2201.06850v1 [cs.SE] 18 Jan 2022

arxiv

Using Pre-Trained Models to Boost Code Review Automation

Rosalia Tufano
SEART @ Software Institute
Universita della Svizzera italiana

Simone Masiero
SEART @ Software Institute
Universita della Svizzera italiana

Antonio Mastropaolo
SEART @ Software Institute
Universita della Svizzera italiana

Switzerland Switzerland Switzerland
Luca Pascarella Denys Poshyvanyk Gabriele Bavota
SEART @ Software Institute SEMERU @ Computer Science Department SEART @ Software Institute
Universita della Svizzera italiana William and Mary Universita della Svizzera italiana
Switzerland USA Switzerland

ABSTRACT

Code review is a practice widely adopted in open source and in-
dustrial projects. Given the non-negligible cost of such a process,
researchers started investigating the possibility of automating spe-
cific code review tasks. We recently proposed Deep Learning (DL)
models targeting the automation of two tasks: the first model takes
as input a code submitted for review and implements in it changes
likely to be recommended by a reviewer; the second takes as input
the submitted code and a reviewer comment posted in natural lan-
guage and automatically implements the change required by the
reviewer. While the preliminary results we achieved are encour-
aging, both models had been tested in rather simple code review
scenarios, substantially simplifying the targeted problem. This was
also due to the choices we made when designing both the tech-
nique and the experiments. In this paper, we build on top of that
work by demonstrating that a pre-trained Text-To-Text Transfer
Transformer (T5) model can outperform previous DL models for
automating code review tasks. Also, we conducted our experiments
on a larger and more realistic (and challenging) dataset of code
review activities.

KEYWORDS

Code Review, Empirical Study, Machine Learning on Code

1 INTRODUCTION

The benefits of code reviews have been widely recognized, with
several studies providing evidence of the higher quality of reviewed
code [15, 29, 31]. Also, code reviews help in preventing bugs and
foster knowledge transfer among developers [10, 40]. However,
studies on code reviews also highlighted an additional cost that such
a process entails: Empirical evidence suggests that large software
projects can undergo hundreds of code reviews per month. This
applies to both open-source (e.g., ~500 reviews per month in Linux
[39]) and industrial (e.g., ~3k reviews per month in Microsoft Bing
[38]) projects. As a result, developers can spend many hours per
week reviewing code [16].

Given the non-negligible cost of code review, we recently pro-
posed the automation of specific code review tasks: The goal is not
to replace developers, but to help them save time in two scenarios.
The first is that of a contributor (i.e., the developer submitting the
code for review) who wants to receive a rapid feedback about the
code they wrote before submitting it for review. The feedback is
provided by a Deep Learning (DL) model trained to take as input
the code to submit for review Cs and provide as output a revised
version of C; (i.e., Cr) implementing code changes that are likely to
be recommended by a reviewer.

The second scenario concerns the reviewer(s) involved in the
process: a DL model is trained to take as input (i) the code Cs
submitted for review, and (ii) a comment R,,; written by the reviewer
in natural language to request a specific change on C. The output
of the model is a revised version of Cs (i.e., C;-) implementing the
changes recommended in R,;. The idea here is that the reviewer can
use the model to provide the contributor with a concrete example
of the code changes that they would like to see implemented.

In our previous work [46] we trained and experimented with
the DL models on a dataset composed of ~17k triplets (Cs, Ry, Cr)
extracted from code reviews performed in GitHub [2] and Gerrit
[1]. In particular, the model recommending code changes to the
contributor is an encoder-decoder model with one encoder taking
Cs as input and one decoder generating C,. Our evaluation shows
that this model can recommend a change as a reviewer would do in
3% (single prediction) to 16% of the cases (10 different predictions).
The model employed in the second scenario (i.e., the automated
implementation of a comment recommended by the reviewer), has
instead two encoders taking as input Cs and Ry, respectively, and
one decoder generating C,. This model can successfully implement
a change recommended by a reviewer in 12% (single prediction) to
31% (10 different predictions) of the cases.

While these results represent our first step towards automat-
ing code review tasks, our approach [46] as well as the conducted
empirical study suffers of several limitations we try to overcome
in this paper. First, we adopted a code abstraction process to re-
duce the vocabulary size and simplify the learning of the DL model.
This means that the model did not work on the raw source code,
but on an abstracted version of it in which, for example, variable
identifiers were replaced with a special VAR_ID token, where ID
is a progressive number (e.g., the second declared variable is rep-
resented by VAR_2). The possibility to go back to raw source code
was guaranteed by keeping a map linking abstracted to raw tokens
in Cs (e.g., VAR_1 — 1i).

Rosalia Tufano, Simone Masiero, Antonio Mastropaolo, Luca Pascarella, Denys Poshyvanyk, and Gabriele Bavota

While such a procedure simplifies the learning of the model, it
poses a strong limitation on the variety of code review tasks that
can be supported by such a model. Indeed, the abstraction process
forces to exclude from the dataset of triplets (Cs, R,;, Cr) all those
in which C; introduces identifiers or literals that were not present
in Cs. This is necessary because the abstraction map is built on Cg
and, if a new variable VAR_2 is introduced in C, during the review
process, such a variable cannot be mapped back to raw source code,
making such an approach unusable in practice. This means that
the triplets (Cs, R,,;, Cr) on which we evaluated our approach [46]
were relatively simple changes implemented during code review,
not requiring the introduction of new identifiers or literals.

Second, to simplify the learning, we only considered triplets (Cs,
Ry, Cr) in which both the code submitted for review (Cs) and the
revised code (C,) had no more than 100 tokens [46]. Again, this
reduced the complexity of the tackled problem.

Basically, the two above choices resulted in training and experi-
menting the proposed models on quite simple code review instances
only representative of a minority of the code transformations actu-
ally implemented during code reviews.

In this paper, we build on top of our previous work [46] ex-
perimenting with DL models for code review automation in more
realistic and challenging scenarios. We start by training the recently
proposed Text-To-Text-Transfer Transformer (T5) model [35] on
a dataset similar to the one used in [46]. However, we adopt a to-
kenizer (i.e., SentencePiece [26]) that allows us to work with raw
source code, without the need for code abstraction. Also, we in-
crease the maximum length of the considered code components
from 100 “abstracted” tokens to 512 “SentencePiece” tokens (i.e.,
~390 “abstracted” tokens). The absence of an abstraction mecha-
nism and the increased upper bound for input/output length al-
lowed us to build a substantially larger dataset as compared to the
one used in [46] (168k instances vs. 17k) and, more importantly, to
feature in such a dataset a wider variety of code transformations im-
plemented in the code review process, including quite challenging
instances such as those requiring the introduction of new identi-
fiers and literals (accounting for 63% of the new dataset we built).
Also, we experimented with the automation of a third task related
to the code review process: Given the code submitted for review
(Cs), generating a natural language comment R,;; requesting to the
contributor code changes as a reviewer would do (i.e., simulating a
reviewer commenting on the submitted code).

We also compare the T5 model with the encoder-decoder model
presented in our previous work on the original dataset used in [46].
Our results show the superior performance of T5, which represents
a significant step forward in automating code review tasks.

To summarize, the contributions of this work are:

(i) A novel approach for code review automation overcoming
several limitations of the state-of-the-art technique [46];

(ii) A comprehensive empirical evaluation of such an approach,
including a comparison with our previous technique [46];

(iii) The automation of a third task: Given the code submitted
for review, automatically generating natural language comments
requesting changes as reviewers would do;

(iv) A code review dataset to train and test DL models in more
realistic scenarios as compared to the one used in [46];

(v) A comprehensive replication package [8].

2 T5TO AUTOMATE CODE REVIEW

We describe the DL model we adopt, the construction process of the
datasets needed for its training, and the procedure used for hyper-
parameter search, model training, and generation of predictions.

2.1 Text-to-Text Transfer Transformer (T5)

The Text-to-Text Transfer Transformer, or simply T5, is not merely
a model. Raffel et al. [35] compare “pre-training objectives, architec-
tures, unlabeled data sets, transfer approaches, and other factors on
dozens of language understanding tasks”.

The result of this exploration is the best combination of archi-
tectures and training techniques, namely T5. T5 is based on the
Transformer [48] architecture. The proposed implementation dif-
fers only in some details (regarding the normalization layer and the
embedding scheme) from its original form. Raffel et al. proposed
several versions of T5, differing from each other in their size (e.g.,
number of layers) and, as a consequence, training complexity. In
this work we adopt the small version of T5 consisting of: 8-headed
attention, 6 layers in both the encoder and the decoder, each having
a dimensionality of 512 and the output dimensionality of 2,048 (~
60M parameters).

The model is subjected to a first training (pre-training) whose
purpose is to provide it with a general knowledge useful to solve a
set of related tasks. Suppose, for example, that we want to train a
model able to (i) translate English to German, and (ii) summarize
English text. Instead of starting by training the model for these
two tasks, T5 can be pre-trained in an unsupervised manner by
using the denoising objective (or masked language modeling): The
model is fed with sentences having 15% of their tokens (e.g., words
in English sentences or code tokens in Java statements) randomly
masked and it is asked to predict them. By learning how to predict
the masked tokens, the model can acquire general knowledge about
the language of interest. In our example, we could pre-train the
model on English and German sentences.

Once pre-trained, T5 is fine-tuned on the downstream tasks in a
supervised fashion. Each task is formulated in a “text-to-text” for-
mat (i.e., both the input and the output of the model are represented
as text). For example, for the translation task a dataset composed
of pairs of English and German sentences allows to fine-tune the
model. Similarly, the summarization task requires the input English
text and a corresponding summary. In the next sections we explain
how we pre-train and fine-tune T5 to support code review tasks.

2.2 Training Data

We describe the process used to build the datasets needed for the
pre-training (Section 2.2.1) and fine-tuning (Section 2.2.2) of T5. Part
of the fine-tuning dataset has been used for hyperparameter search
(Section 2.3) and for testing the performance of T5 (Section 3).

2.2.1 Pre-training Dataset. Given the goal of the pre-training phase
(i.e., providing the model with general knowledge about the lan-
guages of the downstream tasks) we built a dataset allowing to
train T5 on Java and technical English.

Indeed, besides source code, technical English is instrumental
in a code review process in which reviewers post natural language
comments about code.

Using Pre-Trained Models to Boost Code Review Automation

We start from two datasets featuring instances including both
source code and technical English: the official Stack Overflow dump
(SOD) [7] and CodeSearchNet (CSN) [25]. Stack Overflow is a Q&A
website for programmers. The data dump we used collects all the
questions and relative answers between 2006 and 2020 for a total
of roughly 51M posts (where a post is a single question or answer).
A post includes English text (as per the SO guidelines) and/or code
snippets. Posts are usually accompanied by tags characterizing their
topic (e.g., Java, Android) and can be rated with up-/down-votes and,
for what concerns the answers, they can be marked as the “accepted
answer” from the question’s author.

We extracted from the SOD all the answers (i) having a Java
tag; (i) containing at least one <pre><code> HTML tag to ensure
the presence of at least one code snippet in the answer; and (iii)
having at least 5 up-votes and/or being the accepted answer. These
filters are justified by the goal of our pre-training. Indeed, we want
the model to acquire knowledge about technical English and Java:
focusing on answers containing at least one code snippet increases
the chances that their natural language text refers to an imple-
mentation task, similarly to what happens in code review. Also,
the up-votes/accepted answer filter aims at discarding low-quality
instances containing, for example, wrong code solutions. This is
also the reason why we focused on high-quality answers likely to
contain working solutions rather than on questions that, even if
up-voted (e.g., because they are relevant for many users) may con-
tain wrong implementations. From this step we obtained 1,018,163
candidate instances from the SOD.

On each selected answer a, we performed the following cleaning
steps: We remove emojis, non-latin characters, control characters,
trailing spaces and multiple white spaces. Some special symbols are
replaced using latin characters having the same meaning, e.g., ">" is
replaced with ">=". Moreover, we replace any embedded link with
a special tag "<LINK_i>", with i being an integer ranging from 0 to
n — 1, where n is the number of links in a. Finally, we removed all
the instances having less than ten tokens or more than 512 (40,491).
This left us with 977,379 valid instances.

The CSN [25] Java dataset features 1.5M unique Java methods,
some of which containing their Javadoc. We filtered out all those in
which a Javadoc was not available or it did not contain any letter,
removing 1,034,755 of them. Unlike the SOD, CSN can contain
instances in which the “textual part” (i.e., the method comment) is
not in English. To partially address this issue, we exclude pairs in
which no Latin characters were found. While this does not exclude
all non-English comments, at least identifies and removes those
written in specific languages (e.g., Russian, Chinese) (15,229). We
decided to accept some level of noise in the pre-training dataset
(e.g., comments written in French) since (i) given the size of this
dataset, this little amount of noise should not substantially affect
the model’s performance, and (ii) the pre-training dataset is not
used as test set to assess the performance of the approach. As we
will explain later, a more fine-grained cleaning has been performed
for the fine-tuning dataset that, instead, is used for performance
evaluation. On the 519,905 remaining instances, we performed the
same cleaning steps described for the SOD (e.g., remove emojis).
Finally, from each pair we obtain a single string concatenating the
Javadoc comment and the code, retaining the ones having more
than ten and less than 512 tokens (507,947 instances left).

By putting together the instances collected from the SOD and
CSN we obtained the pre-training dataset consisting of 1,485,326
instances. To perform the pre-training, we randomly mask in each
instance 15% of its tokens. The masked tokens are replaced with
sentinel tokens <extra_id_i>, where i is an increasing number
ranging from 0 up to n— 1, where n is the number of tokens masked
in a given instance. If several contiguous tokens are masked they
are replaced by a single sentinel token. These “masked instances”
represent the input of the model during the pre-training. The target
(i.e., the string the model is expected to generate) is built concate-
nating the sentinel tokens and the token(s) they are masking. An
extra sentinel token is added to indicate the end of the string.

Our pre-training dataset is publicly available [8].

2.2.2 Fine-tuning Datasets. To create the fine-tuning dataset we
mined Java open source projects from GitHub using the web ap-
plication by Dabic et al. [19]. Using the querying interface [5], we
selected all Java projects having at least 50 pull requests (PRs), ten
contributors, ten stars, and not being forks. The filters aim at (i)
ensuring that enough “code review” material is contained in the
projects (i.e., at least 50 PRs); (ii) discarding personal/toy projects
(at least ten contributors and stars); and (iii) reducing the chance of
mining duplicated code. This resulted in a list of 4,901 projects. We
also mined the six Gerrit [1] installations used in [46] containing
code review data about 6,388 projects.

From both the GitHub and the Gerrit datasets we extract triplets
< mg, ¢yl My >, where mg is a method submitted for the review;
cp1 is a single reviewer’s comment suggesting code changes for my;
and m, is the revised version of ms implementing the reviewer’s
recommendation c,,;. Note that (i) we only looked for PRs that are
accepted at the end of the code review, since we want to learn how
to recommend changes that, at the end, can lead to code considered
good from a reviewer’s perspective; and (ii) a single PR in GitHub
and Gerrit can result in several triplets for our dataset. Indeed, we
mine the different review rounds in each PR. For example, a method
ms can be submitted for review, receiving a comment c,,; asking for
changes (first round). The revised version of m; addressing c,,; is
then resubmitted (m,), resulting in the second review round (possi-
bly leading to additional comments and revisions of the method).
We stop when the code is formally accepted.

Overall, we mined 382,955 valid triplets from GitHub and Gerrit
using the pipeline from [46] that we summarize in the following (see
[46] for additional details). We target triplets in which a comment
¢yt has been posted by a reviewer on a method mg. We can identify
these cases since both GitHub and Gerrit (i) provide information
about the developers submitting the code and posting comments
in the review process; and (ii) allow to retrieve the specific code
line(s) ¢, refers to (i.e., the code in mg that has been highlighted
by the reviewer when posting the comment).

We exclude all the comments posted by the authors of the code
(e.g., to reply to reviewers), since they do not represent a review of
the code. Thus, the triplets in our dataset have c,; being a single
comment posted by a reviewer. Also, we exclude c,; linked to inline
comments (rather than code lines) in ms, since we target the fixing
of code-related issues. To consider a triplet as valid, c,; must be the
only comment posted by a reviewer on m; in that specific review
round.

Rosalia Tufano, Simone Masiero, Antonio Mastropaolo, Luca Pascarella, Denys Poshyvanyk, and Gabriele Bavota

In this way, we can be confident that the revised version sub-
mitted later on by the author (m,) actually aimed at implementing
cp- Also, m, must differ from mg (i.e., a change must have been
implemented in the code to address c,;). From the technical point
of view, the parsing of the methods from the patches submitted for
review has been done using the lizard library [4]. Note that, the
removal of triplets in which ¢,; include more than one comment
has been done later in the processing pipeline (we will get back to
this point). Indeed, before we had to clean comments possibly just
representing noise.

As done for the pre-training dataset, we performed some clean-
ing steps. We replaced any link with the numbered token <LINK_i>,
with i being an integer ranging from 0 to n — 1, where n is the total
number of links in ¢,,;, ms and m,.. If the same link appears in dif-
ferent parts (e.g., in ¢,;; and m,), it is replaced with the same token.
We also removed any emoji and non-ascii characters from the com-
ments, extra spaces and control characters from both the comments
and the methods, and inline comments from the methods (we are
not interested in addressing issues related to internal comments).

After the cleaning process we obtained some triplets in which
cp1 became an empty string or where mg and m, became equal
(e.g., they only differed for some spaces before the cleaning). We
removed these instances (-33,005) as well as those having c¢,; + mg
or m, longer than 512 tokens (-61,233). We considered the sum of
¢ and mg in terms of length because, for one of the tasks (i.e., the
automated implementation of a comment posted by a reviewer),
they will be concatenated to form the input for the model.

Then, we removed from our triplets non-relevant comments (-
28,581), i.e., comments not recommending code change suggestions
(e.g., “looks good to me”). In [46] we manually crafted a set of natural
language patterns to spot non-relevant comments (e.g., single-word
comments containing words such as “thanks”, “nice”, etc.). We have
extended this set since we noticed that in our richer dataset several
non-relevant comments were left by these patterns. Such analysis
has been done by one of the authors by manually inspecting all the
triplets having c,,; consisting of less than six words. The updated
heuristics are available in our replication package [8].

We also excluded triplets including non-English c,;; comments
(-4,815) through a pipeline composed by three language detector
tools. A preliminary classification has been performed using the
Python libraries langdetect [3] and pycld3 [6]. If both of these tools
classify the comment as non-English, we relied on the Google lan-
guage detection API for a final decision. Such a process was needed
since we noticed that the Google API was the most accurate in de-
tecting the language, especially when the comments also featured
code constructs in them. In this scenario, the Python libraries often
generated false negatives (i.e., classifying an English sentence as
non-English). However, we had a limited number of requests avail-
able for the Google API. Thus, we performed a pre-filtering using
the Python libraries and, when they both reported the comment as
being not in English, we double checked using the Google API.

After this cleaning process, we excluded all triplets featuring
more than one comment in c,,; (-86,604). Finally, we removed all the
duplicates from the fine-tuning dataset (-918). To be conservative,
we identify as duplicates two triplets having the same m; (thus,
even triplets having the same m; but different c,,;;/m, have been
removed).

The resulting dataset features 167,799 triplets that have been
used to build the three fine-tuning datasets needed for the three
tasks we aim at automating. In the first task (code-to-code) the
model takes as input m; with the goal of automatically generating
its revised version m,, implementing code changes that may be
required in the code review process. Thus, the fine-tuning dataset
is represented by pairs mg — m;.

In the second task (code&comment-to-code) the model takes as
input both mg and a comment c,,; posted by the reviewer and targets
the generation of m,, the revised version of ms implementing the
code changes recommended in c,;;.

The mg code contains two special tags <START>, <END> marking
the portion of the code c,,; refers to. The fine-tuning dataset of this
second task is represented by pairs < mg, ¢,,; >— m,.

Finally, in the third task (code-to-comment) the model takes as
input mg and aims at generating a natural language comment (c,,;)
suggesting code changes as a reviewer would do. The fine-tuning
dataset is represented by pairs ms — cy;;.

Table 1: Pre-training and fine-tuning datasets (# instances)

Dataset train evaluation test

Pre-training

Stack Overflow 977,379

CodeSearchNet 507,947 - -
Fine-tuning 134,239 16,780 16,780

All three fine-tuning datasets have been split into 80% training,
10% evaluation, and 10% test. Table 1 summarizes the number of
instances in the datasets: The pre-training is only used for training,
while the fine-tuning datasets are exploited also for the hyperpa-
rameter tuning (evaluation) and for assessing the performance of
the model (test). In Table 1 we only report information for a single
fine-tuning dataset (rather than for the three previously described),
since all three fine-tuning datasets contain the same number of
instances. Indeed, they are all derived from the same set of triplets.

2.3 Training and Hyperparameter Search

Raffel et al. [35] showed the major role pre-training plays on the
performance of T5 models. The importance of pre-training has
also been confirmed (for other Transformer-based models) in the
context of code-related tasks such as test case generation [44]. To
further study this aspect, we decided to experiment with both a
pre-trained and a non pre-trained model, both of which have been
subject to a hyperparameter tuning process.

Since we adopted the small version of T5 presented by Raffel
et al. [35], we did not experiment with variations related to its
architecture (e.g., changing the number of layers or the number
of hidden units). Though, as also done by Mastropaolo et al. [28],
we experimented with different learning rate configurations: (i)
Costant Learning Rate (C-LR), in which the learning rate value is
fixed during the training; (ii) Inverse Square Root Learning Rate (ISR-
LR), in which the learning rate value decays as the inverse square
root of the training step; (iii) Slanted Triangular Learning Rate (ST-
LR) in which first the learning rate linearly increases and then it
linearly decays returning to the starting value; (iv) Polynomial Decay
Learning Rate (PD-LR), in which the learning rate polynomially
decays to a fixed value in a given number of steps.

Using Pre-Trained Models to Boost Code Review Automation

The hyperparameter tuning has been done for the fine-tuning
phase only. Indeed, even though we just focus on one hyperpa-
rameter, such a process still remains quite expensive, requiring
the training of eight different T5 models (i.e., pre-trained and non
pre-trained each with four different learning rates).

For pre-training we use the same configuration proposed by
Raffel et al. in [35]. We pre-trainied the model on the pre-training
dataset (Table 1) for 200k steps (~34 epochs). Starting from the pre-
trained model, we fine-tuned for 75k steps four different models,
each using one of the experimented learning rates.

Since the goal of this procedure is to find the best learning rate
for the three code review tasks, we fine-tuned each of these models
using a mixture of the three tasks: A single model is trained to
support all three tasks using the union of their training sets. This
is one of the characteristics of T5, the possibility to train a single
model for multiple tasks. The same approach has been used for
the non pre-trained model: In this case four T5 models (one per
learning rate) have been directly fine-tuned.

We assessed the performance of the eight models on the evalua-
tion set of each task in terms of “perfect predictions”, namely cases
in which the generated output was identical to the target (expected)
string. Table 2 reports the achieved results. As it can be seen, no
learning rate achieves the best results in all the tasks. Nevertheless,
ST-LR shows better overall performance and, for this reason, is the
one we adopt in our experiments.

Table 2: Hyperparameter tuning results

Task Learining Rate Strategy
C-LR ISR-LR ST-LR PD-LR

Pre-Trained

code-to-code 2.68% 3.68% 4.64% 2.53%

code&comment-to-code 10.39% 9.23% 8.46% 9.89%

code-to-comment 0.15% 0.32% 0.60% 0.15%
Non Pre-Trained

code-to-code 1.23% 3.71% 4.16% 1.22%

code&comment-to-code 5.05% 6.41% 6.24% 5.18%

code-to-comment 0.09% 0.44% 0.49% 0.03%

Given the best configuration for both the pre-trained and the
non pre-trained models, we fine-tuned them for a maximum of
300k steps using an early stop strategy. This means that we saved a
checkpoint of the model every 10k steps computing its performance
in terms of “perfect predictions” on the evaluation set and stopped
the training if the performance of the model did not increase for
three consecutive checkpoints (to avoid overfitting).

2.4 Generating Predictions

Once the models are trained, they can be used to generate predic-
tions. As done in previous work, we adopt a beam search strategy
[36] to generate multiple predictions given a single input. For ex-
ample, in the case of the code-to-code task, for a single ms method
provided as input multiple m, candidates can be generated. When
we ask the model to generate k predictions, it generates the k most
probable sequences of tokens given the input sequence; k is known
as the beam size and we experiment with k = 1,3, 5, 10.

For each prediction generated by T5, we also exploited its score
function to assess the model’s confidence on the provided input.

The value returned by this function ranges from minus infinity
to 0 and it is the log-likelihood (In) of the prediction. Thus, if it
is 0, it means that the likelihood of the prediction is 1 (i.e., the
maximum confidence, since [n(1) = 0), while when it goes towards
minus infinity, the confidence tends to be 0. In our empirical study
(Section 3) we assess the reliability of the confidence level as a
proxy for the quality of the predictions.

3 STUDY DESIGN

The goal of our evaluation is to empirically assess the performance
of the T5 model in code review automation tasks. The context con-
sists of (i) the datasets we presented in Section 2; and (ii) the dataset
from our previous work [46]. From now on we refer to our previ-
ously presented approach as the baseline. The study aims at tackling
five research questions (RQs).

ROQ1: To what extent is T5 able to automatically recommend
code changes to developers as reviewers would do? We provide
as input to T5 a Java method mg submitted for review and assess
the extent to which the model is able to provide as output a revised
version of mg (m,) implementing code changes that will be likely
requested during the code review process. The idea here is that
such a model could be used before the code is submitted for review
as an automated check for the contributor.

RQy: To what extent is T5 able to automatically implement
code changes recommended by reviewers? Given a Java method
submitted for review (ms) and a natural language comment (c,;;) in
which a reviewer asks to implement specific code changes in m;,
we assess the ability of T5 to automatically revise m; to address c,,;
(thus obtaining a revised method m,).

The third RQ focuses on the novel code review-related task we
introduce in this paper:

RQs: To what extent is T5 able to automatically recommend
changes in natural language as reviewers would do? In this RQ
T5 is provided as input with a Java method submitted for review
(mg) and it is required to generate a natural language comment (c,,;)
requesting code changes as reviewers would do.

For RQ1-RQ3, we experiment with different variants of the T5
model. In particular, we assess the quality of T5 predictions for
all three tasks when (i) the model is pre-trained or not; and (ii)
the predictions have different confidence levels. Thanks to these
analyses, we can answer our fourth RQ:

RQy4: What is the role played by the model pre-training on
the performance of T5? How does the confidence of the pre-
dictions affects their quality? As explained in Section 2.3, we
perform an ablation study in which T5 is fine-tuned without any
pre-training (i.e., by starting from random weights in the neural
network). This allows to assess the contribution of the pre-training
to the performance of the model. As for the confidence of the pre-
dictions, we assess whether it can be used as a reliable proxy for the
quality of the predictions (i.e., the higher the confidence, the higher
the likelihood the prediction is correct). If this is the case, such
a finding would have implications for the usage of the T5 model
in practice: A developer using the model could decide to receive
recommendations having confidence higher than ¢, reducing the
chances of receiving meaningless predictions.

Rosalia Tufano, Simone Masiero, Antonio Mastropaolo, Luca Pascarella, Denys Poshyvanyk, and Gabriele Bavota

Finally, the last RQ compares the performance of the T5 model
with that of the approach we presented in [46]:

RQs: What is the performance of T5 as compared to the
state-of-the-art technique? We use the implementation and datasets
from our previous work to compare the performance of the T5
model with the baseline [46].

3.1 Data Collection and Analysis

To answer the first four research questions, we experiment with the
best configuration of both the pre-trained and non pre-trained T5
model on the test set of the fine-tuning dataset reported in Table 1.

Remember that for each of the three tasks we support (i.e., the
ones that map to RQ1, RQy, and RQs3) the 16,779 test set instances
are the same triplets < my, ¢, my >. The only difference is that: in
RQ; the model has been trained (and is tested) to take as input mg
and produce m,; in RQy it takes as input ms and c,,; and produces
my; in RQs it takes as input mg and produces cy,;.

By running the models on the test sets, we report for each of
the three tasks the percentage of “perfect predictions”, namely the
cases in which the output of the model is the expected one. For
example, in the case of RQs, this means that the model was able,
given myg as input, to generate a comment c,,; identical to the one
manually written by the reviewer who inspected ms.

Besides computing the perfect predictions, in RQs (i.e., the task
in which the model is required to generate natural language text),
we also compute the BLEU (Bilingual Evaluation Understudy) score
of the predictions [32]. BLEU assesses the quality of the automati-
cally generated text. The BLEU score ranges between 0 and 1, with
1 indicating, in our case, that the natural language comment gener-
ated by the model is identical to the one manually written by the
reviewer. We use the BLEU-4 variant, that computes the overlap in
terms of 4-grams between the generated and the reference text.

In RQ; and RQ; (i.e, in the tasks in which the model is required
to generate code), we adopt instead the CodeBLEU [37], a recently
proposed similarity metric inspired by the BLEU score but tailored
to assess the quality of automatically generated code.

Differently from BLEU, CodeBLEU computes not only an “n-
gram based similarity” but it also considers how similar the abstract
syntax tree and the data-flow of the generated and the reference
code are. Ren et al. [37], who proposed the CodeBLEU, showed that
their metric better correlates with developers’ perception of code
similarity as compared to the BLEU metric.

Concerning RQq4, we compare the results (i.e., perfect predictions,
BLEU, CodeBLEU) achieved by the T5 model with and without
pre-training. We also statistically compare the two models (i.e.,
with/without pre-training) using the McNemar’s test [30] and Odds
Ratios (ORs) on the perfect predictions they can generate. As for the
confidence of the predictions, we take the best performing model
(i.e., the one with pre-training) and split its predictions into ten
buckets based on their confidence ¢ going from 0.0 to 1.0 at steps of
0.1 (i.e., the first interval includes all predictions having a confidence
¢ with 0 < ¢ < 0.1, the last interval has 0.9 < ¢ < 1). Then, we
report for each interval the percentage of perfect predictions.

Finally, in RQs, we compare T5 with the baseline [46] on the two
tasks automated in our previous work (i.e., the ones related to our
RQ; and RQ2).

As metrics for the comparisons, we used the percentage of perfect
predictions and the CodeBLEU of the predictions. We compared
the two techniques in several scenarios. First, we used the dataset
from [46] featuring 17,194 triplets < my, ¢y, m, >. By performing
some checks on this dataset, we noticed that a few instances (97)
had comments (c,,;) not written in English or containing invalid
unicode characters that did not allow our tokenizer to work. Thus,
we excluded those instances from the training and the test sets
shared by the authors. The training set has then been used to (i)
train the baseline [46]; and (ii) fine-tune the T5 model without any
pre-training. In this way, we can compare the performance of the
two models on the test set when trained on exactly the same data.
Important to notice is that the baseline has been trained and tested
on abstracted code (as done in [46]), while T5 worked directly with
the raw source code.

On top of this, we also report the performance of the pre-trained
T5 model when run on the test set from [46]. This pre-trained model
has been fine-tuned using the training dataset in [46]. Clearly, this
analysis favors T5 since it has been trained on more data (i.e., the
pre-training dataset). However, it provides additional hints into
the role played by the pre-training and on the effectiveness of the
T5 model in general. Besides reporting descriptive statistics, we
statistically compare the two models using the McNemar’s test [30]
and Odds Ratios (ORs) on the perfect predictions they can generate.
Since multiple comparisons are involved (e.g., comparing the pre-
trained and the non pre-trained model to the baseline), we adjust
the p-values using the Holm’s correction [24].

4 RESULTS DISCUSSION

We start by answering RQ1-RQs3 (Section 4.1), presenting the per-
formance of T5 in the three tasks we aim at automating. Then, we
discuss the impact on the performance of the pre-training and the
reliability of the confidence level as a proxy for the quality of the
predictions (Section 4.2). Finally, we compare T5 with the baseline
[46] (Section 4.3).

4.1 RQ;-RQj;: Performance of T5

Fig. 1 reports two graphs for each task. The line chart on top shows
the percentage of perfect predictions (y-axis) achieved by T5 for
different beam sizes (x-axis); the continuous line represents the
pre-trained version of the model, while the dashed line the non pre-
trained one. The boxplots at the bottom report the CodeBLEU for
the two code-generation tasks (i.e., code-to-code and code&comment-
to-code) and the BLEU score for the code-to-comment task in which
text is generated. Lighter blue represents the pre-trained model.

We start by commenting on the perfect predictions (line charts).
At a first sight, the performance of the model might seem quite
low. For example, in the case of code-to-code at k = 1 (i.e., a single
prediction is proposed by T5), both the pre-trained and the non
pre-trained models achieve ~5% of perfect predictions (751 and
863 instances correctly predicted with and without pre-training,
respectively). However, such a result should be considered in the
context of what was reported by the state-of-the-art technique [46]
that, on a much simpler test dataset, achieved for the same task and
same beam size 2.91% of perfect predictions.

Using Pre-Trained Models to Boost Code Review Automation

code-to-code

code&comment-to-code

code-to-comment

Perfect Predictions (%)
-
S

@ T5 Non Pre-Trained

3

O T5 Pre-Trained

Beam size

3 H 10 1 3 5 10 1 3 5 10
1.0 1.0 1.0
3 0.8 3 0.8 0.8
Z 06 Z 06 206
P
% 0.4 § 0.4 m 04
O 02 O 02 0.2
0.0 0.0 0.0
3 5 10 1 3 5 10 1 3 5 10

Beam size

Beam size

Figure 1: Results T5 dataset large

Similar observations can be made for the code&comment-to-code
task, where at k = 1 T5 can generate 14.08% (2,363 instances)
and 12.06% (2,024) perfect predictions when pre-trained and not,
respectively. For this task, in our previous work [46], we achieved
on a simpler dataset 12.16% perfect predictions. We directly compare
the two approaches in RQs.

Interestingly, increasing the beam size from 1 to 10 does only
result in marginal improvements for all tasks. The largest improve-
ment is obtained for the code&comment-to-code, where we move
from 14.08% (k = 1) to 18.88% (k = 10) of perfect predictions for the
pre-trained model. Given the goal of our approach, we believe that
the most relevant performance are those achieved at k = 1.

Indeed, providing several recommendations to inspect to a de-
veloper might be counterproductive, especially considering that
the recommendations are entire methods in the case of the two
code-generation tasks.

Moving to the code-to-comment task, T5 struggles in formulat-
ing natural language comments identical to the ones written by
reviewers. The pre-trained model, at k = 1, generates 356 correct
comments (2.12%) against the 324 (1.93%) of the non pre-trained
model. These numbers only slightly increase at k = 10, with a
maximum of 2.44% perfect predictions achieved with pre-training.

The top part of Fig. 2 shows two examples of perfect predictions
generated by the model for each task. A dashed line separates the
two examples within each task. For the code-to-code task, the first
code in each example represents the input of the model, while the
second its output. We highlighted in bold the parts of code changed
by the model and replaced irrelevant parts of the methods with
[...] to save space. In the first code-to-code example, T5 removes
an unneeded instanceof check, since FileSystemDataset is a
subclass of Dataset. Instead, the second example simplifies the
checking for the existence of a cluster, providing a meaningful error
message. This second case cannot be supported by the baseline
[46], since it requires the introduction of new code tokens that
were not present in the input code. Remember that, these being
perfect predictions, the implemented changes are identical to those
performed by developers during code review.

For the code&comment-to-code task, the input provided by the
model includes the comment written by the reviewer and requir-
ing a specific change to the part of code highlighted in orange. In
the first example, the reviewer suggests to use a specific object to
perform the null check and T5 correctly implements the change.

The second one is interesting because, despite the reviewer high-
lighting return null as the relevant code for their comment (“else
is redundant”), the model correctly understands that the action to
take is the removal of the unneeded else statement.

Finally, for the code-to-comment task, we report the code pro-
vided as input to the model (first line) with the comment it generated
as output (second line). In the first example, T5 suggests (as done
by the real reviewer) to add a null check, also showing the code
needed for its implementation. This code is not just a template, but
it is suitable for the provided input code (it refers to the supplier
object). In the second example, T5 suggests to rename an identifier,
providing valid recommendations for the renaming.

Looking at the bottom of Fig. 1, the results in terms of CodeBLEU
show a median higher than 0.80 for all beam sizes and for both
code-generation tasks. However, while we report these values for
completeness and for being consistent with what done in similar
works [45, 46, 50], they say little about the quality of the predictions
and they are mostly useful for future work that wants to compare
with our approach (complete distributions are available in our repli-
cation package [8]). Indeed, it is difficult to properly interpret these
values for two reasons. First, there is no accepted threshold above
which good performance can be claimed. Second, as also done in
previous works proposing models taking as input a code snippet
and providing as output the same code “revised” in some way (e.g.,
with a fixed bug [45], with a single statement added [50], or with
review-related changes implemented [46]), we computed the Code-
BLEU between the predicted and the target code (two methods in
our case). However, the input provided to the model is already quite
similar to the target output, which means that a model taking as
input a method and not implementing any change on it, is likely to
obtain high values of CodeBLEU. For this reason, we mostly focus
our discussion on perfect predictions. Concerning the BLEU score
achieved in the code-to-comment task, the median ranges around
0.10 (see Fig. 1). Such a result is expected given the low percentage
of perfect predictions achieved for this task.

Going back to the perfect predictions, the results reported in the
line charts in Fig. 1 represent a lower bound for the performance
of our approach. Indeed, we consider a prediction as “perfect” only
if it is identical to the reference one. For example, in the case of the
code-to-comment task, the natural language comment generated by
T5 is classified as correct only if it is equal to the reference one,
including punctuation.

Rosalia Tufano, Simone Masiero, Antonio Mastropaolo, Luca Pascarella, Denys Poshyvanyk, and Gabriele Bavota

Perfect predictions

code-to-code
{ FileSystemDataset dataset = (FileSystemDataset) view;

{ FileSystemDataset dataset = (FileSystemDataset) view; [...] }

public ConfigBuilder readFrom(View<?> view) { if (view instanceof Dataset && view instanceof FileSystemDataset)
oll b

public ConfigBuilder readFrom(View<?> view) { if (view instanceof FileSystemDataset)

public Response getCustomizedStateAggregationConfig(@PathParam("clusterId") String clusterId) {
HelixZkClient zkClient = getHelixZkClient(); if (!ZKUtil.isClusterSetup(clusterId, zkClient)) { return notFound();} [...] }

public Response getCustomizedStateAggregationConfig(@PathParam(*clusterId") String clusterId) {
if (!doesClusterExist(clusterId)) { return notFound(String.format("Cluster %s does not exist", clusterId));} [...] }

code&comment-to-code

“I suggest ObjectUtils check for nulls”
private String getBillingFrequencyDescription(Award award) { if (award == null || award.getBillingFrequency() == null) { [...] }
private String getBillingFrequencyDescription(Award award) { if (ObjectUtils.isNull(award) || ObjectUtils.isNull(award.getBillingFrequency())) { [...] }

public <T extends IRemoteConnection.Service> T getService([...1) { if ([...1) { return [...]; } else { return null; } }

public <T extends IRemoteConnection.Service> T getService([...]) { if ([...]) { return [...]; } return null; }

“else is redundant”

code-to-comment

“Please add a check Objects.requireNonNull(supplier, "supplier is null");”

78

“Rename ‘ann’ to ‘rules’, ‘rulesA or g more descriptive.”

static <E,T> Validation<E,T> valid(Supplier<? extends T> supplier) { return new Valid<>(supplier.get()); }

public List<[...]> getExecuteBefore() { Rules ann = this.getClass().getAnnotation(Rules.class); if(ann != null) [...] }

code&comment-to-code
public UserDTO addUser(UserDTO userResource) { [...] UserDTO savedUser =

Alternative and valid predictions

“Inline this variable”
UserDTO.createInstanceWithPrivateData(user); return savedUser; }

public UserDTO addUser(UserDTO userResource) { [...] return UserDTO.createInstanceWithPrivateData(user); }

code-to-comment

public void handleSetDevicelLifecycleStatusByChannelResponse([...]) { [...] |ResponseMessage.newResponseMessageBuilder().[...]1)}

“Extract the building of the Resp Message to it's own variable (in eclipse, select the text, right-click > refactor > extract local variable / select code + shift+alt+L). This will make the code a
bit more readable, especially when you'll be passing in other things besides the ResponseMessage.”

“Please make this one a variable as well”

Figure 2: Examples of perfect and alternative predictions

However, it is possible that a natural language comment gen-
erated by T5 is different but semantically equivalent to the one
written by the developer (e.g., “variable v should be private” vs
“change v visibility to private”). Similar observations hold for the
two code-generation tasks (e.g., a reviewer’s comment could be
addressed in different but semantically equivalent ways).

To have an idea on the number of valuable predictions present
among those classified as “wrong” (i.e., the non-perfect predic-
tions), three authors manually analyzed a sample of 100 “wrong”
predictions for each task (300 in total). The analysis was done in
two meetings in which each instance was discussed by all three
authors. The goal was to classify each instance into one of three
categories: (i) “semantically equivalent” (i.e., the generated code/-
comment is different but semantically equivalent to the reference
one); (ii) “alternative solution” (i.e., the generated code/comment is
not semantically equivalent, but valuable); or (iii) “wrong” (i.e., the
generated code/comment is not meaningful for the provided input).
Since we also computed the confidence for each of the predictions
generated by T5, rather than randomly selecting the 300 instances
to inspect, we decided to target for each task the top-100 wrong
predictions generated by the model in terms of confidence. Indeed,
those cases are particularly interesting, since they represent wrong
predictions for which, however, the model is quite confident.

Table 3: Manual analysis of 100 “wrong” predictions per task

Task Semantically Equivalent Alternative Solution =~ Wrong
code-to-code 1 10 89
code&comment-to-code 6 56 38
code-to-comment 36 10 54

Table 3 shows the results of our manual analysis. For the code-
to-code we observed that, in most cases (89%) the model actually
generates wrong predictions that are not inline with the changes
implemented by the developer. There are few exceptions to these
cases, mostly related to small changes in which the model made
a decision different from that one of the developer but still valid
(e.g., extracting a string into a variable and using a different name
for the extracted variable). More interesting are the results for the
other two tasks.

In the case of code&comment-to-code, we found that 62 out of
the 100 “wrong” predictions we inspected were actually valid im-
plementations of the change recommended by the reviewer. One
example is presented at the bottom of Fig. 2 (black background),
where we show the input provided to the model (i.e., the code in
the first line and the reviewer’s comment “Inline this variable”) and
the output of the model right below. T5 successfully addressed the
reviewer’s comment.

Using Pre-Trained Models to Boost Code Review Automation

code-to-code code&comment-to-code code-to-comment

w
3

30 30
20 / 20
.
/ 1040 ./,/ 10 . /
—— _g-eme=e®” o
{o—y—0—0—0—0 ol Y—* o Lo—e—e—0"

010203040506070809 1 010203040506070809 1 0102030405060708009 1
Confidence Confidence Confidence

N
S

S

Perfect Predictions (%)

o

Figure 3: Perfect predictions by confidence of the model

However, the prediction is different from the target implemen-
tation, since the latter also includes another change that was not
explicitly required in the code review. This case is representative
of all 56 instances we classified as “alternative solutions” for this
task and, given the goal of the code&comment-to-code, we believe
they represent good predictions.

Finally, also for the code-to-comment task, we found a large
number of “wrong” predictions that are actually valuable, with
36 of them even being semantically equivalent (i.e., T5 formulated
a comment asking the same changes required by the reviewer, but
using a different wording). One example is reported at the very
bottom of Fig. 2. While the model only received the code as input
we also show the original reviewer’s comment (i.e., “Please make
this one a variable as well”) to make it easier to assess the relevance
of the comment generated by T5 (i.e., “Extract the building ...”).

Overall, our analysis showed that the perfect predictions really
represent a lower bound for the performance of T5, especially for
the two tasks in which natural language comments are involved.

4.2 RQy: Pre-training and confidence

In Fig. 1 we observed better performance for the pre-trained model
in the code&comment-to-code and in the code-to-comment task, while
the non pre-trained model performed better in the code-to-code task.
The results of the McNemar’s test on the predictions at k=1, confirm
such findings: besides the significant difference confirmed for all
tasks (p-value < 0.01), the ORs indicate 85% and 59% higher odds
of obtaining a perfect prediction using the pre-trained model in
the code&comment-to-code (OR=1.85) and in the code-to-comment
(OR=1.59) task, while odds are 34% lower in the code-to-code task
(OR=0.66). Two observations are worth to be made. First, overall,
the pre-trained model seems to represent a more valuable solution.
Second, the lack of improvement in the code-to-code task can be
explained by the pre-training and fine-tuning we performed. In-
deed, the code-to-code task only focuses on source code, with no
natural language in the input nor in the output. The fine-tuning
stage, focused on source code, was probably sufficient to the model
to learn about the code syntax and the possible transformations
to perform. The additional pre-training, also including technical
English, did not benefit the model for the code-to-code task. The
other two tasks, instead, either include natural language as input
(code&comment-to-code) or require its generation as output (code-to-
comment), obtaining a boost of performance from the pre-training.

Fig. 3 depicts the percentage of perfect predictions (y-axis) within
each confidence interval (from 0.0-0.1 up to 0.9-1.0, x-axis) when
using the pre-trained model and k=1. To better interpret the re-
ported results, the gray line represents the overall performance of
the model when considering all predictions (e.g., 4.48% of perfect
predictions for the code-to-code task).

In all three tasks, we observe a clear trend, with the predictions
in the highest confidence bucket (0.9-1.0) ensuring substantially
better performance than the overall trend. When only considering
the predictions in this bucket, the percentage of perfect predic-
tions increases to: 14.24% for code-to-code (from an overall 4.48%),
28.23% for code&comment-to-code (overall=14.08%), and 22.23% for
code-to-comment (overall=2.12%). Considering the complexity of
the addressed tasks, the jump in performance is substantial and
indicates the usability of the confidence level as a proxy for the
prediction quality. Also, while the percentage of perfect predictions
is quite limited, with seven out of ten predictions being wrong
in the best-case scenario (28.23% for code&comment-to-code), it is
worth considering what previously observed in our manual analy-
sis, with “valuable” predictions which are classified as “wrong” in
our quantitative analysis.

4.3 RQs: Comparison with the baseline [46]

Fig. 4 compares the performance achieved by the T5 model with
those obtained by the baseline [46].

In the line charts the continuous lines represent the pre-trained
T5, the dashed lines non pre-trained T5, and the dotted lines the
baseline. Two important points are worth remembering: First, the
results in Fig. 4 have been computed on the test set used in [46].
Indeed, the performance in terms of perfect predictions are sub-
stantially higher as compared to those in Fig. 1 (see values on the
y-axis), due to the simpler instances featured in this dataset. Second,
the baseline has been trained and tested on abstracted code (as in
the original paper), while T5 worked on raw source code.

When k=1, T5 achieves substantially better performance. The
results of the statistical test in Table 4 always show a significant
difference in favor of T5 (adjusted p-value < 0.01), with ORs rang-
ing from 1.69 (non pre-trained T5 vs [46] in the code-to-code task)
to 11.48 (pre-trained T5 vs [46] in the code&comment-to-code task).
The pre-trained T5 in this case performs better than the non pre-
trained one for both tasks. This is likely due to the limited size of the
fine-tuning dataset used in this comparison. Indeed, to have a fair
comparison with [46], we fine-tuned T5 on the training set we used
in [46] and composed by ~13.5k instances (vs the ~134k we had in
our fine-tuning dataset when answering RQ1-RQ4). This is probably
not sufficient to effectively train a large model such as T5, and makes
the instances used in the pre-training fundamental to further learn
about the language. Still, even without pre-training, T5 outperforms
the baseline when k=1. For example, in the code&comment-to-code
task, the baseline achieves 9.48% perfect predictions, against the
15.46% of the non pre-trained T5, and the 29.74% of the pre-trained
T5. The baseline observes a stronger improvement with the in-
creasing of k (i.e., the beam size) as compared to T5 (see Fig. 4).
We believe this is due to usage of the abstraction. Indeed, when
working with abstracted code the “search space” (i.e., the number of
possible solutions that can be generated with the given vocabulary)
is much more limited since the model does not deal with identifiers
and literals. Attempting ten predictions in a smaller search space
is more likely to result in correct predictions. The results of the
CodeBLEU confirm the trend observed with the perfect predictions,
with the pre-trained T5 being the best model.

Rosalia Tufano, Simone Masiero, Antonio Mastropaolo, Luca Pascarella, Denys Poshyvanyk, and Gabriele Bavota

code-to-code code&comment-to-code

IS
S

40+

w
=)

30

~
S

201

104 -7

Perfect Predictions (%)
=
15

0 0
1 3 5 10 1 3 5 10
1.0 1.0
0.8 0.8
o)
=l
a 0.6 0.6
3
S04 0.4
© 0.2 +
0.2
‘ ! $ ’
0.0 : y ‘ ‘ 0.0

1 3 5 10 1 3 5 10

Beam size Beam size

O T5 Pre-Trained ET5 Non Pre-Trained - - - M Baseline

Figure 4: T5 vs. baseline [46]

We also looked at the union of perfect predictions generated by
the two approaches on the test set to verify the complementarity
of the techniques. On the code-to-code (code&comment-to-code) task
we observed that 15% (24%) of perfect predictions are shared by both
approaches (i.e., both succeed), 65% (70%) are perfect predictions
only for T5, and 20% (6%) only for the baseline.

Table 4: RQs: McNemar’s test (adj. p-value and OR)

Task Test p-value OR
T5 pre-trained vs [46] <0.01 2.90
code-to-code T5 non pre-trained vs [46] <0.01 1.69
T5 pre-trained vs T5 non pre-trained <0.01 2.50
T5 pre-trained vs [46] <0.01 1148
code&comment-to-code T5 non pre-trained vs [46] <0.01 2.38
T5 pre-trained vs T5 non pre-trained <0.01 5.69

5 THREATS TO VALIDITY

Construct validity. As explained in Section 2 we took care of
cleaning the datasets used in our study by removing duplicates
and noisy data points to the extent possible. Still, we are aware
that problematic instances may be present, especially in the new
(large) dataset we built. This manifests, for example, in non-English
comments, or in some wrong “links” between comments and imple-
mentation (e.g., we assume that m, implemented a change described
in cpl while, in fact, it implemented another change).

Internal validity. We did not fully explore the role played by
the T5 parameters on its performance. Indeed, our hyperparameter
tuning was limited to variations in the learning rate, as done in
previous work [28]. For the other parameters we relied on the best
architecture identified by Raffel et al. [35]. We acknowledge that
additional tuning can result in improved performance.

External validity. RQ;-RQ4 have been answered using a dataset
being one order of magnitude larger as compared to our previous
work on automating code review tasks [46]. However, our findings
are limited to Java. Concerning RQs in which we compare with
the baseline [46], we only used the dataset presented in [46]. This
is due to the fact that our previous approach [46] requires code
abstraction and, as previously explained, cannot work on instances
having new identifiers and literals inserted during the code review
process. The new dataset used in this paper has not been built with
such a constraint in mind and, thus, it is not suitable for direct
comparison.

10

6 RELATED WORK

Our work relates to three research areas: (i) DL techniques to auto-
mate software-related tasks, (ii) empirical studies on code review,
and (iii) works providing recommendations on how to optimize
the code review process and/or presenting techniques to partially
automate it. Here we focus on the third research area, while for the
first two we point the reader to the systematic literature reviews
by Watson et al. [49] (deep learning in software engineering) and
by Davila and Nunes [20] (modern code review).

Optimizing/automating the code review process. By study-
ing tools and techniques supporting code review, Tymchuk et al.
[47] concluded that popular code review platforms (e.g., Gerrit,
Code Flow, Phabricator) mostly offer the same basic functionalities
with little support for automating tasks. Such a finding has been
confirmed by Pascarella et al. [34]. Also, in a study performed by
Lewis et al. [27] at Google, the authors show that while developers
are excited by the idea of embracing automated solutions for code
review, they find current solutions not to be ready for daily use.
Starting from these observations, researchers studied possible op-
timizations of the review process: Baum et al. [14] investigate the
effect of ordering submitted changes in alternative ways rather than
in alphabetical order that, as shown by Barnett et al. [12] and Baum
and Schneider [13], is sub-optimal. Baum et al. [14] concluded that
smarter ordering is needed as the size of the patch increases, and
suggest to aggregate changed parts by relatedness.

Di Biase et al. [21] studied the impact of the patch size on the
review’s effectiveness, finding that smaller patches, while not in-
creasing the defects found, affect how reviewers approach their
task. Spadini et al. [43] compared the effectiveness of a standard
code review process with test-driven code review (TDR), i.e., the
reviewer inspects the changed test code before the production code.
They show that TDR does not boost the code review effectiveness.

Several researchers [23, 33, 51] suggest exploiting defect predic-
tion models during code review. Similarly, Balachandran [11] and
Singh et al. [42] suggest the use of static analysis tools to automati-
cally spot coding standard violations and common defects.

Concerning the automation of specific code review tasks, authors
proposed techniques to optimize the reviewers” assignment. For ex-
ample, Al-Zubaidi et al. [9] in open source and Chouchen et al. [18]
in industrial contexts show how a multi-objective search-based
approach can simplify the code review triaging process.

Shi et al. [41] and Chouchen et al. [18] look at the automation
of code review from a similar perspective. Shi et al. [41] present a
DL model taking as input the code submitted for review and the
revised code implementing the changes recommended by reviewers
and providing as output whether the change can be accepted or
not. Note that the change(s) required by the reviewer(s) are not
considered by the model. Chouchen et al. [18] use instead a set
of quality metrics as features for machine learning algorithms to
classify the quality of the code submitted for review. Recently,
Hellendoorn et al. [22] focus on the prediction of the location of a
possible reviewer’s comment, showing that even this simple task is
challenging to automate.

The above discussed techniques [18, 22, 41] are complementary
to the approach we presented in [46] (and, as a consequence, to the
models experimented in this work).

Using Pre-Trained Models to Boost Code Review Automation

While Shi et al. [41] and Chouchen et al. [18] assess the code
under review through a “boolean answer” (i.e., accepted/rejected
or well-written/badly-written), we attempt the automation of code
changes implemented in code review. Also, the approach by Hel-
lendoorn et al. could be combined with the automation of the code-
to-comment task we presented.

7 CONCLUSION AND FUTURE WORK

Our paper starts by discussing limitations in the approach we re-
cently proposed to automate code review tasks [46]. We highlighted
that the usage of code abstraction does not allow to support non-
trivial code review scenarios requiring code changes resulting in
the introduction of new identifiers/literals. Hence, we proposed the
usage of a pre-trained T5 model [35] relying on a SentencePiece
[26] tokenizer to overcome such a limitation and work directly on
raw source code. Our empirical evaluation, performed on a much
larger and realistic code review dataset, shows the improvements
brought by the T5 model that represents a step forward as com-
pared to the state-of-the-art [46] both in terms of applicability (i.e.,
scenarios in which it can be applied) and performance. Still, the
level of actual performance observed makes these techniques far
from being deployable in practice, calling for more research in code
review automation.

Our future research agenda will be focused on designing im-
proved solutions to boost the prediction accuracy of these tech-
niques (e.g., by combining different representations of code [17]
and/or by exploiting the model’s confidence as a possible filter to
select only high-quality recommendations).

The code and data used in our study are publicly available [8].

ACKNOWLEDGMENT

This project has received funding from the European Research
Council (ERC) under the European Union’s Horizon 2020 research
and innovation programme (grant agreement No. 851720). W&M
has been supported in part by the NSF CCF-1955853 and CCF-
2007246 grants. Any opinions, findings, and conclusions expressed
herein are the authors’ and do not necessarily reflect those of the
sponsors.

REFERENCES
[1] [n.d.]. Gerrit. https://www.gerritcodereview.com/.
[2] [n.d.]. GitHub. https://github.com/.
[3] [n.d.]. langdetect. https://pypi.org/project/langdetect/.
[4] [n.d.]. Lizard. https://github.com/terryyin/lizard,.
[5] [n.d.]. MSR mining platform. https://seart-ghs.si.usi.ch.
[6] [n.d.]. pycld3. https://pypi.org/project/pycld3/.
[7] [n.d.]. Stack Exchange Dumps. https://archive.org/details/stackexchange.
[8] 2021. Replication Package. https://github.com/RosaliaTufano/code_review_

automation.
[9] Wisam Haitham Abbood Al-Zubaidi, Patanamon Thongtanunam, Hoa Khanh
Dam, Chakkrit Tantithamthavorn, and Aditya Ghose. 2020. Workload-aware
reviewer recommendation using a multi-objective search-based approach. In
Proceedings of the 16th ACM International Conference on Predictive Models and
Data Analytics in Software Engineering. 21-30.
Alberto Bacchelli and Christian Bird. 2013. Expectations, outcomes, and chal-
lenges of modern code review. In Proceedings of the 2013 international conference
on software engineering. IEEE Press, 712-721.
Vipin Balachandran. 2013. Reducing human effort and improving quality in
peer code reviews using automatic static analysis and reviewer recommendation.
In 2013 35th International Conference on Software Engineering (ICSE). 931-940.
https://doi.org/10.1109/ICSE.2013.6606642

[10

[11

11

(12]

(13

[14

jpory
&

[16]

[17

(18]

[19

)
=

[21

[22

(23]

[24

[26]

[27]

[28

[29

[30

(31]

[32

[34

[35

Mike Barnett, Christian Bird, Jodao Brunet, and Shuvendu K. Lahiri. 2015. Helping
Developers Help Themselves: Automatic Decomposition of Code Review Change-
sets. In Proceedings of the 37th International Conference on Software Engineering -
Volume 1 (ICSE ’15). 134-144.

Tobias Baum and Kurt Schneider. 2016. On the need for a new generation of
code review tools. In International Conference on Product-Focused Software Process
Improvement. Springer, 301-308.

Tobias Baum, Kurt Schneider, and Alberto Bacchelli. 2017. On the optimal order
of reading source code changes for review. In 2017 IEEE International Conference
on Software Maintenance and Evolution (ICSME). IEEE, 329-340.

Gabriele Bavota and Barbara Russo. 2015. Four eyes are better than two: On the
impact of code reviews on software quality. In IEEE International Conference on
Software Maintenance and Evolution, (ICSME). 81-90.

A.Bosu and J. C. Carver. 2013. Impact of Peer Code Review on Peer Impression
Formation: A Survey. In 2013 ACM / IEEE International Symposium on Empirical
Software Engineering and Measurement. 133-142.

Saikat Chakraborty and Baishakhi Ray. 2021. On Multi-Modal Learning of Editing
Source Code. arXiv:2108.06645 [cs.SE]

Moataz Chouchen, Ali Ouni, Mohamed Wiem Mkaouer, Raula Gaikovina Kula,
and Katsuro Inoue. 2021. WhoReview: A multi-objective search-based approach
for code reviewers recommendation in modern code review. Applied Soft Com-
puting 100 (2021), 106908.

Ozren Dabic, Emad Aghajani, and Gabriele Bavota. 2021. Sampling Projects in
GitHub for MSR Studies. In 18th IEEE/ACM International Conference on Mining
Software Repositories, MSR 2021. IEEE, 560-564.

Nicole Davila and Ingrid Nunes. 2021. A systematic literature review and taxon-
omy of modern code review. Journal of Systems and Software (2021), 110951.
Marco di Biase, Magiel Bruntink, Arie van Deursen, and Alberto Bacchelli. 2019.
The effects of change decomposition on code review—a controlled experiment.
Peer] Computer Science 5 (2019), e193.

Vincent] Hellendoorn, Jason Tsay, Manisha Mukherjee, and Martin Hirzel. 2021.
Towards automating code review at scale. In Proceedings of the 29th ACM Joint
Meeting on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering. 1479-1482.

Thong Hoang, Hoa Khanh Dam, Yasutaka Kamei, David Lo, and Naoyasu
Ubayashi. 2019. Deep]IT: an end-to-end deep learning framework for just-in-
time defect prediction. In 2019 IEEE/ACM 16th International Conference on Mining
Software Repositories (MSR). IEEE, 34-45.

Sture Holm. 1979. A simple sequentially rejective multiple test procedure. Scan-
dinavian journal of statistics (1979), 65-70.

Hamel Husain, Ho-Hsiang Wu, Tiferet Gazit, Miltiadis Allamanis, and Marc
Brockschmidt. 2019. CodeSearchNet Challenge: Evaluating the State of Semantic
Code Search. CoRR abs/1909.09436 (2019). http://arxiv.org/abs/1909.09436
Taku Kudo and John Richardson. 2018. SentencePiece: A simple and language
independent subword tokenizer and detokenizer for Neural Text Processing.
CoRR (2018). arXiv:1808.06226

Chris Lewis, Zhongpeng Lin, Caitlin Sadowski, Xiaoyan Zhu, Rong Ou, and
E James Whitehead. 2013. Does bug prediction support human developers? find-
ings from a google case study. In 2013 35th International Conference on Software
Engineering (ICSE). IEEE, 372-381.

Antonio Mastropaolo, Simone Scalabrino, Nathan Cooper, David Nader Palacio,
Denys Poshyvanyk, Rocco Oliveto, and Gabriele Bavota. 2021. Studying the
Usage of Text-To-Text Transfer Transformer to Support Code-Related Tasks.
In 2021 IEEE/ACM 43rd International Conference on Software Engineering (ICSE).
IEEE, 336-347.

Shane McIntosh, Yasutaka Kamei, Bram Adams, and Ahmed E. Hassan. 2014. The
Impact of Code Review Coverage and Code Review Participation on Software
Quality: A Case Study of the Qt, VTK, and ITK Projects. In Proceedings of the
11th Working Conference on Mining Software Repositories (MSR 2014). 192-201.
Quinn McNemar. 1947. Note on the sampling error of the difference between
correlated proportions or percentages. Psychometrika 12, 2 (1947), 153-157.
Rodrigo Morales, Shane McIntosh, and Foutse Khomh. 2015. Do Code Review
Practices Impact Design Quality? A Case Study of the Qt, VTK, and ITK Projects.
In Proc. of the 22nd Int’l Conf. on Software Analysis, Evolution, and Reengineering
(SANER). 171-180.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. 2002. BLEU:
A Method for Automatic Evaluation of Machine Translation. In Proceedings of
the 40th Annual Meeting on Association for Computational Linguistics (ACL "02).
311-318.

Luca Pascarella, Fabio Palomba, and Alberto Bacchelli. 2019. Fine-grained just-
in-time defect prediction. Journal of Systems and Software 150 (2019), 22-36.
Luca Pascarella, Davide Spadini, Fabio Palomba, Magiel Bruntink, and Alberto
Bacchelli. 2018. Information needs in contemporary code review. Proceedings of
the ACM on Human-Computer Interaction 2, CSCW (2018), 1-27.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang,
Michael Matena, Yanqi Zhou, Wei Li, and Peter J. Liu. 2020. Exploring the Limits
of Transfer Learning with a Unified Text-to-Text Transformer. Journal of Machine
Learning Research 21, 140 (2020), 1-67. http://jmlr.org/papers/v21/20-074.html

https://www.gerritcodereview.com/
https://github.com/
https://pypi.org/project/langdetect/
https://github.com/terryyin/lizard/
https://seart-ghs.si.usi.ch
https://pypi.org/project/pycld3/
https://archive.org/details/stackexchange
https://github.com/RosaliaTufano/code_review_automation
https://github.com/RosaliaTufano/code_review_automation
https://doi.org/10.1109/ICSE.2013.6606642
https://arxiv.org/abs/2108.06645
http://arxiv.org/abs/1909.09436
https://arxiv.org/abs/1808.06226
http://jmlr.org/papers/v21/20-074.html

[36

[37

[38

[39

[41

[42

[43

]

]

]

Rosalia Tufano, Simone Masiero, Antonio Mastropaolo, Luca Pascarella, Denys Poshyvanyk, and Gabriele Bavota

Veselin Raychev, Martin Vechev, and Eran Yahav. 2014. Code Completion with
Statistical Language Models. In Proceedings of the 35th ACM SIGPLAN Conference
on Programming Language Design and Implementation (PLDI ’14). ACM, 419-428.
Shuo Ren, Daya Guo, Shuai Lu, Long Zhou, Shujie Liu, Duyu Tang, Neel Sundare-
san, Ming Zhou, Ambrosio Blanco, and Shuai Ma. 2020. CodeBLEU: a Method
for Automatic Evaluation of Code Synthesis. arXiv:2009.10297 [cs.SE]

Peter C. Rigby and Christian Bird. 2013. Convergent Contemporary Software
Peer Review Practices. In Proceedings of the 2013 9th Joint Meeting on Foundations
of Software Engineering (ESEC/FSE 2013). 202-212.

Peter C. Rigby, Daniel M. German, Laura Cowen, and Margaret-Anne Storey.
2014. Peer Review on Open-Source Software Projects: Parameters, Statistical
Models, and Theory. ACM Trans. Softw. Eng. Methodol. 23, 4 (2014).

Caitlin Sadowski, Emma Soéderberg, Luke Church, Michal Sipko, and Alberto
Bacchelli. 2018. Modern Code Review: A Case Study at Google. In Proceedings of
the 40th International Conference on Software Engineering: Software Engineering
in Practice (ICSE-SEIP ’18). 181?190.

Shu-Ting Shi, Ming Li, David Lo, Ferdian Thung, and Xuan Huo. 2019. Automatic
code review by learning the revision of source code. In Proceedings of the AAAI
Conference on Artificial Intelligence, Vol. 33. 4910-4917.

Devarshi Singh, Varun Ramachandra Sekar, Kathryn T Stolee, and Brittany John-
son. 2017. Evaluating how static analysis tools can reduce code review effort.
In 2017 IEEE Symposium on Visual Languages and Human-Centric Computing
(VL/HCC). IEEE, 101-105.

Davide Spadini, Fabio Palomba, Tobias Baum, Stefan Hanenberg, Magiel Bruntink,
and Alberto Bacchelli. 2019. Test-driven code review: an empirical study. In 2019
IEEE/ACM 41st International Conference on Software Engineering (ICSE). IEEE,
1061-1072.

12

[44

[45

[46

(48

[49

[50

]

Michele Tufano, Dawn Drain, Alexey Svyatkovskiy, Shao Kun Deng, and Neel
Sundaresan. 2020. Unit Test Case Generation with Transformers. CoRR
abs/2009.05617 (2020). https://arxiv.org/abs/2009.05617

Michele Tufano, Cody Watson, Gabriele Bavota, Massimiliano Di Penta, Martin
White, and Denys Poshyvanyk. 2019. An Empirical Study on Learning Bug-Fixing
Patches in the Wild via Neural Machine Translation. ACM Trans. Softw. Eng.
Methodol. 28, 4 (2019), 19:1-19:29.

Rosalia Tufano, Luca Pascarella, Michele Tufano, Denys Poshyvanyk, and
Gabriele Bavota. 2021. Towards Automating Code Review Activities. In 43rd
International Conference on Software Engineering, ICSE’21. https://arxiv.org/abs/
2101.02518

Yuriy Tymchuk, Andrea Mocci, and Michele Lanza. 2015. Code review: Veni, vidi,
vici. In 2015 IEEE 22nd International Conference on Software Analysis, Evolution,
and Reengineering (SANER). IEEE, 151-160.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information processing systems. 5998-6008.
Cody Watson, Nathan Cooper, David Nader Palacio, Kevin Moran, and Denys
Poshyvanyk. 2020. A Systematic Literature Review on the Use of Deep Learning
in Software Engineering Research. arXiv preprint arXiv:2009.06520 (2020).
Cody Watson, Michele Tufano, Kevin Moran, Gabriele Bavota, and Denys Poshy-
vanyk. 2020. On learning meaningful assert statements for unit test cases. In
ICSE °20: 42nd International Conference on Software Engineering, Seoul, South
Korea, 27 June - 19 July, 2020, Gregg Rothermel and Doo-Hwan Bae (Eds.). ACM,
1398-1409.

Supatsara Wattanakriengkrai, Patanamon Thongtanunam, Chakkrit Tan-
tithamthavorn, Hideaki Hata, and Kenichi Matsumoto. 2020. Predicting Defective
Lines Using a Model-Agnostic Technique. CoRR (2020).

https://arxiv.org/abs/2009.10297
https://arxiv.org/abs/2009.05617
https://arxiv.org/abs/2101.02518
https://arxiv.org/abs/2101.02518

	Abstract
	1 Introduction
	2 T5 to Automate Code Review
	2.1 Text-to-Text Transfer Transformer (T5)
	2.2 Training Data
	2.3 Training and Hyperparameter Search
	2.4 Generating Predictions

	3 Study Design
	3.1 Data Collection and Analysis

	4 Results Discussion
	4.1 RQ1-RQ3: Performance of T5
	4.2 RQ4: Pre-training and confidence
	4.3 RQ5: Comparison with the baseline Tufano:icse2021

	5 Threats to Validity
	6 Related Work
	7 Conclusion and Future Work
	References

