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a b s t r a c t

We study enhanced dissipation due to the combined effect of diffusion or hyperdiffusion and advection
by an incompressible flow with circular or cylindrical symmetry in 2 and 3 space dimensions,
respectively. By using resolvent estimates for m-accretive operators (Wei, 2021), under a suitable
condition on the velocity adapted from Gallay and Coti Zelati (2021), we establish enhanced dissipation
for the advection-(hyper)diffusion equation and quantify it in terms of rates of decay in time for
the solution, suitably projected, with an improved explicit dependence on the diffusivity. Our results
extend prior results in Coti Zelati and Dolce (2020).

© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

This article concerns enhanced dissipation due to the combined effect of diffusion or hyperdiffusion and advection by an incompress-
ible flow with circular or cylindrical symmetry in 2 and 3 space dimensions, respectively. By enhanced dissipation, we mean that the
solution operator of the advection–diffusion equation acts on time scales smaller than the diffusion time scale, which in turn implies
a faster rate of decay in time for solutions in comparison to (hyper) diffusion alone. We will quantify this effect in terms of bounds on
the decay rates with an improved, explicit dependence on the diffusivity coefficient (see (1.12)–(1.13)). Of course, improved decay can
only be achieved after projecting out the kernel of the advection operator. We restrict our attention to incompressible flows.

Enhanced dissipation by advection is a well-known mechanism in fluid mechanics, observed in turbulent mixing and lead-
ing to anomalous dissipation in scalar turbulence (see e.g. [1] and reference therein, see also [2–4] and the preprint [5]) and
other important phenomena. A related phenomenon is Taylor dispersion due to shearing (see e.g. [6] and references therein,
see also [7] and the preprint [8]), where the dispersion leads to a large effective diffusivity provided the time scale on which
advection acts is large enough. Significant progress has been made recently on the mathematical justification and rigorous quan-
tification of enhanced dissipation, starting from the seminal work of Constantin et al. on so-called relaxation enhancing flows

[9] (we refer, among several works, to [10–16]), due in part to recent advances in the analysis and construction of flows with optimal
mixing rates [17–26] (see also the recent preprint [27]) and in the analysis of instabilities of viscous flows around steady profiles (we
mention [28–39]). Enhanced dissipation has been used as a mechanism to prevent blow up and separation, and prove global existence
in dissipative systems, such as for aggregation–diffusion models [40–42], for the Cahn–Hilliard phase field model [43], and for the
Kuramoto–Sivashinsky equation in 2 and 3 space dimensions [43–45].

Most of the results concerning enhanced dissipation are obtained in the torus, a setting that, while more geometrically constrained,
allows more explicit calculations. A few consider bounded domains with no slip or no penetration boundary conditions for the flow
and compatible boundary conditions for the advected scalar. Steady relaxation enhancing flows are characterized by a condition on
their spectrum, and it is known that mixing flows with enough regularity are dissipation enhancing. Certain shear and cellular flows
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can also be dissipation enhancing (we refer the reader to the references cited above for more details). In all cases, enhancement can
only happen on the complement of the kernel of the advection operator. In this work, we study dissipation enhancement for certain
flows with circular or cylindrical symmetry, which can be considered as a generalization of shear flows.

Let f : [0, 1) ⇥⌦ ! R solve the initial value problem (IVP for short) for a linear advection–diffusion equation

@t f + u · rf + ⌫(��)pf = 0 ,
f |t=0 = f0 ,

(1.1)

where ⌦ is either Rn, n = 2, 3, or a domain with smooth boundary in Rn, p = 1 or 2, 0 < ⌫ ⌧ 1 is the diffusivity coefficient, u is a
given divergence-free vector field, and f0 is the initial data. This IVP is complemented by suitable boundary conditions specified later.

We denote a point in R2 by x = (x, y) and let (r, ✓ ) be the polar coordinates in the plane with associated o.n. frame {er , e✓ }. Similarly,
we denote a point in R3 by x = (x, y, z) and let (r, ✓ , z) be cylindrical coordinates in space with associated o.n. frame {er , e✓ , ez}. In
the two-dimensional case, we take u to be the velocity associated with a steady circularly symmetric flow

u(x, y) = v(r) e✓ , (1.2)

in the full plane ⌦ = R2 (we could also consider a disk centered at the origin). In the three-dimensional case, we take u to be the
velocity associated with a steady pipe parallel flow in :

u(x, y, z) = v(r) e✓ + w(r, ✓ , t) ez, (1.3)

in the cylinder parallel to the z-axis ⌦ = D(0, 1) ⇥ T ⇢ R3, where D(0, 1) is the disk centered at the origin with unit radius in the xy

plane, (any radii and any axis can be chosen). With slight abuse of notation, we will identify u with the flow it generates.
We then rigorously establish enhanced dissipation for (1.1) and quantify it in terms of rates of decay in time for the solution operator

in terms of the viscosity. Our results extend the work of Coti–Zelati and Dolce [46], who studied enhanced dissipation in the case
p = 1 for certain circularly symmetric flows in R2. The example in [46] is, to our knowledge, the only rigorous example of dissipation
enhancing flow in the whole plane. It is a circularly symmetric flow with velocity

u(x, y) = (x2 + y
2)

q

2

✓
�y

x

◆
, (1.4)

where q is an integer. Informally, dissipation enhancement in shear flows occurs by mixing across streamlines. Here, the streamlines
are circles concentric to the origin of increasing radius, hence the velocity must grow sufficiently fast at infinity and its critical points
cannot be too many or too degenerate for enhancement to occur. More specifically, the authors in [46] prove a separation of time
scales: for time-scales between 1

�⌫
= (1 + 2(q�1)

q+2 | ln ⌫|)/(⌫
q

q+2 ) and ⇠ 1
⌫

the dominant mechanism is mixing along streamlines. At
times-scale of order 1

⌫
diffusion takes over and at later times mixing happens across streamlines. The result, proven by employing

hypocoercivity methods [47], presented difficulties given by the absence of the Poincaré inequality (which is generally employed for
deriving exponential decays) and the unboundedness of the velocity field, which potentially causes the solution to grow at infinity. In
this work, we establish this result by employing stability estimates for the semigroup associated to the operator u ·r�⌫�. The method
we employed is inspired by a recent result of Wei ([48, Theorem 1.3]), which in turn uses certain spectral estimates for m-accretive
operators on Hilbert spaces. Spectral estimates can be more naturally adapted to different boundary conditions and to hyper- and
hypo-diffusion operators, in particular fractional powers of the Laplace operator [49], although we do not pursue this extension here.

Wei’s result in [48] is based on the following Gearhart–Prüss-type theorem. Let (H, k · k) be a complex Hilbert space and let H be a
closed, densely defined operator on H with domain D(H). If H is an m-accretive operator on H, then

ke�tHkop  e�t (H)+⇡/2, 8t � 0 , (1.5)

where k · kop denotes the operator norm, e�tH , t � 0, denotes the semigroup generated by the operator H on H, and

 (H) = inf {k(H � i�)gk : g 2 D(H), � 2 R, kgk = 1} , (1.6)

Our goal is to derive semigroup estimates from bounds on the resolvent of the operator H = H⌫ := ⌫(��)p + u · r on H = L
2(⌦).

To achieve dissipation enhancement, we impose certain conditions on the velocity profiles v and w in (1.2) and (1.3) (see
Assumptions 1.1 and 1.2). These conditions are adapted from the work of Coti Zelati and Gallay in the case of higher-dimensional shear
flows [8], which some of the authors of this paper have employed to prove global existence for the 2D advective Kuramoto–Sivashinsky
equation [44]. More precisely, in R2 we consider the circularly symmetric flow,

u(x, y) = u(
p
x2 + y2)

✓
�y

x

◆
(1.7)

with u : [0, 1) ! R a smooth profile satisfying the following assumption.

Assumption 1.1. There exist m,N 2 N, c1 > 0 and �0 2 (0, 1) with the property that, for any � 2 R and any � 2 (0, �0), there exist
n  N and points r1, . . . , rn 2 [0, 1) such that

|u(r) � �| � c1�
m, 8 |r � rj| � �, 8j 2 {1, . . . , n}. (1.8)

Observe that this condition quantifies the degeneracy of the critical points as one can easily see by choosing � = u(rj). The condition
of finitely many critical points with finite order arises naturally in studying the solution of the advection equation by a shear flow by
the method of stationary phase. Such method allows to show that there is mixing along the streamlines, quantified by the decay of the
H

�1 negative Sobolev norm of the solution in the direction orthogonal to shear (we refer to [50], Appendix A and references therein
for a more in-depth discussion). This decay in turn allows to prove hypocoercivity of the advection–diffusion operator and enhanced
dissipation (see e.g. [47] and references therein).
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We note that u is divergence free and vanishes at the origin. It is of the form (1.2) with v(r) = r u(r). The flow (1.4) considered
in [46] is an example of a circularly symmetric flow satisfying Assumption 1.1 with m = q (see Remark 3.1, but this assumption is
satisfied by more general flows).

To estimate e
�tH , it is convenient to pass to polar coordinates (r, ✓ ). To this end, we recall that the gradient and the Laplacian in

polar coordinates are given by

r =
✓
@r
1
r
@✓

◆
, � = @rr + 1

r
@r + 1

r2
@✓✓ .

For notational convenience, we write f̃ (r, ✓ , t) = f (r cos ✓ , r sin ✓ , t) Then Eq. (1.1) transforms into

@t f + u(r)@✓ f + ⌫(�@rr � 1
r
@r � 1

r2
@✓✓ )pf = 0 (1.9)

on (0, 1) ⇥ T, for t > 0, where T is the 1D torus.
Given f 2 L

2(R2), we denote the average of f over circles centered at the origin by

hf i✓ (x, y, t) = 1
2⇡

Z 2⇡

0
f̃ (t,

p
x2 + y2, ✓ ) d✓ , (1.10)

which is well defined a.e., and we denote the difference by

f6=(x, y, t) = f (x, y, t) � hf i✓ . (1.11)

We observe that hf i✓ gives the projection of f onto the kernel of u · r and f6= the projection onto its complement. The initial data of
f6= is

(f6=)0(x, y, t) = f0(x, y, t) � hf0i✓ ,
where f0(x, y, t) = f |t=0 and hf0i✓ = hf i✓ |t=0. We can now state our main result in the two-dimensional case.

Theorem 1.1. Let u satisfy (1.7)–(1.8), and let f0 2 L
2(R2). Let f satisfy the IVP (1.1) with velocity u and initial data f0. Then there exists

constants C1, C2 > 0, independent of ⌫ and f , such that

kf6=(·, t)kL2(R2)  C1e
�C2�⌫ tk(f0)6=k

L2(R2), (1.12)

where

�⌫ = ⌫
m

m+2p . (1.13)

The above result can also be interpreted as a bound in time on the oscillation in direction orthogonal to streamlines of the solution.
There are several bounds of this type available in the literature. Young and Rhines studied the effective diffusivity due to the interplay
between dispersion along the streamlines due to advection and diffusivity orthogonal to the streamlines for some circularly and
elliptically polarized shear flows by a formal moment analysis, motivated by the study of internal waves in the ocean [51,52]. Their
estimate corresponds to the case p = 1 and m = 1 in (1.12). We also mention the work of Novikov, Papanicolau, and Ryzhik, who
derive an estimate for the oscillation along streamlines of solutions to the stationary advection–diffusion equation for cellular flows in
the high Peclét number regime [53].

The spectral approach allows us to improve on the results in [46] in two ways. First, there is no log ⌫�1 correction in (1.13). Second,
we can take a more general circularly symmetric velocity u. The proof is also more streamlined than that using hypocoercivity estimates.
It is an interesting question, to which we do not know the answer, whether it is possible to exploit the Hamiltonian structure of the
flow to generalize our results to flows with closed streamlines if the travel time along each streamline is controlled (cf. the work of
Freidlin and Wentzell in the context of large deviation theory [54]).

To prove Theorem 1.1, we apply the Fourier Transform in the angular variable ✓ , and bound the resolvent of the transformed operator

H⌫,k := iku(r) + ⌫(�@rr � 1
r
@r + k

2

r2
)p, (1.14)

for fixed k 2 Z. By Wei’s result, such bounds in turn give estimates on the semigroup generated by H⌫ , provided the m-accretivity of
H⌫,k is established first. This is perhaps the most delicate part of our proof as this operator is singular at r = 0 and u(r) is unbounded
at infinity, so we have to work with weighted spaces.

In the three dimensional case, for technical reasons we limit ourselves to flows in domains bounded in the radial direction, i.e., a
cylinder to preserve circular symmetry, and the case p = 1. We take u to be a parallel pipe flow in the periodic cylinder⌦ = D(0, 1)⇥T1:

u(x, y, z) = u(r)

 
sin(2⇡r)

 �y

x

0

!
+ cos(2⇡r)

 0
0
1

!!
, (1.15)

with u : [0, 1] ! R a smooth profile satisfying the following assumption.

Assumption 1.2. There exist m,N 2 N, c1 > 0 and �0 2 (0, 1) with the property that, for any ↵, � 2 R and any � 2 (0, �0), there
exist n  N and points r1, . . . , rn 2 [0, 1] such that

|u(r) sin(2⇡r + ↵) � �| � c1�
m, 8 |r � rj| � �, 8j 2 {1, . . . , n}. (1.16)
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We observe that this velocity field is divergence free, constant in z, tangent to the boundary of the cylinder, and vanishes along the
axis. It is of the form (1.3) with v(r) = r u(r) sin(2⇡r) and w(r, ✓ ) = u(r) cos(2⇡r). We then impose periodicity in z and homogeneous
Neumann boundary conditions on the solution to (1.1). Any period L > 0 can be taken along the axis, but for simplicity of exposition
we assume L = 1. We then identify ⌦ with D(0, 1) ⇥ T.

The planar equivalent of this flow was studied by one of the author on the 3D torus, proving enhanced dissipation and using it to
establish global existence for the Kuramoto–Sivashinsky and the Keller–Segel equations with advection [55].

To estimate e
�tH⌫ , it is convenient to pass to cylindrical coordinates (r, ✓ , z). We recall that the gradient and Laplacian in these

coordinates are given by

r =

0

@
@r
1
r
@✓
@z

1

A , and � = @rr + 1
r
@r + 1

r2
@✓✓ + @zz .

Again, we write f̃ (r, ✓ , z, t) = f (r cos ✓ , r sin ✓ , z, t) Then the advection–diffusion in (1.1) becomes

@t f + u(r) sin(2⇡r)@✓ f + u(r) cos(2⇡r)@z f � ⌫�f = 0

on (0, 1) ⇥ T2, for t > 0.
Similarly to the 2-dimensional case, given f 2 L

2(⌦), we denote the average in the angular and axial variables ✓ , z by

hf i✓ ,z(t, r) = 1
4⇡2

Z 2⇡

0

Z 2⇡

0
f (t,

p
x2 + y2, ✓ , z) d✓ dz , (1.17)

which exists a.e., and the difference by

f6= = f (x, y, z, t) � hf i✓ ,z . (1.18)

We note that hf i✓ ,z is the projection of f onto the kernel of the operator u · r and f6= the projection onto its complement. The initial
data of f6= is

(f6=)0(x, y, z, t) = f0(x, y, z, t) � hf0i✓ ,z,
where f0(x, y, z, t) = f |t=0 and hf0i✓ = hf i✓ ,z |t=0.

Our main results in 3 dimensions is the following theorem.

Theorem 1.2. Let ⌦ = D(0, 1) ⇥ T. Let u satisfy (1.15)–(1.16), and let f0 2 L
2(⌦)be mean free. Let f solve (1.1) with velocity u, initial

data f0, and Neumann boundary conditions
@ f
@n

= 0 at @D(0, 1). Then there exists constants C1, C2 > 0, independent of ⌫ and f , such that

kf6=(·, t)kL2(⌦)  C1 e
�C2�⌫ tk(f0)6=k

L2(⌦) , (1.19)

where

�⌫ = ⌫
m

m+2 . (1.20)

As in the two-dimensional case, to prove Theorem 1.2 we apply the 2D Fourier Transform in the angular and axial variables ✓ , z,
and bound the resolvent of the transformed operator

H⌫,k := ik1u(r) sin(2⇡r) + ik2u(r) cos(2⇡r) + ⌫(�@rr � 1
r
@r + k

2
1

r2
+ k

2
2), (1.21)

for fixed k = (k1, k2) 2 Z2. (Instead of writing H⌫,k, we employ the same notation in (1.14) and (1.21), as no confusion can arise,
since the two cases are dealt with separately). By Wei’s result, such bounds in turn give estimates on the semigroup generated by H⌫ ,
provided H⌫,k is m-accretive on a weighted L

2 space.
Finally we remark that in [56] S. Pottel and the third author of this paper proved decay estimates in Rd (d = 2, 3) of the filamentation

length � defined as the ratio between the (homogeneous) H�1 norm and the L
2 norm of the passive scalar. The estimates indicate either

dispersion or mixing depending of the decay properties of the time-dependent velocity field. The velocity fields considered in this paper
(unbounded and time independent) are not admissible and whether or not the class of velocity fields considered in [56] is dissipation
enhancing is not known and object of investigation.

We close with a brief outline of the paper. In Section 2, we recall the notion of m-accretivity and give a proof of the m-accretivity
of the operators introduced in (1.14) and (1.21), using some abstract functional analysis and the m-accretivity of H⌫ on L

2(⌦). Then in
Section 3 we prove Theorem 1.1 and the needed resolvent estimates, while a proof of Theorem 1.2 and the needed resolvent estimates
are contained in Section 4.

2. m-accretivity

Our goal in this section is to show the m-accretivity of the operators defined in (1.14) and (1.21) on the space L
2(R+, r dr) and

L
2((0, 1), r dr) respectively. For brevity we only discuss the operator given in (1.14). A similar argument (in fact simpler) applies to
the operator given in (1.21). We exploit the fact that the operator H⌫,k is obtained by conjugating H⌫ with an isometric isomorphism
between Hilbert spaces and by applying an orthogonal projections, and m-accretivity is preserved under both operations.

Let (H, h·iH) be a complex Hilbert space and let H be an unbounded linear operator on H with dense domain D(H) and with range
R(H). We endow D(H) with the graph norm kf kD(H) = kf kH +kHf kH. If � : H ! H is an invertible isometry between Hilbert spaces,
we denote

H̄ = �(H) =:  H  �1,

4
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which is an unbounded linear operator on H with dense domain and range given by:

D(H̄) = �(D(H)) := {H 3 g =  (f ) : f 2 D(H)},
R(H̄) = �(R(H)) := {H 3 g =  (f ) : f 2 R(H)}.

We begin by recalling the notion of m-accretivity.

Definition 2.1. The operator H : D(H) ⇢ H ! H is called maximally accretive or m-accretive if

(1) RehHf , f i � 0 for all f 2 D(H),
(2) R(H + ⇠ Id) = H for some ⇠ > 0,

where Id denotes the identity map.

Property (1) gives the accretivity of H , while property (2) shows maximality.
The m-accretivity of an operator is a property that is preserved under isometric isomorphisms, as specified in the following lemma.

We include a proof of this simple fact for completeness.

Lemma 2.1. Let H be an m-accretive operator on H and let � : H ! H be an isometric isomorphism. Then H̄ = �(H) is an m-accretive

operator on H.

Proof. Since D(H̄) = �D(H), for all f 2 D(H̄)

RehH̄f , f iH̄ = Reh�H��1
f , f iH̄ = Reh�H��1

f ,���1
f iH̄ = RehH��1

f ,��1
f iH � 0

where, in the last two identities, we have used that � is an isometry and that H is m-accretive. Moreover,

R(H̄ + ⇠ Id) = �(H + ⇠ Id) = �(H) = H,

since � is invertible. ⇤

We will also need the following fact. Again, we include a proof for completeness.

Lemma 2.2. Let H be an m-accretive operator on a Hilbert space H. Let P be an orthogonal projection onto a closed subspace V of H. Let

HV := PH. Then HV is m-accretive on V with the induced inner product.

Proof. We observe that HV : V ! V is a linear operator with domain D(HV ) = D(H) \ V . Since V is closed and D(H) is dense in H,
D(HV ) is dense in V . Accretivity follows from a direct computation. In fact

Re(HV f , f )V = Re(PHf , f )H = Re(Hf , Pf )H = Re(Hf , f )H � 0

for all f 2 D(HV ), since Pf = f if f 2 V . Now notice that R(H + ⇠ Id) = H for some ⇠ > 0, by the m-accretivity of H . This implies

R(HV + ⇠ IdV ) = R(PH + ⇠PId) = V ,

which shows the m-accretivity of HV . ⇤

We now apply these results to the operator H⌫,k given in (1.14). We first set p = 1 and let H = H⌫ = �⌫� + u · r , where u is a
circularly symmetric flow with smooth, possibly unbounded profile v(r) (see (1.2)), defined on H = L

2(R2).

Lemma 2.3. H⌫ is an m-accretive operator on L
2(R2).

Proof. We write H⌫ = A⌫ + L, where A⌫ = �⌫� and L = u ·r with domains D(A⌫) = H
2(R2) and D(L) = {f 2 H

1(R2) : u ·rf 2 L
2(R2)}.

Since A⌫ is self-adjoint and L is anti-selfadjoint,1 it follows that the adjoint is H⇤
⌫ = A⌫ �L. We want to prove that H⌫ is densely defined,

closable, accretive and that H⇤
⌫ is accretive. Then, from the characterization in Theorem I-4.4 in [57], it follows that H⌫ is m-accretive.

• Density of H⌫ : We take D(H⌫) = D(A⌫) \ D(L) and want to show that D(H⌫) is dense in H = L
2(R2). We first observe that

C
1
c
(R2) is dense in both D(A⌫) and D(L), and in H in the respective norms. The density of C

1
c
(R2) in D(A⌫) is clear. To see

the density in D(L), let f 2 D(L) and � be a radially symmetric smooth bump function on the unit disk (again for notational
convenience we identify � (x, y) with � (r)). For n 2 N, let �n(r) = � ( r

n
). Then f �n ! f in D(L), since ku · r(f �n) � u · rf k

L2 
k(u · rf )�n � u · rf k

L2 + k(u · r�n)f kL2 and u · r�n = 0 due to the fact that �n is radial and u is circularly symmetric. The
mollification of f �n converges to f �n in D(L), as f �n is compactly supported. Hence C

1
c
(R2) is dense in D(L).

In particular, we showed that C1
c
(R2) is dense in D(H⌫) and from this it follows that D(H⌫) is dense in H.

• H⌫ is closable: Since D(H⌫) = D(H⇤
⌫ ) is dense in H, the result follows from Theorem VIII.I (page 252) in [58].

• Accretivity of H⌫ : For the ease of notation, we continue to denote the closure of H⌫ by H⌫ and its domain by D(H⌫). We note that
D(H⌫) contains D(A⌫)\D(L) and that C1

c
is dense in D(H⌫). Then the accretivity of H⌫ , property (1) in Definition 2.1, follows from

a direct computation:

Re(A⌫ f , f ) + Re(Lf , f ) = ⌫Re(
Z

R2
r f̄ · rf dx dy) + 1

2
(Lf , f ) � 1

2
(f , L⇤

f )

1 In fact, (Lf , g)H =
R
R2 r · (uf̄ )g dx dy = �

R
R2 f̄ u · rg dx dy, since u is divergence free.

5
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= ⌫

Z

R2
|rf |2 dx dy + 1

2
Re

⇥
(v · r f̄ )f � (v · rf )f̄

⇤
dx dy

= ⌫

Z

R2
|rf |2 dx dy � 0 . (2.1)

• Accretivity of H⇤
⌫ : It follows by the same computation as in (2.1) ⇤

Next, we let � be the transformation

(�f )(r, k) = f̃k(r),

where f̃ (r, ✓ ) = f (r cos ✓ , r sin ✓ ) and f̃k(r) is the k�th Fourier coefficient of f̃ (r, ·) :

f̃k(r) = 1
2⇡

Z 2⇡

0
f̃ (r, ✓ )e�ik✓

d✓ , k 2 Z.

By the change of variable formula and Plancherel’s identity, � is an isometric isomorphism:

� : H = L
2(R2) ! `2(Z; L2

r
(R+)) =: H.

Above L
2
r
(R+) := L

2(R+, r dr) and `2(Z; L2
r
(R+)) = {{f̃k}k2Z : k{f̃k}kH

:= P
k

R 1
0 |f̃k(r)|

2
r dr < 1} with the induced inner product

({f̃ }, {g̃})
H

= P
k

R 1
0 f̃k(r)g̃k(r) r dr . Lemmas 2.1 and 2.3 then give the following result.

Corollary 2.4. H̄⌫ = �(H⌫) is m-accretive on H = `2(Z; L2
r
(R+)).

Let Pk denote the projection of f onto the kth Fourier mode. Then Pk is an L
2-orthogonal projection and �(PkHf ) = f̃k, so that

H⌫,k := �(PkH⌫) = ⌫(@2
r

+ 1
r
@r � k

2

r2
) + iu(r)k,

defined as an unbounded operator on Vk := {f̃k : f 2 L
2(R2)}.

Finally, by Lemma 2.2 and Corollary 2.4, we obtain the needed m-accretivity of the operator in (1.14) for p = 1.

Corollary 2.5. H⌫,k is an m-accretive operator on Vk ' L
2
r
(R+) for all k 2 Z, ⌫ > 0.

The proof of m-accretivity for p = 2 follows the same approach, using the m-accretivity of H⌫ = ⌫�2 + u · r , which can be proved
in a manner similar to the case p = 1. In fact, H⌫ = A⌫ + L, where L is as before and A⌫ = �2, a self-adjoint, non-negative operator on
L
2(R2) with dense domain D(A⌫) = H

2(R2).

3. Dissipation enhancement in R2 by a circularly symmetric flow

In this section, we focus on the proof of Theorem 1.1. We follow the convention set in the Introduction to denote f in polar
coordinates by f̃ , and its kth Fourier coefficient by f̃k. Then f̃k belongs to L

2
r
(R+) := L

2(R+, rdr) with the induced inner product h, ir . We
note that

krf k2
L2(R2) =

X

k2Z
k@r f̃kk2

L
2
r (R+) + k

2
�� f̃k
r

��2
L
2
r (R+).

Furthermore, for each k 2 Z if f solves (1.1), then f̃k satisfies the equation:

@t f̃k + H⌫,kf̃k = 0, r > 0, t > 0, (3.1)

and the initial condition f̃k(r, 0) = ˜(f0)k(r), where H⌫,k is given in (1.14). We recall that H⌫,k = Pk�(H⌫) is an unbounded operator on

Vk, canonically identified with L
2
r
(R+). Since D(H⌫) ⇢ D(�) and �k := Pk�(�) = @rr + 1

r
@r � k

2

r2
, if h, h0 2 D(H⌫,k) then

h�kh, h
0ir = hh,�kh

0ir = �h@rh, @rh0ir � k
2hh

r
,
h

0

r
ir .

We also observe that ˜(f6=)0 = 0 and ˜(f6=)k = f̃k for k 6= 0. By Plancherel’s identity, we then have that

kf6=(·, t)k2
L2(R2) = ke�tH⌫ (f0)6=k2

L2(R2) =
X

k2Z, k6=0

���e�tH⌫,k ˜(f0)k
���
2

L
2
r (R+)

.

Consequently, it is enough to bound e
�tH⌫,k .

Since the operator H⌫,k is m-accretive by Corollary 2.5, we can apply the result in (1.5). To conclude the proof of Theorem 1.1, it is
then sufficient to establish a lower bound for the spectral function  (H⌫,k) (see (1.5)–(1.6)).

Given � 2 R, for ease of notation we set

Hp := H⌫,k � i� = ⌫(��k)p + ik(u(r) � �̃),

where �̃ = �
k
, p = 1, 2. Also, to streamline the proof of the next result, we will write f instead of f̃k, as no confusion may arise.

6
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Proposition 3.1. Let the velocity profile u in (1.7) satisfy Assumption 1.1, and let k 6= 0 and ⌫ satisfy ⌫ |k|�1  1. Then there exists a

positive constant ✏0, independent of ⌫, such that

 (H⌫,k) � ✏0⌫
m

m+2p |k|
2p

m+2p

for p = 1 or 2.

Proof. We fix � 2 R and pick g 2 D(H⌫,k) with unit L
2
r
norm. By density of C

1
c
(R2) in the domain of H⌫ , we can assume that

g 2 C
1(R+) \ L

1(R+). We let � : [0, +1) ! [�1, 1] be a smooth approximation of the signum function sign(rq � �̃) such that
k� 0kL1  c2�

�1, k� 00kL1  c2�
�2, � (u � �̃) � 0 and

� (r)(u(r) � �̃) = |u(r) � �̃|, whenever |r � rj| � �, 8j 2 {1, . . . , n},

We distinguish two cases.
Case 1 (p = 1): We note that

RehH1g, gir = ⌫ k@r gk2
L
2
r (R+) + ⌫k2

���
g

r

���
2

L
2
r (R+)

, (3.2)

which implies

k@r gk2
L
2
r (R+)  1

⌫
kH1gk

L
2
r (R+) kgk

L
2
r (R+) .

On the other hand,

hH1g,�gir = ⌫h@r g,� 0
gir + ⌫h@r g,�@r gir + ⌫k2h g

r2
,�gir + ikh(u(r) � �̃)g,�gir ,

so that

ImhH1g,�gir = ⌫Imh@r g,� 0
gir + kh(u(r) � �̃)g,�gir .

By applying the properties of the function � and using (3.2), we have

��kh(u(r) � �̃)g,�gir
��  c2⌫

�
k@r gk

L
2
r (R+) kgk

L
2
r (R+) + kH1gk

L
2
r (R+) kgk

L
2
r (R+)

 c2⌫
1/2

�
kH1gk1/2

L
2
r (R+)

kgk3/2
L
2
r (R+)

+ kH1gk
L
2
r (R+) kgk

L
2
r (R+) . (3.3)

Next, we define

E :=
�
r 2 [0, 1) : |r � rj| � �, for j = 1, . . . , n

 
,

where rj, n  N , and � are as in Assumption 1.1, and observe that

��h(u(r) � �̃)g,�gir
�� �

Z

E

|u(r) � �| |g|2 r dr � c1�
m

Z

E

|g|2 r dr . (3.4)

Combining (3.3) and (3.4) gives

Z

E

|g|2 r dr  c2⌫
1/2

c1 |k| �m+1 kH1gk1/2
L
2
r (R+)

kgk3/2
L
2
r (R+)

+ 1
c1|k|�m

kH1gk
L
2
r (R+) kgk

L
2
r (R+)

 c
2
2⌫

c
2
1 |k|2�2m+2

kH1gk
L
2
r (R+) kgk

L
2
r (R+) + 1

4
kgk2

L
2
r (R+) + 1

c1|k|�m
kH1gk

L
2
r (R+) kgk

L
2
r (R+) . (3.5)

We now estimate the L
2
r
norm of g on the complement of E. Using the fact that |Ec |  N�, we obtain

Z

Ec

|g|2 r dr  N�kg2
rkL1(R+). (3.6)

7
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To bound the right-hand side, we use that g is smooth and bounded on R+ to compute

g
2(r0)r0 =

Z
r0

0
@r (g2

r) dr = 2
Z

r0

0
@r g · g · r dr +

Z
r0

0
g
2
dr

 2 k@r gk
L
2
r (R+) kgk

L
2
r (R+) +

���
g

r

���
L
2
r (R+)

kgk
L
2
r (R+) ,

from which it follows that

kg2(r)rkL1(R+)  2 k@r gk
L
2
r (R+) kgk

L
2
r (R+) +

���
g

r

���
L
2
r (R+)

kgk
L
2
r (R+) .

Hence (3.6) becomes
Z

Ec

|g|2 r dr  N�

✓
2 k@r gk

L
2
r (R+) kgk

L
2
r (R+) +

���
g

r

���
L
2
r (R+)

kgk
L
2
r (R+)

◆

 N�

✓
2
⌫1/2

kHgk1/2
L
2
r (R+)

kgk3/2
L
2
r (R+)

+ 1
⌫1/2 |k| kHgk1/2

L
2
r (R+)

kgk3/2
L
2
r (R+)

◆

 3N�
⌫1/2

kHgk1/2
L
2
r (R+)

kgk3/2
L
2
r (R+)

 9N2�2

⌫
kHgk

L
2
r (R+) kgk

L
2
r (R+) + 1

4
kgk2

L
2
r (R+) , (3.7)

where we applied (3.2) in the second inequality and used the fact that |k| � 1 in the third one. Adding (3.5) and (3.7) together gives

kgk
L
2
r (R+) 

✓
2c22⌫

c
2
1 |k|2�2m+2

+ 2
c1|k|�m

+ 18N2�2

⌫

◆
kH1gk

L
2
r (R+) .

Since by hypothesis ⌫  |k|, we can choose

� = �0

✓
⌫

|k|

◆ 1
m+2

,

ensuring � � �0. Then finally

kH1gk
L
2
r (R+) � ✏0⌫

m

m+2 |k| 2
m+2 kgk

L
2
r (R+) .

Case 2 (p = 2): Since for g and f in D(H⌫,k) h��kf , gir = hf , ��kgir , by setting f = ��kg we have

h(��k)2f , gi = k�kgk2
L
2
r (R+) ,

and therefore,

RehH2g, gir = ⌫ k�kgk2
L
2
r (R+) . (3.8)

Moreover, with � as in Case 1,

ImhH2g,�gir = ⌫ Imh�kg,� 00
g + 2� 0@r g + � 0

r
g + ��kgir + kh(u(r) � �̃)g,�gir

= ⌫ Imh�kg,� 00
g + 2� 0@r g + � 0

r
gir + kh(u(r) � �̃)g,�gir ,

which further implies
��kh(u(r) � �̃)g,�gir

��  c2⌫

�2
k�kgk

L
2
r (R+) kgk

L
2
r (R+) + 2c2⌫

�
k�kgk

L
2
r (R+) k@r gk

L
2
r (R+) (3.9)

+ c2⌫

�
k�kgk

L
2
r (R+)

���
g

r

���
L
2
r (R+)

+ kH2gk
L
2
r (R+) kgk

L
2
r (R+) . (3.10)

Next, we recall that for g 2 D(H⌫,k), the following identity holds

h��kg, gir = k@r gk2
L
2
r (R+) + k

2
���
g

r

���
2

L
2
r (R+)

,

from which it follows, on one hand, that

k@r gk2
L2(rdr)  k�kgk

L2(rdr) kgk
L2(rdr) ,

and, on the other hand, that
���
g

r

���
2

L
2
r (R+)

 k�kgk
L
2
r (R+) kgk

L
2
r (R+) ,

where we used that |k| � 1. With these estimates at hand, (3.9) becomes
��kh(u(r) � �̃)g,�gir

��  c2⌫
1/2

�2
kH2gk1/2

L
2
r (R+)

kgk3/2
L
2
r (R+)

+ 3c2⌫1/4

�
kH2gk3/4

L
2
r (R+)

kgk5/4
L
2
r (R+)

+ kH2gk
L
2
r (R+) kgk

L
2
r (R+) .

8
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In view of Assumption 1.1, estimate (3.4) holds, which further gives
Z

E

|g|2r dr  c2⌫
1/2

c1|k|�2+m
kH2gk1/2

L
2
r (R+)

kgk3/2
L
2
r (R+)

+ 3c2⌫1/4

c1|k|�m+1 kH2gk3/4
L
2
r (R+)

kgk5/4
L
2
r (R+)

+ 1
c1|k|�m

kH2gk
L
2
r (R+) kgk

L
2
r (R+) (3.11)

 1
4

kgk2
L
2
r (R+) +

✓
c⌫

|k|2�2(m+2)
+ c⌫1/3

|k|4/3�4(m+1)/3
+ 1

c1|k|�m
◆

kH2gk
L
2
r (R+) kgk

L
2
r (R+) . (3.12)

On the complement on the set E, we have instead
Z

Ec

|g|2 r dr  N�

✓
2 k@r gk

L
2
r (R+) kgk

L
2
r (R+) +

���
g

r

���
L
2
r (R+)

kgk
L
2
r (R+)

◆

 3N� k�kgk1/2
L
2
r (R+)

kgk3/2
L
2
r (R+)

 3N�
⌫1/4

kH2gk1/4
L
2
r (R+)

kgk7/4
L
2
r (R+)

 cN
4�4

⌫
kH2gk

L
2
r (R+) kgk

L
2
r (R+) + 1

4
kgk2

L
2
r (R+) . (3.13)

Adding (3.11) and (3.13) together yields that

kgk2
L
2
r (R+)  2

✓
c⌫

|k|2�2(m+2)
+ c⌫1/3

|k|4/3�4(m+1)/3
+ 1

c1|k|�m
+ cN

4�4

⌫

◆
kH2gk

L
2
r (R+) kgk

L
2
r (R+) .

Arguing as in Case 1, since by hypothesis ⌫  |k|, we can choose � = �0

⇣
⌫
|k|

⌘ 1
m+4

. Then we obtain

kH2gk
L2(rdr) � ✏0⌫

m

m+4 |k| 4
m+4 kgk

L2(rdr) ,

where ✏0 is independent of ⌫. ⇤

Remark 3.1. If u(r) = r
q with q � 1 as in example (1.4), then Assumption 1.1 holds with m = q. In fact, denote S :=

�
u

�1(�), 0
 
and

note that #S  2. Fix any � > 0. For �  0, S := {0} and |rq � �| > �q for any r > �.
For 0 < � <

�
�
2

�q, we have

|rq � �| > �q �
✓
�

2

◆q

� �q

2
, 8|r � ri| > �, with ri 2 S.

For � >
�
�
2

�q, we have instead r� := u
�1(�) > �

2 and there exists r̃ in between r and r� such that

|rq � �| = qr̃
q�1|r � r�| > q(�/2)q�1� � (q/2q�1)�q , 8|r � ri| > �, with ri 2 S.

Remark 3.2. The validity of Assumption (1.8) is crucial in our argument to prove enhanced dissipation and restrict the class of flows
that we can treat with this approach. In particular, u can only have a finite amount of critical points. For example, the field

u(x, y) = u(r) sin(2⇡r)(�y, x),

with u unbounded on R+ does not satisfy Assumption (1.8).

Theorem 1.1 readily follows by combining Corollary 2.5 in Section 2 with Proposition 3.1.

4. Dissipation enhancement in R3 by a pipe parallel flow

In this section, we aim to prove Theorem 1.2. We proceed in a manner analogous to that for circularly symmetric flows in Section 3,
passing to cylindrical coordinates (r, ✓ , z) in ⌦ = D(0, 1) ⇥ T2.

We apply the Fourier Transform in both the angular variable ✓ and the axial variable z, and follow the notation discussed in the
Introduction, denoting f (r cos ✓ , r sin ✓ , z, t) = f̃ (r, ✓ , z, t) and its k-th Fourier coefficient by f̃k(r, t), k = (k1, k2) 2 Z2, which belongs
to L

2
r
((0, 1)) = L

2((0, 1), rdr) with the induced inner product h, ir and norm. We observe that

krf k2
L2(R2) =

X

k2Z2

��@r g̃k
��2
L
2
r ((0,1))

+ k
2
1

����
g̃k

r

����
2

L
2
r ((0,1))

+ k
2
2

��g̃k
��2
L
2
r ((0,1))

.

Again, if f satisfies (1.1) in ⌦ for t > 0 with homogeneous Neumann boundary conditions, f̃k satisfies Eq. (3.1) with H⌫,k given in
(1.21) for 0 < r < 1 and t > 0, with initial condition f̃k(r, 0) = ˜(f0)k(r) and boundary condition

@r f̃k = 0 for r = 1 , (4.1)

but we notice that all the arguments will hold also for Dirichlet boundary conditions f = 0 for r = 1 . To ensure uniqueness of the
solution, we recall that we take f0 to be mean free, a condition preserved under the time evolution of f due to the divergence-free
condition on u, so that we can assume throughout k 6= 0. As in the two-dimensional case, we view H⌫,k as an unbounded operator on

9
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Vk = Pk�(L2(⌦)), which we identify with L
2
r
((0, 1)), where Pk is the projection onto the k-th Fourier coefficient and � is the isometry

induced by the change from Cartesian to cylindrical coordinates. The domain of H⌫,k is given by Pk�(H̊2 \ D(L))(⌦), p = 1, 2, where L

is the transport operator u · r and H̊
2 consists of mean-free functions in the Sobolev space H

2. Since D(H⌫,k) ⇢ D(�N ) with �N the 3D
Laplacian with Neumann boundary conditions in ⌦ , denoting again �k = Pk(�(�)), if h, h0 2 D(H⌫,k) then

h�kh, h
0ir = hh,�kh

0ir = �h@rh, @rh0ir � k
2
1h

h

r
,
h

0

r
ir � k

2
2hh, h0ir .

By the change of variables formula and Plancherel’s identity, we have

kf6=(·, t)k2
L2(⌦) = ke�tH⌫ (f0)6=k2

L2(⌦) =
X

k2Z2, k6=0

���e�tH⌫,k ˜(f0)k
���
2

L
2
r ((0,1))

.

Consequently, it is enough to bound e
�tH⌫,k . Given that H⌫,k is m-accretive, following the arguments in Section 2, we can again apply

the result in [48], and it is sufficient to obtain a lower bound on the spectral function  (H⌫,k) (see (1.5)–(1.6)).
For notational convenience, given � 2 R we set

H⇤ := H⌫,k � i� = ⌫(�@rr � 1
r
@r + k

2
1

r2
+ k

2
2) + ik1u(r) sin(2⇡r) + ik2u(r) cos(2⇡r) � i�,

which we can rewrite as

H⇤ = ⌫(�@rr � 1
r
@r + k

2
1

r2
+ k

2
2) + i|k|( k1|k|u(r) sin(2⇡r) + k2

|k|u(r) cos(2⇡r) � �

|k| )

= ⌫(�@rr � 1
r
@r + k

2
1

r2
+ k

2
2) + i|k|(cos↵k sin(2⇡r)u(r) + sin↵k cos(2⇡r)u(r) �⇤k) ,

where we set

cos↵k = k1

|k| , sin↵k = k2

|k| , ⇤k = �

|k| .

Also, to streamline the proof of the next result, we write g for g̃k, as no confusion may arise.

Proposition 4.1. Let the velocity profile u in (1.15) satisfy Assumption 1.2. Let k 6= 0 and ⌫ satisfy ⌫ |k|�1  1. Then there exists a positive

constant ✏0 independent of ⌫ such that

 (H⌫,k) � ✏0⌫
m

m+2 |k| 2
m+2 ,

Proof. We fix � 2 R and pick g 2 D(H⌫,k) with kgk
L
2
r

= 1. Since C
1(⌦) is dense in D(H⌫), we can assume that g 2 C

1((0, 1))\L
1((0, 1))

Let � : [0, 1] ! [�1, 1] be a smooth approximation of sgn(u(r)(sin(2⇡r + ↵k) � ⇤k)) such that k� 0kL1  c2�
�1, k� 00kL1  c2�

�2,
� (u(r)(sin(2⇡r + ↵k) �⇤k)) � 0 and

� (r)(u(r) sin(2⇡r + ↵k) �⇤k) = |u(r) sin(2⇡r + ↵k) �⇤k|, whenever |r � rj| � �, 8j 2 {1, . . . , n},
We note that

RehH⇤g, gir = ⌫ k@r gk2
L
2
r ((0,1))

+ ⌫k21

���
g

r

���
2

L
2
r ((0,1))

+ ⌫k22 kgk2
L
2
r ((0,1))

, (4.2)

using the boundary conditions on g , which implies

k@r gk2
L
2
r ((0,1))

 1
⌫

kH⇤gk2
L
2
r ((0,1))

kgk2
L
2
r ((0,1))

.

On the other hand, since g 2 D(H⌫,k), we have

hH⇤g,�gir = ⌫h@r g,� 0
gir + ⌫h@r g,�@r gir + ⌫k21h

g

r2
,�gir + ⌫k22hg,�gir + i|k|h(u(r) sin(2⇡r + ↵k) �⇤k)g,�gir .

from which it follows that

ImhH⇤g,�gir = ⌫Imh@r g,� 0
gir + |k|h(u(r) sin(2⇡r + ↵k) �⇤k)g,�gir .

From the choice of the function � and by using (4.2), we also have

||k|h(u(r) sin(2⇡r + ↵k) �⇤k)g,�gir |  c2⌫

�
k@r gk

L
2
r ((0,1))

kgk
L
2
r ((0,1))

+ kHgk
L
2
r ((0,1))

kgk
L
2
r ((0,1))

 c2⌫
1/2

�
kHgk1/2

L
2
r ((0,1))

kgk3/2
L
2
r ((0,1))

+ kH⇤gk
L
2
r ((0,1))

kgk
L
2
r ((0,1))

. (4.3)

Next, we denote

E :=
�
r 2 [0, 1) : |r � rj| � �, for j = 1, . . . , n

 
,

where rj, �, and n  N are as in Assumption 1.2, and observe that

|h(u(r) sin(2⇡r + ↵k) �⇤k)g,�gir | �
Z

E

|u(r) sin(2⇡r + ↵k) �⇤k| |g|2 r dr � c1�
m

Z

E

|g|2 r dr . (4.4)
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Combining (4.3) and (4.4), one has
Z

E

|g|2 r dr  c2⌫
1/2

c1 |k| �m+1 kH⇤gk1/2
L
2
r ((0,1))

kgk3/2
L
2
r ((0,1))

+ 1
c1|k|�m kH⇤gk

L
2
r ((0,1))

kgk
L
2
r ((0,1))

 c
2
2⌫

c
2
1 |k|2�2m+2

kH⇤gk
L
2
r ((0,1))

kgk
L
2
r ((0,1))

+ 1
4

kgk2
L
2
r ((0,1))

+ 1
c1|k|�m kH⇤gk

L
2
r ((0,1))

kgk
L
2
r ((0,1))

. (4.5)

On the complement Ec , since |Ec |  N�, it follows that
Z

Ec

|g|2 r dr  N�kg2
rkL1 (4.6)

Using the smoothness and boundedness of g , for all r0 2 [0, 1],

g
2(r0)r0 =

Z
r0

0
@r (g2

r) dr = 2
Z

r0

0
@r g · g · r dr +

Z
r0

0
g
2
dr

 2 k@r gk
L
2
r ((0,1))

kgk
L
2
r ((0,1))

+
���
g

r

���
L
2
r ((0,1))

kgk
L
2
r ((0,1))

,

which implies

kg2(r)rkL1  2 k@r gk
L2(rdr) kgk

L
2
r ((0,1))

+
���
g

r

���
L
2
r ((0,1))

kgk
L
2
r ((0,1))

.

Hence (4.6) becomes
Z

Ec

|g|2 r dr  N�

✓
2 k@r gk

L
2
r ((0,1))

kgk
L
2
r ((0,1))

+
���
g

r

���
L
2
r ((0,1))

kgk
L
2
r ((0,1))

◆

 N�

✓
2
⌫1/2

kH⇤gk1/2
L
2
r ((0,1))

kgk3/2
L
2
r ((0,1))

+ 1
⌫1/2 |k| kH⇤gk1/2

L
2
r ((0,1))

kgk3/2
L
2
r ((0,1))

◆

 3N�
⌫1/2

kH⇤gk1/2
L
2
r ((0,1))

kgk3/2
L
2
r ((0,1))

 9N2�2

⌫
kH⇤gk

L
2
r ((0,1))

kgk
L
2
r ((0,1))

+ 1
4

kgk2
L
2
r ((0,1))

, (4.7)

where we applied (4.2) in the second inequality and we used the fact that |k| � 1 in the third one. Adding up (4.5) and (4.7), we get

kgk
L
2
r ((0,1))


✓

2c22⌫
c
2
1 |k|2�2m+2

+ 2
c1|k|�m + 18N2�2

⌫

◆
kH⇤gk

L
2
r ((0,1))

. (4.8)

In the regime ⌫  |k|, choosing

�0 = c3

✓
⌫

|k|

◆ 1
m+2

,

with c3 small enough, we get

kH⇤gk
L
2
r ((0,1))

� ✏0⌫
m

m+2 |k| 2
m+2 kgk

L
2
r ((0,1))

.

This estimate, in turn, gives the desired bound

 (H⌫,k) � ✏0⌫
m

m+2 |k| 2
m+2 ,

for ⌫  |k|. ⇤

The proof of Theorem 1.2 now follows directly from Proposition 4.1.

Remark 4.1. If u is chosen as u(r) = 1 or u(r) = cos(2⇡r), then Assumption 1.2 is fulfilled with m = 2. For a proof of this fact, we
refer to [55]Example 2.1.
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