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1. Introduction

This article concerns enhanced dissipation due to the combined effect of diffusion or hyperdiffusion and advection by an incompress-
ible flow with circular or cylindrical symmetry in 2 and 3 space dimensions, respectively. By enhanced dissipation, we mean that the
solution operator of the advection-diffusion equation acts on time scales smaller than the diffusion time scale, which in turn implies
a faster rate of decay in time for solutions in comparison to (hyper) diffusion alone. We will quantify this effect in terms of bounds on
the decay rates with an improved, explicit dependence on the diffusivity coefficient (see (1.12)-(1.13)). Of course, improved decay can
only be achieved after projecting out the kernel of the advection operator. We restrict our attention to incompressible flows.

Enhanced dissipation by advection is a well-known mechanism in fluid mechanics, observed in turbulent mixing and lead-
ing to anomalous dissipation in scalar turbulence (see e.g. [1] and reference therein, see also [2-4] and the preprint [5]) and
other important phenomena. A related phenomenon is Taylor dispersion due to shearing (see e.g. [6] and references therein,
see also [7] and the preprint [8]), where the dispersion leads to a large effective diffusivity provided the time scale on which
advection acts is large enough. Significant progress has been made recently on the mathematical justification and rigorous quan-
tification of enhanced dissipation, starting from the seminal work of Constantin et al. on so-called relaxation enhancing flows
[9] (we refer, among several works, to [10-16]), due in part to recent advances in the analysis and construction of flows with optimal
mixing rates [17-26] (see also the recent preprint [27]) and in the analysis of instabilities of viscous flows around steady profiles (we
mention [28-39]). Enhanced dissipation has been used as a mechanism to prevent blow up and separation, and prove global existence
in dissipative systems, such as for aggregation-diffusion models [40-42], for the Cahn-Hilliard phase field model [43], and for the
Kuramoto-Sivashinsky equation in 2 and 3 space dimensions [43-45].

Most of the results concerning enhanced dissipation are obtained in the torus, a setting that, while more geometrically constrained,
allows more explicit calculations. A few consider bounded domains with no slip or no penetration boundary conditions for the flow
and compatible boundary conditions for the advected scalar. Steady relaxation enhancing flows are characterized by a condition on
their spectrum, and it is known that mixing flows with enough regularity are dissipation enhancing. Certain shear and cellular flows
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can also be dissipation enhancing (we refer the reader to the references cited above for more details). In all cases, enhancement can
only happen on the complement of the kernel of the advection operator. In this work, we study dissipation enhancement for certain
flows with circular or cylindrical symmetry, which can be considered as a generalization of shear flows.

Let f : [0, 00) X £2 — R solve the initial value problem (IVP for short) for a linear advection-diffusion equation

of +u-Vf+v(-AYf =0,
f|t:0 =fOs

where 2 is either R", n = 2, 3, or a domain with smooth boundary in R", p = 1 or 2, 0 < v < 1 is the diffusivity coefficient, u is a
given divergence-free vector field, and fj is the initial data. This IVP is complemented by suitable boundary conditions specified later.

We denote a point in R? by x = (x, y) and let (r, #) be the polar coordinates in the plane with associated o.n. frame {e,, e,}. Similarly,
we denote a point in R® by X = (x, y, z) and let (r, 8, z) be cylindrical coordinates in space with associated o.n. frame {e,, ey, e,}. In
the two-dimensional case, we take u to be the velocity associated with a steady circularly symmetric flow

(1.1)

u(x,y) = v(r)ey, (1.2)

in the full plane 2 = R? (we could also consider a disk centered at the origin). In the three-dimensional case, we take u to be the
velocity associated with a steady pipe parallel flow in :

u(x,y,z)=v(r)e, + w(r,0,t)e,, (1.3)

in the cylinder parallel to the z-axis £2 = D(0, 1) x T C R3, where D(0, 1) is the disk centered at the origin with unit radius in the xy
plane, (any radii and any axis can be chosen). With slight abuse of notation, we will identify u with the flow it generates.

We then rigorously establish enhanced dissipation for (1.1) and quantify it in terms of rates of decay in time for the solution operator
in terms of the viscosity. Our results extend the work of Coti-Zelati and Dolce [46], who studied enhanced dissipation in the case
p = 1 for certain circularly symmetric flows in R?. The example in [46] is, to our knowledge, the only rigorous example of dissipation
enhancing flow in the whole plane. It is a circularly symmetric flow with velocity

X

u(x,y) = (@ +)? (‘y> : (1.4)

where q is an integer. Informally, dissipation enhancement in shear flows occurs by mixing across streamlines. Here, the streamlines
are circles concentric to the origin of increasing radius, hence the velocity must grow sufficiently fast at infinity and its critical points

cannot be too many or too degenerate for enhancement to occur. More specifically, the authors in [46] prove a separation of time

scales: for time-scales between ﬁ = (1+ %| Inv|)/(v#+2) and ~ % the dominant mechanism is mixing along streamlines. At

times-scale of order % diffusion takes over and at later times mixing happens across streamlines. The result, proven by employing
hypocoercivity methods [47], presented difficulties given by the absence of the Poincaré inequality (which is generally employed for
deriving exponential decays) and the unboundedness of the velocity field, which potentially causes the solution to grow at infinity. In
this work, we establish this result by employing stability estimates for the semigroup associated to the operator u-V — v A. The method
we employed is inspired by a recent result of Wei ([48, Theorem 1.3]), which in turn uses certain spectral estimates for m-accretive
operators on Hilbert spaces. Spectral estimates can be more naturally adapted to different boundary conditions and to hyper- and
hypo-diffusion operators, in particular fractional powers of the Laplace operator [49], although we do not pursue this extension here.

Wei’s result in [48] is based on the following Gearhart-Priiss-type theorem. Let (#, | - ||) be a complex Hilbert space and let H be a
closed, densely defined operator on # with domain D(H). If H is an m-accretive operator on #, then
le™ lop < e ¥H/2 vt >0, (15)
where || - [lop denotes the operator norm, e~™ t > 0, denotes the semigroup generated by the operator H on #, and
Y(H) =inf{|I(H —id)g|l : g € D(H), A €R, ligll = 1}, (1.6)

Our goal is to derive semigroup estimates from bounds on the resolvent of the operator H = H, := v(—A) +u-V on H = L*(£2).

To achieve dissipation enhancement, we impose certain conditions on the velocity profiles v and w in (1.2) and (1.3) (see
Assumptions 1.1 and 1.2). These conditions are adapted from the work of Coti Zelati and Gallay in the case of higher-dimensional shear
flows [8], which some of the authors of this paper have employed to prove global existence for the 2D advective Kuramoto-Sivashinsky
equation [44]. More precisely, in R* we consider the circularly symmetric flow,

u(x, y) = u(v/x? +y?) (‘Xy ) (1.7)
with u : [0, c0) — R a smooth profile satisfying the following assumption.

Assumption 1.1. There exist m, N € N, ¢; > 0 and &y € (0, co) with the property that, for any A € R and any § € (0, §p), there exist
n < N and points rq, ..., 1, € [0, o0) such that

lu(r) — x| > c18™, Vir—nl>68 Vje{l,...,n} (1.8)

Observe that this condition quantifies the degeneracy of the critical points as one can easily see by choosing A = u(r;). The condition
of finitely many critical points with finite order arises naturally in studying the solution of the advection equation by a shear flow by
the method of stationary phase. Such method allows to show that there is mixing along the streamlines, quantified by the decay of the
H~! negative Sobolev norm of the solution in the direction orthogonal to shear (we refer to [50], Appendix A and references therein
for a more in-depth discussion). This decay in turn allows to prove hypocoercivity of the advection-diffusion operator and enhanced
dissipation (see e.g. [47] and references therein).
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We note that u is divergence free and vanishes at the origin. It is of the form (1.2) with v(r) = ru(r). The flow (1.4) considered
in [46] is an example of a circularly symmetric flow satisfying Assumption 1.1 with m = ¢q (see Remark 3.1, but this assumption is
satisfied by more general flows).

To estimate e~, it is convenient to pass to polar coordinates (r, #). To this end, we recall that the gradient and the Laplacian in
polar coordinates are given by

or 1 1
V= la s A:arr‘}'*ar"‘ja%-
7% r r
For notational convenience, we write f(r, 6,t) = f(rcosd,rsinf,t) Then Eq. (1.1) transforms into
1 1
0cf + u(r)def + v(—0r — ;8r - rjaee)pf =0 (1.9)

on (0, 00) x T, for t > 0, where T is the 1D torus.
Given f e [*(R?), we denote the average of f over circles centered at the origin by

1 2 N
(Flo(x,y, t) = —f fle, Vx2 +y?,0)do, (1.10)
2 0
which is well defined a.e., and we denote the difference by
f2x,y, ) =f(x,y,t) = (o (1.11)

We observe that (f)y gives the projection of f onto the kernel of u - V and f the projection onto its complement. The initial data of
f# is
(Fedo(x, ¥, t) = fo(x, ¥, t) — (fo)e,

where fo(x, ¥, t) = fli—o and {fo)s = (f)slt=0. We can now state our main result in the two-dimensional case.

Theorem 1.1. Let u satisfy (1.7)-(1.8), and let fy € L*(R?). Let f satisfy the IVP (1.1) with velocity u and initial data f,. Then there exists
constants C1, C; > 0, independent of v and f, such that

IfeCy D)l 22y < Cre” 2 N (fo) el 2gg2y (1.12)
where
Ay = VT (1.13)

The above result can also be interpreted as a bound in time on the oscillation in direction orthogonal to streamlines of the solution.
There are several bounds of this type available in the literature. Young and Rhines studied the effective diffusivity due to the interplay
between dispersion along the streamlines due to advection and diffusivity orthogonal to the streamlines for some circularly and
elliptically polarized shear flows by a formal moment analysis, motivated by the study of internal waves in the ocean [51,52]. Their
estimate corresponds to the case p = 1 and m = 1 in (1.12). We also mention the work of Novikov, Papanicolau, and Ryzhik, who
derive an estimate for the oscillation along streamlines of solutions to the stationary advection-diffusion equation for cellular flows in
the high Peclét number regime [53].

The spectral approach allows us to improve on the results in [46] in two ways. First, there is no log v~ correction in (1.13). Second,
we can take a more general circularly symmetric velocity u. The proof is also more streamlined than that using hypocoercivity estimates.
It is an interesting question, to which we do not know the answer, whether it is possible to exploit the Hamiltonian structure of the
flow to generalize our results to flows with closed streamlines if the travel time along each streamline is controlled (cf. the work of
Freidlin and Wentzell in the context of large deviation theory [54]).

To prove Theorem 1.1, we apply the Fourier Transform in the angular variable 6, and bound the resolvent of the transformed operator

. 1 k?
H, y := iku(r) + v(—0y — ;ar + r—z)”, (1.14)

for fixed k € Z. By Wei’s result, such bounds in turn give estimates on the semigroup generated by H,, provided the m-accretivity of
H, \ is established first. This is perhaps the most delicate part of our proof as this operator is singular at r = 0 and u(r) is unbounded
at infinity, so we have to work with weighted spaces.

In the three dimensional case, for technical reasons we limit ourselves to flows in domains bounded in the radial direction, i.e., a
cylinder to preserve circular symmetry, and the case p = 1. We take u to be a parallel pipe flow in the periodic cylinder £2 = D(0, 1)x T':

u(x,y,z) =u(r) (sin(an) ( X ) + cos(2mr) (O)) , (1.15)
0 1

with u : [0, 1] — R a smooth profile satisfying the following assumption.

Assumption 1.2. There exist m,N € N, ¢; > 0 and &y € (0, oo) with the property that, for any o, A € R and any § € (0, &), there
exist n < N and points ry, ..., 1, € [0, 1] such that
|u(r)sin(2mrr + o) — A| > ¢18™, Yir—rnl>6 Vjie{l,...,n}L (1.16)
3
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We observe that this velocity field is divergence free, constant in z, tangent to the boundary of the cylinder, and vanishes along the
axis. It is of the form (1.3) with v(r) = r u(r)sin(2zr) and w(r, 8) = u(r)cos(2wr). We then impose periodicity in z and homogeneous
Neumann boundary conditions on the solution to (1.1). Any period L > 0 can be taken along the axis, but for simplicity of exposition
we assume L = 1. We then identify £2 with D(0, 1) x T.

The planar equivalent of this flow was studied by one of the author on the 3D torus, proving enhanced dissipation and using it to
establish global existence for the Kuramoto-Sivashinsky and the Keller-Segel equations with advection [55].

To estimate e~ it is convenient to pass to cylindrical coordinates (r, 8, z). We recall that the gradient and Laplacian in these
coordinates are given by

O 1 1
V= %89 ’ and A:arr+;ar+r7899+au.
0;

Again, we write f(r, 0,z,t)=f(rcos@,rsiné, z, t) Then the advection-diffusion in (1.1) becomes
orf + u(r)sin(2rr)dgf + u(r)cos(2nr)d,f —vAf =0

on (0, 1) x T?, for t > 0.
Similarly to the 2-dimensional case, given f e L?(£2), we denote the average in the angular and axial variables 6, z by

1 2 2
Doty =z [ [ sV o . (1.17)
0 0
which exists a.e., and the difference by

fe=fxy.2,t) = (foz- (1.18)

We note that (f)y . is the projection of f onto the kernel of the operator u - V and f. the projection onto its complement. The initial
data of f.. is

U#)O(Xs y.z, t) :fO(Xa Y.z, t) - (fO)Q,Zv

where fo(x, ¥, 2, t) = fli=0 and {fo)s = (f)e.z|t=0-
Our main results in 3 dimensions is the following theorem.

Theorem 1.2. Let 2 = D(0, 1) x T. Let u satisfy (1.15)-(1.16), and let fy € L*(£2)be mean free. Let f solve (1.1) with velocity w, initial
data fy, and Neumann boundary conditions % = 0 at dD(0, 1). Then there exists constants Cy, C; > 0, independent of v and f, such that

1fe (e, t)”LZ(Q) =G eicﬂvtn(fo);&”ﬂ(g) , (1.19)
where
Ay = VT (1.20)

As in the two-dimensional case, to prove Theorem 1.2 we apply the 2D Fourier Transform in the angular and axial variables 6, z,
and bound the resolvent of the transformed operator

1 k?
Hy i = ikqu(r) sin(27r) 4 ikou(r) cos(2r) + v(—dy — —0r + = +k3), (1.21)
r r

for fixed k = (ki, k) € Z2. (Instead of writing H, i, we employ the same notation in (1.14) and (1.21), as no confusion can arise,
since the two cases are dealt with separately). By Wei’s result, such bounds in turn give estimates on the semigroup generated by H,,
provided H, x is m-accretive on a weighted L? space.

Finally we remark that in [56] S. Pottel and the third author of this paper proved decay estimates in RY (d = 2, 3) of the filamentation
length A defined as the ratio between the (homogeneous) H~! norm and the L? norm of the passive scalar. The estimates indicate either
dispersion or mixing depending of the decay properties of the time-dependent velocity field. The velocity fields considered in this paper
(unbounded and time independent) are not admissible and whether or not the class of velocity fields considered in [56] is dissipation
enhancing is not known and object of investigation.

We close with a brief outline of the paper. In Section 2, we recall the notion of m-accretivity and give a proof of the m-accretivity
of the operators introduced in (1.14) and (1.21), using some abstract functional analysis and the m-accretivity of H, on L?(£2). Then in
Section 3 we prove Theorem 1.1 and the needed resolvent estimates, while a proof of Theorem 1.2 and the needed resolvent estimates
are contained in Section 4.

2. m-accretivity

Our goal in this section is to show the m-accretivity of the operators defined in (1.14) and (1.21) on the space [*(R.,rdr) and
L((0, 1), r dr) respectively. For brevity we only discuss the operator given in (1.14). A similar argument (in fact simpler) applies to
the operator given in (1.21). We exploit the fact that the operator H, y is obtained by conjugating H, with an isometric isomorphism
between Hilbert spaces and by applying an orthogonal projections, and m-accretivity is preserved under both operations.

Let (H, (-} ) be a complex Hilbert space and let H be an unbounded linear operator on # with dense domain D(H) and with range
R(H). We endow D(H) with the graph norm ||f |lpy = IIf 12 + |Hf l|2. If @ : H — # is an invertible isometry between Hilbert spaces,
we denote

H=®H)=wHV !,
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which is an unbounded linear operator on H with dense domain and range given by:
D(H) = ¢(D(H)) = {H g = ¥(f) : f € DH)},
R(H) = @(R(H)) :={H>g =¥() : f € R(H)}.

We begin by recalling the notion of m-accretivity.

Definition 2.1. The operator H : D(H) C H — H is called maximally accretive or m-accretive if

(1) Re(Hf,f) =0 for all f € D(H),
(2) RGH+&Id) =H for some & > 0,

where Id denotes the identity map.

Property (1) gives the accretivity of H, while property (2) shows maximality.
The m-accretivity of an operator is a property that is preserved under isometric isomorphisms, as specified in the following lemma.
We include a proof of this simple fact for completeness.

Lemma 2.1. Let H be an m-accretive operator on H and let @ : H — H be an isometric isomorphism. Then H = ®(H) is an m-accretive
operator on H.

Proof. Since D(H) = ®D(H), for all f € D(H)
Re(Hf,f)5; = Re(PH® 'f , f)y; = Re(@H® ', @@ 'f) sy = Re(H® 'f, @7 'f)3, > 0
where, in the last two identities, we have used that @ is an isometry and that H is m-accretive. Moreover,
R(H + £1d) = ¢(H + £ld) = ®(H) = H,
since @ is invertible. O
We will also need the following fact. Again, we include a proof for completeness.

Lemma 2.2. Let H be an m-accretive operator on a Hilbert space H. Let P be an orthogonal projection onto a closed subspace V of H. Let
Hy := PH. Then Hy is m-accretive on V with the induced inner product.

Proof. We observe that Hy : V — V is a linear operator with domain D(Hy) = D(H) N V. Since V is closed and D(H) is dense in #,
D(Hy) is dense in V. Accretivity follows from a direct computation. In fact

Re(Hyf, f)v = Re(PHf, f)3c = Re(Hf, Pf), = Re(Hf, f)y = 0

for all f € D(Hy), since Pf = f if f € V. Now notice that R(H + &£Id) = H for some & > 0, by the m-accretivity of H. This implies
R(Hy + &ldy) = R(PH + &Pld) =V,

which shows the m-accretivity of Hy. O

We now apply these results to the operator H, j given in (1.14). We first setp = 1 and let H = H, = —vA 4+ u-V, whereuis a
circularly symmetric flow with smooth, possibly unbounded profile v(r) (see (1.2)), defined on H = [*(R?).

Lemma 2.3. H, is an m-accretive operator on L*(R?).

Proof. We write H, = A, +L, where A, = —vA and L = u- V with domains D(A,) = H?(R?) and D(L) = {f € H'(R?) : u- Vf € [*(R?)}.
Since A, is self-adjoint and L is anti-selfadjoint,! it follows that the adjoint is HY = A, — L. We want to prove that H, is densely defined,
closable, accretive and that H;} is accretive. Then, from the characterization in Theorem 1-4.4 in [57], it follows that H, is m-accretive.

o Density of H,: We take D(H,) = D(A,) N D(L) and want to show that D(H,) is dense in % = L*(R?). We first observe that
C®(R?) is dense in both D(A,) and D(L), and in # in the respective norms. The density of C*(R?) in D(A,) is clear. To see
the density in D(L), let f € D(L) and x be a radially symmetric smooth bump function on the unit disk (again for notational
convenience we identify x(x,y) with x(r)). For n € N, let xn(r) = x(;). Then f x, — f in D(L), since [[u- V(fxn) —u - Vf[2 <
l(w-Vf)xn —u- Vf]z + [(u- Vx,)fllz and u- Vx, = 0 due to the fact that y, is radial and u is circularly symmetric. The
mollification of f x, converges to f x, in D(L), as f x, is compactly supported. Hence CE’O(RZ) is dense in D(L).

In particular, we showed that C*°(R?) is dense in D(H,) and from this it follows that D(H, ) is dense in .

e H, is closable: Since D(H,) = D(H) is dense in %, the result follows from Theorem VIILI (page 252) in [58].

o Accretivity of H,: For the ease of notation, we continue to denote the closure of H, by H, and its domain by D(H, ). We note that
D(H,) contains D(A,)ND(L) and that C° is dense in D(H, ). Then the accretivity of H,, property (1) in Definition 2.1, follows from
a direct computation:

_ 1 1
Re(Auf, )+ Re(Lf, f) = vRe( f VP VFdxdy) + S0~ 50,1

R

1 1n fact, (Lf,8)n = fRQ V- (uf)gdxdy = — fRZ fu - Vgdxdy, since u is divergence free.
5
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v/ |Vf|2dxdy+%Re [(v- VF)f — (v Vf)f] dxdy
RZ

v/ [Vf|2dxdy > 0. (2.1)
RZ

e Accretivity of H: It follows by the same computation as in (2.1) O
Next, we let @ be the transformation
(@f)r, k) = fulr),
where f(r, 0) = f(rcos6,rsinf) and fk(r) is the k—th Fourier coefficient off(r, )
- 1 (2. )
fillr) = — f(r,0)e *®do, kez.
27 0
By the change of variable formula and Plancherel’s identity, @ is an isometric isomorphism:
@ H = [*(R?) — (X(Z; [A(RM)) = 7.
Above [2(R*) := [X(R*,rdr) and €2(Z; [2(RY)) = {{fidkez : 1l = D0 Jo~ Fur)I’rdr < oo} with the induced inner product
({f} =>4 fo fk )8k(r)rdr. Lemmas 2.1 and 2.3 then give the following result.

Corollary 2.4. H, = ®(H,) is m-accretive on H = £*(Z; LA(R™)).

Let P, denote the projection of f onto the kth Fourier mode. Then Py is an L?-orthogonal projection and @ (P¢Hf) =fk, so that

1 k?
H, i = ®(PH,) = v(d? + ;ar - r—z) + iu(r)k,

defined as an unbounded operator on Vi = {fi : f € [2(R2)}.
Finally, by Lemma 2.2 and Corollary 2.4, we obtain the needed m-accretivity of the operator in (1.14) for p = 1.
Corollary 2.5. H, j is an m-accretive operator on Vj =~ Lf(IRJr)for alkeZ,v > 0.

The proof of m-accretivity for p = 2 follows the same approach, using the m-accretivity of H, = vA% 4+ u - V, which can be proved
in a manner similar to the case p = 1. In fact, H, = A, + L, where L is as before and A, = A2, a self-adjoint, non-negative operator on
L*(R?) with dense domain D(A,) = H*(R?).

3. Dissipation enhancement in R? by a circularly symmetric flow

In this section, we focus on the proof of Theorem 1.1. We follow the convention set in the Introduction to denote f in polar
coordinates by f, and its kth Fourier coefficient by fk Then f; belongs to [A(R*1) := [*(R", rdr) with the induced inner product {, ),. We
note that

1V Iy = D 196l 2y + 12 H ”Lz "
keZ
Furthermore, for each k € Z if f solves (1.1), then fk satisfies the equation:
dfc +Hofe =0, r>0,t>0, (3.1)
and the initial condition fk(r, 0) = (ﬁ))k( ), where H, x is given in (1.14). We recall that H,x = Pkd>(Hv) is an unbounded operator on
Vi, canonically identified with L2(R*). Since D(H,) C D(A) and Ay := Py®(A) = 3y + — Br kz, if h, ' € D(H, ;) then

h K
(Agh,0) = (h, A'), = —(3:h, 3:H'), —k2<f ~r

We also observe that (f;)o =0 and (f;)k = f; for k # 0. By Plancherel’s identity, we then have that

~ 2
s Oy = e Gy = D | ™ 4(Fole

&)
keZ, k#0 r(R)

Consequently, it is enough to bound e~Hv.k,

Since the operator H, j is m-accretive by Corollary 2.5, we can apply the result in (1.5). To conclude the proof of Theorem 1.1, it is
then sufficient to establish a lower bound for the spectral function ¥ (H, ) (see (1.5)-(1.6)).

Given A € R, for ease of notation we set

Hy = Hy . — it = v(— AP + ik(u(r) — ),
where A = % p = 1, 2. Also, to streamline the proof of the next result, we will write f instead offk, as no confusion may arise.

6
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Proposition 3.1. Let the velocity profile u in (1.7) satisfy Assumption 1.1, and let k # 0 and v satisfy v |k|~! < 1. Then there exists a
positive constant €q, independent of v, such that

m 2
W(H, ) = cv® [k| 7
forp=1or2.

Proof. We fix . € R and pick g € D(H, ) with unit [? norm. By density of COO(RZ) in the domain of H,, we can assume that
g € C®(RT)N L°°(]R+) We let x : [0, +00) — [-1,1] be a smooth approximation of the signum function sign(r? — 1) such that
X e < €287, X" llee < 2872, x(u— 1) > 0and

x(r)u(r)—x) = |u(r) — X|, whenever |r—rj| >4, Vje({l,...,n},

We distinguish two cases.
Case 1 (p = 1): We note that

” g (32)

_ 2
Re(Hig, &)r = v 1138l 55 + vi? P

which implies

||8rg||Lz(R+) ||H1g||Lz(R+ gl 2+ -
On the other hand,

(Hrg, x8)r = v(drg, X'8)r + (0,8, xOrg)r + VIE (S 5 X&) + ik(u(r) = g, xg)r,
so that

m(Hig, x&)r = vim(d,g, x'g); + ki(u(r) — )g, x&):-

By applying the properties of the function y and using (3.2), we have

A

~ Cv
[ki(u(r) = g, x&)r| = =5 108 zga I8 hizgary + IH1Z ) gl sy

12

Higll/2
== IH:g]]

A(RT)

3/2
A(RT)

A

11?2+ IHig 2 gl 2 - (33)

Next, we define
E={rel0,00):|r—n|>=6, forj=1,...,n},

where r;, n < N, and § are as in Assumption 1.1, and observe that

)~ D x| = [ )= aligPrar = com [ 1P rr. (3.4)
E E
Combining (3.3) and (3.4) gives

1
1/2 3/2
/ 7 rdr = e g e W8I+ o g g, 18lgery

v

= W IH1gll 2 +) 81l 2mt) - (3.5)

1 5 1
||H]g||]_%(]R+) ||g||]_%(R+) + Z ”g”L?(]RJr) + W

We now estimate the L? norm of g on the complement of E. Using the fact that |[E°| < N§, we obtain

/ |g|? rdr < N8||g?r [|ooe)- (3.6)
EC
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To bound the right-hand side, we use that g is smooth and bounded on R* to compute
o o o
g2(ro)ro = / 8:(g2r)dr = 2/ dg-g-rdr+ / g2dr
0 0 0

||g||L?(R+) s

g
=< 2019:8ll2e+) gl 2ty + H 7l

from which it follows that

2 g
182 ) ey < 2108 lzger IElizger, + | o 18Nz

Hence (3.6) becomes

2 g
P rdr < Ns (2 108 lz0es) I8 Nzger, + | b ||g||L;(R+)>

1
12 32 172 3/2
< NS ( 5 IHENS, o WS+ e e, e Rﬂ)

EC

1/2 3/2
=i || Hegll o sy 181 2
9N?25? 1,
< g iz e+ 18120y + 7 18 N2y - (3.7)

where we applied (3.2) in the second inequality and used the fact that |k| > 1 in the third one. Adding (3.5) and (3.7) together gives

- 2c3v 2 18N252 U
gl 2@y < kP2 +c1|k|5m +— IH1gll 2+ -

Since by hypothesis v < |k|, we can choose

=a (i)
=00 | — ,
k|
ensuring & > §p. Then finally
m_ 2

”H1g||L$(R+) > €V mi2 |k| m+2 “g”L%(R‘*') .
Case 2 (p = 2): Since for g and f in D(H, ;) (—Af, &)r = (f, —Akg)r, by setting f = —Ayg we have

(—AF . 8) = 1 A8y
and therefore,

Re(Hog.g)r = v ||Akg||L2(R+ . (3.8)

Moreover, with x as in Case 1,
x s
m(Hzg, xg)r = vIM(Ag, x"g +2x'0g + “-g + X Akg)r + k((u(r) — 1)g. x&)r
/ x' -
=vIm({Ag, x"g +2x'd:g + T8+ k{(u(r) — A)g. x8)r
which further implies

2cyv
|k<(u( g Xg ||Akg”[_2(R+) ”g||L2(R+) 82 ||Akg||]_%(]R+) ”arg”]_g(Rﬂ (3-9)

‘g
Next, we recall that for g € D(H, ) the followmg identity holds
H

|_82

”Akg”L2 (RT) + ”HZg”L%(RJr) ”g”L%(RJr) . (310)

2(+

(—2ig. 8)r = 10831, + K

2rH)
from which it follows, on one hand, that

” arg ”Lz(rdr) = ” Akg ||L2(rdr ||g||L2(rdr) ’
and, on the other hand, that

g
H e = 195830 18z
where we used that |k| > 1. With these estimates at hand, (3.9) becomes
1/2 1/4
~ (%27 1/2 3/2 3 2V 3/4 5/4
|k{(u(r) = Mg, x&)r| < —3 1H28 1l 5 sy I8 2 sy F I1H28 1 5 sy 181 2

+ ||H2g||[_g(ﬂ§+) ”g”L?(Rﬂ .
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In view of Assumption 1.1, estimate (3.4) holds, which further gives

3cv/4
1/2 32 3/4 5/4
[irar < oo gl I+ e e gl
1
+ T IH2g Ml 2y € Ml 2y (3.11)
1

1/3
LI cv cv 1
4 ”g”L?(Rﬂ + <|k|252(m+2) + k|43 84m+1)/3 + cq|k|8™

) ”HZg”L?(]RJr) ||g||[_?(]R+) . (312)

On the complement on the set E, we have instead

g
P rdr < Ns (z 108 lzce, I8 Nzcer, + | 5
EC

1/2
2(RT)

2
. ||g||L,(R+))

3/2
2(RT)

<3Né IIAkgII gl

1/4
2(RT)

7/4
2(RT)

3
< W IH2g I lgll

cN454

IA

1H2g 1l 2zt 81l 2rty + 5 IIgIILz(]R+ : (3.13)
Adding (3.11) and (3.13) together yields that

2 -, cv cvl/3 1 cN454 U
“g”L%(Rﬂ = |k|252(m+2) + |k|4/354(m+1)/3 + c1|k|sm + v I zg”L?(Rﬂ ”g”L?(Rﬂ’

Arguing as in Case 1, since by hypothesis v < |k|, we can choose § = §g (IZI) w . Then we obtain

mo 4
I1H28 1 2¢rgry = €0V ™+ [K|7+4 [Ig ]| 21y »

where ¢ is independent of v. O

Remark 3.1. If u(r) = r? with ¢ > 1 as in example (1.4), then Assumption 1.1 holds with m = g. In fact, denote S := {u~'(1), 0} and
note that #5 < 2. Fixany § > 0. For A < 0, S := {0} and |r? — A| > &9 for any r > §&.
For 0 < 4 < (%)%, we have

AL
|rq—A|>8q—<5> 23, Vir —r| > 8, withr; € S.

For A > ( )q, we have instead r;, = u~'(A) > % and there exists 7 in between r and r, such that

8
2
19— Al = g9 r — 1| > q(8/2)7718 = (q/2971)89, V|r—ri| > 8, withri e S.

Remark 3.2. The validity of Assumption (1.8) is crucial in our argument to prove enhanced dissipation and restrict the class of flows
that we can treat with this approach. In particular, u can only have a finite amount of critical points. For example, the field

u(x, y) = u(r)sin(2zr)(—y, x),
with u unbounded on R™ does not satisfy Assumption (1.8).

Theorem 1.1 readily follows by combining Corollary 2.5 in Section 2 with Proposition 3.1.
4. Dissipation enhancement in R? by a pipe parallel flow

In this section, we aim to prove Theorem 1.2. We proceed in a manner analogous to that for circularly symmetric flows in Section 3,
passing to cylindrical coordinates (r, 6, z) in £2 = D(0, 1) x T?.

We apply the Fourier Transform in both the angular variable 6 and the axial variable z, and follow the notation discussed in the
Introduction, denoting f(r cos@, rsiné, z,t) = f(r, 6, z, t) and its k-th Fourier coefficient by fi(r, t), k = (kq, k;) € Z?, which belongs
to Lf((O, 1)) = L%((0, 1), rdr) with the induced inner product (, ), and norm. We observe that

IVF Iy = D 108l 2.0 + 12 &

kez?

+ K || & Hf%((o,m :

L}((0,1))

Again, if f satisfies (1.1) in £ for t > 0 with homogeneous Neumann boundary conditions, fk satisfies Eq. (3.1) with H, x given in
(1.21) for 0 < r < 1 and t > 0, with initial condition fi(r, 0) = (fo),(r) and boundary condition

afe=0forr=1, (4.1)

but we notice that all the arguments will hold also for Dirichlet boundary conditions f = 0 for r = 1. To ensure uniqueness of the
solution, we recall that we take fy to be mean free, a condition preserved under the time evolution of f due to the divergence-free
condition on u, so that we can assume throughout k # 0. As in the two-dimensional case, we view H, ; as an unbounded operator on

9
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Vi = P@(L?(£2)), which we identify with Lz((O 1)), where Py is the projection onto the k-th Fourier coefficient and & is the isometry
induced by the change from Cartesian to cylindrical coordinates. The domain of H, y is given by P@(H2NDL))R),p = 1,2, where L
is the transport operator u -V and H? consists of mean-free functions in the Sobolev space H2. Since D(H, k) C D(An) with Ay the 3D
Laplacian with Neumann boundary conditions in £2, denoting again A, = Py(®(A)), if h, i’ € D(H, k) then

/ ’ / h h/ /
(A, W)y = (h, Agh) = = (@h, 8:1)r — (2, —)r = ks (h, )y

By the change of variables formula and Plancherel’s 1dentity, we have

Ul Oy = e Udalagy = 3 st

keZ2, k#0

12(0,1)

Consequently, it is enough to bound e~*v, Given that H"" is m-accretive, following the arguments in Section 2, we can again apply
the result in [48], and it is sufficient to obtain a lower bound on the spectral function ¥ (H, x) (see (1.5)-(1.6)).
For notational convenience, given A € R we set

k2
H, :=H,x —ir = v(—0y 78 + 5+ kz) + ikqu(r) sin(27r) + ikou(r) cos(2mr) — iA,

which we can rewrite as
1 k?

He = W(=0y — 20 + 5 +k2>+z|kl(mu( r)sin(2rr) + ﬁiu( )cos(2rr) — ﬁ)

1 k2
= V(=0 — ;Br + r% + k%) + i|k|(cos ag sin(27r)u(r) + sin g cos(2wr)u(r) — Ag),

where we set

K1 . kz A A

oSk = —, Smokx = —, K= —.

k| ki k|

Also, to streamline the proof of the next result, we write g for g, as no confusion may arise.

Proposition 4.1. Let the velocity profile u in (1.15) satisfy Assumption 1.2. Let k # 0 and v satisfy v |k|~! < 1. Then there exists a positive
constant € independent of v such that

m 2
Y(Hyk) = €ovmiz [K|mi2

Proof. We fix A € R and pick g € D(H, x) with ||g||Lz = 1. Since C*(£2) is dense in D(H, ), we can assume that g € C*((0, 1))NL>®((0, 1))
Let x : [0, 1] — [—1, 1] be a smooth approximation of sgn(u(r)(sin(2zr + ay) — Ax)) such that || /|| < 2871 )"l < 2872,
x(u(r)(sin(2wr + ax) — Ak)) > 0 and

x(r)(u(r)sin2rr + o) — Aw) = |u(r)sin(2er 4+ o) — Axl, whenever |r—rj| >4, Vje(l,...,n},
We note that

Re(H.g. 8)r = vI1arglly o ) + Vi \ I (42)
using the boundary conditions on g, which 1mp11es
108112501y < ||H*g||L2 0.1 1812001
On the other hand, since g € D(H, x), we have
’ g ) .
(H.g. xg)r = v(0:g. x'8)r + v(0rg. x0:8)r + vk ( L X&)r + Vk3(g. x&)r + IK[{(u(r) sin27T + ag) — Aw)g. x8)r-
from which it follows that
Im(H.g, xg)r = vim(d,g, x'g)r + [K[{(u(r)sin(2rr + @) — Ak)g, x&)r-
From the choice of the function x and by using (4.2), we also have
. Cv
||k|<(u(r) SIH(ZT[T + ak) - Ak)g’ Xg)r| =< T ”arg”L%((oJ» ”g”L?((O,l)) + ”Hg”Lg((O,l)) ”g”L?((QJ))
1/2 3/2
= L%((O 1) ”g”,_z (0,1)) + ”H*g”]_g((oJ)) ”g“Lg((O,l)) . (4-3)
Next, we denote
E={rel0,00):|r—rj| =8, forj=1,...,n},
where 1j, §, and n < N are as in Assumption 1.2, and observe that
[{(u(r)sin(2zr + ax) — Ak)g, X&)rl = / |u(r)sin(2mr + o) — Al Igl* rdr > ¢18™ / gl rdr. (4.4)
E E

10
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Combining (4.3) and (4.4) one has

A ?rd IH.gl2 gl - lgl
gihrdr = |l |5m+1 #8lli2(0,1) 181201 T ¢ |k|5m & l112((0.1)) 181112(0.1))
1
= W ”H*g”]_Z 0,1)) ”g”LZ((o] ”g”,_z ©.1)) + W ”H*g”[_f((o,m ”g”L%((O,l)) . (4.5)
On the complement E€, since |E¢| < N§, it follows that
[ it rar < wotgri (46)
EC
Using the smoothness and boundedness of g, for all ry € [0, 1],
o o o
g2(ro)ro = / 3.(g?r)dr = 2/ dg-g-rdr +/ g2dr
0 0
= 2108301y I8Nz 0.y + | srom €N
which implies
g
182 )l < 2108 iz I8 20y + |5 oy 112
Hence (4.6) becomes
f gl rdr < N§ (2 I8 iz 12 g0+ | | ooy ||g||L;((o,1)>)
1
e 1/2 3/2 1/2 3/2
< N5< 72 IIH*gIILz (1) IIgIILg((O’m-i- D172 K] IIH*gIILZ (0.1) IIgIILz((O] )
3N§ 1/2 3/2
=T I *glle 0.1) IIglle((01
9N?252 1 5
=< ”H*g”]_g((oj)) ”g”Lz((O,])) + Z ”g”L%((O,l)) ) (4.7)

where we applied (4.2) in the second inequality and we used the fact that |k| > 1 in the third one. Adding up (4.5) and (4.7), we get

2c3v 2 18N282
”g”Lg((O.l)) =< C%|k|282m+2 + C1|k|8m + » “H*g”’-g((OJ)) . (48)

In the regime v < |Kk|, choosing

_—
do =C3 K ,

with c¢; small enough, we get
m_ 2
”H*g”LE((O,l)) > egum+z |K|m+2 ”g”L?((O,l))'
This estimate, in turn, gives the desired bound
m_ 2
Y (Hy k) > €ovmi2 [K|mt2 ,
forv < |k. O

The proof of Theorem 1.2 now follows directly from Proposition 4.1.

Remark 4.1. If u is chosen as u(r) = 1 or u(r) = cos(2xr), then Assumption 1.2 is fulfilled with m = 2. For a proof of this fact, we
refer to [55]Example 2.1.
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