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Abstract. We define and study algorithmically a novel optimization
problem related to the sequential scheduling of the leaves of a binary
tree in a given order, and its generalization in which the optimum order
is sought. We assume that the scheduling process starts at the root of the
tree and continues breadth-first in parallel, albeit with possible interven-
ing lock and unlock steps, which define the scheduling cost. The moti-
vation for this problem comes from modeling language generation in the
brain. We show that optimality considerations in this problem provide
a new explanation for an intriguing phenomenon in linguistics, namely
that certain ways of ordering the subject, verb, and object in a sentence
are far more common in world languages than others.
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1 Introduction: The Leaf Scheduling Problem

Consider a binary tree T , e.g. the one in Fig. 1A—where by binary tree we mean
a downwards directed tree with 2n− 1 nodes, one node of degree two (the root),
n−2 nodes of degree three, and n nodes (the leaves) of degree one—and suppose
that we are also given an order σ of the leaves, say the order subject-verb-object
(SVO) in this example. We are interested in assigning integer times to the nodes
of the tree according to the following rules:

1. The root is assigned time 0;
2. A non-root node i either is assigned time t + 1, where t is the time assigned

to its parent, or it is locked by its parent;
3. The leaves are assigned times that are strictly increasing in the given order,

σ;
4. If a leaf � is assigned a time t, then a locked node i may be assigned time

t + 1, in which case we say that � unlocks i.

We say that an assignment is a feasible schedule if it satisfies these rules.
Intuitively, this assignment of times formalizes the process in which the nodes
of the tree “fire” starting with the root, and the children of a node fire right
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after their parent did. The exception is that a node may choose to lock one or
both of its children at the time of its own firing. A leaf, upon firing, may unlock
one locked node. It is clear that, given a tree and an order of its leaves, there is
always a feasible schedule: Always lock the child that does not lead to the next
leaf in the order, while any firing leaf unlocks the locked ancestor of the next
leaf in the order.

Define now the Leaf Scheduling Problem to be following: Given a tree
T and an order σ of its leaves, find a feasible schedule that has the smallest cost,
where the cost of a schedule is the number of lock commands used (equivalently,
the smallest number of unlock commands). We can also define the weighted ver-
sion of this problem by assigning a weight to every possible lock and unlock
command, and minimizing the sum of these weights. We can further define a
more complex problem called the optimum leaf order problem, in which we are
only given a tree T and we seek the order σ that has the smallest scheduling
cost.

For example, the optimum leaf scheduling problem for the order SVO in
Fig. 1A is the one that assigns 0 to the root, 1 to S and the internal node, 2 to V
and 3 to O. That is, the internal node locks O, and V unlocks it. This solution
has cost one, since one lock is used, and it is clear that there is no solution
with zero cost. In fact, the order S–V–O along with S–O–V are the optimum
leaf orders with cost one, while the other four orders have optimum cost two.
For a more complicated example, the reader may want to verify that the tree in
Fig. 1B, with the leaf order from left to right, has optimum leaf scheduling cost
three, while the optimum orders for this tree are the orders ADBC and ADCB
with cost one. As we shall see in the next section, both algorithmic problems
can be solved by greedy algorithms — with the exception of the optimum leaf
order problem with weights, which is NP-hard.

Motivation: Word Orders in Natural Languages

The reason these problems are interesting is because they relate to a classical
problem in Linguistics, which we explain next. In English, the subject of a sen-
tence generally comes before the verb while the object, if present, follows both:
“dogs chase cats”. This ordering is not universal, as other languages adopt any
of the six possible orderings, see for example [4]. The same order as in English,
denoted SVO, is prevalent in French, Hebrew, modern Greek and Romanian,
and overall in about 42% of world languages. The order SOV is slightly more
common, accounting for 45% of languages, including Hindi, Urdu, Japanese,
Latin, and ancient Greek. The orders VSO (9%), VOS (2%) and OVS (1%)
are much less common, while the order OSV (< 1%) is practically disregarded.
In English, changing the language’s SVO order creates either meaningless sen-
tences (“chase cats dogs”) or changes the meaning (“cats chase dogs”). In other
languages, such as German, Russian, or modern Greek, deviations from the stan-
dard order are tolerated, because nouns have a case in these languages, which
makes their syntactic role (subject vs object) easy to identify independently of
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position. However, many linguists believe that most languages have a dominant,
default word order.

There is extensive literature on justifying the widely varying frequencies
of basic word orders, see [1,8,10,11,14,17–19,22]. These past explanations are
based on plausible linguistic principles related to the ease of communicating
meaning, or the difficulty of learning grammar [8,9,14,22] while more recent
explanations consider the mutability and evolution of word orders in languages
[17–19]. Here we propose a different explanation based on the difficulty of artic-
ulating sentences in the brain.

Indeed, one can hypothesize that, in order to generate a sentence such as “cats
chase dogs,” a speaker must first create, through neuronal circuits in their brain,
a tree representation of the sentence as in Fig. 1A,C. There is cognitive evidence
[6] suggesting that this tree is binary (that is, there are no nodes with more
than two children), and in fact that the three leaves”cats,” “chase” and “dogs”
are organized as shown in Fig. 1A,C (instead of the alternative, e.g., where S
and V are combined first); see Fig. 3 in [20]. Given now this tree, the speaker
must articulate it, and this involves selecting and implementing one of the six
word orders. To arrive at one of the orders, a neural mechanism of “lock” and

Fig. 1. (A) Basic syntactic tree with a “Verb Phrase” internal node and “Subject”,
“Verb” and “Object” leaves. (B) An alternative binary tree example, more complex
than the basic syntactic tree. (C) Example articulation from the syntactic tree to
sequential speech for the SVO order. Black arrows are inactive. Blue arrows activate
the object they point to on the next time step. Red inhibitory signals maintain a lock
on the object they point to. Green arrows remove the lock. (D) Articulations of all
possible basic word orders to sequential speech, starting from the same syntactic tree.
Appropriate lock and unlock operations dictate the basic word order. (Color figure
online)
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“unlock” steps may be used. In Sect. 3 we point out that this can easily be done
in the model of brain computation proposed in [20]. It would make sense that all
speakers of a language end up using the same fixed order, for reasons of effective
information transfer; even though most languages allow, unlike English, more
flexibility in articulation orders, many linguists believe that there is a dominant
order in each language [5,8,17,19,22]. But which of the six orders will be chosen
as the dominant order? We propose that, the smaller the implementation cost of
a word order in the brain, the more likely it should be for the order to be chosen.
In the model of brain computation articulated in [20] and explained further in
Sect. 3, every node of the tree resides in a different brain area, and long-range
inhibitory neurons are used to lock and unlock brain areas and thus articulate
the sentence.

The rest of this paper is organized as follows: In Sect. 2 we study algorith-
mically the leaf ordering problems, while in Sect. 3 we spell out the model of
brain computation in [20] and the way it can implement sentence generation.
This model ends up providing an explanation for the differences in the proba-
bility of word orders: The two most frequent word orders correspond to the two
optimal solutions, while the other four lag behind. Adopting a model in the style
of statistical mechanics for calculating the frequencies of the orders allows one
to even predict the various differences in the cost of the various lock and unlock
steps that would best explain these frequencies.

2 The Greedy Algorithm

Recall the two problems defined in the introduction: The Leaf Sequencing
Problem seeks the optimum scheduling of lock and unlock steps that realizes
a given sequence, whereas the Optimum Order Problem wants to find the
order that minimizes this optimum cost. Both problems can be weighted.

Theorem 1.

1. The Leaf Sequencing Problem can be solved in O(n log n) time through
a greedy algorithm; ditto for the weighted case.

2. The Optimum Order Problem can be solved by an adaptation of the same
greedy algorithm, if all lock and unlock steps have unit cost.

3. However, if the unlock steps have different costs, even if the costs are restricted
to be either one or two, the Optimum Order Problem is NP-hard.

Proof. (1) We describe the algorithm informally. It entails the sequential firing
of all nodes of the tree, starting from the root; the firing propagates from a node
to its children down the tree (a breadth-first search implemented by a queue of
nodes). Specifically, the root fires at the first parallel time step. At step t + 1,
the internal nodes whose parents fired at step t will fire. Additionally, any leaf
unlocked by another leaf at time t will fire at time t + 1 (there will be at most
one unlocked leaf at any time step). Finally, if one of the internal nodes firing
has any leaf children, then each child is locked unless it is the next leaf to be
output.
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To keep track of leaves we maintain a separate heap of locked leaves ordered
by σ, initially empty, and an index next, initially 1. If at some step we encounter
a leaf child i of a node being processed, there are two cases: If σ(i) = next, and no
other leaf has been output during this step, then the leaf is output immediately
and next is increased by 1. Otherwise, σ(i) > next, and i joins the heap of
locked leaves. At the beginning of parallel step t (the round of breadth-first-
search processing the nodes of the tree at depth t−1), we check whether the min
of the heap, call it m, has σ(m) = next. If so, then we output m and increment
next. We then proceed with the breadth-first search. The algorithm terminates
when both the heap and the queue are empty.

We claim that this algorithm outputs the leaves in the σ order, and that it
does so with the fewest lock and unlock operations and in the fewest parallel
steps possible. We first claim that every leaf is output as early, in terms of parallel
time, as possible. This follows from two things: (a) no leaf i can be output earlier
than time T (i), where T (i) satisfies the recurrence T (i) = max{T (σ−1(σ(i) −
1) + 1,depth(i)} if i is not the first leaf and T (i) = depth(i) otherwise; and (b)
the algorithm achieves this time, as can be shown by induction on σ(i). We also
claim that it implements the permutation with the fewest locks, which follows
from the two facts that (c) the minimum possible number of locks is n−1 minus
the number of coincidences, where a coincidence is an i for which the two terms
in the recursive definition of T above are equal, and (d) such coincidences are
caught and exploited by the algorithm.

(2) For the Optimum Order Problem, we start by noticing that every leaf
i becomes available to be output at time depth(i). Second, a leaf can be output
without lock/unlock steps only if it is output at the precise time it becomes
available. Otherwise, if many leaves have the same depth, all but one of them
can be feasibly postponed to any time in the future, and unlocked by the leaf
that was output immediately before it. Hence the following greedy algorithm
achieves the minimum number of lock/unlock steps: We define a one-to one
mapping from the n leaves to the time slots {d, d + 1, . . . , D + n}, where d and
D is the minimum and maximum depth of a leaf of the tree: First, each leaf i
is mapped to depth(i), which creates a map which is not one-to-one because of
collisions. We then repeatedly go through the time slots, from smaller to larger
starting from d and execute the following algorithm: for any time slot t, if it has
� > 1 leaves mapped to it, select � − 1 of these leaves and assign them to the
� − 1 empty time slots greater than t and closest to t, resolving ties arbitrarily.
It is easy to see that this algorithm chooses the permutation of the leaves which
has the maximum number of coincidences (leaves fire exactly when they become
available), in the sense of the previous paragraph, and thus the minimum possible
number of lock and unlock steps.

(3) Finally, for NP-hardness: Imagine that the tree is a full binary tree of
depth d — that is, n = 2d and all leaves arrive simultaneously. Then all permuta-
tions are available, and we need to chose the ones that order σ(1), σ(2), . . . , σ(n)
such that

∑n
i=2 unlockcost(σ(i− 1), σ(i)) is as small as possible. It is easy to see

that this is a generic instance of the (open-loop) traveling salesman problem,
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which is known to be NP-hard even if the lengths of the edges are either one or
two [21]. This completes the proof of Part (3) and of the theorem.

3 Generating Sentences in the Brain

It is by now widely accepted among neuroscientists that, in the brain, informa-
tion items such as objects, ideas, words, episodes, etc. are represented by large
populations of spiking neurons. These populations are called assemblies. In [20],
a computational system was presented whose basic data item is the assembly
of neurons, and its operations include merge, the creation of an assembly that
has strong synaptic connectivity to and from two already existing assemblies, as
well as operations that inhibit and disinhibit brain areas. Notice that by repeated
application of the merge operation, trees can be built. Indeed, a simple sentence
such as “dogs chase cats” can be generated by first identifying the three assem-
blies corresponding to the three words in the lexicon — believed to reside in
the left medial temporal lobe [7]. Then, these word-assemblies project to create
three new assemblies within separate subareas of Wernicke’s area in the superior
temporal gyrus, corresponding to Subject, Verb and Object brain areas. Next,
the Verb and Object assemblies (in this example corresponding to “chase” and
“cats”, respectively) merge to create a Verb Phrase assembly in Broca’s area
[7]. Finally, the Subject and Verb Phrase assemblies merge to create an assem-
bly representing the Sentence Fig. 1A, in another subarea of Broca’s area [7].
A sentence may have many other constituents, such as determiners, adjectives,
adverbs, and propositional phrases, but here we focus only on the tree built from
its three basic syntactic parts: Subject, Verb, and Object.

Three different binary trees can be built from three leaves, by grouping any
two of these leaves first. There is a broad consensus in Linguistics [5,14,17,22],
as well as evidence from cognitive experiments [6], supporting the basic tree
described above Fig. 1A with an internal Verb Phrase node whose constituents
are Verb and Object.

Once the sentence is generated, it may be articulated, that is, converted
into speech. This can be done by exciting the root of the tree – the Sentence
assembly – which then will excite its children in the tree and so on. Eventually,
all three leaves will be excited. Each leaf can mobilize motor programs which
will articulate each word, but this must be done sequentially. Therefore, one of
the six orders must be selected and implemented. Perhaps the simplest and most
biologically realistic mechanism for implementing a particular order involves two
plausible primitives, which we call lock and unlock. These primitives correspond
to the familiar neural processes of inhibition of an area (the activation of a
population of inhibitory neurons which will prevent excitatory neurons in this
area from firing) and dis-inhibition (the inhibition of the inhibitory population)
[3,12,16]. In particular, upon firing, an assembly in the tree can inhibit one of
its children from firing. Secondly, any leaf can, upon firing, dis-inhibit any other
leaf.
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3.1 Scheduling Cost Explains SVO Frequencies

We have already seen that, among the six orders, only two can be implemented
by just one lock and one unlock operation, whereas all others require two lock
and two unlock operations Fig. 1D. In other words, this simple model imme-
diately predicts “the highest-order bit” of the frequency statistics, namely the
prevalence of the SVO and SOV orders. All other orders besides these two require
extra inhibition and disinhibition, primitives that are known to require signif-
icant brain energy consumption [2,3,15]. Furthermore, extra operations makes
the articulation process more complex, and presumably renders this aspect of
language more difficult for the learner.

3.2 Leaf Scheduling Cost as Energy

It has been argued in the literature [5,8,17–19] that languages have undergone
transitions in their history, in which the word order has changed, and hence the
current frequencies reflect a dynamic equilibrium of this dynamic process. This
view motivates a naïve statistical-mechanical formulation, treating the frequen-
cies of the basic word orders as a Boltzmann distribution [13], in which states
with energy level L are prevalent with probability proportional to e−βL, for a
temperature parameter β. For simplicity, we take β = 1 in this account (but in
our experiments we use a wide range of values for β Fig. 2). The states of our
model are the six basic word orders and the associated energies are the num-
ber of operations required by each articulation choice. The optimal choices for
SVO or SOV have low energies, requiring only two operations (one lock and one
unlock), while the other four optimal choices have high energies, requiring four
operations (two lock and two unlock) Fig. 1D. The prevalence of the six orders
SVO, SOV, VSO, VOS, OSV, and OVS would be proportional to the numbers
e−2, e−2, e−4, e−4, e−4, e−4, respectively. The orders SVO and SOV would then
be expected to be more frequent than the rest by a factor of e2 ≈ 7.4, predict-
ing frequencies (.39, .39, .055, .055, .055, .055), a great first-order approximation
of the empirical distribution (.45, .42, .09..02, .01, .01).

The true cost of a brain area locking and unlocking another area may differ,
depending on the distance between the two brain areas involved and the strength
of their neural connections, as well as the duration, in steps, of the locking state
of the target area. By introducing such hyper-parameters, in addition to β, and
fitting them to the observed data, we can in fact predict their values. That
is, make predictions about the connectivity, via inhibitory neural connections,
between brain areas. It turns out that these predictions are robust to various
hyper-parameters, including β. The Boltzmann distribution model provides the
basis for estimating the frequency of the six basic word orders. We equate these
frequencies [Equation 2] with the empirical observations and numerically solve
the system of six non-linear equations. We note that the equations display an
analytical degeneracy which is also recovered from the simulations; specifically,
four of the six parameters can only be determined up to a common additive
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constant. This degeneracy is manifest in Eq. 1, in that these four parameters
cannot be compared with the other two.

The system of equations does not have an analytical solution, but the six
parameters can be approximated using gradient optimization. This method finds
the same qualitative results for different values of the coefficient β Fig. 2A and
for different values of other hyper-parameters. The results of these calculations
are robust enough to support certain predictions about the relative costs of dis-
inhibiting one brain area from another Fig. 2B. More specifically, we find that:

Fig. 2. (A) Loss value plotted during the epochs of gradient descent for various β
values. The lines represent the average loss and the shaded areas the standard deviation
over 200 initializations. (B) Relative costs of the unlock operation from one leaf to
another. Colors represent models with varying β. Each line represents the optimized
parameters for one model. Note the degeneracy of the solutions for the first four leaf
pairs: the lines differ only by an additive constant.

US→V > UV →O � UO→V > US→O and UV →S > UO→S , (1)

where Ux→y is the cost to dis-inhibit assembly y from assembly x.

3.3 A Statistical-Mechanical Argument

In statistical mechanics, the probability of a given state of a system depends
on its energy and temperature parameter. The Boltzmann distribution provides
a way to estimate the thermal equilibrium configuration of all the states of
a system. The probability of a state with energy Ei is proportional to pi ∝
exp (−βEi), where β is a scale factor, inversely proportional to temperature,
and Ei depends on the respective unlock costs Ux→y of state i. The system we
describe has six states, therefore, the probability of each state is:
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pi =
exp (−βEi)∑
j exp (−βEj)

, (2)

for i, j ∈ {SV O, SOV, V SO, V OS,OV S,OSV }.
These formulas are simply a heuristic way, aligned with physical principles, of

modeling how complexity affects probabilities; however, we also note that in the
neuroscience literature (see e.g. [15]) metabolic costs are thoroughly discussed
with respect to thermal energy. On this account, we choose the energies of our
states to be Ei ∼ 1 and we assume β � 1.

Fig. 3. The predictions if the primacy of Subject and Verb is the cause of the low
frequencies of the OSV and OVS orders. Notice that there is no prediction for US→V .

4 Discussion

Linguistic phenomena should be constantly reinterpreted under the light of new
insights, including advancements in our understanding of, or theories about, lan-
guage processing in the brain. Despite recent progress in this front, articulating
the constraints imposed by the neural processes involved in the language function
is not easy, due to a large gap, in both scale and focus, between cognitive and
systems neuroscience. Our work attempts to bridge this gap using the computa-
tional framework of the Assembly Calculus, thus providing a new explanation of
the difference in frequencies of the six basic word orders in languages in terms of
the difficulty of generating an order from the basic syntax tree of the sentence.

The simplest version of our model qualitatively matches the observed basic
word order frequencies, and the most complex version can be tuned to predict the
exact frequencies. However, we suspect that the latter calculation may constitute
overfitting, as other considerations are likely to enter in the determination of
these frequencies, including linguistic considerations of communication efficiency



12 C. H. Papadimitriou and D. Turcu

and learnability. These other factors were heretofore the only ones used for this
purpose. Our model is not meant to replace these arguments, but add to them
and it provides an additional basis for breaking the symmetry of the basic word
orders.

We believe that the ultimate explanation of the phenomenon of word orders
will integrate both linguistic and neurocomputational evidence, and perhaps
learnability considerations, together with more kinds to come. For an example
of how this can be done, let us take the linguistic argument that the primary
cause of the extreme rarity of orders starting with “O” may not be the difficulty of
unlocking Subject or Verb subareas from the Object area according to our model,
but the relatively subsidiary semantic role of Object in a sentence, compared to
the primacy of the Subject and the Verb [14,17,22]. In the face of this, we may
decide that the low frequencies of the OSV and OVS orders are adequately
explained on linguistic grounds, and focus on explaining the remaining four
frequencies through the corresponding equations. This leads to 4 equations with
5 parameters (since US→V no longer enters the picture). To balance the number
of equations and parameters, we may fix the ratio of the parameters UO→S and
UV →S (the ones that were not subject to degeneracy in Fig. 2), and solve by
gradient descent. The results are shown in Fig. 3. We notice that our predictions
that UV →O � UO→V > US→O and UV →S > UO→S are stable, while our previous
prediction that US→V is very large vanishes because this unlock operation only
plays a role in the OSV order, whose frequency we are ignoring. In other words,
the prediction that “US→V is very large” was proposed as the cause of the small
frequencies of OSV and OVS, a phenomenon which now has another causal
explanation based on linguistic principles. It may still be that US→V would be
large, presumably because this brain connection is rarely used, but a different
model or experimental evidence may need to be employed to settle this.
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