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Public goods games in undirected networks are generally known to have pure Nash 
equilibria, which are easy to find. In contrast, we prove that, in directed networks, a broad 
range of public goods games have intractable equilibrium problems: The existence of pure 
Nash equilibria is NP-hard to decide, and mixed Nash equilibria are PPAD-hard to find. 
We define general utility public goods games, and prove a complexity dichotomy result 
for finding pure equilibria, and a PPAD-completeness proof for mixed Nash equilibria. Even 
in the divisible goods variant of the problem, where existence is easy to prove, finding 
the equilibrium is PPAD-complete. Finally, when the treewidth of the directed network is 
appropriately bounded, we prove that polynomial-time algorithms are possible.

 2023 Elsevier Inc. All rights reserved.

1. Introduction

A public good is a resource which, once produced, is available to all (non-excludability), and can be enjoyed collectively 
by many agents (non-rivalry1). Scientific knowledge (Stiglitz, 1999), open-source software, vaccination for an infectious 
disease, volunteer work, information resources, and clean environment are fine examples of public goods. Since public 
goods can be produced at a cost and contribute to the utility of others, they enable a variety of strategic behaviors such as 
free-riding. Game theoretic formulations of public goods have been extensively studied by economists — see Bergstrom et 
al. (1986) for a classical framework for the public goods problem within which a unique Nash equilibrium exists.

Networks are perfect arenas for public goods games (Bramoullé et al., 2007). Networks model the fact that a particular 
public good, such as a piece of software or protection due to the immunization of an individual, may not be accessible by 
all, but only by the neighbors of the node where it is produced. A node’s utility then is an nondecreasing function of the 
goods in the neighborhood, minus the cost of the goods produced by the node. Almost all of the literature deals with the 
homogeneous case, where all nodes have the same two strategies (produce the common goods at a cost, or not) and the 
same utility function (see Yu et al. (2020) for an exception); in fact, the nondecreasing functions max and sum are typically 
considered. In this paper, we assume that all nodes have the same utility (even though they have different circumstances 
due to network connectivity, and hence the game is not symmetric unless the graph is), and we consider very general utility 
functions. There is extensive work on public goods in undirected networks (see the related work subsection), and the rough 
consensus seems to be that, in just about all variants of the problem (again, with the exception of Yu et al., 2020), pure 
Nash equilibria exist — typically corresponding to independent or dominating sets of the graph — and are easy to find.

Undirected graphs cannot model accurately all possible kinds of utility transfer. The ability to enjoy the public goods 
produced by others is not necessarily symmetric — for example, clean air in a neighboring city is of no use if that city is 
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1 Non-rivalry was called collective consumption by Paul Samuelson, who initiated the study of the subject (Samuelson, 1954).
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downwind; if my house is on a co-worker’s way to work, then the good of carpooling to work produced by my co-worker 
benefits me, but not vice-versa. For another example, in peer-to-peer networks, agents can selfishly leave a torrent or altru-
istically participate in its provision, and this creates a non-reciprocal beneficial relationship. Importantly, social networks are 
often directed, e.g. Twitter, Instagram, Flickr, beneficial resource (e.g., information, ideas) usually flows along the direction of 
social network. Therefore, it is of interest to explore public goods games on directed networks. There has been some work 
on public goods in directed networks, e.g. López-Pintado (2013), where sufficient conditions for the existence of equilibria 
are developed. The general impression one gets from the literature is that the matter of equilibria in the directed case is 
more subtle.

This paper is a comprehensive exploration of the complexity of the equilibrium problem in public goods games on directed graphs.
The simplest and most widely studied variant of the problem is the indivisible case with the max utility: the decision 

a node faces is whether or not to produce the good; and a node does not need to produce the good if one or more of its 
predecessors have it. It turns out to be quite intricate. It is easy to see that a pure equilibrium may not exist (consider a 
directed odd cycle), and it turns out that it is NP-complete to decide if a pure equilibrium does exist. We give a simple 
reduction to that effect (Theorem 3.1).

We then generalize this NP-completeness result to a full complexity dichotomy of nondecreasing utility functions. We 
identify three families of utility functions that can be solved in polynomial time: The flat functions, the steep functions, 
and the alternating functions. The first two have trivial equilibria where all nodes abstain or all nodes produce the good, 
respectively. In the case of alternating functions, finding a pure Nash equilibrium is shown to be equivalent to solving 
a system of equations in F2 . The main part of the proof entails showing that all other functions make the equilibrium 
problem NP-hard (Theorem 3.4).

It is interesting to note that this generalized problem, with an arbitrary nondecreasing utility, has not been considered 
in the case of undirected graphs. As we point out in Section 7, this problem is quite nontrivial, in the sense that it is NP-
complete for some utility functions, while of course for others it is polynomial. Determining the precise dichotomy in the 
undirected case seems a very challenging open problem that is left open here.

Since pure equilibria in these games are fraught with non-existence and NP-completeness, can we find in polynomial 
time a mixed Nash equilibrium (guaranteed to exist by Nash’s theorem)? We prove (Theorem 4.1) that this problem is 
PPAD-complete, even in the simplest case of the max utility; this is perhaps the most technically demanding proof in this 
paper. We reduce from the generalized circuit problem, proved to be PPAD-hard in Rubinstein (2018); Chen et al. (2009b). 
The reduction requires several new ideas, including the definition of a new kind of intermediate game — in addition to 
several that already exist in this literature — which we call the threshold game, and we believe is of interest in its own right. 
Finally, when the goods are divisible, the sum case of the problem (the utility is the summation of the neighbors minus the 
good’s cost) is also PPAD-complete, this time by a reduction from mixed Nash equilibria in two-player win-lose games (Chen 
et al., 2007; Abbott et al., 2005).

All of our complexity results hold for sparse networks, with indegrees and outdegrees at most three. But how about 
networks that are tree-like in the sense of graph minors (Robertson and Seymour, 1986)? We show that, when the (underlying 
undirected) network has bounded treewidth, essentially all versions of the Nash equilibrium problem of network public 
goods games can be solved, or at least approximated arbitrarily close, in polynomial time. Our algorithm and techniques are 
inspired by Daskalakis and Papadimitriou (2006) and Thomas and van Leeuwen (2015), but several substantial adaptations 
and innovations are needed.

Our contributions. In summary, our main contributions are these:

• The formulation of public goods games in directed networks with a general objective function — beyond the two 
functions treated in the literature, max and sum — leading to a surprisingly rich and diverse family of problems and a 
precise P/NP-complete dichotomy (Section 3).

• Sweeping intractability results for the equilibrium problem of public goods games in directed networks, including a 
PPAD-completeness proof through threshold games (Section 4), an intriguing analysis of polynomial special cases for 
the pure equilibrium problem culminating in a precise P/NP-complete dichotomy (Section 3), and even a very different 
PPAD-completeness proof for divisible goods (Section 5).

• An approximation algorithm when the treewidth is O (
logn

log logn
), through the development of new and enhanced tech-

niques for approximating equilibrium problems in graphical games with small treewidth (Section 6).

1.1. Related work

Bramoullé and Kranton (2007) initiated the study of public goods in a network. They consider a type of pure Nash equi-
librium called specialized equilibrium, and prove that such equilibria are stable under small perturbations, universal (always 
exist), and in fact computable by a natural distributed algorithm, since they correspond to maximal independent sets of the 
graph; see Dall Asta et al. (2011); Boncinelli and Pin (2012); López-Pintado (2013); Feldman et al. (2013); Bramoullé et al. 
(2014); Allouch (2015); Shin et al. (2017); Elliott and Golub (2019); Yu et al. (2020); Kempe et al. (2020); Bervoets and 
Faure (2019); Acemoglu et al. (2015) for follow-up works. Bramoullé et al. (2014) extended the theory to imperfectly substi-
tutable public goods, and proved the existence of a unique Nash equilibrium, assuming that the graph’s lowest eigenvalue is 
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sufficiently small. Allouch (2015) differentiates private provision from public provision, and again characterizes the existence 
and uniqueness of a Nash equilibrium through the lowest eigenvalue of the graph. Bervoets and Faure (2019) examine the 
stability of Nash equilibrium and provide necessary and sufficient conditions for Nash equilibria to be asymptotically stable 
via the best-response dynamic. Public goods games were first generalized to directed graphs in López-Pintado (2013), who 
provide sufficient conditions for pure Nash equilibria to exist. The only complexity result regarding such public goods games 
we are aware of is Yu et al. (2020): finding a pure Nash equilibrium of a discrete version of the public goods game, albeit 
in the far more general case of heterogeneous agents, is NP-hard. A concurrent work of Bayer et al. (2021) studies the best 
response dynamic of public goods in directed graph and provides sufficient conditions for convergence. We refer interested 
readers to the surveys (Jackson and Zenou, 2015; Galeotti et al., 2010; Bramoullé and Kranton, 2015) for a general coverage 
of this area.

Our work uses certain ideas from graphical games (Kearns et al., 2001). It is NP-hard to find a pure Nash equilib-
rium (Gottlob et al., 2005) and PPAD-hard to compute, even approximately, a mixed Nash equilibrium (Daskalakis et al., 
2009a; Rubinstein, 2018; Chen et al., 2009b) of a general graphical game with maximum degree 3. However, the prob-
lem is tractable in several settings (Daskalakis and Papadimitriou, 2006; Thomas and van Leeuwen, 2015; Daskalakis and 
Papadimitriou, 2015). Daskalakis and Papadimitriou (2006) developed a polynomial-time approximation scheme (PTAS) for 
computing an ε-approximate Nash equilibrium when the game has bounded strategy size, the network has bounded neigh-
borhood size and O (logn) treewidth. Thomas and van Leeuwen (2015) provided an algorithm that computes a pure Nash 
equilibrium in poly(sw , |M|), where s is the strategy size, w the treewidth of the graph and |M| the size of the payoff matrix. 
We use similar ideas in our main algorithmic result for computing Nash equilibria in public goods problems for networks 
of bounded treewidth, but we have to address the problem that, in the present case, the parameter |M| of this algorithm is 
exponential.

The PPAD complexity class was introduced by Papadimitriou (1994) to capture one particular genre of total search 
functions, encompassing the notion of equilibrium. The PPAD-completeness of Nash equilibria was established in Daskalakis 
et al. (2009a); Chen et al. (2009b) and extended recently in Rubinstein (2018, 2016). Over the past decades, a broad range 
of problems have been proved to be PPAD-hard, including equilibrium computation (Daskalakis et al., 2009b; Abbott et al., 
2005; Chen et al., 2007, 2015; Mehta, 2014), market equilibrium (Chen and Teng, 2009; Chen et al., 2009a; Vazirani and 
Yannakakis, 2011; Chen et al., 2011, 2013; Chaudhury et al., 2022; Chen et al., 2022), equilibrium in auction (Chen et al., 
2021; Filos-Ratsikas et al., 2021; Chen and Peng, 2023), fair allocation (Othman et al., 2016; Chaudhury et al., 2021, 2020), 
min-max optimization (Daskalakis et al., 2021) and problems in financial networks (Schuldenzucker et al., 2017).

Subsequent work. Deligkas et al. (2022) improve the inapproximability constant of threshold game to 1/6 and show it to be 
tight, it thus gives improved inapproximability constant for public goods game.

2. Model

A public goods game is a game with n players, defined through a directed graph G(V , E) without loops, where V =

{1, . . . , n} is the set of players. We use N(i) to denote the neighborhood of i, namely incoming neighbors of agent i, i.e., 
N(i) = {i} ∪ { j|( j, i) ∈ E}. We assume common game theoretic terms and notation, such as strategy, strategy profile, pure 
Nash equilibrium and (mixed) Nash equilibrium. If s = (s1, . . . , sn) is a strategy profile, we use s−i to denote actions adopted 
by all agents except i.

As is almost always done with public goods games, we assume that all players have the same strategy space and the same 
utility function. In the indivisible good (discrete) case, the strategy space of all players is S = {0, 1}, while in the divisible 
(continuous) case S = [0, ∞). To define the utility function U i of a player i, we start with defining the price or cost p of 
producing the good si , common to all players. In the indivisible case, it is a single real p(si) = p > 0. In the divisible case it 
is a function p : R+ → R+ .

Once p has been fixed, the common utility function of agent i for the strategy profile s is U i(s) = Xi(s) − p(si), where 
Xi : S |N(i)| → R is a symmetric social composition function of the strategies played by the players in N(i). Since players may have 
different indegrees, and thus different sizes of neighborhood, we assume for uniformity that the common social composition 
function X is a symmetric function from Sn to the reals, where the strategies of players not in N(i) are all set to zero — 
a value that does not affect X . The composition functions studied by the vast majority of the literature is the max (or best 
shot, or or) function in the indivisible case, picking the maximum of the neighborhood’s 0 − 1 choices, while in the divisible 
case the composition functions max and sum is used.

In indivisible good games with max composition, in the literature it is always assumed that p �= 1, because otherwise 
p = 1 creates ties between contributing and free-riding. For more general indivisible good games and social composition 
functions X , we shall also avoid ties between contributing and free-riding – it forms a measure 1 set among all possible 
choice of p. This completes the definition of the common general utility function U , and thus of the game.

We are interested in the standard concepts of pure and mixed Nash equilibrium. A strategy profile s = (s1, . . . , sn) of the 
public good game is a (pure) Nash equilibrium, if no agent can derive better utility by changing their own strategy,

ui(si, s−i) ≥ ui(s
′
i, s−i) ∀i ∈ V , ∀si, s

′
i ∈ S i .
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Fig. 1. Odd cycles have no pure Nash equilibrium.

xi x̄i xi

· · ·

x̄i

Fig. 2. Variable gadget.

In a mixed Nash equilibrium � = (�1, . . . , �n), each agent i plays a distribution �i over its strategy set S i , and satisfies

E
si∼�i ,s−i∼�−i

[ui(si, s−i)] ≥ E
s−i∼�−i

[

ui(s
′
i, s−i)

]

∀i ∈ V , ∀s′i ∈ S i . (1)

Define Supp(�i) to be the support of the distribution �i , i.e., Supp(�i) = {si |si ∈ S i, �i(si) > 0}. Then the definition 
in (1) is equivalent to

∀i ∈ V , ∀si ∈ Supp(�i), s
′
i ∈ S i : E

s−i∼�−i

[ui(si, s−i)] ≥ E
s−i∼�−i

[

ui(s
′
i, s−i)

]

.

An ε-approximately well supported Nash equilibrium (ε-Nash) is then defined as

∀i ∈ V , ∀si ∈ Supp(�i), s
′
i ∈ S i : E

s−i∼�−i

[ui(si, s−i)] ≥ E
s−i∼�−i

[

ui(s
′
i, s−i)

]

− ε. (2)

When dealing with pure Nash equilibria, it is often easier to use the notion of a decision function. Given a composition 
function X : N → R, define f : N → {0, 1} as

f (t) =

{

1 X(t + 1) − X(t) > p

0 X(t + 1) − X(t) < p.

Recall that we assume there are no ties in the social composition function so f is well-defined. The decision function 
completely characterizes the best response in a pure NE. In particular, for each agent, suppose there are t neighbors who 
choose to produce the good; then the agent’s best response is f (t).

3. Pure Nash equilibria: a dichotomy

In this section we characterize the complexity of finding pure equilibria, focusing first on the best shot (max, or) function. 
In contrast to undirected networks, where every maximal independent set corresponds to a pure Nash equilibrium, pure 
Nash equilibria may not exist in directed graphs (see Fig. 1). We show in this section that determining whether a pure 
Nash equilibrium exists is NP-complete, and then generalize this to a sweeping complexity dichotomy result, characterizing 
precisely — modulo the P �=NP conjecture — the kinds of utility functions that have tractable Nash equilibrium problems.

Theorem 3.1. Deciding whether a pure Nash equilibrium exists in an indivisible public good game with the max social composition 
function is NP-complete.

Proof. In an equilibrium profile s = (s1, . . . , sn), for each agent i, we have si = 1 if 
∑

j∈Ni
s j = 0, and si = 0 otherwise. In 

another words, an agent would purchase the good if, and only if, none of its predecessors possesses the good. The reduction 
is from 3SAT, and employs the following two gadgets (see Fig. 2 and Fig. 3).

Variable gadget. For each variable xi , we construct a directed path with 2ki nodes, where ki is the number of times xi
appears in the 3SAT instance. The path is directed, with the exception that there is a bi-directional edge between the first 
two nodes. The bi-directional edge forces the choice (exactly one of the first two nodes has the good), and the rest of the 
path propagates it (either all odd nodes have the good and all even nodes do not, or the other way around).

Clause gadget. The clause gadget consists of two parts. The left part is an OR gadget, in that node 4 must equal the disjunction 
of nodes 0, 1, and 2. To see this, suppose that none of these three nodes has the good; then node 3 must have it, and so 
node 4 does not. And if one or more of nodes 0, 1, 2 has the good, then 3 does not have the good, and thus 4 must have it.
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0
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3 4 5
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7

x1

x̄2

x3

x1∨ x̄2∨ x3

Fig. 3. Clause gadget.

The right part forces the clause to be true — that is, in any equilibrium profile, agent 4 must play strategy 1 and buys 
the good. This is because if 4 does not provide the good, then 5, 6, 7 is an isolated odd circle, which cannot exist in a pure 
Nash equilibrium. On the other hand, players 4 and 6 buying the good, and players 5 and 7 not buying it, is a pure Nash 
equilibrium of the four rightmost nodes. In summary, the clause gadget ensures that at least one of the nodes 0, 1, 2 buys 
the good.

Putting things together, given any 3SAT instance we can construct a public good game by composing variable gadgets 
and clause gadgets in the obvious way, so that the pure Nash equilibria of the public good game are in one to one corre-
spondence with the satisfiable solutions of the 3SAT instance, concluding the proof. �

We want to generalize this result to any social composition function X , and so we start with the question: For which com-

position functions is the pure Nash equilibrium problem polynomial-time solvable? Consider a symmetric, non-decreasing function 
X : {0, 1}n 
→ R+ without loss of generality with X(0n) = 0. Because of symmetry, we can treat X as a function from N
to R+ , since its value depends on 

∑n
i=1 si ; we shall use the same symbol for this form of X ,2 and recall that X(0) = 0. 

Since X is monotone, it can be also thought as a sequence of nonnegative steps. Call X flat if X(1) ≤ p; that is, the first 
step of X does not provide sufficient incentive to produce the good. Obviously, all flat functions have the all-zero pure Nash 
equilibrium, and so the problem is trivial. Call now X steep if for all k ≥ 0, X(k + 1) ≥ X(k) + p; that is, all steps are at least 
p. Then all nodes have an incentive to produce the good no matter what anybody else is doing, and so the all-ones solution 
is a pure Nash equilibrium, and again the problem is trivial. We have shown:

Lemma 3.2. The pure Nash equilibrium problem is in P if the utility function is flat. Ditto for steep functions.

Are there any other tractable cases? It turns out, that there is one more: Call X alternating if for all k ≥ 0, X(k + 1) <
X(k) + p if k is odd, and X(k + 1) > X(k) + p if k is even.

Lemma 3.3. The pure Nash equilibrium problem is in P if the utility function is alternating.

Proof. Let s = (s1, . . . , sn) be the equilibrium profile with si ∈ {0, 1}. Based on the definition of alternating utility function, 
we have that for any i ∈ [n]

si =

{

1
∑

( j,i)∈E si = 0(mod2)

0
∑

( j,i)∈E si = 1(mod2).

That is, a player chooses to produce when there is an even number of neighboring players who produce the good. Hence, 
the equilibrium problem reduces to the solution of a linear system of equations in F2 with one 0 − 1 variable si per player, 
with one equation for each player i:

si +
∑

( j,i)∈E

s j = 1(mod2).

This can be solved in polynomial time with Gaussian elimination, say. �

We next establish that, unless P = NP, these are the only tractable cases:

Theorem 3.4. If the utility function does not belong in these three classes: (1) flat; (2) steep; or (3) alternating, then the pure Nash 
equilibrium problem is NP-complete.

Proof. We use the variable gadgets and the clause gadgets in the proof of Theorem 3.1 (see Fig. 2 and Fig. 3), but we 
reduce from several different NP-hard problems. First, observe that when X is not flat, steep, or alternating, there must be 

2 That is, we assume that X has values for all integers, not limited to the size of the network; this is obviously a harmless convention.
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a k ≥ 0 such that X(k + 1) > X(k) + p, X(k + 2) < X(k + 1) + p. We start by assuming that k = 0, that is, X(1) > p and 
X(2) < X(1) + p. We divide the proof into four cases.

Case 1. Suppose X(3) < X(2) + p, X(4) < X(3) + p, then it is easy to check that the construction of Theorem 3.1 works. 
Indeed, a function satisfying X(1) > p, X(2) < X(1) + p, X(3) < X(2) + p, X(4) < X(3) + p is, for the purposes of the network 
constructed in the proof of the previous theorem, equivalent to the max function.

Case 2. Suppose X(3) < X(2) + p, X(4) > X(3) + p. We can still use the network constructed in the proof of Theorem 3.1. 
The difference is that we reduce from Not-all-equal SAT, since the clause gadget is satisfied if and only if one or two 
literals are true.

Case 3. Suppose X(3) > X(2) + p, X(4) > X(3) + p. Again, we consider the network constructed in the proof of Theorem 3.1. 
We can check that the clause gadget is satisfiable if and only if exactly one of the literal is true. The NP-hardness then 
comes from One-in-3SAT.

Case 4. Suppose X(3) > X(2) + p, X(4) < X(3) + p. Since we assume X is not alternating, there exists t ≥ 1 satisfying 
X(2t + 1) > X(2t) + p, X(2t + 2) < X(2t + 1) + p, and X(2t + 3), X(2t + 4) does not obey X(2t + 3) > X(2t + 2) + p, 
X(2t + 4) < X(2t + 3) + p. We create 2t new players who have no incoming edges and directed edges to all other nodes. 
These 2t players will provide the good at equilibrium, and thus the remaining players start the game with 2t copies of 
the good already. The game for the original player is then changed to the function X̃( j) = X( j − 2t), and NP-completeness 
follows from cases (1–3).

Finally, suppose that k > 0. Whenever (1) X(k + 3) < X(k + 2) + p, X(k + 4) < X(k + 3) + p; or (2) X(k + 3) < X(k +
2) + p, X(k + 4) > X(k + 3) + p; or (3) X(k + 3) > X(k + 2) + p, X(k + 4) > X(k + 3) + p, we add k new players who have 
no incoming edges, and directed edges to all other nodes. At equilibrium, these nodes will provide the good, and so the 
remaining players will start the game with k copies of the good already provided. Therefore, the game for the remaining 
players will be as if X( j) was changed to X( j − k), that is to say, to a function covered by Case (1-3).

There is one case left, i.e., for some k > 0: X(1) > p, . . . , X(k + 1) > X(k) + p, X(k + 2) < X(k + 1) + p, X(k + 3) >
X(k + 2) + p, X(k + 4) < X(k + 3) + p, we can not reduce to Case 4 since X could be alternating after X(k). We still create 
k new players and direct them to all other agents, except for node 3 in every clause gadget, for which we only connect 
k − 1 players to it. Our argument in Theorem 3.1 works, with one modification: the clause gadget is satisfiable if and only if 
exactly two of the literals are true. This, again, is NP-complete, as we can reduce from One-in-3SAT. �

4. PPAD-hardness of mixed Nash equilibria

We next examine mixed Nash equilibria of indivisible public goods games. In a mixed Nash equilibrium, agents random-
ize over the two actions and choose to buy the public good with some probability. We denote by si the probability that 
agent i purchases the good. Also, by x = y ± ε we mean that y − ε ≤ x ≤ y + ε . Throughout this section, whenever ± is 
used, we always cap the min at 0 and max at 1. For ease of presentation, we assume U = 1 and p < 1 throughout the proof. 
The following result is the main technical contribution of this paper.

Theorem 4.1. There exists some constant ε > 0, such that it is PPAD-hard to find an ε-Nash of the indivisible public goods game.

Our reduction consists of two steps. We first introduce an intermediate game, called the threshold game (see Defini-
tion 4.2), where each individual’s strategy depends solely on the summation of its neighbors’ strategies. The threshold game 
exhibits rich algorithmic and complexity structure, which we believe could be of independent interest. We show a corre-
spondence between equilibrium profiles of threshold games and those of public goods games (Lemma 4.4); hence it suffices 
to demonstrate PPAD-hardness of finding an ε-approximate equilibrium of threshold games. It is performed via a reduction 
from the ε-GCIRCUIT problem, which is shown to be PPAD-hard for sufficiently small constant ε > 0 by Rubinstein (2018).

4.1. Equivalence between public goods games and threshold games

We first introduce the threshold game.

Definition 4.2 (Threshold game). A threshold game G(V , E, t) is defined on a directed graph G = (V , E), with a threshold t (0 < t <

1). The vertices of the graph represent players with strategy space [0, 1]. A strategy profile x = (x1, . . . , xn) ∈ [0, 1]n is an equilibrium 
if it satisfies

xi =

⎧

⎨

⎩

0
∑

j∈Ni
x j > t

1
∑

j∈Ni
x j < t

arbitrary
∑

j∈Ni
x j = t

. (3)
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va

vb

v

v1

v2

Fig. 4. Elementary gadget.

Note that xi can be an arbitrary number in [0, 1] if 
∑

j∈Ni
xi = t.

We define the ε-approximate equilibrium in a threshold game as follows:

Definition 4.3 (ε-approximate equilibrium of threshold game). Let ε > 0 be a constant satisfying ε < t < 1 − ε . An ε-approximate 
equilibrium x = (x1, . . . , xn) ∈ [0, 1]n of a threshold game G(V , E, t) satisfies

xi =

⎧

⎪

⎨

⎪

⎩

0± ε
∑

j∈Ni
x j > t + ε

1± ε
∑

j∈Ni
xi < t − ε

arbitrary
∑

j∈Ni
xi ∈ [t − ε, t + ε]

. (4)

We establish the equivalence between threshold games and public good games. The proof can be found in Appendix.

Lemma 4.4. There is a polynomial time reduction between the threshold game and the public good game. Specifically, (1) given any 
threshold game G(V , E, t) with 0 < t < 1, we can construct a public good game and map any ε-Nash of the public goods game 
to an 8ε-approximate equilibrium of threshold game G(V , E, t), for ε < min{0.1, t8 , 1−t

8 }; (2) given any public good game with 
U = 1, 0 < p < 1, we can construct a threshold game G(V , E, t) and map any ε-approximate equilibrium of threshold game to an 
cpε-Nash of public goods game, where cp = −4p log p is a constant depending only on p.

4.2. Reducing generalized circuits to threshold games

We give the definition of generalized circuits.

Definition 4.5 (Generalized circuit (Chen et al., 2009b)). A generalized circuit is a tuple (V , T ), where V is a set of nodes and T is 
a collection of gates. Every gate T ∈ T is a 5-tuple T = (G, v1, v2, v, α), where G ∈ {Gξ , G×ξ , G=, G+, G−, G<, G∧, G∨, G¬} is the 
type of the gate; v1, v2 ∈ V ∪ {nil} are the input nodes, α ∈ R ∪ {nil} is a real parameter and v is the output node.

The collection T of gates must satisfy the following important property. For every two gates T , T ′ ∈ T (T �= T ′), T =

(G, v1, v2, v, α) and T ′ = (G ′, v ′
1, v

′
2, v

′, α′), we must have v �= v ′ .

The ε-GCIRCUIT is the problem of finding an ε-approximate assignment for the generalized circuit. Notice that we replace 
Gξ , G×ξ with G 1

2
, G× 1

2
for ease of proof.

Definition 4.6. Given a generalized circuit S = (V , T ), we say an assignment x : V → [0, 1] ε-approximately satisfies S , if it satisfies 
the constraints shown in Table 1.

We then prove

Theorem 4.7. It is PPAD-hard to find an ε-approximate equilibrium of the threshold game, for some constant ε > 0.

The key step is to construct an elementary gadget G 1
2 − (see Fig. 4), and use it as a building block to gradually construct 

most of the gates. We fix the threshold t = 1
2 in the rest of the proof. Furthermore, we restrict the equilibrium strategy in 

[0, 12 + ε] ∪ {1}, since for any ε-approximate equilibrium x = (x1, . . . , xn), we could set

x̃i =

{

xi xi ≤
1
2 + ε

1 otherwise
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Table 1

Gadgets.

Gate Constraint

G 1
2
(v) x[v] = 1

2 ± ε

G× 1
2
(| v1 | v) x[v] = 1

2 · x[v1] ± ε

G=(| v1 | v) x[v] = min{x[v1],
1
2 } ± ε

G+(| v1, v2 | v) x[v] = min{x[v1] + x[v2],
1
2 } ± ε

G−(| v1, v2 | v) x[v] = max{x[v1] − x[v2],0} ± ε

G<(| v1, v2 | v) x[v] =

{

1
2 ± ε x[v1] < x[v2] − ε

0± ε x[v1] > x[v2] + ε

G∧(| v1, v2 | v) x[v] =

{

1
2 ± ε x[v1] = 1

2 ± ε ∧ x[v2] = 1
2 ± ε

0± ε x[v1] = 0± ε ∨ x[v2] = 0± ε

G∨(| v1, v2 | v) x[v] =

{

1± ε x[v1] = 1
2 ± ε ∨ x[v2] = 1

2 ± ε

0± ε x[v1] = 0± ε ∧ x[v2] = 0± ε

G¬(| v1 | v) x[v] =

{

1
2 ± ε x[v1] = 0± ε

0± ε x[v1] = 1
2 ± ε

and we can easily verify that x̃ = [x̃1, . . . , ̃xn] is still an ε-approximate equilibrium. We use the strategies of play-
ers in the threshold game to represent an ε-approximate assignment to ε-GCIRCUIT, and build all 9 types of gates in 
{Gξ , G×ξ , G=, G+, G−, G<, G∧, G∨, G¬}. We start from constructing an elementary game gadget G 1

2 −(| v1, v2 | v) (see Fig. 4), 

where v1, v2 ∈ V ∪ {nil} are input players, v ∈ V is the output player. The output player v could have many out-coming 
edges, but it only has one in coming edge from the internal node vb . The elementary gadget G 1

2 −(| v1, v2 | v) serves 

as a building block for later constructions and proves useful throughout our proof. Ideally, it poses the constraint that 
x[v] = max{ 12 − x[v1] − x[v2], 0} in an equilibrium.

Lemma 4.8. Consider the game gadget G 1
2 −(| v1, v2 | v) constructed in Fig. 4. In any ε-approximate equilibrium of the threshold game 

G(V , E, 12 ), we have x[v] = max{ 12 − x[v1] − x[v2], 0} ± ε . In particular, if we set v2 = nil, then x[v] = max{ 12 − x[v1], 0} ± ε; if 
we set v1, v2 = nil, then x[v] = 1

2 ± ε .

Proof. Consider the in-coming neighbors of player va , Na = {v, v1, v2}. In an ε-approximate equilibrium, if x[v] + x[v1] +
x[v2] > 1

2 +ε , we have x[va] = 0 ±ε and x[vb] = 1 ±ε . It then follows that x[v] = 0 ±ε . This implies x[v1] +x[v2] > 1
2 , and 

thus max{ 12 − x[v1] − x[v2], 0} ± ε = 0 ± ε . This satisfies the equilibrium condition. If x[v] + x[v1] + x[v2] < 1
2 − ε , then we 

have x[va] = 1 ±ε and x[vb] = 0 ±ε , this again implies x[v] = 1 ±ε . This contradicts with the fact that x[v] +x[v1] +x[v2] <
1
2 − ε . In summary, we have x[v] = max{ 12 − x[v1] − x[v2], 0} ± ε . �

We next construct G= and G+ . We assume that the inputs of these gates belong to [0, 12 +ε], except for the COPY gate. It 
is not a loss of generality since: (1) if the input node v1 is also the output node of another gate, then its value is guaranteed 
to be in [0, 12 + ε] by our construction below; (2) otherwise, we can always apply a COPY gate (see below) to restrict its 
value in [0, 12 + ε].

(1) COPY G=(| v1 | v). Concatenating G 1
2 −(| v1 | v2) with G 1

2 −(| v2 | v), then we have x[v2] = max{ 12 − x[v1], 0} ± ε , and 

x[v] = max{ 12 − x[v2], 0} ± ε = min{x[v1], 12 } ± 2ε .

(2) ADD G+(| v1, v2 | v). Concatenating G 1
2 −(| v1, v2 | v3) with G 1

2 −(| v3 | v), then we have x[v3] = max{ 12 − x[v1] −

x[v2], 0} ± ε and x[v] = max{ 12 − x[v3], 0} ± ε = min{x[v1] + x[v2], 12 } ± 2ε .

Thanks to a concurrent work of Filos-Ratsikas et al. (2021), this already suffices to prove the PPAD-hardness of threshold 
game. In particular, we use
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Lemma 4.9 (Proposition 5.3 of Filos-Ratsikas et al. (2021)). There exists a constant ε > 0 such that the problem of ε-GCIRCUIT with 
gate-types G+(| v1, v2 | v) and G 1

2 −(| v1, v2 | v) is PPAD-complete.

Combining Lemma 4.8 and Lemma 4.9, we have proved Theorem 4.7. Together with Lemma 4.4, the proof of Theorem 4.1
is complete.

Theorem 4.1 only covers the max utility function. We conjecture that it holds for all utility functions except for the 
polynomial cases discussed in Theorem 3.4. There are several interesting challenges in extending the proof to this direction.

5. Divisible goods

For divisible public goods games in directed graphs, we study the three most studied utility functions, and completely 
characterize the equilibrium problem:

• For the summation utility (the utility of each node is the sum of the amounts of goods provided by its predecessors), a 
pure Nash equilibrium always exists, but it is PPAD-complete to find one.

• For the best-shot function (max), a pure Nash equilibrium may not exist and it is PPAD-hard to find a mixed Nash 
equilibrium; the reasons are quite similar to the indivisible case.

• Finally, for the weakest-link function (min), it turns out that there are always multiple trivial pure Nash equilibria, as 
no player has the incentive to supply any amount of the good.

5.1. Summation

When the utility function is the summation, Bramoullé et al. (2007) prove that there is always a pure Nash equilibrium.3

Here, we prove it is PPAD-hard to find one, when the network is directed. In fact, we prove a slightly stronger result: call a 
strategy profile s = (s1, . . . , sn) an ε-approximate pure Nash equilibrium, if si = bi(s−i) ± ε , where bi(·) is the best response of 
agent i.

Theorem 5.1. It is PPAD-hard to find an ε-approximate pure Nash equilibrium of divisible public goods games with summation utility 
function, for ε = 1/ poly(n).

We reduce from the mixed Nash equilibrium problem in two-player win-lose games. A two-player game (R, C) is win-
lose if R, C ∈ {0, 1}n×n . It is known (Chen et al., 2007; Abbott et al., 2005) that finding an ε-Nash of two-player win-lose 
game is PPAD-hard for ε = 1/ poly(n). It is an interesting question whether one can improve the hardness of approximation 
to constant ε > 0.

Given an instance (R, C) of a two player win-lose game, we construct a divisible public goods game on a directed 
network, such that we can map any ε-approximate pure Nash equilibrium of the public goods game to a poly(n) · ε-Nash of 
two-player win-lose game (R, C). In order to do so, we first symmetrize the win-lose game (Lemma 5.2), and then reduce 
it to the public goods game (Lemma 5.3).

For convenience, we assume that R, C ∈ {−1, 0}n×n and that there is no weakly-dominated strategy for both row and 
column players. Moreover, we assume every column (row) of R(C) contains at least one 0 entry — otherwise, there is a 
trivial pure Nash equilibrium. Define a symmetric game (A, B) as follows:

A =

(

−1 R

C T −1

)

and B =

(

−1 C

RT −1

)

,

where −1 denotes an n × n all -1 matrix. We notice that A, B ∈ {−1, 0}2n×2n and A = BT . The above symmetrization is 
standard in the literature (Lemke and Howson, 1964), and it is known that for any symmetric Nash equilibrium (x, y) of 
(A, B), (x/|x|, y/|y|) is a Nash equilibrium for (R, C). The following lemma states that approximation is preserved:

Lemma 5.2. Suppose (x, y) is a symmetric ε-Nash equilibrium of game (A, B). Then (x̃, ỹ) = (x/|x|, y/|y|) is a 4nε-Nash of the 
win-lose game (R, C).

Proof. We first prove that |x|, |y| ≥ 1
4n . Notice that

A

(

x

y

)

=

(

−1 R

C T −1

)(

x

y

)

=

(

−|x|e + Ry

−|y|e + C T x

)

,

3 They actually prove it for undirected networks, but their proof generalizes easily to the directed case, as the best response function for each agent i is 
still continuous in s−i , and existence of a pure Nash equilibrium follows from Brouwer’s fix point theorem. In fact, when the valuation function is strictly 
concave, it can be shown that there are only pure Nash equilibria (Bramoullé et al., 2007): It is always better to replace the mixed strategy with its mean 
value, but also, replacing by the mean value does not create pure Neq.
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where e = {1, . . . , 1}T denotes the n-dimension all 1 vector. The proof is by contradiction. Suppose |x| < 1
4n ; it then follows 

that

max
i∈[n]

−|y| + (C T x)i ≤ −|y| < −1 +
1

4n
,

where the second step follows from |y| = 1 − |x| > 1 − 1
4n by our assumption

max
i∈[n]

−|x| + (Ry)i > −
1

4n
+max

i∈[n]
(Ry)i ≥ −

1

4n
+

1

n

∑

i

(Ry)i = −
1

4n
+

1

n

∑

j∈[n]

y j

∑

i∈[n]

R i j

≥ −
1

4n
+

1

n

∑

j∈[n]

y j · (1− n) ≥ −
1

4n
+

1

n
· (1− n) = −1 +

3

4n
.

The first step follows from |x| < 1
4n . We replace max with average in the second step. The fourth step comes from the fact 

that there exists at least one 0 entry for each column of the payoff matrix R . Thus we have

max
i∈[n]

−|x| + (Ry)i −max
i∈[n]

−|y| + (C T x)i >
1

2n
> ε,

which contradicts with the fact that |y| > 1 − 1
4n . Therefore, we have |x| > 1

4n and |y| > 1
4n . Consequently, for any i, j ∈ [n], 

xi > 0, we have (−|x| + (Ry)i) − (−|x| + (Ry) j) = (Ry)i − (Ry) j > ε . Hence, we have (R ỹ)i − (R ỹ) j > 4nε for any i, j ∈ [n]

and x̃i > 0. The same holds for the column player, confirming that (x̃, ỹ) = (x/|x|, y/|y|) is a 4nε-Nash of the win-lose game 
(R, C). �

Define E = −AT − I and D = −AT = E + I; note that E ∈ {0, 1}n and the diagonal entries E ii are zero. Now we claim:

Lemma 5.3. Let E be the adjacency matrix of the directed network of a public goods game (with divisible goods game and summation 
utility of the players). Then from any ε-pure Nash equilibrium s = (s1, . . . , sn) of the public goods game, we can find a symmetric 
3nε-Nash of game (A, B).

Proof. Let s = (s1, . . . , sn) be an ε-approximate pure Nash equilibrium of the public goods game, then for any agent i ∈ [n], 
we have 

∑

j∈N(i) s j ≥ 1 − ε . Otherwise, agent i would increase its effort. Moreover, we claim that 
∑

j∈N(i) s j > 1 + ε implies 
si = 0 ± ε . This holds because (1) if 

∑

j∈Ni
si > 1, then the best response of agent i is bi(s−i) = 0, it then follows xi = 0 ± ε; 

(2) 
∑

j∈N)
si ≤ 1, then the best response is bi(s−i) = 1 −

∑

j∈N) si and si − bi(s−i) =
∑

i∈N(i) si − 1 > ε , which contradicts 
with the equilibrium condition. In summary, for all i ∈ [n], we have

(DT s)i ≥ 1− ε

si = 0 ± ε or (DT s)i = 1± ε.

Denote s′ = max{s − ε, 0}, then we have

(DT s′)i ≥ 1− (n + 1)ε

s′i = 0 or (DT s′)i = 1± nε.

Since A = −DT , we have

(As′)i ≤ −1+ (n + 1)ε

s′i = 0 or (As′)i = −1± nε.

Since |s′| ≥
∑

j∈N(1) s
′
j ≥ 1 − (n + 1)ε , we conclude that s′/|s′| is a symmetric 3nε-Nash of the game (A, B) �

Combining Lemma 5.3 and Lemma 5.2, we conclude that it is PPAD-hard to find an ε-approximate pure Nash equilibrium 
of public goods game, for ε = 1/ poly(n). This concludes the proof of Theorem 5.1.

5.2. Best-shot rule

When the utility function is the best-shot rule (i.e., the utility of a node is the maximum of the provisions by its prede-
cessors), there is a simple proof that there is no pure Nash equilibrium. First we prove that, in any pure Nash equilibrium, 
an agent plays either 0 or 1 (not any number between (0, 1)). Then the result follows from the example shown in Fig. 1.
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For mixed Nash equilibria, we have the following theorem, shown through a simple reduction from the indivisible case.

Theorem 5.4. When the utility function is the best-shot rule (max), it is PPAD-hard to find a mixed Nash equilibrium of the divisible 
public goods game.

Proof. We set the valuation function to be U (s) = max{1, s}. We assume in an equilibrium profile, the player prefers a 
mixed combination over action 0, 1 to a strategy s ∈ (0, 1) if they have the same utility guarantee. We then prove that, in a 
mixed Nash equilibrium, an agent will only play a mixed strategy over actions 0 and 1. To see this, first, in an equilibrium 
profile, no player chooses to play s with s > 1 in the support of its mixed strategy, since it can decrease it to 1, which 
reduces the cost and does not affect the utility. Next, if a player chooses to play s ∈ (0, 1) in the support of its mixed 
strategy, then we claim it is always better to replace s with a convex combination of 0 and 1, i.e. chooses 0 with probability 
1 − s and chooses 1 with probability s. We divide into two cases. (1) If the max production of neighbors is s′ ≥ s. Then the 
utility for later profile gets larger while the cost remains the same. (2) If the max production of neighbors is s′ < s, then 
both the cost and utility remains the same.

Assuming all agent play mixed strategies over actions 0 and 1 in the equilibrium profile, it is not hard to modify the 
proof of Theorem 4.1 to show that it is PPAD-hard to find a mixed Nash equilibrium. We conclude the proof here. �

6. The bounded treewidth algorithm

When the treewidth of the underlying graph is bounded by O  
(

logn
log logn

)

, we develop a PTAS for computing an ε-Nash of 

the (indivisible) public goods game. We first recall the definition of tree decomposition.

Definition 6.1 (Tree decomposition). A tree decomposition4 of a graph G(V , E) is a tree T , with nodes X1, . . . X|T | . Each node Xi is a 
subset of V , and it satisfies:

1. The union of Xi equals V .

2. For each edge (u, v) ∈ E, there exists a node Xi that contains both vertices u and v.
3. For any vertex u ∈ V , the set of tree nodes that contain the vertex u forms a connected sub-tree of T .

The width of a tree decomposition is defined as max1≤i≤|T | |Xi | − 1 and the treewidth of a graph G, denoted as twd(G), is the 
minimum width among all tree decompositions of the graph G.

We will call the vertices of T nodes, and those of G vertices. The treewidth twd(G) will be abbreviated by w , while 
d is the maximum degree of G . Our main result is shown below. Comparing with the general result of Daskalakis and 
Papadimitriou (2006), we get rid of the exponential dependence on d. Alas, we make no assumptions on the sparsity of the 
graph.

Theorem 6.2. Given an indivisible public goods game defined on a network G(V , E), we can find an ε-Nash equilibrium in time 

poly(n) · min{2d/ε, 16 log(n)/ε}O (w) , where w is the treewidth of the graph. In particular, when the treewidth is w = O  
(

logn
log logn

)

, 

we can find an ε-Nash equilibrium in poly(n) ·
(

1
ε

)O (w)
time.

First, a few notes about the proof. The time complexity of our algorithm depends minimally on d, while d is in the ex-
ponent of the algorithm in Daskalakis and Papadimitriou (2006). To achieve this, we need to circumvent several difficulties, 
explained below. Like the proof in Daskalakis and Papadimitriou (2006), we first need to show the existence of an approxi-
mate Nash equilibrium with probabilities that are multiples of a small real δ > 0. Simply applying the total variation bound 
gives δ = O ( ε

d
), which is not coarse enough. In Lemma 6.3, we use a probabilistic argument showing the existence of an 

approximate Nash equilibrium after discretizing the strategy space. In particular, we randomly round a Nash equilibrium, for 
δ = O ( ε

logn
) and utilize the concentration property. Another difficulty is that the algorithm (Daskalakis and Papadimitriou, 

2006) works on the primal graph (see Daskalakis and Papadimitriou (2006) for the definition), whose treewidth can be 
w ·d, yielding an exponential dependence on d. Instead, our algorithm directly works on the original graph through dynamic 
programming, with no exponential dependence on d. Our dynamic programming method bares some similarities with the 
approach in Thomas and van Leeuwen (2015). However, we must modify significantly that algorithm, whose running time 
has a polynomial dependency on the size of the payoff matrix, which in our case be exponential. Finally, we note algorithm 
is general enough to handle any composition function that is additive.

Now, to prove the theorem, by Lemma 4.4, it suffices to show how to compute an ε-approximate equilibrium of a 
threshold game G(V , E, t). Again, we assume t = 1/2 for simplicity. We discretize the strategy space of each player to 

4 In defining treewidth, we ignore directions of the edges.
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Sδ = [δ], where δ = max{ε/2d, ε/16 logn}. We first show that there exists an ε-approximate pure Nash equilibrium in the 
discretized strategy space.

Lemma 6.3. For any threshold game G(V , E, 12 ), there exists an ε-approximate equilibrium when we restrict the strategy space to be 
[δ]n , where δ = ε/16 logn.

Proof. Suppose x = (x1, . . . , xn) is an equilibrium profile of the threshold game G(V , E, 12 ). For any i ∈ [n], suppose xi ∈

[tiδ, (ti + 1)δ], then we randomly round xi to x̃i ∈ {tiδ, (ti + 1)δ}, and we have

x̃i =

{

(ti + 1) δ with prob. xi
δ

− ti
tiδ with prob. 1−

xi
δ

+ ti .

We remark that E[x̃i] = xi and (x̃i − tiδ) is a binary random variable that takes value in {0, δ}, with mean (xi − tiδ). The 
rest of the proof establishes that (x̃1, . . . , ̃xn) is an ε-approximate equilibrium with positive probability, therefore proving its 
existence.

By the multiplicative Chernoff bound, for any i ∈ [n], if 
∑

j∈Ni
(xi − tiδ) =

∑

j∈Ni
(E[x̃i] − tiδ) < ε , then we have

Pr

⎛

⎝

∑

j∈Ni

x̃ j −
∑

j∈Ni

x j ≤ −ε

⎞

⎠ = 0 (5)

and

Pr

⎛

⎝

∑

j∈Ni

x̃ j −
∑

j∈Ni

x j ≥ ε

⎞

⎠ = Pr

⎛

⎝

∑

j∈Ni

(

x̃ j − t jδ
)

−
∑

j∈Ni

(

E[x̃ j] − t jδ
)

≥ ε

⎞

⎠

≤ exp
(

−
ε

3δ

)

≤ n−2. (6)

If 
∑

j∈Ni
(xi − tiδ) =

∑

j∈Ni
(E[x̃i] − tiδ) ∈ [ε, 2], then we have

Pr

⎛

⎝

∣

∣

∣

∣

∣

∣

∑

j∈Ni

x̃ j −
∑

j∈Ni

x j

∣

∣

∣

∣

∣

∣

≥ ε

⎞

⎠ = Pr

⎛

⎝

∣

∣

∣

∣

∣

∣

∑

j∈Ni

(

x̃ j − t jδ
)

−
∑

j∈Ni

(

E[x̃ j] − t jδ
)

∣

∣

∣

∣

∣

∣

≥ ε

⎞

⎠

≤ 2exp

⎛

⎝−
ε2

2δ
(

∑

j∈Ni
E[x̃ j] −

∑

j∈Ni
tiδ

)

⎞

⎠

≤ 2exp
(

−
ε

4δ

)

≤ n−2. (7)

If 
∑

j∈Ni
(xi − tiδ) =

∑

j∈Ni
(E[x̃i] − tiδ) > 2, it then follows that xi = 0 and we have

Pr

⎛

⎝

∑

j∈Ni

x̃ j < 1

⎞

⎠ ≤ Pr

⎛

⎝

∑

j∈Ni

(

x̃ j − t jδ
)

< 1

⎞

⎠ ≤ exp

(

−
1

4δ

)

≤ n−2. (8)

Combining Eq. (5) (6) (7) (8) and using an union bound, we conclude that (x̃1, . . . , ̃xn) satisfies equilibrium condition with 
probability at least (1 − 1/n), completing the proof. �

We next provide an algorithm that finds an ε-approximate equilibrium based on dynamic programming. A nice tree 
decomposition is a tree decomposition T that only contains the following four types of nodes (see Fig. 5 for an illustration).

1. Leaf node.
2. Forget node. Such a node i has only one child i′ , and Xi′ = Xi\{v} for some vertex v ∈ V .

3. Introduce node. Such a node i has only one child node i′ , and Xi′ = Xi ∪ {v} for some vertex v ∈ V .
4. Join node. Such a node i has exactly two children nodes i1, i2 , and Xi = Xi1 = Xi2 .

Any tree decomposition can be converted into a nice tree decomposition, of size at most w · |V |, in linear time without 
enlarging the width (Bodlaender and Koster, 2008).
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u, v, w

u, v

Forget

u, v

u, v, w

Introduce

u, v

u, v u, v

Join

Fig. 5. An illustration for three types of nodes of a nice tree decomposition.

Now, we have

Lemma 6.4. Given a threshold game G(V , E, 12 ) with the strategy space [δ]n , and a nice tree decomposition T of the graph G(V , E), 
we can compute an ε-approximate equilibrium in δ−O (w) time.

Proof. Given a nice tree decomposition T , we compute an ε-approximate equilibrium via a bottom-up approach. For any 
node Xi ∈ T , we use V i to denote all vertices contained in Xi and its sub-tree. We compute a table T i : [δ]|Xi | × [δ]|Xi | →

{0, 1} for each node Xi , and we note that the size of the table is bounded by δ−O (w) . Intuitively, the first set of [δ]|Xi | entries 
enumerate the strategy of vertex in Xi and the second set of [δ]|Xi | entries enumerate the total supply from their neighbors 
in V i\Xi . Concretely, a table entry T i(s1, . . . , s|Xi |, c1, . . . , c|Xi |) = 1, iff there exists a strategy profile (p1, . . . , p|V i |) of vertex 
set V i , such that

(i) for any vertex v ∈ V i\Xi , the vertex v satisfies the equilibrium condition,
(ii) for any vertex v ∈ Xi , pv = sv and 

∑

j∈Nv∩(V i\Xi)
pv = cv , i.e., the summation of vertex v ’s neighbor in V i\Xi is cv .

We note that vertices in Xi do not need to satisfy the equilibrium condition, and we only record the summation of their 
neighbors in V i\Xi .

Next, we show how to do update the table in a bottom-up manner.

(1) Leaf. For any leaf Xi ∈ T and s, c ∈ [δ]|Xi | , we set T i(s, c) = 1 if and only if c = (0, . . . , 0).
(2) Forget. Suppose Xi′ = Xi ∪ {v} is the parent node, s, c ∈ [δ]|Xi | and sv , cv ∈ [δ], we set T i′(s, sv , c, cv) = 1 if T i(s, c) = 1

and cv = 0; we set T i′ (s, sv , c, cv) = 0 otherwise.

(3) Introduce. Suppose Xi′ = Xi\{v} is the parent node and s, c ∈ [δ]|Xi′ | , we set T i′ (s, c) = 1 iff there exists (s, sv , c, cv) ∈
[δ]2|Xi | , such that T i(s, sv , c, cv) = 1 and the vertex v satisfies the equilibrium condition, i.e., (i) if cv +

∑

j∈Nv∩Xi
s j >

1
2 , 

then sv = 0 ± ε; (ii) cv +
∑

j∈Nv∩Xi
s j <

1
2 , then sv = 1 ± ε .

(4) Join. Suppose node Xi has two children, Xi1 , Xi2 , and Xi = Xi1 = Xi2 . Then for any s, c ∈ [δ]|Xi | , we set T i(s, c) = 1 iff 
there exists c1, c2 ∈ [δ]|Xi | , such that T i1 (s, c1) = 1, T i2 (s, c2) = 1, and for any j ∈ Xi , c[ j] = min{c1[ j] + c2[ j], 1}.

After we reach the root r and complete the table Tr , we verify equilibrium conditions for all vertices v ∈ Xr . To be 
more specific, if there exists a configuration (s, c) ∈ [δ]|Xi | × [δ]|Xi | , such that Tr(s, c) = 1 and all vertices v in V r satisfy 
the equilibrium, i.e., (i) if cv +

∑

j∈Nv∩V r
s j > 1

2 + ε then sv = 0 ± ε; (ii) if cv +
∑

j∈Nv∩V r
s j < 1

2 − ε then sv = 1 ± ε; we 
then confirm that there exists an ε-approximate equilibrium. We can find one by either fixing the strategy of all vertices 
v ∈ V r to be sv , and recursively computing equilibrium profiles in the sub-tree; or we can associate a satisfiable assignment 
(if there exists one) for each entry during the dynamic programming process. We output that there is no ε-approximate 
equilibrium profile otherwise. �

Combining Lemma 6.4 and Lemma 6.3, we conclude the proof of Theorem 6.2.

We can show a similar result for divisible public good games with the summation rule. Again, when the treewidth of 
the underlying graph is bounded by O (logn/ log logn), there is a PTAS for finding an ε-approximate pure Nash equilibrium 
of the public goods game:

Theorem 6.5. Given a divisible public goods game with summation utility defined on a directed network, we can find an ε-approximate 
pure Nash equilibrium in time poly(n) ·min{2d/ε, 16 log(n)/ε}O (w) time. In particular, when the treewidth is O (logn/ log logn), we 
can find an ε-approximate pure Nash equilibrium in poly(n) · ( 1

ε )O (w) time.

The proof is similar to Theorem 6.2, and is omitted.

173



C. Papadimitriou and B. Peng Games and Economic Behavior 139 (2023) 161–179

7. Pure Nash equilibria: the general undirected case

We started our treatment of public goods games by pointing out that the well-behaved problem with the max compo-
sition function in undirected graphs becomes NP-complete in the directed case. But then we went on to consider arbitrary 
composition functions, and proved the dichotomy result for directed graphs (Theorem 3.4). It is natural to ask, how hard is 
the classification problem of general composition functions in undirected graphs? We know it is easy when the composition 
function is the max, but are there hard functions?

We next show that indeed there are:

Theorem 7.1. It is NP-hard to find a pure Nash equilibrium in a public goods game on an undirected network with a general composi-

tion function.

We have so far dealt with homogeneous public goods games in which all agents have the same decision function. In this 
proof we shall also consider heterogeneous public goods games, where agents could have different decision functions.

Proof. We first show that the heterogeneous problem can be reduced to the homogeneous problem, and then prove the 
NP-hardness of the heterogeneous problem.

Given a heterogeneous game defined on graph G = (V , E), |V | = n in which f i : N → {0, 1} denotes the decision function 
of agent i (i ∈ [n]). We construct a homogeneous instance defined on graph G ′ = (V ′, E ′). We first specify the common 
decision function:

f (t) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1 t ∈ {0,1}
0 t ∈ {2, . . . ,n − 1}

f i( j) t = ni + j, i ∈ [n], j ∈ {0, . . . ,n − 1}
0 t ≥ n(n + 1)

The node set is V ′ = V ′
1 ∪ V ′

2 with |V ′
1| = n and |V ′

2| = n2(n +1)/2. Intuitively, we use nodes in V ′
1 to simulate the agents 

of V , while nodes in V ′
2 are auxiliary agents who help differentiate the decision functions of the nodes in V ′

1 . Concretely, 
let V ′

1 = {v1, . . . , vn}, and there is an edge between v i and v j if and only if (i, j) ∈ E . At the same time, the node v i is 
connected to ni different nodes in V ′

2; there are no edge connections between nodes in V ′
2 . We observe that in a pure 

Nash equilibrium, agents in V ′
2 always choose to produce, since they only have one neighbor, and f (0) = f (1) = 1. As for 

each v i , it has ni neighbor nodes in V ′
2 who produce the good, and therefore, its decision function reduce to f i(t − ni). The 

reduction is complete.
We next reduce from the Exact-3-Cover problem to the heterogeneous problem. In the Exact-3-Cover problem we are 

given a finite ground set X = {x1, . . . , x3q} and a collection C = {C1, . . . , Cm} of 3-element subsets of X ; the goal is to find a 
collection of subsets C1, . . . , Cq that (exactly) cover the ground set. It is known that the Exact-3-Cover problem is NP-hard 
(Garey and Johnson, 1979).

Let the node set V = V1 ∪ V2 ∪ V3 with V1 = {v1,1, . . . , v1,3q}, V2 = {v2,1, . . . , v2,m} and V3 = {v3,1, v3,2}. The nodes v3,1
and v3,2 are connected to all nodes in V1 and V2 , and they also connect to each other. The connection between V1 and V2

is determined by the Exact-3-Cover instance, i.e., node v1,i is connected to v2, j iff xi ∈ C j . Nodes in V2 are connected to 
each other. We next specify the decision function of each node.

• Nodes in V1 have the same decision function,

f1(t) =

{

1 t = 0
0 t ≥ 1

i.e., the agent chooses to purchase the good iff none of its neighbors buy it.
• Nodes in V2 have the same decision function.

f2(t) =

{

1 t ≤ q − 1
0 t ≥ q

i.e., the agent chooses to purchase the good iff no more than (q − 1) of its neighbors buy the good.
• Nodes in V3 have the following decision function.

f3,1(t) =

⎧

⎨

⎩

0 t ∈ {0, . . . ,q}
0 t = q + 2i − 1 i ∈ N+

1 t = q + 2i i ∈ N+

and f3,2(t) =

⎧

⎨

⎩

0 t ∈ {0, . . . ,q}
1 t = q + 2i − 1 i ∈ N+

0 t = q + 2i i ∈ N+.

To show correctness, first suppose there is a solution to the original Exact-3-Cover instance, say the solution is 
C i1 , . . . , C iq . Then it is easy to verify that making agent v2,i j ( j ∈ [q]) purchase the good forms a pure NE.
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Next, suppose there is no exact cover, then we prove there is no pure Nash equilibrium. First, we claim that in any pure 
Nash equilibrium, agents v3,1, v3,2 do not produce the good and there are at most q agents produce the good in V1 ∪ V2 . 
On the contrary, suppose there are at least s > q agents in V1, V2 buy the good.

1. Suppose s − q is odd. If v3,1 purchases the good, then v3,2 would free-ride, and this contradicts the equilibrium condi-
tion of v3,1 . Similarly, if v3,1 chooses to free-ride, then v3,2 should buy the good and this contradicts the equilibrium 
condition of v3,1

2. Suppose s − q is even. If v3,1 produces the good, then v3,2 also buys the good, which contradicts with the fact that 
v3,1 buys. On the other had, if v3,1 does not produce the good, then so does v3,2 , the equilibrium condition of v3,1 is 
violated.

We conclude that no more than q agents in V1 ∪ V2 produce the good. To see both v3,1 and v3,2 should choose to free-
ride, suppose there less than (q − 1) agents in V1 ∪ V2 produce the good, then they clearly choose to free-ride. If there are 
exactly q agents that produce the good and at least one of v3,1, v3,2 also produce the good, then according to the decision 
function both of them should produce and this, again, contradicts the equilibrium condition of v3,1 .

Next, suppose there are a1 agents in V1 purchase the good and a2 agents in V2 purchases, and a1 + a2 ≤ q. The equilib-
rium condition of V1 implies that each agent of V1 and its neighbor must have at least one piece of the good. Since each 
agent in V2 is connected to 3 agents in V1 , this indicates a1 + 3a2 ≥ 3q. This implies a1 = 0, a2 = q, and each agents in V1

is connected to one of these q agents, hence forming a solution of the Exact-3-Cover problem. This concludes the proof. �

Hence in the undirected case of common goods problem there are easy utilities/decision functions — e.g. the max utility, 
but also the utilities shown in Section 4 to be easy even for directed networks. Also, we now know that there are hard ones 
— the kind of decision function that is created in the reduction from the heterogeneous to the homogeneous case. Finding 
the exact characterization of easy cases seems a formidable problem which we leave open here.

We conclude with a complexity result in a different direction: Consider the second to max utility in which all nodes need 
two units of the good. This is a steep function, and hence it has the trivial, all-zero Nash equilibrium. But notice that this 
equilibrium is not Pareto optimal in general — in contrast, the max utility guarantees Pareto optimality of the equilibrium.

Theorem 7.2. It is NP-hard to find a Pareto optimum pure Nash equilibrium in a public goods game in an undirected network with the 
second-to-max utility.

Proof. An exact doubly dominating set of a graph G = (V , E) is defined as a subset of node V ′ ⊆ V such that every node has 
in its neighborhood (which includes itself) exactly two nodes in V ′ . It is NP-complete to determine whether an undirected 
graph has such a doubly dominating set (Chellali et al., 2005). Meanwhile, it is easy to verify that an exact doubly dominat-

ing set (if there exists one) is a Pareto optimum pure Nash equilibrium of the public goods game. Hence finding a Pareto 
optimum pure NE is NP-hard with second-to-max utility. �

Finally, we propose a (challenging) open question on completely characterizing the computational complexity of pure NE 
equilibria under general utility function in undirected network

Open Problem 7.3. Can one provide a P/NP dichotomy characterization on the computational complexity of pure NE for undirected 
graph with general utility function, in the same spirits of Theorem 3.4?

8. Discussion

We have explored the complexity of equilibria in public goods games played on directed graphs. One striking conclusion 
is the ubiquity of PPAD-completeness in this domain. For a number of quite different reasons, very different variants of 
the problem are shown to share the same fate — and a rather sophisticated fate at that. This is in stark contrast with the 
corresponding public goods games in undirected graphs, where the consensus is that equilibria are rather boring (but see 
the discussion below of some intriguing problems in undirected networks raised by this work). Note that graphical games 
are already intractable when they are symmetric — but, of course, this is because the local normal form games in each 
neighborhood can simulate any asymmetry.

Does the equilibrium problem for public good games on directed networks come up in the real world? It can be argued 
that some of the directed graphs we evoked for motivation in the introduction (towns that are downwind or upriver from 
one another, or the relationship “B is on A’s way to work”) are transitive, and it is not hard to see that public good games on 
such directed graphs have trivial equilibrium problems. On the other hand, many social networks with sharing features are 
indeed asymmetric and non-transitive, and so are infection networks in much of epidemic modeling. Another example is 
peer-to-peer content sharing networks such as BitTorrent, if one assumes that all nodes have already publicly committed to 
being either contributors or free riders; the decision is whether a node will download the content from the source (produce 
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the good), or will obtain it from a contributing neighbor. In fact, this latter scenario gives rise to a two-stage game, which 
may be interested in its own right.

For the indivisible case, we found that there are three special cases of utilities that admit polynomial time solution: 
Flat utilities, steep utilities, plus a third polynomial case, alternating utilities, which is quite unexpected and intriguing (its 
algorithm relies on the solution of a system of equations in F2). We show that these are the only tractable cases. But there 
is an interesting variant of this problem which is quite mysterious: Suppose that we allow the utility function to be such 
that certain steps of X have height exactly p, and therefore nodes can be indifferent between buying the good and free-riding. 
We suspect that this variant is subject to the same dichotomy, but it seems much harder to prove. Consider for example the 
function X(1) = 1 > p, X(k) = 1 + p for all k > 1. Then it is easy to see that, in this case, odd cycles do have an equilibrium, 
with all players producing the good: the p step makes them indifferent to doing so. This deprives us of a valuable gadget. It 
turns out that there is a 7-node, 21-edge gadget with no equilibrium for this case: the node set is {1, . . . , 7} and the edges 
go from i to i + 1, i + 2, i + 4 mod 7. But this does not immediately give us an NP-hardness proof, nor does it generalize to 
other composition functions with p steps.

The divisible good games under the summation utility are something of a mystery when it comes to mixed equilibria. As 
with other games with uncountable strategy spaces, it is not easy to characterize mixed Nash equilibria in a tangible, useful 
way. We believe that positive results may be possible here: Could it be that there are always mixed Nash equilibria with 
small support, and in fact they are easy to find? There are reasons for hope for a truly positive result in this case.

The intractability of simple Nash equilibrium problems in common goods games in directed networks is an indication 
that asymmetry in social systems — a notion intuitively coterminous with unfairness — may consistently lead to instabil-
ity. Can the intractability proofs help identify the features of the directed networks, and of the agents and their utilities, 
which are at the root of such instability? This could lead to principles for better design of social networks, or beneficial 
interventions therein.

Finally, we believe that the open problems pointed out in the Section 7, namely complexity dichotomy results for finding 
Nash equilibria and Pareto-optimal solutions in common good games in undirected graphs under general utility functions, 
are very interesting and quite challenging.
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Appendix A. Omitted proof from Section 4

We aim to prove

Lemma 4.4. There is a polynomial time reduction between the threshold game and the public good game. Specifically, (1) given any 
threshold game G(V , E, t) with 0 < t < 1, we can construct a public good game and map any ε-Nash of the public goods game 
to an 8ε-approximate equilibrium of threshold game G(V , E, t), for ε < min{0.1, t8 , 1−t

8 }; (2) given any public good game with 
U = 1, 0 < p < 1, we can construct a threshold game G(V , E, t) and map any ε-approximate equilibrium of threshold game to an 
cpε-Nash of public goods game, where cp = −4p log p is a constant depending only on p.

Proof. We first reduce the threshold game to the public good game. Given an instance of the threshold game G(V , E, t), 
we construct a public good game as follows. We keep the network G(V , E) unchanged and set the value of the good to 
be U = 1 and the price to be p = e−t ∈ (0, 1). For any ε-Nash s = (s1, · · · , sn) of the public good game, we construct an 
ε-approximate equilibrium x = (x1, · · · , xn) of G(V , E, t) as

xi = min{− log(1− s j),1} ∈ [0,1],∀i.

Consider any agent i in the public good game, its utility is specified as

U (si, s−i) =

{

1− p si = 1
1−

∏

j∈Ni
(1− s j) si = 0,
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thus we have

U (1, s−i) − U (0, s−i) =
∏

j∈Ni

(1− s j) − p.

We divide into three cases.
Case 1. 

∏

j∈Ni
(1 − s j) − p > ε . This implies si = 1 and xi = min{− log(1 − si), 1} = 1. Now we have

∏

j∈Ni

(1 − s j) − p > ε ⇒
∏

j∈Ni

(1 − s j) > p + ε ⇒ log
∏

j∈Ni

(1− s j) > log(p + ε)

⇒
∑

j∈Ni

− log(1− s j) < − log(p + ε) < − log p = t.

Since max j∈Ni
{− log(1 − s j)} ≤

∑

j∈Ni
− log(1 − s j) < t < 1, we have 

∑

j∈Ni
x j =

∑

j∈Ni
− log(1 − s j) < t , this satisfies the 

equilibrium condition of the threshold game.

Case 2. 
∏

j∈Ni
(1 − s j) − p < −ε . This implies si = 0 and xi = 0. Similar to the first case, we have

∏

j∈Ni

(1 − s j) − p < −ε ⇒
∏

j∈Ni

(1− s j) < p − ε ⇒ log
∏

j∈Ni

(1− s j) < log(p − ε)

⇒
∑

j∈Ni

− log(1− s j) > − log(p − ε) > − log p = t.

Since t < 1 and − log(1 − s j) > 0 for ∀ j ∈ Ni , we conclude that 
∑

j∈Ni
x j =

∑

j∈Ni
min{− log(1 − s j), 1} > t , this satisfies the 

equilibrium condition of the threshold game.

Case 3. 
∏

j∈Ni
(1 − s j) − p ∈ [−ε, ε]. This time si can be any number in [0, 1], so does xi . We need to verify that 

∑

j∈Ni
xi ∈ [t − 8ε, t + 8ε]. We have
∏

j∈Ni

(1 − s j) − p ∈ [−ε,ε] ⇒
∏

j∈Ni

(1− s j) ∈ [p − ε, p + ε]

⇒
∑

j∈Ni

− log(1− s j) ∈ [− log(p + ε),− log(p − ε)].

When ε < min{0.1, t8 , 1−t
8 }, we can prove that [− log(p + ε), − log(p − ε)] ∈ [t − 8ε, t + 8ε]. We defer the calculation to 

Lemma A.1. Now we have 
∑

j∈N j
x j =

∑

j∈Ni
min{− log(1 − s j), 1} =

∑

j∈Ni
− log(1 − s j) ∈ [t −8ε, t +8ε], which satisfies the 

equilibrium condition.
We next show there is a polynomial time reduction from public good games to threshold games. Similar as above, given 

an instance of public good game defined on G(V , E), U = 1, 0 < p < 1, we construct a threshold game on the same network 
(V , E), with t = 1

2 . Given an ε-approximate equilibrium x = (x1, . . . , xn) of the threshold game, we recover an −4p log(p)ε-

Nash s = (s1, . . . , sn) of the public good game as follows,

si =

{

1− p2xi xi ≤
1
2 + ε

1 otherwise.

For any agent i, if 
∑

j∈Ni
x j > 1

2 + ε , then xi = 0 and si = 0 by definition. It then follows that U (1, s−i) − U (0, s−i) =
∏

j∈Ni
(1 −s j) − p ≤ p

∑

j∈Ni
2x j − p ≤ p1+2ε − p < 0. Hence, it satisfies the equilibrium condition. If 

∑

j∈Ni
x j <

1
2 −ε , then xi =

1 and si = 1. Meanwhile, we have U (1, s−i) −U (0, s−i) = p
∑

j∈Ni
2x j − p > p1−2ε − p > 0. Finally, if 

∑

j∈Ni
x j ∈ [ 12 − ε, 12 + ε], 

we have U (1, s−i) − U (0, s−i) =
∏

j∈Ni
(1 − s j) − p = p

∑

j∈Ni
2x j − p ∈ [p(p2ε − 1), p(p−2ε − 1)] ∈ [2p log(p)ε, −4p log(p)ε]. 

Here we use the facts that λ ≤ eλ −1 ≤ 2λ for λ < 1. Therefore, we have verified that s = (s1, . . . , sn) is an −4p log(p)ε-Nash 
of the public good game. Hence, setting cp = −4p log p, we conclude the proof. �

Lemma A.1. For any 0 < t < 1 and 0 < ε < min{0.1, t8 , 1−t
8 }, we have

1. − log(e−t − ε) < t + 8ε ,
2. − log(e−t + ε) > t − 8ε .

Proof. We have

− log(e−t − ε) < t + 8ε ⇔ log(e−t − ε) > −(t + 8ε) ⇔ e−t − ε > e−(t+8ε)

⇔ e−t
(

1− e−8ε
)

> ε ⇐ 1− e−8ε > 3ε.
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By simple calculations, we can show 1 − e−8ε > 3ε for ε < 0.1. On the other side, we have

− log(e−t + ε) > t − 8ε ⇔ log(e−t + ε) < −(t − 8ε) ⇔ e−t + ε < e−t · e8ε ⇔ e−t(e8ε − 1) ≥ ε

This follows from the fact that e−t (e8ε − 1) ≥ 1
3 (e8ε − 1) ≥ 8

3ε > ε . �
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