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As honeybees build their nests in preexisting tree cavities, they must deal with the
presence of geometric constraints, resulting in nonregular hexagons and topological
defects in the comb. In this work, we study how bees adapt to their environment in order
to regulate the comb structure. Specifically, we identify the irregularities in honeycomb
structure in the presence of various geometric frustrations. We 3D-print experimental
frames with a variety of constraints imposed on the imprinted foundations. The combs
constructed by the bees show clear evidence of recurring patterns in response to specific
geometric frustrations on these starter frames. Furthermore, using an experimental-
modeling framework, we demonstrate that these patterns can be successfully modeled
and replicated through a simulated annealing process, in which the minimized
potential is a variation of the Lennard-Jones potential that considers only first-neighbor
interactions according to a Delaunay triangulation. Our simulation results not only
confirm the connection between honeycomb structures and other crystal systems such as
graphene, but also show that irregularities in the honeycomb structure can be explained
as the result of analogous interactions between cells and their immediate surroundings,
leading to emergent global order. Additionally, our computational model can be used as
a first step to describe specific strategies that bees use to effectively solve geometric
mismatches while minimizing cost of comb building.

honey bees j honeycomb j collective behavior j behavioral assays j mathematical modelling

The wax-made comb of honeybees is constructed distributively by thousands of bees
that create a highly regular hexagonal structure (1). This storage structure is essential
to the survival of the colony and is constructed in a near-optimal minimization of the
wax-to-storage space ratio due to the high energy cost of wax production (2). In
particular, honeybees consume about 8.4 lb (3.8 kg) of honey to secrete 1 lb (454 g) of
wax (3). This ratio highlights the importance of the geometry of regular honeycomb (4),
since a hexagonal tessellation minimizes boundary-per-area (5–7). The regular shape of
honeycomb cells has intrigued scientists for centuries, from Darwin, who postulated that
colonies with the least amount of honey waste to create the wax comb structure would
be most successful (1), to Thompson, who highlighted that honeycombs economize
building materials and space (4).

Perhaps even more enigmatic than the regular structure of the comb is the distributed
nature of its construction, where worker bees—akin to distributed wax 3D printers—
simultaneously manipulate small pieces of wax to collectively construct a coherent comb
structure (Fig. 1A). As honeybees are able to build their nests in preexisting tree cavities,
they deal with situations that do not allow for a regular hexagonal lattice, such as the
presence of boundaries or structures that require them to combine cells of different shapes
and sizes, which results in nonregular hexagons and topological defects (8, 9). Several
observations of the structure of the comb (10, 11) suggest that modifications to the
regular pattern extend over several cells. This reinforces the hypothesis that a long-range
awareness of possible constraints results in an adaptive collective behavior with the goal
of minimizing the use of wax. While there have been extensive studies focused on the
geometry of the hexagonal regular unit cell (12–15), the mechanisms controlling the
density and distribution of defects in the lattice are still not well understood. Only in
the last decade have there been studies characterizing irregular patterns quantitatively (9,
11, 16, 17), and the rules governing the planning and construction of honeycomb under
external constraints incompatible with a regular lattice remain an open question (18, 19).

In this work, we leverage 3D printing and rapid prototyping to design repeatable
experiments with precisely controlled and carefully quantified sources of geometric
frustrations, illustrated in Fig. 1 B and C. This approach makes it possible to systematically
vary a single parameter between different experiments and study its effect on the resulting
honeycomb structure. Furthermore, the repeatability enabled by these 3D-printed

S i g n ifi c a n c e
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A B C

D

E F

Fig. 1.     Experiment and model design. (A) Collective honeycomb building. (B) Illustration of various sources of lattice frustration, namely, angle of misalignment (A),
horizontal shift (L), and vertical shift (h), introduced through 3D-printed panels. In all these three scenarios, there is a gap in the given foundation that bees fill to
achieve a coherent comb structure. (C) 3D-printed starter frames thinly coated with beeswax. (D) An instance of the behavioral experiments. From Left to Right:
a design sheet; the corresponding 3D-printed frame which is coated with a thin layer of wax; the same frame after 25 d when the bees have built comb on it with
a white square highlighting the area of interest; the zoomed-in crop of the area of interest; Voronoi reconstruction of the lattice [showing defects in red (Z >  6)
and blue (Z <  6), where the topological charge Z is equal to the number of cell sides]. (E) Description of our computational model that works according to the
rules of the Lennard-Jones potential model. On the left is the graph of the Lennard-Jones potential function: potential energy Ur as a function of the distance ( r )
of a pair of particles describes both the attractive and repulsive forces between particles. The box on the right shows an illustration of a section of the model
with moving and fixed centers highlighted in gray and black. The position of the moving center shown in solid red can be changed at each time step by calculating
the potential of its immediate Voronoi neighbors, highlighted with arrows and red rings around them. (F) As the model evolves and the system cools within a
simulated annealing run, the potential energy decreases. The inset pictures illustrate gradual convergence of the comb structure as the model runs through the
optimization process toward the minimum energy state.

frames allows us to study statistical variations among experiments
with identical initial conditions. We process the resulting patterns
using quantitative tools that, while used extensively in crystallog-
raphy to study lattices in inorganic systems, are not commonly
applied to the structures found in animal architecture. In partic-
ular, we focus on characterizing the topological defects (i.e., cells
with more or less than six neighbors) that appear as a consequence
of the imposed sources of frustration, such as those in Fig. 1D.

On the modeling front, we also make use of tools from the
field of crystallography. We use an algorithm based on simulated
annealing to optimize the position of cell centers so that they
minimize a variation of the Lennard-Jones potential, which has
previously been used to model similar crystallographic structures
in graphene (20). Recent efforts to explain irregularities in hon-
eycomb structure optimized the geometry within a fixed initial
topology of the cell lattice (11), which could effectively restrict
the configuration space. In contrast, our model optimizes the
geometry and topology of the lattices simultaneously by allowing
the interconnections between the cells to change and adapt to the
nearest neighbors’ potential. It is worth noting that the presented

model does not attempt to explain the rules of interactions
between bees or their decision-making process. Instead, the bees
are implicit in it, and the model focuses on describing the
position, shape, and size of the cells of the honeycomb after
it is built under each controlled source of geometric frustration.
Conceptually, the implicit bees would effectively position the
cells according to the local interactions with adjacent cells, rather
than explicitly build the cell walls (as defined in Methods).
Therefore, identifying (through experiments) and reproducing
(with the model) the density and distribution of defects in the
structure of the honeycomb can provide an explanation regarding
the underlying mechanisms behind the efficacy and effectiveness
of the structure of the honeycomb even when it is built in the
presence of specific geometric frustrations.

Meth ods

We take a perturbation approach to reverse-engineer the local
rules that lead to honeycomb construction: by perturbing
the system with carefully prescribed conditions, we anticipate

2 of 8      https://doi.org/10.1073/pnas.2205043119 pnas.org



T

12 6

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
:/

/w
w

w
.p

na
s.

or
g 

by
 U

N
IV

E
R

SI
T

Y
 O

F 
C

O
L

O
R

A
D

O
 A

N
SC

H
U

T
Z

 M
E

D
IC

A
L

 C
A

M
PU

S 
on

 J
ul

y 
28

, 2
02

3 
fr

om
 I

P 
ad

dr
es

s 
12

8.
13

8.
64

.2
5.

gaining a deeper understanding of the underlying principles of
distributive construction. In other words, we aim to study how
bees overcome scenarios in which engineered constraints make
it impossible to build a regular hexagonal lattice. Our focus is
on three different cases of frustration, namely angle of tilt (A),
horizontal shift (L), and vertical shift (h) (illustrated on sections
from our design sheets presented in Fig. 1B). Both the behavioral
experiments and our computational model are designed in a way
that enables us to independently vary the values of these three
parameters and study their impact on the honeycomb lattice.

Behavioral Experiments. We introduce geometric frustration
to the system on a microscopic scale (i.e., on the scale of
individual cells) using 3D-printed foundation plates. The printed
foundation is only introduced to segments of the plate, which are
separated by gaps with no pattern. The geometry and patterning
of the panels are deliberately designed so that the bees will not
be able to simply extend the provided hexagonal foundations to
fill the gaps and connect the patterned regions. Fig. 1D shows
an instance of a behavioral experiment, starting from a design
sheet followed by the corresponding 3D-printed plate, which is
provided to the bees as a starter frame. We then take pictures of
the fully built frames and identify areas of interest in each image.
We define this area as the largest crop on each plate that contains
an undamaged comb with cells within and on either side of the
gaps, highlighted with a white rectangle in the middle image in
Fig. 1D. We use computer vision techniques to automatically
identify individual bee comb cells on the selected crop. For
details and examples of the steps in this process, please refer
to SI Appendix, Fig. S2. The final image in the series in Fig. 1D
is an example of the output of the image processing procedure:
a Voronoi tiling based on the cell centers, where each comb
cell is replaced by the corresponding Voronoi cell which reveals
the nonregularity of the shapes of cells within and around gaps.
We find striking agreement between the Voronoi construction
and the network of honeycomb cells built on the experimental
frames under various conditions. Nevertheless, to confirm that
the Voronoi reconstruction matches the actual comb image, we
visually inspect each image with the Voronoi diagram overlaid
and make corrections if necessary. Once the corrected Voronoi
tessellation is created, it can be used to calculate geometric and
topological properties of the cells such as coordinates of the cell
center, topological charge Z  (i.e., number of cell neighbors), and
cell area.

Computational Crystallography Model. Our goal in this section
is to develop a physics-based mathematical description of a set of
rules governing honeycomb construction at the local scale that
can explain the global patterns we observe in our experiments.
To that end, we establish a computational model solved via
simulated annealing, a technique for approximating the global
optimum of a function (21, 22) that is based on Monte Carlo
methods and was originally developed to generate sample states
of a thermodynamic system (23). It receives its name from the
similarity to the process of annealing in materials science and is
often used to study the formation of crystals resulting from the
minimization of a potential energy (24–26) or to reconstruct the
microstructure of dispersions and heterogeneous solids (27–29).
It requires defining a function to be minimized (analogous to the
internal energy in a crystal), which depends on the state of the
system. In our case, state variables are the position of the centers
of honeycomb cells, which are used to define a potential energy
function U . The method minimizes the potential by exploring

neighbors of the current state of the problem, in which particles
are disturbed by a small displacement. Each displacement is
accepted according to a probability P given by:

P =  exp  
1 U  

, [1]

where 1 U  is the change in potential energy due to the change
from the current to the new proposed state, and T  is a global
parameter that controls the probability of accepting changes in
state that increase the energy, and is analogous to temperature
in real physical material annealing. Temperature is traditionally
decreased during the process. It is initially high, so that the initial
exploration of the solution space accepts a wide range of possible
states, including some that increase the energy. The temperature
then decreases as the solution converges to an optimum, so that
only changes that minimize the energy are accepted, as in Fig. 1F.
The specific range of values depends on the problem and is often
unrelated to realistic temperature values in metallurgy processes.

The minimized potential is a variation of the Lennard-Jones
potential (Fig. 1E), known to produce hexagonal lattices in
the absence of constraints. The interaction between particles is
given by:

 U (r ) =
r

 
r

, [2]

where r is the distance between two particles that are identified
as first neighbors by a Delaunay triangulation (i.e., we ignore
long-range interactions), and  is the distance at which the
potential is zero,  =  d =(21=6). The potential is minimized at a
particle-to-particle distance d =  5:4 mm. We define this as the
distance between the center of the cells built by bees under no
geometric frustration, which is measured directly in the regular
honeycomb produced in our control experiments. We assume this
distance to be constant throughout our simulations, regardless of
the imposed frustration. The Delaunay triangulation is updated
at each step, to account for the interplay between geometry
and topology in the network as the distance between particles
changes. The other main parameter in the Lennard-Jones model
is the dispersion energy or depth of the potential well, usually
represented as . Since this value results in a constant scaling of
the energy values, it does not fundamentally alter the energy
landscape or the position of particles leading to local minima at
the end of the optimization process. As such, it has no effect on
the results of this model, so it does not appear in Eq. 2.

The model simulates the same constraints used in the
experiments: misalignment angles, A, and horizontal and vertical
shift of the hexagonal lattices, L, h. The algorithm considers two
types of particles: the center of the cells imprinted in the starter
panel, which act as a set boundary (i.e., fixed centers, shown with
a blue dot in Fig. 1E), and the center of the cells that are created
in the gaps, which are the variables in the minimization process
(i.e., moving centers, highlighted with a gray shade around them
in Fig. 1E). Two edges of the simulation box are bounded by
fixed particles, corresponding to the cells provided in the printed
frames. The cells that are free to move are repealed by those cells
due to the potential energy. We assume nonreflecting walls on
the other two boundaries, which means that we simply limit the
movement of the cell centers beyond the edges of the simulation
box. The initial arrangements of the fixed cells in the model are
chosen to replicate the scenarios explored with our experiments.
The number of moving centers in the simulations depends on
the size of the system, as well as the specific type of geometric
frustration being explored, and is based on the number of cells
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created by the bees in our experiments (see SI Appendix, Fig. S9
for a complete list of these values derived from the experiments for
each parameter combination). At the end of each simulation, the
arrangement of the cells reaches an equilibrium configuration
that can be directly compared against the configurations bees
create in the corresponding experiments.

R e s u l t s

In this section, we present our experimental and modeling results,
focusing on the effect of varying each of the sources of geometric
frustration, namely misalignment angles (A), horizontal shift (L),
and vertical shift (h) of the regular lattices. The horizontal shift
is expressed as a function of d , the distance between the centers
of two adjacent hexagons in the regular lattice, which is used to
define our simulation framework, as described in the previous
section. The vertical shift will be expressed as a function of
d = 3 d=2, the vertical distance between two adjacent cells
at 30 from each other. The results that follow use data collected
from a total of 10 Apis mellifera honeybee hives that built comb
on the 3D-printed experimental frames with varying values for
the three parameters described above. The crops that show the
qualitative agreement between the model and experiments are
presented in panel A of Figs. 2–4. These results display the most

common patterns that we observed in both simulations and
experimental data under each condition. A quantitative analysis
of these results is performed on a larger dataset containing all
the experimental data (3–5 crops of the same size for each
parameter combination) and 10 simulation runs. The largest
common crop size across all the experimental data displayed in
this work contains 22 rows of cells. To generate model results,
the size of the simulation box is set to match the experimental
crops for better visual comparison. All plots show the average of
all identical experiments and simulations, with the SD as error
bars. Finally, in order to verify that the resulting patterns are not
affected by external factors (e.g., material used in 3D printing)
and arise from the geometric frustrations that were imposed on
the starter frames, we 3D-print several control frames without
any geometric frustrations (see SI Appendix, Fig. S1 for instances
of experimental and control frames) and place them in all of
the hives along with the experimental frames. Unsurprisingly, we
find that the bees consistently build regular and perfect comb on
the control frames without any defects. Please see SI Appendix,
Fig. S3 for the results of running the image processing pipeline
and automatic cell detection on an instance of a control frame.

Exploring the Impact of the Angle of Misalignment (A).
Fig. 2A shows the qualitative comparison between the processed

A

B

C D E F

Fig. 2.     Results for varying the misalignment angles (0  A  30). (A) Pairs of images taken from experiments (on the left) and simulations (on the right) to highlight
the qualitative agreement between our model and experiments. Defects are nonhexagonal cells, shown in red (Z >  6) and blue (Z <  6), where Z is the
topological charge (i.e., number of sides) of each cell. (B) Mean cell area across different angles categorized by the cell shape, shown both in experiments
(dashed lines with darker colors) and model (dotted lines and brighter colors). (C) Mean distance between defects in experiments (dashed black) and simulations
(dotted gray) shows a decline as the angle of misalignment increases. (D) Average length of defect chains in experiments (dashed black) and simulations (dotted
gray) generally increases as the angle of misalignment increases. The large error bars in the case of A =  30 suggest the presence of defective chains of various
sizes when the angle of misalignment is large. (E) Density of defects (i.e., the number of nonhexagonal cells divided by the height of the crop) shows a sharp
increase as the angle of misalignment increases. To quantify the agreement between experiments and model results, the value of root mean squared error
(RMSE) is calculated and shown for all the parameters plotted in panels B–E. The small values of RMSE indicate that our model can predict the experimental data
relatively accurately. (F) The table on the left shows a description of the notations used in panel A to distinguish between various cell types. On the right is an
example of how the two variables in panels C and D are calculated.
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A

B

C D E

Fig. 3.     Results for varying the horizontal shift parameter 2d  L  4d. (A) Pairs of images taken from experiments (on the left) and simulations (on the right) to
highlight the qualitative agreement between our model and experimental results. Defects are shown in red (Z >  6) and blue (Z <  6), where Z is the topological
charge (i.e., number of sides) of each cell. (B) Mean cell area across different values of vertical shift categorized by the cell shape, shown both for experiments
(dashed lines with darker colors) and model (dotted lines and brighter colors). To see the distribution of cell sizes, refer to SI Appendix, Fig. S5. (C) Average
length of defect chains in experiments (dashed black) and simulations (dotted gray) shows small changes for various horizontal distances between panels. The
large error bars indicate the presence of defective chains of various sizes when the angle of misalignment is A =  30. (D) Density of defects (i.e., the number of
nonhexagonal cells divided by the height of the crop) shows a high density of defective cells within the gap. The density of defects stays relatively high as the
value of the horizontal shift increases. (E) Description of the notations used in panel A.

experimental frames and the simulation output with various
values of tilt. In order to focus on the impact of specific angles in
the pattern of the cells that connect the gap between the panels,
Fig. 2A reports instances of both experimental and model results

with varying angle (0  A  30) but with a fixed distance of L
=  2d between the panels. We show five pairs of images in

Fig. 2A, with Voronoi reconstruction of the experimental data on
the left. The shades of gray in the experimental reconstructions
represent the cells built on the given 3D-printed foundations,
whereas the regular cells built inside the gap with no foundation
are shown as white. In the model results, shown on the right-
hand side of the pairs in Fig. 2A, the moving lattice elements
(equivalent to cells built in the gap) can be distinguished by their
darker centers. Both the model and the experiments resolve the
frustration through the introduction of topological defects (i.e.,
cells with other than six neighbors). These often take the form of
dislocations, i.e., a duplet of a positive and a negative (5–7) defect.

The results in Fig. 2A show that increasing the misalignment
angle increases the linear density of defects (i.e., decreases the
distance between pairs) with excellent quantitative agreement
between the model and the experiments. We also explore the

variation in cell sizes by calculating cell areas across all angles and
categorizing the results based on the number of sides, as shown
in Fig. 2B. Unsurprisingly, cells with a greater number of sides
(shown in red) are on average larger. This pattern persists across
different angles of tilt, both in experiments and simulations.
However, the distribution of cell sizes shown in SI Appendix,
Fig. S4 denotes that there is more variability of the cell sizes in the
collected experimental data compared to the cell sizes generated
in the model. This can be due to specific functionality of cells of
various sizes and shapes within the hive. For instance, we find that
many of the larger hexagons and heptagons that emerge as a result
of tilted patterns on the experimental frames are used as drone
comb (see SI Appendix, Fig. S8), which typically consist of larger
cells for the queen to lay unfertilized eggs in. Fig. 2C captures
the opposite correlation between increasing the angle (A) and
the distance between the defects. The distance between defects is
calculated by counting the topological distance between two sets
of defective cells; see Fig. 2F for an example of a distance of seven
cells between two dislocations. Furthermore, we plot the change
in the average size of defect chains as a function of the angle of
tilt in Fig. 2D, which shows very small variation for small angles,
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A B

D
C

E F G

Fig. 4.     Results showing the impact of vertical shift h =  0, 0:5d. (A) Pairs of images taken from experiments (on the left) and simulations (on the right) which
highlight the qualitative agreement between our model and experimental results [showing defects in red (Z >  6) and blue (Z <  6), where Z is the number of cell
sides]. (B) Probability density of the angle of defects  shows very similar mean and SD values across both experiments and simulations.  =  24:97  10:03
in the experiments and  =  27:14  11:05 in simulations, and 0 <   <  90. The mean values are highlighted with dashed red lines on both plots. (C) Mean cell area
categorized by the cell type, shown in experiments and model for the two values of h. (D) Description of the notations used for various cell types shown in
panel A. (E) Mean distance between defects in experiments (dashed black) and simulations (dotted gray). (F) Average size of connected defective cells in
experiments (dashed black) matches with our simulations (dotted gray) (G) Density of defects (i.e., the number of nonhexagonal cells divided by the height of the
crop).

when we observe mostly dislocations, and a positive correlation
for large angles, when we observe large defect chains. The size of
a defect chain is calculated by counting the number of connected
(uninterrupted) nonhexagonal cells. See Fig. 2F for an example
of a defect size of 2. Fig. 2E highlights the positive correlation
between the number of defective cells per crop and the angle of
tilt. Since there are no defects in the case of A =  0, this angle is
not included in the statistical analysis of the defects shown in
Fig. 2 C–E.

Exploring the Impact of Horizontal Shift (L) . Fig. 3A illustrates
how the structure of the comb is impacted by keeping afixed angle
of tilt A =  30 across all instances while increasing the distance
between them in the range 2d  L   4d . We also performed
experiments in which the distance between the given hexagonal
lattices went up to 11d . However, during the time frame of

our experiments, the bees did not connect the two lattices if the
distance between them goes beyond L  =  4d . See SI Appendix,
Fig. S7 for examples of such incomplete trials with large gaps
between the given foundations. In fact, even within the range of
2d  L   4d , the size of our experimental dataset shrinks as we
increase the distance, with fewer analyzable samples for L  =  4d .
As Fig. 3A illustrates, bees build long chains of alternating 5–7-
sided cells inside the gaps across various distances when the angle
of tilt is large (A =  30). When the distance between the panels is
larger than L  =  2d , the bees continue to build hexagons even
when there is no foundation underneath and then use a chain of
5-7-sided cells to connect the hexagonal lattices on either side of
the gap.

Comparison of cell sizes, shown in Fig. 3B, confirms the
positive correlation between the number of sides and cell area,
which is quantified in the previous section as well. This pattern
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holds the same across various distances, both in the experiments
and in the model results. Fig. 3C indicates that the average defect
size does not change substantially across varying distances. This
is mainly because the angle of tilt is constant (A =  30), so the
bees continue to build their preferred shape (hexagons) within
the gap (regardless of the horizontal distance between the panels)
and finally use the long chains of defective cells to combine
the two sections of the comb. The relatively high but constant
density of defects, shown in Fig. 3D, confirms the qualitative
results shown in panel A, suggesting that horizontal shift between
panels does not impact the size or the density of defects as long as
the angle of misalignment is fixed. In fact, our experimental data
(SI Appendix, Fig. S6) confirms that bees build the same patterns
of defective cells, shown in Fig. 2A, to combine the two lattices of
various angles of misalignment even when the distance between
the two lattices is larger than L  =  2d . However, there could
be some significance to the position of the irregular cells built
in the defective chains both in the model and experiments (see
SI Appendix, Fig. S10 for more details). A careful analysis of this
would be an important future direction of our work.

Exploring the Impact of Vertical Shift (h) . In this section, we
explore the impact of imposing a vertical shift, h, between the
panels on either side of the gaps. To highlight the isolated effect
of h, we illustrate two conditions, namely h =  0, where there
is no vertical displacement of the panels, and h =  0:5d , while
assuming a fixed value of A =  0, and L  =  2d , so that the vertical
shift is the only source of frustration. Our qualitative results for
these two scenarios are shown in Fig. 4A, which demonstrates
great agreement between experiments and simulations showing
more defective cells used for filling the gap between the given
hexagonal regions when there is a vertical shift in the structure of
the panels. As shown before, there are no defects built in the gap
when L  =  2d, A =  0, and h =  0. However, the pairs (or short
chains) of defective cells are built inside the gap as a result of a
nonzero value of h. We also notice the common tilt of these often
short chains of defects and quantify it across both experiments
and simulations. Fig. 4B shows two distributions for the angle of
defects across experiments (solid bars) and simulations (hatched
bars) with a similar mean value highlighted with a dashed red
line on both plots (i.e.,  =  24:97 in the experiments and
 =  27:14 in simulations). The average cell size plots shown in
Fig. 4C follow the same trend as described before, where the cells
with fewer sides are on average smaller. Since there are no defects
in case of A =  0, h =  0, only six-sided cells are shown in these
size plots. The average distance between defects, defect size, and
density for A =  0, h =  0:5d are shown in Fig. 4 E–G for
experiments and simulations. The large value of the average
distance between defects shown in Fig. 4E suggests sporadic,
small chains of defects when h =  0:5d , which is confirmed
in Fig. 4 F and G. Interestingly, even if the distortion created by
vertical shift could be resolved with deformation of the hexagonal
cells without introducing topological defects, we observe similar
nonzero defect density in both experiments and simulations. It is
not clear whether the presence of defects is used to reduce
distortion of the hexagonal cells or to create a variation in cell
size for different functionality.

D i s c u s s i o n

Several processes in nature result in the formation of
self-organized lattice patterns, including graphene at the
nanoscale (30, 31), colloidal crystals at the microscale (32, 33),

and elastic dimples in soft bilayers at the macroscale (34, 35).
In the absence of external constraints, the resulting pattern is
often a topologically and geometrically regular crystal lattice (36).
However, topological defects can appear due to different sources
of geometric frustration, such as incompatibilities between two
crystalline regions with different orientations (37–43).

In this work, we observed similar defect formation in the
honeycomb structure. We have used 3D-printed panels with
precisely engineered constraints to confirm that bees consistently
build specific patterns of topologically irregular cells to solve
various geometric frustrations, which can then be quantified
through crystallography tools. Inspired by the similarities be-
tween the grain boundaries in our system and those observed
in graphene (44), we have used a variation of the Lennard-
Jones potential to model honeycomb formation under geometric
frustrations. The agreement between experiments and predictions
highlights the potential of using tools from crystallography to
rationalize the comb construction process. In particular, our
results demonstrate that the apparent long-range order observed
in the honeybee comb can be explained as the result of local
rules. The similarities between the defect patterns in honeycomb
and other systems further reinforce previous observations that
defect formation is relatively insensitive to the type of interaction
between lattice elements (45, 46).

While our work was in progress, we became aware of a related
study by Smith et al. (11). Our conclusions are in agreement
with respect to the consistent patterns of 5- and 7-sided cells that
appear to accommodate misalignment between regular regions,
which in their study was observed in the absence of a frame
foundation. In addition, we have shown that using 3D-printed
foundations to introduce engineered and repeatable geometrical
frustration makes it possible to study statistical variations among
experiments and to directly compare with modeling predictions.
Lastly, our model optimizes the geometry and topology of the
lattices simultaneously by updating the connectivity between the
cells as their geometry evolves during the annealing, which avoids
the risk of overconstraining the pattern due to a fixed topology.

The structure of the honeycomb is the result of complex,
effective interactions between honeybees as well as with the
existing cells and their environment. A detailed description of the
bees’ behavioral rules that leads to collective comb construction is
challenging to capture experimentally. Therefore, we simplify the
modeling framework by considering implicit bees that position the
cell’s centers according to the local physical interactions, rather
than considering how bees deploy wax to construct the explicit
walls of the hexagonal lattice. In the future, our experimental-
modeling framework could be extended by making use of
potentials directly addressing bee behavior (e.g., minimizing wax
use or variations in size) to better understand various aspects of
the construction process that can affect the global honeycomb
patterns. These include the relationship between the cells and
their location (e.g., do bees build differently on the top of the
frame vs. the bottom of the frame?), the effect of the
sequential nature of cell construction (e.g., do bees fix already
built cells when an obstacle is found?), and the fluctuating colony
requirements for specific cell functionality (e.g., do bees build
differently when the colony needs to store more honey?). Overall,
our interwoven experimental-modeling framework paves the path
toward exploring the rich and complex aspects of the honeycomb
formation process.

Data, Materials, and Software Availability. The data (47) and code used in
this study for image analysis and automatic cell detection on 3D-printed frames,
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as well as the code for our computational model, have been deposited in GitHub
at https://github.com/peleg-lab/Honeycomb.git.
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