Computational Statistics and Data Analysis 178 (2023) 107596

Contents lists available at ScienceDirect = <0Mﬂ§m||grr:é;

& DATA ANALYSIS

Computational Statistics and Data Analysis

www.elsevier.com/locate/csda

Fast Bayesian inference on spectral analysis of multivariate n

: : : ke Check for
stationary time series updates
Zhixiong Hu *, Raquel Prado
Department of Statistics, University of California, Santa Cruz, 1156 High St, Santa Cruz, 95064, CA, USA
ARTICLE INFO ABSTRACT
Affif{e history: Spectral analysis discovers trends, periodic and other characteristics of a time series
Received 17 November 2021 by representing these features in the frequency domain. However, when multivariate
Received in revised form 9 August 2022 time series are considered, and the number of components increases, the size of the

Accepted 12 August 2022

Available online 19 August 2022 spectral density matrix grows quadratically, making estimation and inference rather

challenging. The proposed novel Bayesian framework considers a Whittle likelihood-
based spectral modeling approach and imposes a discounted regularized horseshoe prior

;\(/[eirvﬁ?,;drsi;te time series on the coefficients that define a spline representation of each of the components of
Spectral analysis a Cholesky factorization of the inverse spectral density matrix. The proposed prior
Stochastic gradient variational Bayes structure leads to a model that provides higher posterior accuracy when compared to
Global-local shrinkage prior alternative currently available approaches. To achieve fast inference that takes advantage

of the massive power of modern hardware (e.g., GPU), a stochastic gradient variational
Bayes approach is proposed for the highly parallelizable posterior inference that provides
computational flexibility for modeling high-dimensional time series. The accurate empirical
performance of the proposed method is illustrated via extensive simulation studies and
the analysis of two datasets: a wind speed data from 6 locations in California, and a 61-
channel electroencephalogram data recorded on two contrasting subjects under specific
experimental conditions.

© 2022 Elsevier B.V. All rights reserved.

1. Introduction

Spectral analysis has been widely used to characterize the properties of one or more time series in the frequency domain.
Accurate inference of spectral density matrices is critical for understanding the structure underlying the components of a
given multivariate temporal process, and for revealing potential relationships across its components. However, inference
of spectral density matrices suffers from the curse of dimensionality. This paper develops models and methods to obtain
scalable and accurate inference on the spectral density matrix, and functions of this matrix, for high-dimensional stationary
multivariate time series under a Bayesian framework.

Several frequency domain methods have been developed for Bayesian spectral analysis of stationary multivariate time
series. Rosen and Stoffer (2007) proposed a Bayesian approach that uses Markov chain Monte Carlo (MCMC) techniques
to obtain posterior inference in a model that considers smoothing splines to represent the real and imaginary compo-
nents of the modified complex Cholesky decomposition of the inverse spectral density matrix. In earlier related work,
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Dai and Guo (2004) used a Cholesky factorization of the spectral density matrix. More recently, Krafty and Collinge (2013)
derived an approach that considers a penalized Whittle log-likelihood to incorporate regularization on the multivariate
power spectra, allowing for varying levels of smoothness among power spectral components. Meier et al. (2020) modeled
the spectral density matrix with matrix-valued mixture weights induced by a Hermitian positive definite Gamma process,
effectively extending the univariate Bernstein-Dirichlet process prior approach of Choudhuri et al. (2004) to the multivariate
case. There are also a few approaches that adapt the aforementioned stationary models to handle nonstationary multivariate
spectral analysis (Zhang, 2016; Li and Krafty, 2019; Li et al., 2021).

The approaches for spectral analysis of multivariate stationary and nonstationary time series discussed above are sophisti-
cated and very flexible, however, they incur very high computational costs and hence, lack of scalability in high-dimensional
and even in relatively low or moderate-dimensional settings that involve joint analysis of a collection of time series
components. Here we focus on providing accurate and scalable inference in the case of stationary spectral analysis of a
p-dimensional time series, where a p-by-p spectral matrix needs to be inferred. Following an approach similar to that of
Rosen and Stoffer (2007), we model each component in the Cholesky decomposition of the inverse spectral density matrix
via a smoothing spline with M bases. In this case, the total number of unknown parameters in the model is proportional
to p>M, which grows quadratically with the number of time series p, and linearly on the number of basis functions M.
Using low-rank factor representations such as those proposed by Li et al. (2021) considerably reduces the number of model
parameters and improves scalability, however, it does not fully solve the problem in practical settings where several time
series need to be jointly analyzed. In particular, using iterative simulation-based techniques, such as MCMCs, to obtain pos-
terior samples of all the unknown parameters is rather challenging if both p and M are large, resulting in a tremendous
computational overhead.

We develop and illustrate a novel and fast Bayesian modeling and inference framework for spectral analysis of mul-
tivariate stationary time series. A key feature of our approach is that it uses variational inference (VI), leading to fast
approximate posterior inference in cases where the number of time series is large. VI casts inference in terms of the op-
timization of a surrogate distribution that approximates the intractable posterior distribution (Blei et al., 2017), and can
generally be facilitated and scaled up by stochastic optimization (Robbins and Monro, 1951). For instance, Kingma and
Welling (2013) proposed a stochastic gradient variational Bayes (SGVB) approach that utilizes the gradient of the unnor-
malized log-posterior distribution throughout optimization. Assuming a multivariate Gaussian variational distribution, SGVB
relies on the reparameterization trick to yield a simple differentiable unbiased and low-variance gradient estimator (Xu et
al., 2019; Domke, 2019). In comparison to MCMC, VI tends to be much faster and scalable for large-scale inference problems.

Our proposed approach uses a SGVB scheme that is highly parallelizable and compatible with GPU acceleration, providing
a computationally efficient framework for spectral modeling and inference of high-dimensional time series. As some of the
approaches discussed above, we use a rich set of spline bases to represent the inverse spectral density matrix, preserving
model flexibility. In addition, in order to allow for model flexibility while also avoiding overfitting, we consider a modified
version of the regularized horseshoe priors of Piironen and Vehtari (2017), referred to as discount regularized horseshoe
priors, on the parameters that define the spline representation of the inverse of the spectral density matrix. Our discounted
regularized horseshoe (DRH) prior includes a pre-specified discount factor on the hyper-parameter that controls the local
shrinkage parameters on spline coefficients. The proposed prior varies the degree of regularization according to the smooth-
ness of the basis functions. In addition to providing various levels of smoothness for the spectral components, the global
and local shrinkage parameters in the proposed prior add significant model flexibility.

The remainder of the article is organized as follows. Section 2 specifies the model and priors used for spectral analysis
of stationary multivariate time series. Section 3 describes the proposed stochastic gradient variational Bayes scheme for fast
and scalable posterior inference. Section 4 reports results of extensive simulation studies that illustrate the accuracy and
scalability of the proposed approach. Section 5 applies the proposed framework to the analysis of multi-location wind speed
time series data from the lowa Environmental Mesonet (IEM) database (Todey et al., 2002). This section also presents the
results of the analysis of a multi-channel electroencephalogram dataset from the UCI Machine Learning Repository (Dua and
Graff, 2017).

2. Model specification
2.1. The modified complex Cholesky decomposition

Let {x;} denote a p-dimensional time series process. Consider a realization {xX, ..., X,} of such process, or Xi.;. These data

can be represented in the frequency domain via the discrete Fourier transform (DFT), y (vg) = n=3 g Xt e 27 ind \where
vk = k/n denote Fourier frequencies, k =0, 1, ..., n—1. Because the discrete Fourier transform is an even function of v, there
are only [n/2] distinct y (vg). If we assume {X;} to be stationary with p x p autocovariance matrix, I'(h) = {y;(h)}, satisfying
Yo oo v < oo for all i, I=1, ..., p, there exists a p x p spectral density matrix f(v)=73)p>__ T(h) e 27ivh \where
v €[—0.5,0.5] is a frequency measured in cycles per unit time. Note that f(v) = f*(—v) where * denotes the conjugate
transpose. Additionally, f(v) is also positive definite. The diagonal entries of f(v), f;;(v) for j=1, ..., p, correspond to the
spectral densities of each of the p components of the time series x;. The off-diagonal elements of the spectral matrix can be

combined to define the squared coherence pl?,(v) = % ,oiz,(v) €0, 1], where i, [ =1, ..., p with i #[. The coherence
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is a frequency-domain analog of a the correlation between two components. It measures the strength of the association
of the different time series components for a given frequency v. Squared coherence values closer to one indicate strong
association, while values close to zero show little or no association between components i and I.

Following an approach similar to that in Rosen and Stoffer (2007), we use a Cholesky factorization of the inverse of the
spectral density matrix and then represent the components of this factorization via smoothing splines, as follows. Let y, =
y (v) and f, = f(vr) with f the matrix-valued spectral density function. Then, the multivariate extension of the Whittle

likelihood approximation (Whittle, 1957) is given by L (y1.n; fi1.n) & ]_[,12’:1 det (f,) "' exp (—y,ff;lyk), with N = [n/2]. To
ensure that f is positive definite, fk_] can be modeled through the modified complex Cholesky factorization:

f' =T;D, 'Ty, )]
oo

where Dy = diag (82 6§k), and Ty is a complex unit lower triangular matrix such that

1

S
(k) (k)
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Consequently, the likelihood can be rewritten as:
l (k) 2
1y ik — ] i Yikl
_2 J
L(ym,fm)cx]‘[]"[ 8 - 52 : (3)
k=1 j=1 Jjk

with yj, denoting the j-th dimension of yi, and | - | denoting the absolute value. Note that (3) decomposes the likelihood
into p components. For j=1, ..., p, each component is written as

- Wi = 2057 05 yuel?
- jk — 2.1=1 Yik
Lj(yin; f1n) = 1_[ (Sjkz exp | — 5
k=1 Sl

, (4)

such that L (y1.n; f1:n) ]_[?:1 Lj(y1:n; f1:n) and so, posterior inference can be obtained in parallel over j.
2.2. Prior specification

Rosen and Stoffer (2007) used a basis representation to model the entries of the Di’s and Ti’s. Our approach considers
the same representation, which is briefly described below, but uses a different prior structure on the parameters that de-
fine this representation. More specifically, the Demmler-Reinsch basis functions (Eubank, 1999) are used to represent each
log(S]z.k and the real and imaginary parts of each G;Ik) in terms of M-truncated smoothing splines: logéjz.k =¥Yjo0+Vjivk+

z Kk - v -

SV s () Yjosits 9*(9;,)) = o0 + Xji1Vk + Zi‘if s (Vi) @i s41, and \8(9;,0) = Bjio + Bji,1vk + S s () Bjl.s+1»
where ¥g(g) = +v/2c0s (ST V). M is a pre-specified constant determining the number of basis functions to be included
and therefore the model flexibility. Let Xy = (1, vk, Y1(Vk), ..., ¥m—-1(Vk)), ¥ j = (¥j.05 -+ Vi.m)'s @ji = (@j1,0, -, &ji,m)’, and
Bji=Bjios s Bji,m)'. Then, the aforementioned smoothing splines can be rewritten as:

N PN (.
logs?, =X,y ;. ROY) =Xy, 30))) =XBj. (5)
For notation brevity, let . denote {&j1,...,ej—1} and B;. denote {B;;, ..., Bjj_1}. By plugging (5) into (4), Lj (y1.n; f1:n)

can be reparameterized as Lj (y1.n; Vi dj., /3]-,), where for every j=1,..., p:
N j—1 .
Z |:Xk)’ . |y jk — ZIJ:1 (Xet ji + 1Xkﬁj1) }’ll<|2i|
j .

exk Vi

(6)

logLj (yin; ¥j. ). Bj)=—
k=1

Note that in the case of k=1, L1 depends solely on ;.
Our goal is to obtain posterior estimates of the y;’s, atji’s, and B 's. Hence, priors on spline coefficients are needed. One
option is to use normal priors as in Rosen and Stoffer (2007); Zhang (2019). We show later via simulation study that such
priors can be inadequate to handle cases in which some of the time series components require a large number of bases
in their representation, while others require a small number, thus failing to provide a flexible modeling framework that
can adequately capture this situation. An ideal prior setting should allow the selection of enough basis terms to achieve a
good fit, while also avoiding overfitting for each component. To achieve this, our prior setting is based upon the so-called
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regularized horseshoe prior (Piironen and Vehtari, 2017). This is a global-local shrinkage prior with a global parameter that
provides shrinkage towards zero for all the components sharing this parameter, and local, or component-specific parameters
that allow some of individual components to escape from the shrinkage. Xie (2018) first explored the use of this prior in
spectral analysis of univariate stationary time series. Here we extend this approach to develop a novel model and related
inference procedure for accurate and computationally efficient Bayesian multivariate spectral analysis.

The proposed prior distribution structure is as follows. First, we impose no shrinkage on yjo and y; 1 and assume that
Yj,s ~ N(0,10) for all j and s =0, 1. This is based on the idea that the individual spectral densities will have at the very
least a baseline basis representation that is non-zero on the intercept and slope terms (e.g., the spectral density of a white
noise process is a linear constant function over the frequencies), and possibly a more sophisticated structure that can be
captured by the regularized horseshoe prior on the remaining parameters as explained below. We have found that a prior
variance of 10 (or any value within [10, 10°] that leads to a non-informative prior) for these terms typically works well

c272)2

——L-5 ), where c is a constant. Piironen and Vehtari

c +rj )\js

(2017) recommend placing an inverse-gamma prior on c. However, placing a prior distribution on ¢ breaks the possibility

of achieving parallel posterior computation since c is shared for all j. Hence, in order to maintain computational efficiency
. . e 21232

we fix ¢ and discuss the selection of ¢ below. Similarly, for s=0,..., M, &jis | Ajis ey, Tjt ~ N (O, M) and Bji s |

in practice. Then, for s =2,..., M we assume y;js | Ajs,Tj ~N (O,

37,2
CEHTjM s, (re)

2,242
Ajs, imy> Tjl ™~ N(O, CZ;’;%) The parameters 7; and tj; above control the overall roughness of the spectral density
matrix for each component j as a function of the frequency. We assume tj, tj ~ C*(0, c;), where C* denotes Half-Cauchy
distribution and c; is a fixed constant. We also have local parameters Ajs, Ajis ey and Ajis imy Which adjust the roughness
as a function of the frequency according to individual Demmler-Reinsch basis with Ajs, A jis (re), Ajis, im) ~ CT (0, cs). Here, ¢
is a pre-specified “discount effect” function varying with s. The choices of c¢; and ¢, are described below.

The prior structure above has the following features. First, as it was previously mentioned, it assumes that the diagonal
entries of a spectral density matrix are all non-zero, and so it does not impose a shrinkage prior on yjo and yj 1. On the
other hand, a global-local shrinkage prior is proposed on the rest of y; ’s.

Second, the sparsity of f,:l’s is directly controlled by 6, whose real and imaginary parts are modeled by splines with
coefficients o and B accordingly. To detect sparsity patterns on the off-diagonal entries in the spectral matrix, group
shrinkage effects are proposed on each pair of {ecj;, B} by letting every coefficient pair, «js and Bj s, share the same
global parameter, 7. In practice, the lack of association between the components of the multivariate time series will be
inferred in terms of the shrinkage of the corresponding estimates of the {a;, 8 ;;} pairs towards zero. We have found results
to be robust to the choice of hyper-parameters, with ¢ € (1, 10°) and c; € (107>,10~") providing indistinguishable estimates
in all empirical examples considered. Thus, we simply set ¢ =2 and c; =0.01 by default.

Third, the discount effect function cs is used to heuristically gain model flexibility. Previous studies do not provide a
general criterion on how to optimally choose the number of basis, M. Rosen et al. (2009, 2012); Zhang (2016); Krafty
et al. (2017) and Zhang (2019) suggest using M = 10. However, such choice is based on their specific prior structure
and simulation studies, which lacks generalization and may not be accurate in some settings. We want our approach to
incorporate more basis functions when needed in order to preserve model flexibility in general situations. The cosine bases,
¥s(vy), allow for modeling more volatile behavior with larger s, which is generally less likely to appear in practical settings.
Therefore, in addition to the regularization obtained from the regularized horseshoe prior above, we further penalize the
appearance of bases according to the value of s. Coefficients of basis terms with larger s will be more likely to be shrunk
towards zero, unless the need to include them in the model is strongly supported by the data. In this way, one can simply
choose a relatively large M and the proposed prior will then automatically preserve the informative bases and will shrink
towards zero those that are not needed. Inspired by the shape of the sigmoid function Sig(x) = [1 + exp(—x)]~!, we choose
the form of c¢s as ¢ = Sig(—as + b) such that c; is a monotone decreasing function of s and is bounded between 0 and 1.
Here a and b are fixed constants defining the shape of the function. a determines how fast the shrinkage level grows. If a is
small, ¢ decreases slowly, meaning the shrinkage level grows slowly. On the other hand, a larger a indicates a faster growth
of the shrinkage level. Meanwhile, b controls when the growth starts. A larger b causes later decrease of cs, or equivalently,
later growth of the shrinkage level. We proposed a default choice of a =1 and b = M/2. This choice is justified through
experimentation via simulation studies and real data analyses.

We refer to the prior structure above as the discounted regularized horseshoe (DRH), and the DRH model to the Bayesian
smoothing splines model for multivariate spectral analysis that assumes the DRH prior. We show later via simulation studies
that DRH can easily handle more than M = 30 bases, which results in much richer representations than those considered
in previous studies. It should be noted that this notion of increasing the penalization as M increases was also used by
Li and Krafty (2019); Li et al. (2021). The key difference is that our approach is based on a regularized horseshoe prior
structure while that of Li and Krafty (2019) uses normal priors without a global-local shrinkage structure, and the prior in
Li et al. (2021) is designed for a stationary factor model representation of the spectral density matrix that is totally different
from the modified complex Cholesky representation used here. Section 4 includes a comparison between our approach and
other currently available approaches in extensive simulation studies. In summary, the DRH joint prior for the j-th likelihood
component can be written as:
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1 M
o) =1 p@io) [ pWis | Ajs: T1) pGejs) P(T))

s=0 s=2

-1 M

1_[ 1_[ p(jis | Ajis, re)» Tjt) P(Ajis, (re)) (7

[=1s=0

-1 M

1_[ 1_[ pBits | Ajis,imy» Tjt) P jis, im)) P(Tj1)-

I=1s=0

We further take the log transformation on all A and t to satisfy the positive constraint of these parameters.
3. Posterior computation

In this section, we describe our approach to adapting variational Bayes techniques to obtain posterior inference of the
proposed DRH spectral model. We take advantage of the power of modern computational resources, such as graphic process-
ing units (GPUs), in order to provide a flexible, scalable and computationally efficient inference scheme for high-dimensional
time series. Our posterior inference scheme is based on the stochastic gradient variational Bayes (SGVB) approach (Kingma
and Welling, 2013). As explained above, the likelihood and priors can be decomposed into p components so we consider in-
ference on each component in parallel. Let v; denote all the model parameters for the jth component. The joint log density
for the jth component can be written as:

log p(vj, y1:n) =logLj (yi:n; Vj) + logm (v)), (8)

where logLj(-) is defined in (6). w(-) is the proposed prior in (7). The true posterior is given by p(v; | y1.n) =
p(Vj, yi:n) / P(¥1:n), With p(y1.n) an intractable normalizing constant, thus p(v; | y1.n) also becomes intractable. The goal
of variational inference is to find a surrogate distribution that is most similar to the true posterior. Let qg;(vj) denote the
surrogate distribution of p(vj | y1.n), where ¢; are unknown learnable parameters. The so-called evidence lower bound

(ELBO) between q¢j(vj) and p(v; | y1.n) is defined as £ (pj, q¢j) = Evjwqq,j(vj) [logp(vj, Vi:N) — logq¢j(vj)]. The goal of
variational inference is to find the values of ¢; that maximize ELBO.

We consider iy (vj) =N(vj | p;, X;) as the default surrogate distribution for p(v; | y1.n). X; is a diagonal matrix with
diag(Xj) = a?. This is one of the most popular choices of a surrogate distribution for SGVB, since the diagonal structure of
the variance-covariance matrix significantly simplifies computations. We show in experiments that the SGVB approximate
inference works well in terms of covering the underlying true spectra. Having said this, the proposed framework is friendly
to user-specified surrogate distributions, meaning that we can consider more sophisticated choices if needed in practice.
For instance, the Gaussian variational approximation with a factor covariance structure (Ong et al., 2018) is an alternative
that we have also implemented and that leads to improved uncertainty quantification in low-dimensional and moderate-
dimensional practical settings as illustrated in Section 4.1.

Next, to improve run-time convergence, we utilize a reparameterization (Kingma and Welling, 2013) on v; to obtain
more accurate estimates of the gradient of the variational objective (Xu et al.,, 2019; Domke, 2019). More specifically, we
setvi=p;+0;0¢€j, such that € ~N(0, I) where I denotes the identity matrix, and © denotes element-wise product. To
guarantee that the components o2 are positive, we take the log transformation, i.e., ¢i= logai. Accordingly, ¢; ={u;, ¢},
and the ELBO between p(v; | y1.n) and ¢, (vj) can be written as:

g ¢
L (Pj, qqu) =Ee;~No, 1) [lOgP(IL,’ + exp 71 ©€j, yi:n) —logqe, (i ; +exp 71 OE€j) |- (9)
With one sample e&l) ~N(O0, I), the SGVB gradient estimator of (9) is given by:

v¢j£ (pj7 q¢j) = V¢j ]ng([l,j + exp cz_] © 65‘1) s VIN) — V¢j bgq(bj(”‘j + exp % © €§]))~ (10)
We found that (10) led to a fast convergence in our experiments. More discussions on the convergence of SGVB in our
studies are included in supplementary materials Section S.1. Alternatively, in the Gaussian variational approximation with a
factor covariance structure of Ong et al. (2018), the surrogate posterior for a m-dimensional parameter vector v is defined
as v~ N(u, X) where ¥ =BBT +102. B is a m x q full rank matrix with q << m. The reparameterization trick for the factor
covariance structure can be conducted by calculating v= g + B§ + 0 © € with § ~N(0, Ij) and € ~ N(0, I;), where I, In,
denote the g, m-dimensional identity matrices. The factor covariance structure allows the variational Gaussian approximation
to also capture dependency among the parameters, however, estimating B can be computational intense with longer run
time and more parameter storage when m and q are large. A comparison between the aforementioned two surrogate choices
is presented in Section 4.1.
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In practice, we propose the so-called three-phase Variational Bayes (TPVB) for posterior inference, as illustrated in Algo-
rithm 1, to stabilize the inference process. Note that Algorithm 1 presents the version with the default Gaussian surrogate
distribution with a diagonal covariance matrix, but this algorithm can be easily modified to incorporate the surrogate dis-
tribution with a factor covariance structure. In particular, Phase 1 uses (8) as the objective function to obtain a point
approximation, V; = arg maxy, logp(vj, y1:n) by gradient ascent. Phase 2 fixes p; =v; and only updates ¢; by SGVB to
maximize (9). Finally, both previously updated g ; and ¢; are fine-tuned at Phase 3 by SGVB to maximize (9). Results from
our extensive simulation studies below show that our proposed TPVB achieves high numerical stability. We built the model
and implemented the experiments in Python 3.7 with Tensorflow-Probability and Tensorflow (Abadi et al.,
2015) packages. All gradients are computed via auto-differentiation modules in Tensorflow. At each iteration, we use
Adam (Kingma and Ba, 2017) to update model parameters via gradient ascent.

Algorithm 1: Three-Phase Variational Bayes (TPVB) Posterior Inference.

Input : DFT transformed observations of p-dimensional time series, y.n.
Output: variational posteriors 'y vy, j=1,...,p.
Params: (parameters) ¢y, ..., ¢,, with ¢; ={p;,¢;}, j=1,....p.

1 for je{1,.., p} do

2 Phase 1-Point Approximation: maximizes (8) w.r.t vj, while in iteration do
3 Compute the gradients of v;;
4 Update v; via gradient ascent;
5 end
6 Fix p; equal to the last updated v; in Phase 1.
7 Phase 2-Uncertainty Quant: maximize (9) w.r.t s while in iteration do
8 Draw € ~ N(0, I) and compute the SGVB gradients of ¢; using (10);
9 Update ¢ ; via gradient ascent;
10 end
1 Phase 3-Fine-tuning (Optional): while in iteration do
12 Draw € ~N(0, I) and compute the SGVB gradients of both x; and ¢; using (10);
13 Update p; and ¢; via gradient ascent;
14 end
15 end

4. Simulation studies

In this section, we show the accuracy and efficiency of our methods through simulations. In all cases below, for all
smoothing splines, we set the number of basis to M = 30. This provides much richer representations in comparison to
those used in previous studies where M = 10 regardless of the time series length or their underlying spectral complexity.
We show that the DRH spectral model can effectively handle a large M and lead to accurate spectral inference for various
spectral density shapes. During the TPVB inference process, the learning rate is used as a hyper-parameter to control the rate
at which the algorithm updates the parameter estimates. The learning rates in Adam optimizers are set to be 0.0005, 0.05
and 0.005, respectively for each phase, to obtain gradient descent updates for trainable parameters. We decide the number
of iterations by monitoring the values of the objective function, and stop the training when a typical convergent pattern is
reached. That leads to approximately 5000, 500, and 500 iterations required for each of the 3 phases. The convergence of
the TPVB algorithm is monitored via plots of the log-posterior and the evidence lower bound, as shown in for in Section
S.1 of the Supplementary Material. The simulation experiments are executed on a x64-based PC with a 2.60-GHz Intel®
Core™ {7-9750H CPU and a Nvidia GeForce GTX 1660 Ti GPU card. We illustrate the accurate performance of the proposed
framework for both low and large dimensional spectral analysis, provide comparisons to other available approaches, and
discuss model scalability.

4.1. Simulation study 1

In this study, we show that the inference obtained by the proposed TPVB is an excellent approximation to the full
posterior inference obtained from Markov Chain Monte Carlo (MCMC) methods. We simulate 100 datasets containing x; =
(xu,xz,[)', fort=1,---,1024, from the following bivariate vector autoregressive-moving-average VARMA(2,2) process:

wo|02 057 [0 01y . iw |06 0],  .[03 07, (1)
=1 0 —02 |71 05 —02 |M 2T T 02 —o5 |1 0 03|72

where w; are independent zero-mean bivariate Gaussian random variables whose components have unit variance and pair-
wise correlation 0.8. The average squared error (ASE) was used to numerically summarize the performance of the estimators
of the spectral components. The ASE of a given posterior spectral estimator is obtained by averaging squared errors across
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Table 1

Means (standard deviations) of the run time and ASE values of posterior estimates for spec-
tral components obtained from the DRH model using TPVB and HMC inference schemes
with 10000 posterior samples based on 100 simulated datasets of the VARMA process (11).
In TPVB, the Gaussian variational surrogate distributions with diagonal covariance (default)
and factor covariance structures under g =5, 10 are compared.

fu fn p%, (x10%)  Runtime [sec]
HMC 0.44 (0.37)  0.28 (0.23)  0.26 (0.18) 382 (65)
TPVB (q=10) 044 (0.36) 029 (0.21)  0.27 (0.16) 72 (16)
TPVB (q=5) 046 (0.32) 028 (0.18)  0.26 (0.12) 62 (15)
TPVB (default) 045 (031) 027 (0.16) 0.26 (0.10) 46 (12)

log fi,1 logf,» [P

0.0 02 0.4 0.0 0.2 0.4 Too o1 02 03 o4 05
v v v

Fig. 1. Posterior inference of log spectral densities and squared coherence for the VARMA process (11) given by the DRH TPVB framework. Grey regions are
95% posterior intervals. Lines are true values. Dots represent log periodogram.

an equally spaced grid of 500 frequencies. For example, the ASE of }‘11 (v), a posterior mean estimator of f17(v), is computed
as: ASE = s 35 []‘n ) — 1 (vk)T, with vy = k/1000.

For each of the 100 datasets, we fit the same DRH model, with the same prior structure, and compare the posterior
estimates given by Hamiltonian Monte Carlo (HMC; Neal, 2011), TPVB with the default Gaussian surrogate having a diagonal
covariance structure (default) defined in Section 3, and TPVB with Gaussian surrogate having a factor covariance structure
(Ong et al., 2018) defined in Section 3 with ¢ =5 and q = 10 factors.

We averaged the ASEs for each inference scheme over the 100 datasets to obtain means and standard deviations of ASEs
for the two spectral densities, fi; and f,,, and for the squared coherence, pfz. Table 1 shows the ASE and run time results
obtained by all the methods. In general, we note that all three TPVB approximations slightly underestimate the posterior
variability, as expected, however, the results are pretty similar to those obtained under the HMC scheme. The incorporating
a factor covariance structure in the variational surrogate distribution mitigates the uncertainty underestimation issue in
variational inference, with posterior variability closer to HMC as q increases. We also compared the GPU running time for
all schemes. TPVB (default) takes on average 42 seconds to run per dataset. By utilizing the factor covariance structure in
the variational surrogate distribution, the average run time for TPVB increases to 62 seconds when q =5, and 72 seconds
when g = 10, indicating that even though such factor covariance structure provides more accurate estimates on posterior
variability, it also requires higher computation costs than the default choice. Note that, the run time of TPVB does not
significantly change by the posterior sample size. The run time for HMC, however, grows with respect to the required
posterior sample size. On average, HMC takes roughly 380 seconds per dataset to collect ten thousand posterior samples.
Given that we do not know in advance how many posterior samples are required, and usually more than ten thousand
samples are required for HMC convergence, TPVB ends up being much faster in practice.

Fig. 1 displays the posterior estimates for the individual spectral densities and the coherence given by TPVB (default). It
can be seen that the estimates approximate the true curves smoothly. In comparison to the factor covariance structure, TPVB
(default) is more computational efficient, and preserves similar accuracy regarding to power spectrum estimates (similar
mean ASEs). Considering that the main focus of this paper is the high-dimensional model scalability, we focus on the TPVB
(default) in the following sections, noting that the variational Bayeses approximation can be improved by using the factor
covariance structure in the surrogate distribution.

Similar results in terms of the accuracy of the variational approximations were obtained in another simulation study that
considers a VAR(2) bivariate structure (see supplementary materials S.3 for details).
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Fig. 2. Log-scaled boxplots of averaged squared errors (ASEs) of spectral densities (left frame) and squared coherence estimates (right frame) given by our
DRH model, the SPEC model, and factor model (FM), all fitted by TPVB for simulated 21-dimensional time series with length n.

4.2. Simulation study 2

The computation efficiency gained by TPVB allows us to analyze higher dimensional time series in the spectral domain.
We simulated 20 datasets containing 21-dimensional time series where each multivariate time series was constructed by
combining 7 groups of 3-dimensional time series. We generated each group of time series from one of 7 3-dimensional VAR
processes of order 3. The explicit data generation procedure is detailed in Section S.2 of the Supplementary Material.

Each of the 20 simulated datasets consists of 21 time series components, X; = (xu,xz,[, ...,xz“)/ for t =1 :n, where
components within each of the 7 groups allow non-zero coherence, but components that are not in the same group have
zero coherence. We considered different scenarios with n set to 128, 256, 384, 512, and 640. For each n, we calculate the
ASEs for our DRH model, the SPEC model of Rosen and Stoffer (2007), and the factor model (FM) for stationary time series
of Li et al. (2021), all fitted by TPVB on every replication. We set M = 30 for all models. Note that, the SPEC model does
not consider a global-local regularization in the prior, and instead assigns normal priors to spline coefficients. Unlike DRH
and SPEC which model the modified complex Cholesky factorized components of the inverse spectral matrix, the FM tries
to learn a low-rank decomposition of the spectral matrix.

Considering that there are 21 spectral densities and 210 squared coherences in total, it is impractical to list all the
results individually. Instead, we visualize the ASEs for all the spectral densities and squared coherences in the two boxplots
shown in Fig. 2. This figure presents the boxplots of ASEs varying by the length n of the time series. It can be seen that in
comparison to SPEC and FM, DRH provides much better estimates of pairwise squared coherences (see right plot in Fig. 2),
and still offers competitive results in terms of the inference for spectral densities for all n (left plot in the same figure).
To further illustrate the accuracy of the proposed approach, we also provide inference results for some spectral densities
and some coherences. Fig. 3 shows DRH inference for the first 8 spectral densities in one of the 21-dimensional datasets
of length n = 640, while Fig. 4 displays DRH inference for 8 randomly chosen squared coherence terms. In general, we see
that the proposed model adequately captures the behavior of the spectral densities and coherences (both zero and non-zero
terms). We note that obtaining results using the TPVB approximation for the proposed DRH for a 21-dimensional dataset
with a length of 640 observations took less than 9 minutes in the same hardware platform described above.

4.3. Simulation study 3: model scalability for high dimensions

This section discusses model scalability as time series dimension considerably increases (p > 100). None of the alterna-
tive approaches reviewed in the Introduction can be feasibly scaled to consider spectral analysis of multivariate time series
of this dimension. For this study, we independently generated [p/3] times from the 3-dimensional VAR(3) process used in
Section 4.2. The resulting [p/3] sets of 3-dimensional times series were combined into a p-dimensional time series, and
were modeled jointly. Specific details of the data generation procedure are included in supplementary materials Section S.2.
We consider values of p =30, 45, 60, 75,90 and 105. Fig. 5 shows the boxplots of ASE values for the spectral densities and
coherencies for different values of p for datasets of length n = 1024. It can be seen that the ASEs for the spectral densities
remain in the same range of values as the dimension of the time series increases. For the pairwise squared coherences, the
median ASE, indicated by the dark horizontal line in each boxplot, stays mostly constant, but there is slightly more variation
as the number of time series increases, which is expected as the number of pairwise comparisons increases from 435 for
p =30 to 5,460 for p =105.

To illustrate the time efficiency of the DHR TPVB, we also evaluate how the model runtime is affected by the length,
n, and the dimension, p of the multivariate time series. Fig. 6 shows that the runtime increases as n and p increase, but
is still quite affordable: our framework can analyze a 105-dimensional time series with 1024 observations in less than
24 mins. Considering that the inference process can use parallel computing and we have so far only used one GPU for
computation, the increase of run time for even larger dimensional analyses could be made up by using multiple GPUs, or
Tensor Processing Units (TPUs). One of our future goals is developing reliable code for effective multi-GPU utilization.
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Fig. 3. Posterior inference of the first 8 log spectral densities given by the proposed DRH TPVB framework for a 21-dimensional dataset of length n = 640.
Grey regions correspond to 95% posterior intervals. Lines are true values. Dots represent log periodograms.
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Fig. 4. Posterior inference of 8 randomly chosen squared coherences obtained from the proposed DRH TPVB framework for a 21-dimensional dataset of
length n = 640. Grey regions are 95% posterior intervals. Lines are true values.

5. Data analysis
5.1. Analysis of California wind profile

We test our method on data from the Iowa State University Environmental Mesonet (IEM) Automated Surface System
(ASOS) database (Todey et al., 2002; Mannarano, 1998). This is a publicly available repository of automated airport weather
observations and general basic weather reports from the National Weather Service (NWS), the Federal Aviation Administra-
tion (FAA) and the Department of Defense (DOD). We consider wind speed data taken from 6 airports in California: EDU
(Davis), SAC and SMF (Sacramento), MRY (Monterey), SNS (Salinas), and WVI (Watsonville). Note that EDU, SAC and SMF are
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Fig. 5. Log-scaled boxplots of averaged squared errors (ASEs) of spectral densities (left frame) and squared coherences (right frame) given by the DRH TPVB
framework fitted on multivariate time series of dimension p, with fixed length n =1024.
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Fig. 6. DRH TPVB framework runtime (in minutes) per dataset, where n denotes length of observed time series, and p denotes the multivariate time series
dimension. Left: runtime change by n with p = 105. Right: runtime change by p with n =1024.
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Fig. 7. Standardized first differences of median wind speed measurements every two hours between 06/01/2019 12:00 am and 08/31/2019 11:59 pm from
selected California airports.

located in Sacramento area, while MRY, SNS and WVI are located near the Monterey Bay in the Monterey and Santa Cruz
counties. Our goal is to infer 6 spectral densities and 15 pairs of squared coherences in order to provide insight into the
temporal relationships across different locations over a particular period of time. We consider the median wind speed every
2 hours, starting from 06/01/2019 12:00 am to 08/31/2019 11:59 pm, for each location. Given that our method is based
on the assumption of stationarity, we consider a period of time within the summer months to avoid extreme values and
non-stationarities related to rainfall and storms that occur in other months. We note that there is essentially no rainfall dur-
ing this period within these locations. Prior analyses of wind profiles in some of these locations have shown quasi-periodic
patterns every 24-hours (Garcia et al., 2020). Here we focus on spectral inference on frequency values that are away from
zero, therefore, in order to remove any local trends we jointly analyze 6-dimensional data corresponding to the first order
differences for each time series. We further standardized each detrended time series by subtracting its mean and dividing
by its standard deviation to enhance computation stability. The resulting 6-dimensional time series data with 1,104 obser-
vations along with their locations are shown in Fig. 7. Additional stationarity diagnostics of the differenced time series are
included in Section S.4 of the Supplementary Materials. For this analysis we set M = 30. The prior hyperparameters and
algorithmic settings for the DHR TPVB inference are the same as those discussed in Section 4.

Figs. 8 and 9 show the posterior estimates and 95% posterior intervals given by TPVB under the proposed DHR model.
It can be seen that our estimates smoothly follow the trajectories of the observed log periodograms. Note that all the
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Fig. 8. Results of the wind profile analysis: Posterior inference of log spectral densities given by the proposed DRH TPVB framework. Lines are posterior
mean estimates. Grey regions are 95% posterior intervals. Dots represent observed log periodograms.

estimated spectral densities have a peak around frequency 0.08 (approximately 1/12), indicating a strong daily periodic
behavior at each location, with higher power around 0.08 for those locations closer to coastal areas (MRY, SNS, WVI). This
is consistent with the quasi-periodic nature of the daily wind profile during summer months in such locations (Garcia et
al., 2020). Fig. 9 shows that squared coherences are inferred be non-zero only for pairs of sites that are geographically close
to each other, i.e., non-zero squared coherences between pairs in the group (EDU, SAC, SMF), and between pairs in the
group (MRY, SNS, WVI), but zero coherence between pairs in which the two series are in different groups. This shows that
locations that are next to each other share strong coherences in their wind profile patterns at certain frequencies, while this
is not the case for locations that are far apart. We also see that the coherence is higher for lower frequencies and, for most
pairs, the highest coherence occurs near the 0.08 frequency (daily quasi-periodicity).

5.2. Analysis of multi-channel EEG data

We demonstrate the proposed methodology through the analysis of a multi-channel EEG data set available at the UCI
Machine Learning Repository (Dua and Graff, 2017). These data arise from a large study aiming to examine EEG correlates
of genetic predisposition to alcoholism. The dataset includes measurements from 61 electrodes placed on the scalp of each
participant (Zhang et al., 1995) sampled at 256 Hz for 1 second. The full dataset contains a total of 122 subjects with two
groups of subjects, alcoholic subjects and control subjects. Each subject completed 120 trials under different stimuli. During
each trial, each subject was exposed to either a single stimulus (S1) or to two stimuli (S1 and S2) which were pictures of
objects chosen from the 1980 Snodgrass and Vanderwart picture set (Snodgrass and Vanderwart, 1980).

In order to illustrate the applicability of our spectral methodology in a large-dimensional setting, we consider data from
the first trial for each of the subjects under a single stimulus, consisting of two 256-length, 61-dimensional time series,
one for an alcoholic subject and another one for a control subject. We removed local trends by taking the 1-st order
differences. We fit our proposed DRH multivariate spectral model with M = 10 and the same hyperparameters and TPVB
inference setting discussed in Section 4 to the two 61-dimensional time series separately. We obtain fast results leading to
approximate posterior inference of the spectral density matrix for the two 61-dimensional time series.

We summarize the results in terms of posterior estimates of the spectral densities for the individual channels for the
alcoholic and control subjects, and also look at summary measures related to the coherence across channels for a specific
frequency band. More specifically, we focus on computing frequency-band collapsed measures at the beta band (16-31 Hz),
as this frequency band has been found to provide important neurophysiological information (Ferrarelli et al., 2019; Li et al,,
2021). Frequency-band collapsed measures can be computed as integrals of the power spectra (Li et al., 2021). The beta-
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Fig. 9. Result of the wind profile analysis: posterior inference of squared coherences given by the proposed DRH TPVB framework. Lines are posterior mean
estimates. Grey regions are 95% posterior intervals.

2
band collapsed squared coherence between channels j and [ is defined as ,0]2.1”52 = )fﬁ /{f%fﬁ}, where ff = 1361 f)dv

defines beta-band collapsed spectral matrix. Fig. 10 shows the estimated beta-band log spectral densities of 61 channels for
alcoholic and control subjects under the same stimulus. Fig. 11 presents the corresponding estimated beta-band squared
coherences. We see that, in comparison to the control subject, the alcoholic subject shows a smaller number of non-zero
coherences among channels over beta band. Fig. 12 presents the estimated top 20 largest beta-band squared coherences
for each of the groups. We see that most of the actively connected channel pairs differ between groups. For instance, the
estimated beta-band squared coherence of the channel pair, C1-C3, is relatively high in the alcoholic subject, but essentially
zero in the control subject. In contrast, channel pairs such as AF1-AF2 and C4-FC4 are estimated to have large coherences
in the control subject, while showing zero coherence in the alcoholic subject. We note that even though many of the large
coherence values occur between nearby locations, some non-negligible coherence values occur between channels that are
not very close to each other. For instance, it can be seen from Fig. 11 that, for the alcoholic subject, channel CZ has the
strongest beta-band coherences with Fp1 and FT7, regardless of the fact that Cz is not in the close proximity of FP1 and FT7.
One the other hand, the beta-band coherences between CZ and its nearby channels, such as CP2 and CP4, are very close to
zero (for a schematic representation of the channel locations see Section S.5 of the supplementary material).

This analysis illustrates that our proposed spectral method leads to fast spectral inference that can offer helpful insight to
neuroscientists that need to analyze large-dimensional brain signals recorded in experimental settings that involve multiple
trials and/or subjects.

6. Conclusion and future work

The proposed novel modeling and inference framework provides accurate and computationally fast approximate Bayesian
spectral inference for multivariate time series. We showed that the discounted regularized horseshoe prior leads to accurate
inference of spectral densities and squared coherences in several simulation settings involving multivariate time series. Fur-
thermore, the proposed inference scheme, that utilizes stochastic gradient variational Bayes, is highly scalable and efficient,
providing solid computational support for large-dimensional spectral analysis.
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Fig. 10. Result of EEG analysis: posterior estimates of log beta-band collapsed spectral densities for alcoholic (left) and control (right) subjects.
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Fig. 11. Result of EEG analysis: posterior estimates of beta-band collapsed squared coherences for alcoholic (left) and control (right) subjects.
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Future work involves extending the current prior setting. Possible extensions include considering shrinkage priors such
as the normal-gamma prior by Griffin and Brown (2010) and its modifications by Huber and Feldkircher (2019), as well
as exploring the benefits of introducing additional sparsification procedures similar to those of Huber et al. (2021), where
a parameter sparsification step is proposed after obtaining the posterior estimates using global-local shrinkage priors to
further reduce storage load and improve performance.

More relevant extensions in terms of increasing the applicability of the proposed modeling framework and related in-
ferential procedures include considering multivariate spectral analysis for non-stationary time series, as well as hierarchical
model formulations that allow us to jointly analyze multi-trial data.
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