applied separately to every element.
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Fig. 2. Conventional versus proposed DNN structure for channel estimation.

Unlike (19), it can be seen that the gradient of P̃t(h) does not
suffer from the divide-by-zero issue. Thus, an iterative gradient
descent method for solving (18) can be written as

h(�) = h(�−1) + α
(�)
t ∇P̃t

(
h(�−1)

)
(20)

where � is the iteration index and α
(�)
t is the step size.

2) Structure of the Proposed FBM-CENet: We employ the
deep unfolding technique [45] to unfold each iteration in (20)
as a layer of a deep neural network. The overall structure of
the proposed FBM-CENet estimator is illustrated in Fig. 1,
where each of the L layers takes a vector of 2NK elements
as the input and generates an output vector of the same
size.

The specific structure for each layer � of the proposed
FBM-CENet is illustrated in Fig. 2b. The proposed layer
structure is unique due to the use of the approximation
in (16) and the structure of the reformulated gradient in (19).
Specifically, each layer of the proposed FBM-CENet con-
sists of two weight matrices and two bias vectors where
the pilot matrix P plays the role of the weight matrices
and the received signals qup

t and qlow
t play the role of the

bias vectors. By contrast, each layer � of a conventional
DNN-based channel estimator as illustrated in Fig. 2a contains
one weight matrix W� and one bias vector b�. Such a conven-
tional DNN structure has been employed in several existing
works, e.g., [23]–[25]. An interesting feature of the proposed
network is the Sigmoid activation function σ(·), which is
not arbitrary but results from the use of the approximation
in (16). This is unlike conventional DNN structures where the
activation functions {f�(·)} are often chosen heuristically by
experiments.

It should be noted that the proposed FBM-CENet structure
in Fig. 2b is free of the constant c

√
2ρ since it is absorbed

into the trainable parameters α
(�)
t and βt. If the constant is

kept, each layer � will contain only one trainable parameter,
which is the step size α

(�)
t . Training α

(�)
t can be interpreted

as moving along the gradient directions and optimizing the

step size at each layer. We refer this network structure
to as purely gradient-based FBM-CENet (PG-FBM-CENet).
Since different values of βt result in different directions in
the vicinity of the gradient, training FBM-CENet can be
interpreted as jointly learning the optimal directions and the
associated optimal step sizes. This helps FBM-CENet improve
the performance compared to PG-FBM-CENet. The reason
is that always moving along the gradient direction may not
be optimal. FBM-CENet learns an optimal path that makes
the network output (the channel estimate) closer to the true
channel vector. We will numerically show that FBM-CENet
outperforms PG-FBM-CENet later.
3) Trainable Parameters: For a given pilot matrix P, the

trainable parameters in the proposed FBM-CENet are the step

sizes {α(�)
t } and the scaling parameter βt inside the Sigmoid

function. Note that as mentioned above, the coefficient c
√

2ρ
is omitted in the proposed network since it is absorbed in the
trainable parameters {α(�)

t } and βt.
It is important to note that the pilot matrix P directly plays

the role of the weight matrices. Therefore, when the pilot
matrix P is not given, it too can be treated as a trainable
parameter. In this case, training the proposed FBM-CENet
is equivalent to jointly optimizing both the channel estimator
at the base station and the pilot signal transmitted from the
users. This is a significant advantage of the proposed network
structure since the conventional DNN-based channel estimator
is often trained or optimized for a given pilot matrix, and thus
is unable to convey information about the optimal pilot signal.
The approach proposed in [23] also jointly optimized the pilot
signal and the channel estimator for massive MIMO systems
with low-resolution ADCs, but it employs the conventional
DNN structure illustrated in Fig. 2a. We will later show that
the proposed FBM-CENet estimator significantly outperforms
the method in [23].
4) Training Strategy: Here we present the strategy for

training the proposed FBM-CENet estimator. Let ĥ denote
the channel estimate, which is set to be the output of the last
layer of FBM-CENet, i.e., ĥ = h(L). The cost function to be
minimized is ‖ĥ− h‖2. We choose this cost function instead
of the objective function in (17) because the value of (17)
is undefined when the argument of the logarithm approaches
zero. In our investigation, training using the cost function (17)
was not successful due to this issue. When the pilot matrix P
is given, a training sample for FBM-CENet consists of the
given matrix P, a channel vector realization h and a Gaussian
noise vector z, which can be randomly generated. When the
pilot matrix P is not given and is trainable, a training sample
only consists of h and a Gaussian noise vector z. Note that
h is randomly generated according to a particular channel
model.

It is important to note that the received signals qup
t and

qlow
t depend on the pilot matrix P. Therefore, when the pilot

matrix P is trainable, gradient back-propagation during the
training process should also go through qup

t and qlow
t . How-

ever, the low-resolution ADCs are discontinuous functions,
which make gradient back-propagation through qup

t and qlow
t

infeasible. To overcome this issue, we employ a soft quantizer
model based on the Rectified Linear Unit (ReLU) function
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Fig. 3. Two-bit ReLU-based soft quantizer with Δ = 1.

frelu(r) = max(0, r) for the training process as follows:

qup(r) = q(r) +
Δ
2

+ c2

[
frelu(r − BΔ + c1)

− frelu(r − BΔ − c1)
]

(21)

qlow(r) = q(r) − Δ
2

− c2

[
frelu(−r − BΔ + c1)

− frelu(−r − BΔ − c1)
]

(22)

where B = 2b−1 − 1, c1 and c2 are positive constants, and

q(r) = −(2b − 1)
Δ
2

+
Δ
2c1

B∑
i=−B

[
frelu(r + iΔ + c1)

− frelu(r + iΔ − c1)
]
. (23)

The resulting ReLU-based function is continuous and therefore
back-propagation is feasible. The effect of c1 is illustrated
in Fig. 3. It can be seen that smaller values of c1 make the
soft quantizer sharper, or in other words closer to the actual
hard quantizer. The constant c2 accounts for the two thresholds
τ0 = −∞ and τ2b = ∞, and hence should be large. The
constants {c1, c2} should not be treated as trainable parameters
because it is necessary for the soft quantizer to be a reasonable
approximation of the hard quantizer. Allowing these constants
to be trained may produce a large deviation between the soft
and hard quantizers.

Note that the soft quantizer could also be modeled using
the tanh function as follows:

qup(r) = q(r) +
Δ
2

+ c4ftanh(c3(r − BΔ)) (24)

qlow(r) = q(r) − Δ
2

− c4ftanh(c3(−r − BΔ)) (25)

where ftanh(r) = (tanh(r) + 1)/2 and

q(r) =
Δ
2

[
ftanh(c3r) − ftanh(−c3r)

]
+ Δ

B∑
i=1

ftanh(c3(r − iΔ)) − ftanh(c3(−r − iΔ)).

(26)

Larger values of c3 make the soft quantizer sharper. The
constant c4 accounts for the two thresholds τ0 and τ2b , and
hence should also be large. Although we implement our
networks with the ReLU-based model, in the simulations we

will show that both the tanh- and ReLU-based soft quantizers
yield essentially the same performance.

IV. DATA DETECTION IN FEW-BIT MIMO SYSTEMS

In this section, we propose two DNN-based detectors,
referred to as B-DetNet and FBM-DetNet, for low-resolution
massive MIMO systems. For convenience in later derivations,
we convert (1) and (2) into the real domain as follows:

y = Qb (Hx + z) , (27)

where

y =
[�{ȳ}
�{ȳ}

]
, x =

[�{x̄}
�{x̄}

]
, z =

[�{z̄}
�{z̄}

]
, and

H =
[�{H̄} −�{H̄}
�{H̄} �{H̄}

]
.

Note that y ∈ R2N , x ∈ R2K , z ∈ R2N , and H ∈ R2N×2K .
We also denote y = [y1, . . . , y2N ]T and H = [h1, . . . ,h2N ]T .

A. Proposed B-DetNet

Applying the Bussgang decomposition to (27), we obtain

y = VHx + Vz + d
= Ax + n (28)

where V ∈ R
2N×2N is a diagonal matrix and given as

V =
Δ√
2π

diag(Σr)−
1
2

×
2b−1∑
i=1

exp
{
− 1

2
Δ2(i − 2b−1)2 diag(Σr)−1

}

and Σr = HΣxHT + N0
2 I ∈ R

2N×2N . For the case of 1-bit
ADCs, the covariance of n is given in closed form as [46]

Σn =
Δ2

2π

[
arcsin

(
diag(Σr)−

1
2 Σr diag(Σr)−

1
2

)
− diag(Σr)−

1
2 Σr diag(Σr)−

1
2 +

N0

2
diag(Σr)−1

]
.

(29)

For few-bit ADCs, the covariance of n can be approximated
as Σn ≈ N0

2 VVT + ηb diag(Σr). The effective noise n is
often modeled as N (0,Σn). Based on this linearized model,
different linear detectors such as BZF, BMMSE, and BWZF
were introduced in [18], [28], [29].

Here, we propose the data detection network B-DetNet
based on the linearized system model in (28). Since the effec-
tive noise n is assumed to be Gaussian, the Bussgang-based
maximum likelihood detection problem is given as

x̂BML = arg min
x̄∈M̄K

(y − Ax)TΣ−1
n (y − Ax). (30)

Let PB(x) be the objective function of (30). Note that PB(x) is
a quadratic function of x and thus convex, but the optimization
problem is not convex due to the discrete feasibility constraint
x̄ ∈ M̄K . An optimal solution to (30) therefore requires an
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Fig. 4. Projector function ψt(·) with different values of t.

exhaustive search, which is very expensive for large scale sys-
tems. Instead, an iterative projected gradient descent method

x(�) = ψt�

(
x(�−1) − α(�)∇PB(x(�−1))

)
(31)

can be applied to search for the optimal solution. Herein, the
gradient of PB(x) evaluated at x(�−1) is given by

∇PB(x(�−1)) = −2ATΣ−1
n

(
y − Ax(�−1)

)
(32)

and ψt�
(·), characterized by the positive parameter t�, is a

non-linear projector that forces the signal to the nearest
constellation point. Based on the ReLU activation function
q(r) in (23), ψt�

(·) can be written as

ψt�
(x) = −(2b′ − 1)

Δ′

2
+

Δ′

2t�

B′∑
i=−B′

[
frelu(r + iΔ + t�)

− frelu(r + iΔ − t�)
]

(33)

where B′ = 2b′−1 − 1. For QPSK signalling, {b′, Δ′} =
{1, 2√

2
} and for 16-QAM signalling, {b′, Δ′} = {2, 2√

10
}.

The effect of t� on ψt(·) is illustrated in Fig. 4. It can be
seen that a smaller t� also makes the projector sharper. Such
a projection function was used in [47], which studied deep
learning-based detection for unquantized MIMO systems.

Our proposed B-DetNet approach is realized by unfolding
the projected gradient descent in (31). The overall structure
of B-DetNet is illustrated in Fig. 1. Each layer takes an input
vector of size 2K and generates an output vector of the same
size. The specific structure of each B-DetNet layer is given in
Fig. 5 where Â and ÂT Σ̂

−1

n play the role of weight matrices.
Note that Â and Σ̂

−1

n are obtained using a channel estimate
Ĥ from, e.g., FBM-CENet. The received signal vector y is
seen to be the bias vector. Hence, B-DetNet is highly adaptive
to the channel. The only trainable parameters in layer � of
B-DetNet are the step size α(�) and the scaling parameter t�
in the projector function ψt�

(·).
We note that similar structures for data detection in

full-resolution systems have been developed in [47], [48].
However, the received signal in full-resolution systems is given
as y = Hx + z, and therefore the gradient of interest becomes
−2HT (y − Hx). For low-resolution systems, we have a new
effective channel A and a new noise covariance matrix Σn,
resulting in a new form of the gradient as in (32).

B. Proposed FBM-DetNet

1) Maximum-Likelihood Data Detection Problem: Let
sup

i =
√

2ρ(qup
i −hT

i x) and slow
i =

√
2ρ(qlow

i −hT
i x), where

qup
i =

{
yi + Δ

2 if yi < τ2b−1

∞ otherwise,

qlow
i =

{
yi − Δ

2 if yi > τ1

−∞ otherwise.

Hence, qup
i and qlow

i are the upper and lower quantization
thresholds of the bin to which yi belongs. The ML detection
problem based on the log-likelihood function for the model
in (27) is defined as follows [49]:

x̂ML = arg max
x̄∈M̄K

2N∑
i=1

log
[
Φ (sup

i ) − Φ
(
slow

i

)]
. (34)

Let P(x) denote the objective function of (34), which is a con-
cave function of x. However, the optimization problem (34)
is not convex since the feasible set is discrete. Therefore,
an optimal solution for ML detection in (34) also requires an
exhaustive search over M̄K , which is prohibitively complex
for large-scale systems. One can relax the constraint on the
feasible set from x̄ ∈ M̄K to x̄ ∈ CK in order to obtain a
convex optimization problem and allow an iterative gradient
descent method to be used. Unfortunately, such an approach
also suffers from the indeterminant gradient issue discussed
earlier for the channel estimation problem. In addition, there
is no closed-form expression for Φ(·), which complicates the
evaluation in (34). As before, we exploit the approximation
in (16) to obtain an approximate version of the function P(x)
as follows:

P(x) ≈ P̃(x) =
∑2N

i=1 log
[

1

1+e−cs
up
i

− 1

1+e−cslow
i

]
(35)

The reformulated ML detection problem is thus

x̂ML = arg max
x̄∈M̄K

P̃(x), (36)

and the gradient of P̃(x) is

∇P̃(x) =
2N∑
i=1

c
√

2ρhi

(
1 − 1

1 + ecsup
i

− 1
1 + ecslow

i

)
(37)

= c
√

2ρHT
[
1− σ

(
c
√

2ρ (Hx − qup)
)

− σ
(
c
√

2ρ
(
Hx− qlow

)) ]
(38)

where qup = [qup
1 , . . . , qup

2N ]T and qlow = [qlow
1 , . . . , qlow

2N ]T .
Thus, an iterative projected gradient decent method for solv-
ing (36) can be written as

x(�) = ψt�

(
x(�−1) + α(�)∇P̃(x(�−1))

)
(39)

where � is the iteration index, α(�) is a step size, and ψt�
(·)

is also a projector as defined in (33).
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Fig. 5. Specific structure of layer � of the proposed B-DetNet.

Fig. 6. Specific structure of layer � of FBM-DetNet. The weight matrices and the bias vectors are defined by the channel and the received signal, respectively.

2) Structure of the Proposed FBM-DetNet: In order to
optimize the step sizes {α(�)} and scaling parameters {t�} of
the projection function, we also unfold each iteration in (39)
as a separate DNN layer. The overall structure of the proposed
detector FBM-DetNet is also illustrated in Fig. 1, and is similar
to that of B-DetNet as each layer of both networks takes a
vector of 2K elements as the input and generates an output
vector of the same size.

The specific structure for each layer � of FBM-DetNet is
illustrated in Fig. 6. Each layer of FBM-DetNet has two weight
matrices H and HT and two bias vectors qup and qlow defined
by the channel and the received signal, respectively. The
activation function is the Sigmoid function σ(·) due to the use
of the approximation in (16). Since H ∈ R2N×2K , the learning
process for each layer of FBM-DetNet can be interpreted as
first up-converting the signal x(�−1) from dimension 2K to
dimension 2N using the weight matrix H, then applying the
nonlinear activation function σ(·) before down-converting the
signal back to dimension 2K using the weight matrix HT .

Finally, the function ψt�
(·) is implemented to project x(�−1)

onto the discrete set M̄K .
The layers of FBM-DetNet are similar to those of

FBM-CENet in Fig. 2b. However, while the weight matrices
of FBM-CENet are defined by the pilot matrix P which is
trainable, the weight matrices of FBM-DetNet are defined by
the channel matrix H which is not. Thus, FBM-DetNet is
highly adaptive to the channel. The trainable parameters of
FBM-DetNet are the step sizes {α(�)}, scaling parameters {t�}
for the projector, and a scaling parameter β for the Sigmoid
function. Note that the coefficient c

√
2ρ is also omitted in

FBM-DetNet for the same reason as in FBM-CENet.

C. Training Strategy

A training sample for the two proposed data detection
networks, B-DetNet and FBM-DetNet, can be obtained by
first randomly generating a channel matrix H according to
a particular channel model, then obtaining an estimate Ĥ of
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TABLE II

COMPUTATIONAL COMPLEXITY COMPARISON OF CHANNEL ESTIMATION
METHODS, WHERE fsl(·) REPRESENTS A SUPER-LINEAR FUNCTION

H by using, e.g., FBM-CENet. Next, the transmit signal x
can be randomly drawn from the signal constellation and a
Gaussian noise vector z can be chosen to obtain a represen-
tative received signal vector y = Qb(Hx + z). Similar to the
channel estimation network, the cost function to be minimized
is ‖x(L) − x‖2, where x is the target (transmitted) signal.
For training the proposed data detection networks, we do not
need to use the soft quantization model because the trainable
parameters do not appear in the received signals y or qup and
qlow, and therefore the exact hard quantizer can be used.

V. COMPUTATIONAL COMPLEXITY ANALYSIS

AND NUMERICAL RESULTS

A. Computational Complexity Analysis

Here we present a Big-O computational complexity analysis
for the considered channel estimation and data detection meth-
ods. The presented complexities only account for the online
processing phase. Offline computations are excluded. Table II
compares the complexity of different channel estimation meth-
ods. It can be seen that the complexity of BMMSE is the
lowest and highest when the channels are i.i.d. and correlated,
respectively. This is because the BMMSE estimation matrix
can be computed offline for i.i.d. channels, but online for
correlated channels. The complexity of BWZF is higher than
that of the SVM method and the proposed FBM-CENet
because the BWZF estimation matrix must also be computed
online as it depends on the received signal. The complexity
order of the proposed FBM-CENet is higher than BMMSE
with i.i.d. channels, but scales more slowly than the SVM
method since the SVM complexity is a super-linear function
of Tt.

The complexity comparison of different data detection
methods is given Table III. Note that while the detection
methods SVM and FBM-DetNet do not require preprocessing,
BMMSE, BWZF, and B-DetNet require a preprocessing step
due to the linearization process of the Bussgang decomposi-
tion. In the detection stage, BMMSE has the lowest complexity
since it requires only one matrix-vector multiplication for
each time slot. The complexity of BWZF is higher than
BMMSE since the demultiplexing matrix of BWZF has to be
re-computed in each time slot. The detection complexities of
the proposed B-DetNet and FBM-DetNet are higher than the
complexity of BMMSE, but lower than that of the SVM-based
method.

TABLE III

COMPUTATIONAL COMPLEXITY COMPARISON OF
DATA DETECTION METHODS

B. Numerical Results

Here we present numerical results that illustrate the superior
performance of the proposed channel estimation and data
detection networks. For training the networks, we use Ten-
sorFlow [50] and the Adam optimizer [51] with a learning
rate that starts at 0.002 and decays at a rate of 0.97 after
every 100 training epochs. The size of each training batch
is set to 1000. The input of the first layer is set to a zero
vector. When the pilot matrix P is trainable, we use the soft
quantization model in (21) and (22) for the training phase and
set c1 = 0.01 and c2 = c3 = c4 = 1000. For the channel
estimation phase, we set the training length to be five times
the number of users, i.e., Tt = 5K .

We consider the following channel model:

H̄ = H̄LoSΞLoS + H̄NLoSΞNLoS, (40)

where H̄LoSΞLoS and H̄NLoSΞNLoS account for the Line-of-
Sight (LoS) and Non-Line-of-Sight (NLoS) channels, respec-
tively. The matrices ΞLoS and ΞNLoS are diagonal and
defined as ΞLoS = diag(ξLoS1 , . . . , ξLoSK ) and ΞNLoS =
diag(ξNLoS1 , . . . , ξNLoSK ) where

ξLoSk =
√

κk

κk + 1
and ξNLoSk =

√
1

κk + 1
, (41)

and κk is the Rician factor of the channel from the k-th
user to the BS. If κk = 0, there is no LoS component
between user-k and the BS. Let H̄LoS = [h̄LoS

1 , . . . , h̄LoS
K ] and

H̄NLoS = [h̄NLoS
1 , . . . , h̄NLoS

K ]. The LoS channel vector h̄LoS
k is

given as [52]

h̄LoS
k =

√
γkejϕk [1, ej2πdA sin(θk), . . . , ej2πdA(N−1) sin(θk)]T

(42)

where γk is the large-scale fading coefficient, ϕk ∈ [0, 2π] is
a random phase shift, and dA is the antenna spacing parameter
(in fractions of a wavelength), and −π/3 ≤ θk ≤ π/3 is the
angle-of-arrival seen at the BS for user-k. The NLoS channel
is given as h̄NLoS

k ∼ CN (0, C̄k) where tr(C̄k)/N = γk. Note
that the channels between a user and different receive antennas
can be correlated, but the channels between the users and
the BS are uncorrelated. The large-scale fading coefficient is
modeled (in dB) as [53] γk = −30.18 − 26 log10(dk) + Fk

where dk is the distance between user-k and the BS, and
Fk ∼ N (0, σ2

sh) is the shadow fading coefficient with σsh = 4.
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Fig. 7. Channel estimation performance comparison for a given pilot matrix
with K = 4, L = 8, and N = 32.

The Rician factor is given as κk = 13 − 0.03dk (dB) [53].
We assume perfect transmit power control at the users so that
the received signal powers of different users are the same and
equal to one. The SNR is defined as ρ = 1/N0.

We compare the channel estimation performance of different
methods in terms of normalized mean squared error (NMSE),
defined here as NMSE = E[‖Ĥ − H̄‖2

F]/E[‖H̄‖2
F], where Ĥ

is an estimate of the channel H̄. When the pilot matrix is
prespecified, it is assumed to contain K columns of a Tt ×Tt

discrete Fourier transform (DFT) matrix. In particular, the kth

row of the pilot matrix X̄t is column (k + 1) of the DFT
matrix.

Fig. 7 presents a performance comparison of different
channel estimation methods for the given DFT-based pilot
matrix and considering both uncorrelated NLoS and spatially
correlated mixed LoS-NLoS channels. Numerical results for
the uncorrelated NLoS scenario are given in Fig. 7a where
we set κk = 0 for all k, and h̄NLoS ∼ CN (0, IN ). It can
be seen from Fig. 7a that the proposed FBM-CENet signifi-
cantly outperforms existing methods. For the case of one-bit
ADCs, it is observed that the proposed FBM-CENet slightly
outperforms the SVM-based method in [19] at medium-to-high
SNRs. However, at low SNRs, the performance gap between
FBM-CENet and the SVM method is larger. For few-bit
ADCs, it is clear that FBM-CENet significantly outperforms
other existing channel estimation methods. Note that the
SVM-based method in [19] was specifically designed for one-
bit ADCs, and thus SVM results for other ADC resolutions
are not available. The BWZF method does not perform well
for one-bit ADCs since it gives a higher weight to signals
with lower variance. However, for one-bit ADCs, there is only
one bin on each side of the quantization threshold, and thus
the weighting has no impact in this case. On the other hand,
higher resolution ADCs result in more quantization bins and
thus different weights come into play, and thus we see that
BWZF performs better with few-bit quantization.

Numerical results for spatially correlated mixed LoS-NLoS
channels are provided in Fig. 7b. For this scenario, we use the
typical urban correlation model as in [3] and set 10 ≤ dk ≤
1000. For the case of one-bit ADCs, the SVM-based method
gives the best performance, while the proposed FBM-CENet

Fig. 8. Channel estimation performance of GDM versus the proposed
FBM-CENet with K = 4, L = 8, and N = 32.

Fig. 9. Channel estimation performance of GDM versus the proposed
FBM-CENet with different values of L, K = 4, N = 32, and SNR = 30 dB.

performs worse than the SVM-based and BMMSE methods,
but better than BWZF. The reason for this is because both
BMMSE and SVM exploit knowledge of the channel correla-
tion matrix, which is not used by FBM-CENet. Only received
signals and pilot matrix are used by FBM-CENet. However,
for few-bit ADCs, the proposed FBM-CENet approach outper-
forms both BMMSE and BWZF at higher SNRs even without
using information about the channel statistics (recall that the
SVM method only applies in the one-bit case). BMMSE
gives the best performance at low SNRs for an additional
reason beyond its use of the channel correlation information,
namely that its use of the Bussgang decomposition is more
accurate when the received signal is Gaussian, which becomes
a better approximation as the power of the Gaussian noise
increases. However, BMMSE uses an approximation for the
Bussgang decomposition with few-bit ADCs that limits its
performance at higher SNRs where FBM-CENet is superior.
Note that BMMSE and SVM were implemented assuming
perfect knowledge of the channel correlation, which may
not be available in practice. FBM-CENet still provides very
good performance without any relying on any correlation
information, but extending the network to be able to exploit
this information is an interesting area for future work.

In the following comparisons and evaluations, from Fig. 8
to Fig. 11, we present results for uncorrelated NLoS channels
since we found that the results were similar for spatially
correlated mixed LoS-NLoS channels. Fig. 8 compares the
proposed FBM-CENet with PG-FBM-CENet as well as the
conventional gradient descent method (GDM) in (20) using a
constant step size αt for all iterations. The step size αt used
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Fig. 10. Channel estimation performance of the proposed FBM-CENet with various values of K and L, N = 32, and SNR = 30 dB.

Fig. 11. Channel estimation performance comparison with trainable pilot
matrix, K = 4, L = 8, and N = 32.

in GDM is normalized by the SNR as we found this gives
stable performance for different SNR regimes. Note that FBM-
CENet, PG-FBM-CENet, and GDM use the same number
of layers (iterations) so that they have the same complexity.
Simulation results show that the proposed FBM-CENet sig-
nificantly outperforms PG-FBM-CENet and the conventional
GDM. This results because, while GDM uses a common step
size in all iterations and PG-FBM-CENet only optimizes the
step sizes, the proposed FBM-CENet learns an optimal path
by jointly optimizing the optimal step sizes {α(�)

t } as well as
the optimal scaling parameter βt. The value of these optimal
parameters will depend on the specific channel and system
model. If an analytical connection between the system model
and the optimal parameters {α(�)

t } and βt could be found,
then such a connection could be used to infer {α(�)

t } and βt

for different channel and system models without the need for
a training process. However, our simulations show that the
trained values of {α(�)

t } and βt do not appear to have a clearly
interpretable connection to the model parameters. We leave
study of this interesting problem for future work.

In practice, the step size αt can also be tuned by, for
example, the backtracking line search method. However, this
method requires an inner search loop in each iteration and
therefore significantly increases the computational complexity
compared to using fixed step sizes. Note that GDM, PG-
FBM-CENet, and FBM-CENet presented above use fixed step
sizes. For PG-FBM-CENet and FBM-CENet, the step sizes

are obtained by the training process. Thus, GDM, PG-FBM-
CENet, and FBM-CENet have significantly lower complexity.
In addition, the inner search loop in each iteration requires the
calculation of the objective function (17), which is undefined
when the argument of the logarithm approaches zero. In our
investigation, this issue occurs frequently. Note however that
although the value of the objective function (17) can become
undefined, its gradient (19) is robust against this issue.

In Fig. 9, we evaluate GDM, PG-FBM-CENet, and
FBM-CENet for different numbers of layers L. It is observed
that the proposed FBM-CENet performs better than both
PG-FBM-CENet and GDM for different values of L and also
requires fewer layers for convergence.

We investigate the performance of FBM-CENet as K , L,
and b vary in Fig. 10. We see that for a given bit resolution b,
the number of layers L need not be increased as the number
of users K increases. However, as the bit resolution increases,
improved performance can be achieved with an increased
number of layers. Specifically, with one-bit ADCs, we can
fix the number of layers to 6 as K increases from 3 to 6.
However, as the bit resolution increases to 2 and 3, it is best
to increase the number of layers to 8 and 10, respectively.

In Fig. 11, we consider the case where the pilot matrix
is trained concurrently with the channel estimator. As men-
tioned earlier, when the pilot matrix is not given, we need
to use a soft quantizer, based on either the ReLU or tanh
function. In Fig. 11a, it is seen that the ReLU- and tanh-based
soft quantizers give essentially identical performance. This
is due to the fact that the parameters of the soft quantizers
should be chosen so that they act similar to a hard quan-
tizer. In Fig. 11b, the proposed FBM-CENet is compared
with the existing conventional DNN-based method in [23]
which also jointly optimizes the pilot matrix and the channel
estimator. Note that we use the network structure and training
method proposed in [23] to obtain the performance of the
conventional DNN-based method. FBM-CENet significantly
outperforms the channel estimator in [23] since the method
of [23] uses the conventional data-driven DNN structure in
Fig. 2a. On the other hand, the structure of FBM-CENet
takes advantage of domain knowledge in the ML estimation
framework. In Fig. 11b, we also include the channel esti-
mation performance of FBM-CENet for a given orthogonal
DFT-based pilot matrix in order to show that jointly optimizing
the pilot matrix and the estimator can improve the estimation
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Fig. 12. Performance comparison for data detection methods with QPSK signalling and N = 32.

Fig. 13. Performance comparison for data detection methods with 16-QAM signalling and N = 64.

Fig. 14. Data detection performance comparison for various values of N at
10-dB SNR and 16-QAM signalling.

accuracy. This improvement is obtained since orthogonal pilot
data is known to be sub-optimal in low-resolution quantized
systems [23]. When the pilot matrix is not given and treated
as trainable, the training process of FBM-CENet produces a
non-orthogonal pilot matrix that yields better performance than
orthogonal pilots.

In the following, we present performance comparisons for
data detection. Unless otherwise stated, uncorrelated NLoS
channels are considered and the estimated CSI is obtained by
FBM-CENet with a trainable pilot matrix. Comparisons given
in Fig. 12 and Fig. 13 are for QPSK and 16-QAM signal-
ing, respectively. The results show that FBM-DetNet signifi-
cantly outperforms other data detection methods. FBM-DetNet

outperforms B-DetNet because FBM-DetNet is developed
based on the original quantized system model whereas
B-DetNet relies on the linearized system model in (28)
whose effective noise n is approximated as Gaussian. Fur-
thermore, the distortion covariance matrix Σn assumed by
B-DetNet for the case of few-bit ADCs is approximate since a
closed-form expression for Σn is intractable. For the case of
3-bit ADCs and 16-QAM signaling, B-DetNet performs worse
than the BWZF method. As mentioned earlier, this is because
BWZF performs better when there are more quantization
bins (i.e., few-bit quantization), and also because B-DetNet
is developed by unfolding the gradient descent of a linearized
system, similar to the methodology applied in FS-Net [47]
and DetNet [54], whose performance tends to degrade with
higher dimensional constellations [55]. Note that FS-Net was
developed for unquantized systems while B-DetNet is for the
low-resolution quantized case.

In Fig. 14, we present a detection performance comparison
for various values of N at 10-dB SNR and with 16-QAM
signalling. It can be seen that the performance improvement
of the proposed detection networks is maintained as the num-
ber of receive antennas increases. Since our derivations and
methods assume no constraint on N , the proposed networks
can work with an arbitrary number of receive antennas.

We provide a data detection performance comparison for
spatially correlated mixed LoS-NLoS channels in Fig. 15
where the estimated CSI is obtained by the BMMSE method.

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on August 04,2023 at 22:37:52 UTC from IEEE Xplore.  Restrictions apply. 



NGUYEN et al.: DEEP LEARNING FOR ESTIMATION AND PILOT SIGNAL DESIGN IN FEW-BIT MASSIVE MIMO SYSTEMS 391

Fig. 15. Data detection performance comparison with spatially correlated
mixed LoS-NLoS channels, b = 2, K = 4, N = 64, L = 8, 16-QAM
signalling, and BMMSE-based estimated CSI.

It is still observed that the proposed FBM-DetNet gives the
best performance. This shows that the proposed detection
networks can work well with the estimated CSI given by not
only FBM-CENet but also other channel estimation methods.

VI. CONCLUSION

In this paper, we have developed a channel estima-
tion network (FBM-CENet) and two data detection net-
works (B-DetNet and FBM-DetNet) for massive MIMO sys-
tems with low-resolution ADCs. The proposed networks are
model-driven and have special structures that can take advan-
tage of domain-knowledge to efficiently address the severe
non-linearity caused by the low-resolution ADCs. An interest-
ing feature of the proposed FBM-CENet is that the pilot matrix
directly plays the role of the weight matrices in the network
structure, which makes it possible to jointly optimize the
estimation network and the pilot signal by simply treating the
pilot matrix as trainable parameters. The proposed detection
networks are highly adaptive to the channel and easy to train
since they have a small number of trainable parameters. Sim-
ulation results show that the proposed networks significantly
outperform existing methods.
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