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Abstract

A number of finite algorithms for constructing representation theoretic data from
group multiplications in a finite group G have recently been shown to be related
to amplitudes for combinatoric topological strings (G-CTST) based on Dijkgraaf-
Witten theory of flat G-bundles on surfaces. We extend this result to projective
representations of G using twisted Dijkgraaf-Witten theory. New algorithms for
characters are described, based on handle creation operators and minimal multi-
plicative generating subspaces for the centers of group algebras and twisted group
algebras. Such minimal generating subspaces are of interest in connection with in-
formation theoretic aspects of the AdS/CFT correspondence. For the untwisted
case, we describe the integrality properties of certain character sums and character
power sums which follow from these constructive G-CTST algorithms. These integer
sums appear as residues of singularities in G-CTST generating functions. S-duality
of the combinatoric topological strings motivates the definition of an inverse handle
creation operator in the centers of group algebras and twisted group algebras.
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1 Introduction

Two-dimensional Dijkgraaf-Witten theories are simple examples of topological field theo-
ries associated to finite groups [1–4]. At a basic level, these theories describe orbifolds of
points, [point/G], possibly with discrete torsion (described in this context as a twisting).
In the case when the group is a symmetric group Sn, these theories admit defects, which
have applications in describing counting and correlators in U(N) gauge theories [5] of in-
terest in AdS/CFT [6–8]. Recent work on wormhole physics and baby universes [9–15], in
the context of topology change in quantum gravity, considers sums over Riemann surfaces
weighted by a string coupling gst, where each surface supports a Dijkgraaf-Witten theory.
We will refer to these theories, summing over worldsheets, as combinatoric topological
string theories or G-CTST. Motivations and insights on the mathematical properties of
these strings thus arise both from AdS/CFT and from models of topology change in
quantum gravity.

Another place Dijkgraaf-Witten theories arise is in couplings to physical theories.
For example, consider an orbifold [X/Γ], where a subgroup K ⊂ Γ acts trivially on X,
as studied in e.g. [16–24]. This can be interpreted as a coupling of the orbifold [X/G]
(for G = Γ/K) to Dijkgraaf-Witten theory for the group K, as will be discussed in
greater detail in [25]. The orbifold [X/Γ] is in any event equivalent to a disjoint union
of orbifolds, a result known as decomposition [21], which when viewed as a coupling of
a topological field theory, reflects the fact that as a topological field theory, Dijkgraaf-
Witten theory itself is a disjoint union of invertible field theories [26–29]. Applied to
G-CTST, decomposition implies that the ‘string field theory’ of Dijkgraaf-Witten theory
(in the same sense as [30]) is a theory on a disjoint union of points, which could be
interpreted as a noninteracting statistical mechanical theory.

In the recent paper [11] it was observed that well-known formulae for amplitudes in
G-CTST can be used to give a finite algorithm which starts from group multiplications in
G and arrives at the integer ratios |G|/(dimR) (relating the order of a finite group G and
the dimension of an irreducible representation R). The integrality of these ratios is an
interesting old result at the intersection of finite group theory and number theory (see for
example [31,32]) and plays an important role in the algorithm. The form of the group mul-
tiplications in the input is understood geometrically in terms of the fundamental groups
of two dimensional surfaces, which are interpreted in G-CTST as string worldsheets. The
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algorithm proceeds by finding the zeroes of a polynomial equation which has integer co-
efficients (which are G-CTST amplitudes) and has roots which are also known to be
integers (i.e. the |G|/(dimR) ). The construction of representation theoretic quantities
using combinatoric methods is an interesting general theme in representation theory [33],
with implications for computational complexity theory [34, 35]. G-CTST provides an in-
teresting topological perspective on this theme. A quantum mechanics of bipartite ribbon
graphs which constructs Kronecker coefficients as eigenvalue degeneracies of Hamiltoni-
ans [36] is another angle on the theme of exploiting stringy geometric/algebraic structures
to address questions in combinatorial representation theory.

It is natural to consider twisted G-CTST (involving Dijkgraaf-Witten theories of orb-
ifolds with discrete torsion) and its relation to the combinatorics of projective representa-
tions of G. In this paper we will show how the amplitudes in the vacuum sector of G-CTST
can be used to obtain the integer ratios |G|/(dimR), where dimR is the dimension of a
projective representation R. The algorithm takes as input group multiplications weighted
by cocycle factors defining the twist, and proceeds by solving a polynomial equation as
in [11]. (The fact that these ratios are always integers in the projective case is proven
in [32], [37, theorem 3.5].)

Standard algorithms for the construction of characters were also shown in [11] to be
related to amplitudes in G-CTST, for two dimensional surfaces with boundary circles. In
this paper we show that the geometrical picture based on G-CTST, along with the study of
generating subspaces of centers of group algebras [38], can be used to give new algorithms
for characters. The handle creation operator of G-CTST plays a role in one class of such
algorithms. An interesting corollary of this discussion is that string amplitudes with one
boundary in G-CTST determine a distinguished subspace of the center of the twisted
group algebra, Z(Cω(G)), of dimension equal to the number of distinct integers dimR.
This discussion will be presented for both the untwisted and the twisted case.

The study of generating subspaces of centers of symmetric group algebras in [38] was
motivated by the consideration of a toy model for black hole information loss arising from
the AdS/CFT correspondence [39]. A family of supergravity solutions [40] with AdS5×S5

asymptotics are dual to half-BPS states in the dual CFT labelled by Young diagrams
[41]. As explained in [39] the asymptotic gravitational charges of the SUGRA solutions
correspond to Casimirs of the U(N) gauge symmetry in the CFT. The information loss
model considers the information content in a finite number of Casimirs. For quantum
states having energy n in the natural units, the Casimirs are related by Schur-Weyl duality
to central elements in the group algebra of C(Sn). The information content in low order
Casimirs translates into a question about how effectively low order cycle operators in the
center of C(Sn) distinguish Young diagrams. This is in turn related to the dimensions
of subspaces of the center generated by a finite set of central elements. In this paper
we will be considering the generating subspaces for general finite groups G in connection
with Dijkgraaf-Witten topological field theories. The embedding of this discussion into
gauge-string dualities is an interesting problem for the future.
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The paper is organised as follows. Section 2 explains the use of amplitudes in the
vacuum sector of G-CTST to give finite algorithms starting from group multiplications
in G weighted by appropriate cocycle factors and deriving the integer ratios |G|/ dimR
for projective representations R of finite groups G. The handle creation operator (C.39)
for twisted group algebras plays an important role in this discussion. By considering
one-point functions of twist field operators on higher genus surfaces, expressible combi-
natorially using the handle creation operator, we give a combinatoric construction for
the number of distinct dimensions dimR for irreducible representations of G, or irre-
ducible projective representations of G. Section 3 extends the discussion to amplitudes in
G-CTST for surfaces having boundaries to obtain algorithms for calculating characters.
The constructions in sections 3.1,3.2, 3.3 are used to obtain some integrality properties of
certain sums of characters and sums of powers of characters in section 3.4, which in turn
have implications for factorisation properties of certain polynomials which are used in
character algorithms [45–47]. The integer sums and power sums of characters appear as
residues for singularities in appropriate G-CTST partition functions. For simplicity this
section focuses on the untwisted case. Section 4 collects a few remarks on G-CTST: we
elaborate on the connection between determinants appearing in the algorithms of sections
[2,3] and plethystic exponentials of stringy amplitudes at low genus. We also comment on
S-duality in G-CTST, which leads to the definition of an inverse handle creation opera-
tor. This is given as an expansion in terms of the projector basis of Z(Cω(G)), while its
expansion in terms of the conjugacy class basis is an interesting question for the future.

2 Fourier transform and vacuum sector for G-CTST

The previous paper [11] studied computations of characters of ordinary representations
of finite groups, as relevant to e.g. the AdS/CFT correspondence. In this section we
generalize those computations to include discrete torsion, which twists the representations
to projective representations. In broad brushstrokes, much of the analysis is formally
similar to [11], so we will combine a review of the results of [11] while simultaneously
describing novel features present in cases with discrete torsion.

To improve readability, we have banished a number of technical definitions and com-
putations in cases with discrete torsion to appendix C, to which we refer as needed.

2.1 The twisted group algebra of a finite group Cω(G)

Let G be a finite group and [ω] ∈ H2(G,U(1)). In this section we will review properties
of the twisted group algebra Cω(G) and its center H = Z(Cω(G)), which will play an
important role in our computations. Physically, the center H is the state space of a
two-dimensional (twisted) Dijkgraaf-Witten theory, which we will call G-CTST for short.
Setting ω = 1 in the formulae that follow recovers formulae for centers of ordinary group
algebras Z(C(G)).

5



The twisted group algebra Cω(G) is a vector space, with basis elements we label τg
corresponding to elements g of the group G, equipped with the product

τgτh = ω(g, h)τgh, (2.1)

which is generically non-commutative. ω is a 2-cocycle representing the cohomology class
[ω]. Generic elements take the form ∑︂

g∈G

agτg, (2.2)

where ag ∈ C. Cω(G) has an inner product where the group elements are orthonormal:

⟨g1|g2⟩ = δ(g1g
−1
2 ). (2.3)

For general elements⟨︄∑︂
g1

ag1τg1

⃓⃓⃓⃓
⃓∑︂

g2

bg2τg2

⟩︄
=
∑︂
g1,g2

a∗g1bg2δ(g1g
−1
2 ). (2.4)

Now, we are interested in the center of Cω(G), denotedH earlier, which is the subspace
of Cω(G) which commutes with τg for any g ∈ G. It inherits an inner product from Cω(G)
by restriction of (2.4). One basis for the center is given by twist fields, which are associated
with ω-regular conjugacy classes. An element g ∈ G is said to be ω-regular if for all h
commuting with g,

ω(g, h) = ω(h, g), (2.5)

and an ω-regular conjugacy class is defined [42, section 3.6] to be a conjugacy class in
which every element is ω-regular.

Given an ω-regular conjugacy class [g] represented by g ∈ G, we define a twist field [42]

T[g] =
1

|G|
∑︂
h∈G

τhτgτ
−1
h , (2.6)

=
1

|G|
∑︂
h∈G

ω(h, g)ω(hg, h−1)

ω(h, h−1)
τhgh−1 . (2.7)

It can be shown (see for example [16, section 2.2.1]) that the twist fields commute with
all elements of the twisted group algebra Cω(G), meaning

T[g]τh = τhT[g] (2.8)

for all h ∈ G, and also the {T[g]} form a basis for the center.
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Note that these operators T[g] depend upon the representative g of the conjugacy class:
as shown in e.g. [42, section 3],

T[hgh−1] =
ω(gh−1, h)

ω(h, gh−1)
T[g]. (2.9)

There is a second basis for the center, given by projectors associated to irreducible
projective representations, which are in (noncanonical) one-to-one correspondence with
ω-regular conjugacy classes. (Thus, there are as many projectors as twist fields.) Let us
review some pertinent results on projective representations before defining those projec-
tors.

Projectors will be constructed using characters of projective representations. Unlike
characters of ordinary representations, characters of projective representations are not
class functions, as they are not invariant under conjugation. If R is a projective represen-
tation of G, associated to some cocycle ω, and χR denotes the character, then [42, section
7.2, prop. 2.2]

χR(g) =
ω(g, h−1)

ω(h−1, hgh−1)
χR(hgh−1). (2.10)

As a consistency check, it may be useful to note that

χR
(︁
T[g]

)︁
=

1

|G|
∑︂
h∈G

ω(h, g)ω(hg, h−1)

ω(h, h−1)
χR
(︁
hgh−1

)︁
, (2.11)

=
1

|G|
∑︂
h∈G

ω(h, g)ω(hg, h−1)

ω(h, h−1)

ω(h−1, hgh−1)

ω(g, h−1)
χR(g), (2.12)

=
1

|G|
∑︂
h∈G

χR(g) = χR(g), (2.13)

using the fact that

ω(h, g)ω(hg, h−1)ω(h−1, hgh−1)

ω(h, h−1)ω(g, h−1)
= (dω)(h−1, hg, h−1) (dω)(h−1, h, g)

·(dω)(h, h−1, h),

= 1. (2.14)

In fact, using this identity, one can show

τhτgτ
−1
h =

ω(h, g)ω(hg, h−1)

ω(h, h−1)
τhgh−1 =

ω(g, h−1)

ω(h−1, hgh−1)
τhgh−1 , (2.15)

so we can write (2.10) as
χR(τg) = χR(τhτgτ

−1
h ). (2.16)
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As a result, although characters of projective representations are not invariant under
conjugating group elements, they are invariant under conjugating τ ’s.

Another important property of characters of projective representations is that they
vanish on non-ω-regular group elements, see e.g. [42, section 7.2, prop. 2.2].

Now, we can define projectors, following [42, section 7.3], which are associated to
irreducible projective representations, and which form another basis for the center of the
twisted group algebra. These are given by

PR =
dimR

|G|
∑︂
g∈G

χR(g−1)

ω(g, g−1)
τg =

dimR

|G|
∑︂
g∈G

χR(τ−1
g )τg, (2.17)

where R is an irreducible projective representation. (Instead of summing over all group
elements, one can equivalently sum only over ω-regular elements, as the character χR will
vanish on non-ω-regular elements.) These form a complete, mutually orthogonal, basis
for the center of the twisted group algebra, meaning that they obey

PRPS = δRSPS,
∑︂
R

PR = 1. (2.18)

They also obey the relation (B.18)

δ(PR) =
(dimR)2

|G|
. (2.19)

These two bases (of twist fields, and of projectors) are related as follows:

PR =
dimR

|G|
∑︂
g∈G

χR (g−1)

ω(g, g−1)
T[g], (2.20)

(which formally matches the result of taking the definition (2.17) and replacing τg ∈ Cω(G)
with T[g], an element of the center), and

T[g] =
∑︂
R

χR(g)

dimR
PR. (2.21)

These Fourier transforms are known, but for completeness, as they are perhaps somewhat
obscure, next we will perform a consistency check and provide derivations.

As a consistency check, recall both T[g] and χR(g) transform under conjugation. How-
ever, using the identity

ω(gh−1, h)

ω(h, gh−1)
=

ω(h−1, hgh−1)

ω(g, h−1)
, (2.22)

a consequence of
(dω)(h−1, h, gh−1) (dω)(g, h−1, h) = 1, (2.23)

8



we see that both T[g] and χR(g) transform in the same way under g ↦→ hgh−1, and so the
identity (2.21) is consistent.

As a consequence, if C is any element of the center of the twisted group algebra, it
can be expressed similarly. Write

C =
n∑︂

i=1

CiT[hi], (2.24)

for Ci ∈ C, so that

χR(C) =
n∑︂

i=1

Ciχ
R(hi), (2.25)

then from (2.21) we have

C =
m∑︂
i=1

Ci

[︄∑︂
R

χR(T[hi])

dimR
PR

]︄
, (2.26)

=
∑︂
R

χR(C)

dimR
PR. (2.27)

We can establish (2.20) by direct computation, as follows.

dimR

|G|
∑︂
g∈G

χR (g−1)

ω(g, g−1)
T[g]

=
dimR

|G|
∑︂
g∈G

χR (g−1)

ω(g, g−1)

1

|G|
∑︂
h

ω(h, g)ω(hg, h−1)

ω(h, h−1)
τhgh−1 , (2.28)

=
dimR

|G|2
∑︂
h∈G

1

ω(h, h−1)
τh

[︄∑︂
g∈G

χR(g−1)

ω(g, g−1)
τg

]︄
τh−1 , (2.29)

=
1

|G|
∑︂
h∈G

1

ω(h, h−1)
τh PR τh−1 , (2.30)

=
1

|G|
∑︂
h∈G

ω(h, h−1)

ω(h, h−1)
PR, (2.31)

= PR, (2.32)

where we have used the fact that PR is central in the group algebra.
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We can establish (2.21) by direct computation, as follows.∑︂
R

χR(g)

dimR
PR =

∑︂
R

χR(g)

dimR

dimR

|G|
∑︂
h∈G

χR(h−1)

ω(h, h−1)
T[h], (2.33)

=
1

|G|
∑︂
h∈G

[︄∑︂
R

χR(g)χR(h−1)

ω(h, h−1)

]︄
T[h], (2.34)

=
1

|G|
∑︂

h=aga−1∈[g]

|G|
|[g]|

ω(a, g)

ω(h, a)
T[aga−1], (2.35)

=
1

|[g]|
∑︂

h=aga−1∈[g]

ω(a, g)

ω(aga−1, a)

ω(ga−1, a)

ω(a, ga−1)
T[g], (2.36)

= T[g], (2.37)

using the index formula (B.4) and the fact that

ω(a, g)

ω(aga−1, a)

ω(ga−1, a)

ω(a, ga−1)
= (dω)(a, ga−1, a) = 1. (2.38)

2.2 Vacuum string amplitudes and H0 ↪→ H
We observe that the vacuum amplitudes of G-CTST are constructed by applying the
delta-function on the twisted group algebra Cω(G) to powers of a handle creation opera-
tor Π. We show in Section 2.2.1 that these powers generate a subspace of Z(Cω(G)) with
dimension equal to the number of distinct dimensions (dimR) of irreducible representa-
tions of Cω(G). In section 2.2.2 we show that one point functions of twist fields on higher
genus surfaces can be used to determine sums of irreducible characters over irreducible
representations having the same dimension.

2.2.1 The handle creation operator and twist fields

One convenient way of expressing the partition function of (twisted) Dijkgraaf-Witten
theory on a genus h Riemann surface is as

Zh =
1

|G|
δ
(︁
Πh
)︁
, (2.39)

where Π is the handle creation operator (a map Cω(G) → Cω(G) which descends to
H → H) which, for twisted theories, is defined in section C.2.

We can express the partition function more explicitly as follows. Using the iden-
tity (C.39), namely

Π =
∑︂
R

(︃
|G|

dimR

)︃2

PR, (2.40)
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so that

Πh =
∑︂
R

(︃
|G|

dimR

)︃2h

PR (2.41)

(since PR is an idempotent), and the identity (B.18), namely

δ(PR) =
(dimR)2

|G|
, (2.42)

we have that the partition function is

Zh =
1

|G|
∑︂
R

(︃
|G|

dimR

)︃2h

δ(PR), (2.43)

= |G|2h−2
∑︂
R

(dimR)2−2h , (2.44)

which matches the expression (C.28) obtained independently. We conclude that

Zh =
1

|G|
δ
(︁
Πh
)︁
=
∑︂
R

(︃
|G|

dimR

)︃2h−2

. (2.45)

Using the formula (C.38) for Π, the calculation of the delta function on the left-hand
side can be done from the combinatorics of multiplying the elements τg and picking up
the coefficient of the identity. The formula, in the untwisted case, is well known in the
mathematical literature [43, 44]. The combinatoric input from the left-hand side serves

to give the power sums of |G|
dimR

. As explained in [11], we can go from the powers sums
to the integers in a finite number of steps by solving for the zeroes of a polynomial with
integer coefficients. We further elaborate in section 4.1 on the stringy interpretation of
the polynomial in the context of G-CTST.

Products of Zh, with appropriate symmetry factors, give us the vacuum sector of
G-CTST. The vacuum sector of G-CTST defines two distinguished subspaces of H =
Z(Cω(G)). Complex multiples of Π form a one-dimensional subspace of H. Powers of Π
span a (generically) higher-dimensional vector subspace of H.
Proposition The powers of the handle creation operator Π span a vector subspace H0 ↪→
H which has dimension D0 equal to the number of distinct integers dimR as R runs over
the set of irreducible projective representations.

Lemma ( [48, Lemma 2.1, Prop. 2.3]) If we have a complete set of L orthogonal pro-
jectors Pi acting on a vector space and take a linear combination with distinct coefficients
ai

P =
L∑︂
i=1

aiPi, (2.46)
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then the powers of P generate a space of dimension equal to L.
Proof of proposition: We can write

Π =
∑︂
R

|G|2

(dimR)2
PR =

∑︂
R′

|G|2

(dimR′)2
P̃R′ (2.47)

where R runs over all the distinct irreducible projective representations, and R′ runs over
a maximal list of irreducible projective representations having distinct dimensions, while
P̃R′ is a sum of the projectors for irreducible projective representations with the same
dimension as R′. The list of projectors P̃R′ spans a subspace H0 ↪→ H of dimension D0.
In this subspace H0, we can use the Lemma to show that the powers of Π span H0.

The proposition has a physical interpretation in terms of the rank of a matrix of one-
point functions in G-CTST. Consider the one-point functions Ml,[g] ≡ δ(ΠlT[g]), with l
ranging from 1 to K and g ranging over representatives of all the ω-regular conjugacy
classes. (In the untwisted case this reduces to the set of all the conjugacy classes.) This
matrix has rank D0. In the case where Ml,[g] is a matrix with rational entries (this is the
case for all untwisted cases and when the twists ω(g, h) can all be chosen to be rational), an
integer basis for the null space can be found using discrete integer matrix algorithms One
approach is to use algorithms for Hermite normal forms (such as algorithm 2.4.4 of [49])
and extract the null vectors as explained for example in [36, section 4.1]. Such discrete
algorithms for null vectors are available in computational group theory software GAP [50].
This gives a combinatoric algorithm, starting from group multiplication combinatorics,
which produces an interesting representation theoretic integer: the number of distinct
(dimR) among the irreducible (projective) representations of a (twisted) group algebra.

2.2.2 Character algorithm from higher genus one-point functions

By considering the one-point functions δ(ΠlT[g]) on general genus, for fixed [g], we can
extract information about characters of χR(Tµ)/dimR. Consider

1

|G|
δ(ΠhT[g]) =

∑︂
R

(︃
|G|2

(dimR)2

)︃h−1
χR(g)

dimR
, (2.48)

=
∑︂
R′

(︃
|G|2

(dimR′)2

)︃h−1∑︂
R:R′

χR(g)

dimR
, (2.49)

for the range l ∈ {1, 2, · · · , D0}, where we have used the identity (C.67). The primed sum
runs over a maximal set {R′} of irreducible representations R′ having distinct dimensions.
The sum over {R : R′} is a sum over the distinct irreducible representations R with the

same dimension as R′. Let us define R̃
′
to be the direct sum of irreducible projective

representations R with the same dimension as R′. Then we can write

1

|G|
δ
(︁
ΠhT[g]

)︁
=
∑︂
R′

(︃
|G|2

(dimR′)2

)︃h−1
χR̃

′
(g)

dimR′ . (2.50)
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As h runs over the set {1, · · · , D0}, we have a linear system of equations of size D0 ×D0

for the normalized characters χR̃
′
(g)/ dimR′. As R′ and l range over the D0 possibilities,

we have a matrix

VR′,h =

(︃
|G|2

(dimR′)2

)︃h−1

(2.51)

of size D0 ×D0. The equation (2.50) takes the form

Y = V ·X (2.52)

where

Yh =
1

|G|
δ
(︁
ΠhT[g]

)︁
,

XR′ =
χR̃

′
(g)

dimR′ , (2.53)

and we recognize V as a Vandermonde matrix. Since the R′ have been chosen to run
over a set of irreducible (projective) representations with distinct dimensions, the integers(︂

|G|2
(dimR′)2

)︂
are distinct. This ensures that V is invertible. The inverse matrix can thus be

used to construct the normalized characters XR′ from the combinatoric G-CTST data Yh.

As explained earlier, the construction of the ratios
(︂

|G|2
(dimR′)2

)︂
from G-CTST data follows

using the formulae in section 2 in the twisted case, using the same algorithm described
for the untwisted case in [11].

3 Character algorithms and string amplitudes

In the AdS/CFT correspondence, one is led in connection with toy models of black hole
information loss [39] to consider questions of when sequences of central elements suffice
to distinguish representations and multiplicatively generate the center of the group al-
gebra [38]. In the context of TQFTs such as Dijkgraaf-Witten theory, it is natural to
supplements such lists by the handle creation operator. To this end, in this section we
present some general statements about subsets that multiplicatively generate the center
of a (twisted) group algebra. We also use these generating subspaces to give algorithms
for the construction of characters from string amplitudes in G-CTST. In the last subsec-
tion, we use these constructions to derive some integrality properties of characters and
factorisation properties of character polynomials.
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3.1 Minimal generating subspaces of (twisted) group algebras

We will say that a set of elements1 {C1, C2, · · · , Ck}, with Ci ∈ Z(Cω(G)), multiplicatively
generate Z(Cω(G)) if every element T ∈ Z(Cω(G)) can be written as a linear combination
of products of elements Ci:

T =
∑︂

n1,n2,··· ,nk≥0

tn1,n2,··· ,nk
Cn1

1 Cn2
2 · · ·Cnk

k . (3.1)

The coefficients tn1,n2,··· ,nk
are in C, and C0 is defined as 1, the identity element of the

group algebra.
Proposition The following two statements are equivalent:
(1) A set of central elements {C1, C2, · · · , Ck} multiplicatively generate Z(Cω(G))

(2) The ordered lists of normalized characters {χR(C1)
dimR

, χ
R(C2)
dimR

· · · , χ
R(Ck)
dimR

}, for irreducible
representations R of Cω(G) distinguish the irreducible representations, i.e. no two irre-
ducible representations have the same list.

The proof uses the fact that each element C has an expansion in projectors PR given
by (2.27), which we repeat here:

C =
∑︂
R

χR(C)

dimR
PR, (3.2)

where the PR form a complete set of orthogonal projectors, as in equation (2.18). Consider
first the case where k = 1, and a single element C1 ∈ Z(Cω(G)) has the property that

{χR(C1)
dimR

} distinguishes the irreducible representations R. The following fact is useful.
Lemma If T =

∑︁
R aRPR with aR all distinct, then

PR =
∏︂
S ̸=R

(T − aS)

(aR − aS)
. (3.3)

We know that Z(Cω(G)) is spanned by the projectors PR. Since (in the case k = 1)
C1 can be written as a linear combination of PR with distinct coefficients, the lemma
above implies each PR can be written as a linear combination of powers of C1, hence {C1}
multiplicatively generates Z(Cω(G)). The powers of C1 range from 0 up to a maximum
of K − 1 where K is the dimension of Z(Cω(G)).

Suppose now that k = 2, i.e. {C1, C2} have lists of normalized characters {χR(C1)
dimR

, χ
R(C2)
dimR

}
which distinguish the irreducible representations R. We have

C1 =
∑︂
R

χR(C1)

dimR
PR =

∑︂
R′

χR′
(C1)

dimR′
˜︂PR′ , (3.4)

1This argument expands the one presented in [38]. It was described there for untwisted group algebras,
but the extension to twisted group algebras which we develop here has the same form.
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where R′ runs over a set of irreducible representations with distinct normalized characters
χR′

(C1)/ dimR′ and ˜︂PR′ is the sum of projectors PR for all R such that

χR(C1)

dimR
=

χR′
(C1)

dimR′ . (3.5)

Let us define [C1]R′ to be this set of irreducible representations R with the same
normalized characters as R′. Then we may write

˜︂PR′ =
∑︂

R∈[C1]R′

PR. (3.6)

Let us denote the number of distinct R′ in the sum for C1 in (3.4) by K1, where by

assumption K1 ≤ K−1. Using the Lemma, we can write each ˜︂PR′ as a linear combination
of powers of C1. The largest power in these expressions is (K1 − 1). Consider now, for
each R′,

˜︂PR′C2 =
∑︂

R∈[C1]R′

χR(C2)

dimR
PR. (3.7)

By assumption, {χR(C1)
dimR

, χ
R(C2)
dimR

} distinguish the irreducible representations, so it follows

that for each R′, the χR(C2)
dimR

are distinct as R ranges over the set [C1]R′ . This means that
we can apply the Lemma to express PR as a linear combination of powers of the form

(˜︂PR′C2)
l = ˜︂PR′C l

2. (3.8)

Let Ka1;R′ be the number of elements R in the set [C1]R′ . The powers l range up to

Ka1;R′ − 1. Since the ˜︂PR′ have already been expressed in terms of powers of C1, we
conclude that each PR can be expressed as a linear combination of powers of {C1, C2}.

We can express this more symmetrically by writing

C1 =
∑︂

R′
1∈[C1]

χR′
1(C1)

dimR′
1

P̃R′
1
, (3.9)

C2 =
∑︂

R′
2∈[C2]

χR′
2(C2)

dimR′
2

P̃R′
2

(3.10)

where the sums run over representations with distinct normalized characters, and the
projectors P̃ are defined with respect to the various sets [Ci].

It is easy to see that this argument can be iterated for the cases of multiplicative
generating subsets with more elements (k > 2).
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We now describe another way to see that any projector PR is a linear combination
of products of central elements {C1, C2. · · · , Ck} with the property given in (2) of the
proposition. For each Ci, we can write

Ci =
∑︂
R

χR(Ci)

dimR
PR =

∑︂
R′

i

χR′
i(Ci)

dimR′
i

˜︃PR′
i
, (3.11)

where R′
i runs over a maximal set Si of irreducible representations with distinct normalized

characters χR′
i(Ci)/ dimR′

i. Let the cardinality of the set Si be Ki and˜︃PR′
i
=

∑︂
Ri∈[R′

i:Ci]

PRi
. (3.12)

We have introduced the notation [R′
i : Ci] for the set of irreducible representations Ri

with the property that

χRi(Ci)

dimRi

=
χR′

i(Ci)

dimR′
i

. (3.13)

The set Si is not unique because the sets [R
′
i : Ci] generically have more than one element,

but we will make a choice of Si. Using the Lemma, the projectors ˜︃PR′
i
can be written as

a linear combination of powers of Ci. Now we know, by assumption, that any irreducible
representation R is uniquely characterised by its normalised characters{︃

χR(C1)

dimR
,
χR(C2)

dimR
, · · · , χ

R(Ck)

dimR

}︃
. (3.14)

This means that there is a unique list [R′
1(R), R′

2(R), · · · , R′
k(R)] withR′

1(R) ∈ S1, R
′
2(R) ∈

S2, · · · , R′
k(R) ∈ Sk, with the property that

{R} = [R′
1(R);C1] ∩ [R′

2(R);C2] ∩ · · · ∩ [R′
k(R);Ck]. (3.15)

This list is defined by the property that

χR(C1)

dimR
=

χR′
1(R)(C1)

dimR′
1

, (3.16)

χR(C2)

dimR
=

χR′
2(R)(C2)

dimR′
2

, (3.17)

· · · (3.18)

χR(Ck)

dimR
=

χR′
k(R)(C2)

dimR′
k

. (3.19)

It follows that

PR = ˜︂PR′
1(R)

˜︂PR′
2(R) · · · ˜︂PR′

k(R). (3.20)

In the next several subsections we will apply these ideas to examples of sets of twist
operators motivated by AdS/CFT, sometimes combined with handle creation operators
as also motivated by Dijkgraaf-Witten theory.
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3.1.1 Untwisted example: Zn

The group Zn has n irreducible representations, which we label ρr for r ∈ {0, · · · , n− 1}.
If g denotes the generator of Zn, and ξ = exp(2πi/n) the generator of nth roots of unity,
then

ρr(g) = ξr = χr(g). (3.21)

From (2.7), the twist fields are

T[gk] =
1

|G|
∑︂
h∈G

τhgkh−1 = τgk , (3.22)

and from the definition (2.17), we have that the projectors are

Pr =
1

n

n−1∑︂
k=0

χr(g
−k)τgk =

1

n

n−1∑︂
k=0

ξ−rkτgk . (3.23)

In particular, in this case the center of the group algebra C(Zn) coincides with the group
algebra, and has dimension n.

From (C.39) we have that the handle creation operator is

Π =
n−1∑︂
r=0

n2Pr, (3.24)

=
n−1∑︂
k=0

n2

(︄
1

n

n−1∑︂
r=0

ξ−rk

)︄
τgk , (3.25)

=
n−1∑︂
k=0

n2δk,0τgk , (3.26)

= n2τ1 = n2. (3.27)

Thus, we see that in this example the handle creation operator and its powers can only
ever generate a one-dimensional subspace of the center of the group algebra. This is
expected from section 2 since all the irreducible representations are one-dimensional, so
the number of distinct values of dimR (D0 in the discussion of section 2) is 1.

Now, let us turn to the question of constructing multiplicative generators. Consider
for example the case of Z3. Let g denote the generator of the group, and R1, R2 the two
nontrivial representations, then the character table is given in table 1, where ξ generates
cube roots of unity. In this case, we see that the irreducible representations are uniquely
determined by the (normalized) characters of g, and it is also easy to check that T[g]

generates all the twist fields multiplicatively:

T 2
[g] = T[g2], T 3

[g] = 1 = T[1]. (3.28)
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Representation 1 g g2

1 1 1 1
R1 1 ξ ξ2

R2 1 ξ2 ξ

Table 1: Character table for Z3.

{1} {z} {a, az} {b, bz} {ab, ba}
1 1 1 1 1 1
1a 1 1 1 −1 −1
1b 1 1 −1 1 −1
1ab 1 1 −1 −1 1
2 2 −2 0 0 0

Table 2: Character table of D4 (without a twist).

3.1.2 Untwisted example: D4

List the elements of the dihedral group D4 as

{1, z, a, b, az, bz, ab, ba = abz}, (3.29)

where z generates the Z2 center.
D4 has five irreducible representations: four one-dimensional representations, and one

two-dimensional representation. The character table of D4 is given in table 2.
Since there are five conjugacy classes (also five irreducible representations), the center

Z(C(D4)) has dimension five. Note, however, that knowing the normalized characters of
just two conjugacy classes suffices to distinguish characters. For example, from table 2,
the characters of T[a], T[b] suffice to distinguish all the irreducible representations. (By
contrast, for example, the normalized characters of T[1] and T[z] can only be used to
distinguish the two-dimensional representation from the one-dimensional representation,
but cannot distinguish between the one-dimensional representations.)

This tells us that although the center Z(C(D4)) is a five-dimensional vector space, it
is generated multiplicatively by T[a] and T[b], for example. Indeed, from (2.7) one finds

T[a] =
1

2
(τa + τaz) , T[b] =

1

2
(τb + τbz) , (3.30)

and it is straightforward to check that

T 2
[a] =

1

2
(1 + τz) = T 2

[b], T[a]T[b] = T[ab], (3.31)
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T[a](1 + τz) = 2T[a], T[b](1 + τz) = 2T[b]. (3.32)

Thus, the products of nonzero powers of T[a] and T[b] generate themselves, T[ab], and the
combination 1 + Tz, and when we include the zeroth power of T[a], T[b], we get all of the
elements of the center.

3.1.3 Untwisted example: Sn

This question for the case of Sn is motivated by AdS/CFT and was recently studied [38]
in untwisted cases. In that paper, central elements Tk correspond to conjugacy classes
defined by permutations with a single non-trivial cycle of length k, and remaining cycles of
length 1. For any Z(C(Sn)), the set {T2, T3, · · · , Tn} generates the center [38] (Since there
is no discrete torsion in this example, twist fields depend only upon conjugacy classes,
not upon representatives, and so we only list the former.).

Typically a much smaller set {T2, T3, · · · , Tk∗(n)} generates the center [38], where k∗(n)
is much smaller than n, which is equivalent to the statement that the normalized char-
acters distinguish the irreducible representation R. For example, the single normalized
character χR(T2)/ dimR distinguishes R for n up to 5 and 7. The normalized characters
of T2, T3 distinguish the Young diagrams up to n = 14. Using the formulae for normalized
characters given in [51,52] the lists {χR(T2)

dimR
, χR(T3)

dimR
} were constructed for all the R at fixed

n, and verified (in Mathematica) to be distinct for n up to 14. For tests at higher n (up
to 80) it was convenient to convert the question (using formulae in [51,52]) of comparing
lists of normalized characters to a question of comparing lists of power sums of contents
of Young diagrams (for the precise procedure see [38]).

The discussion in [38] is generalised here to consider central elements including the
handle creation operator, alongside the cycle operators. Using computations in GAP, we
verify that the pairs

[dimR,χR(T2)] (3.33)

uniquely determine all the Young diagrams of Sn for n up to 11, as well as 13. For
example, the list of pairs at n = 6 is:

{[1,−15], [5,−45], [9,−45], [5,−15], [10,−30], [16, 0], [5, 15], [10, 30], [9, 45], [5, 45], [1, 15]}.
There is one such pair for every Young diagram. No two pairs are identical. Note that
the list of ratios χR(T2)/ dimR is

{[−15], [−9], [−5], [−3], [−3], [0], [3], [3], [5], [9], [15]}. (3.34)

These numbers are not unique: −3 and 3 each appear twice. This means that T2 does
not generate the center of the group algebra of S6 (as in [38]) but Π and T2 together do.

Computations in GAP also show the lists {dimR,χR(T2), χ
R(T3), χ

R(T4)} distinguish
all the irreducible representations for Sn at n up to at least 30. This means that the
center is generated by {Π, T2, T3, T4} for C(Sn) with n up to at least 30.

For later comparisons, we give the character table of S4 in table 3, from [53, table 4.5].
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Irrep (14) (212) (22) (31) (4)
1 1 1 1 1 1
R2 1 −1 1 1 −1
R3 2 0 2 −1 0
R4 3 1 −1 0 −1
R5 3 −1 −1 0 1

Table 3: Character table of S4, from [53, table 4.5]. Conjugacy classes are indicated
by the number of elements exchanged. For example, a “1” indicates that an element
is mapped to itself, whereas a “4” indicates that all four elements are permuted, for
example 1 ↦→ 2 ↦→ 3 ↦→ 4. (The fact that this distinguishes conjugacy classes is discussed
in e.g. [53, theorem 3.7].) In particular, (14) is the conjugacy class of the identity.

3.1.4 Untwisted example: S̃n

The group S̃n is a central extension of the symmetric group Sn by Z2:

1 −→ Z2 −→ S̃n −→ Sn −→ 1. (3.35)

It is described in [53, chapter 2] by generators z, t1, t2, · · · , tn−1 and relations

z2 = 1, ztj = tjz, t2j = z, (3.36)

(tjtj+1)
2 = z for 1 ≤ j ≤ n− 2, (3.37)

tjtk = ztktj for |j − k| > 1 and 1 ≤ j, k ≤ n− 1. (3.38)

The character table of S̃4 is given in table 4 (from [53, table 4.7]).
From table 4, we see for example that the normalized characters of the conjugacy

classes (31)′ and (4)′ uniquely distinguish all the representations, hence, using the propo-
sition in section 3.1 , we expect that the center Z(C(S̃4)) is multiplicatively generated by
twist fields corresponding to those two elements.

3.1.5 Twisted example: Z2 × Z2

Let us now turn to a simple twisted example, namely G = Z2×Z2, with [ω] ∈ H2(G,U(1))
the nontrivial element. A representative 2-cocycle ω is

ω(a, b) = ω(b, ab) = ω(ab, a) = +i, (3.39)

ω(b, a) = ω(ab, b) = ω(a, ab) = −i, (3.40)

where G = ⟨a, b⟩, and with ω(g, h) = +1 for other g, h.
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Irrep (14)′ (14)′′ (212) (22) (31)′ (31)′′ (4)′ (4)′′

1 1 1 1 1 1 1 1 1
R2 1 1 −1 1 1 1 −1 −1
R3 2 2 0 2 −1 −1 0 0
R4 3 3 1 −1 0 0 −1 −1
R5 3 3 −1 −1 0 0 1 1

R6 2 −2 0 0 1 −1
√
2 −

√
2

R7 2 −2 0 0 1 −1 −
√
2

√
2

R8 4 −4 0 0 −1 1 0 0

Table 4: Character table for S̃4, from [53, table 4.7]. The notation for conjugacy classes
references their images in S4, which are indicated with the same notation as in table 3.
The primes refer to differences arising from including the central element z. For example,
(14)′ is the conjugacy class of the identity, whereas (14)′′ is the conjugacy class of z.
See [53, theorem 3.8] for further details.

The only ω-regular conjugacy class in this case is {1}. From the definition (2.7), the
twist fields are

T[1] = τ1 = 1, T[a] = 0 = T[b] = T[ab]. (3.41)

(Although there is only one ω-regular conjugacy class, we can certainly compute twist
fields for other conjugacy classes, though as we see we do not get any further twist fields.)

There is only one irreducible projective representation [42, section 3.7], which we label
ρ. It is two-dimensional, and for the 2-cocycle above can be represented by

ρ(1) =

[︃
1 0
0 1

]︃
, ρ(a) =

[︃
0 1
1 0

]︃
, ρ(b) =

[︃
0 −i
i 0

]︃
, ρ(ab) =

[︃
1 0
0 −1

]︃
, (3.42)

in the sense that
ρ(g)ρ(h) = ω(g, h) ρ(gh). (3.43)

From this and the definition (2.17), one quickly computes that the single projector is
given by

Pρ =
dim ρ

|G|
∑︂
g∈G

χρ (g−1)

ω(g, g−1)
τg = τ1 = 1, (3.44)

essentially because only ρ(1) has a nonzero trace. Then, using the identity (C.39), the
handle creation operator is easily computed to be

Π =
∑︂
R

(︃
|G|

dimR

)︃2

PR = 4Pρ = 4. (3.45)
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In this case, the center of the twisted group algebra is also one-dimensional, corre-
sponding to complex multiples of the identity, and so Π generates the center, essentially
trivially.

In passing, let us also compare to the character table of D4, table 2. Since D4 is an
extension of Z2×Z2, it includes information about the irreducible projective representation
of Z2 × Z2, which in this case is an honest representation of D4. Looking at table 2, we
see the first four D4 representations descend to representations of Z2 × Z2, because they
take the same value on z as on the identity. The fifth representation, the two-dimensional
one, takes a different value on z than on 1, and so does not arise from an ordinary
representation of Z2 × Z2. This representation corresponds to the irreducible projective
representation of Z2 × Z2.

3.1.6 Twisted example: D4

Now, consider the 2n-element dihedral group G = Dn. This can be generated by a, b,
such that

a2 = 1, bn = 1, aba = b−1. (3.46)

For simplicity, we assume n is even. This has a nontrivial element of H2(Dn, U(1)), given
by

ω(bi, bjak) = 1, ω(bia, bjak) = ϵj, (3.47)

where ϵ generates the nth roots of unity. For n even, bn/2 is central, and the dihedral
group Dn has n/2 irreducible projective representations, each two-dimensional, described
as follows2 [42, section 3.7]. For r ∈ {1, · · · , n/2}, define

Ar =

[︃
0 1
1 0

]︃
, Br =

[︃
ϵr 0
0 ϵ1−r

]︃
, (3.48)

and then the rth representation is given by

ρr(b
iaj) = Bi

rA
j
r, (3.49)

for i ∈ {0, · · · , n− 1} and j ∈ {0, 1}.
To make this more concrete, we specialize to D4, which has center Z2, generated by

b2. Here, H2(D4, U(1)) = Z2, with a representative of the nontrivial cocycle given above.
The conjugacy classes in D4 are

{1}, {b2}, {b, b3}, {a, ab3}, {ab, ab3}, (3.50)

of which only two are ω-regular, namely {1} and {b, b3}. From (2.7), twist fields are

T[1] = τ1 = 1, T[b] =
1

2
(τb + ϵτb3) , T[b3] =

1

2

(︁
ϵ3τb + τb3

)︁
, (3.51)

2In our conventions we exchanged the roles of a and b relative to [42, section 3.7].
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r 1 b2 b b3 {a, ab2} {ab, ab3}
r = 1 2 0 +(1 + i) +(1− i) 0 0
r = 2 2 0 −(1 + i) −(1− i) 0 0

Table 5: Character table for irreducible projective representations of D4. Note that
although b and b3 are in the same conjugacy class of D4, their characters are different,
so we list them separately. Also note that only characters of representatives of ω-regular
conjugacy classes are nonzero.

T[b2] = 0 = T[a] = T[ab], (3.52)

where ϵ generates fourth roots of unity, hence we can take ϵ = i. (Only for the ω-regular
conjugacy classes are the twist fields produced by (2.7) nonzero. Also, although b, bz
are in the same equivalence class, T[g] is not invariant under conjugation, but instead are
related by (2.9), as is easily checked to relate T[b], T[b3] above.)

Since there are two ω-regular conjugacy classes, there are two (two-dimensional) irre-
ducible projective representations, which are given by

ρr(1) = I, ρr(a) =

[︃
0 1
1 0

]︃
, ρr(b) =

[︃
ϵr 0
0 ϵ1−r

]︃
, (3.53)

ρr(b
2) =

[︃
ϵ2r 0
0 ϵ2−2r

]︃
, ρr(b

3) =

[︃
ϵ3r 0
0 ϵ3−3r

]︃
, ρr(ba) =

[︃
0 ϵ4

ϵ1−r 0

]︃
, (3.54)

ρr(b
2a) =

[︃
0 ϵ2r

ϵ2−2r 0

]︃
, ρr(b

3a) =

[︃
0 ϵ3r

ϵ3−3r 0

]︃
. (3.55)

Since there are two irreducible projective representations, the twisted group algebra of D4

has a two-dimensional center. We give the character table for projective representations
of D4 in table 5.

Plugging into (2.17), we have

Pr =
1

4

[︁
2 + (ϵ3r + ϵ3−3r)τb + (ϵr + ϵ1−r)τb3

]︁
, (3.56)

using the fact that ϵ2r + ϵ2−2r = 0. (As a consistency check, it is straightforward to show
that P 2

r = Pr, P1P2 = 0, and P1 + P2 = 1.)
From (C.39), we have

Π =
∑︂
r

(︃
|D4|
dim ρr

)︃2

Pr = (16)(P1 + P2) = 16, (3.57)

using the fact that P1 + P2 = 1. We see immediately that Π2 ∝ Π, and so the handle
creation operator generates a one-dimensional subspace of the two-dimensional center of
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the twisted group algebra of D4. On the other hand, note that

T 2
[b] = ϵ/2 ∝ 1, (3.58)

hence the center can be multiplicatively generated by T[b] alone, which is consistent with
table 5.

3.2 Character algorithms and generating subspaces

In [11, section 3.1] the first author and his collaborators interpreted the Burnside construc-
tion [45]( see [46,47] for subsequent improvements) in terms of (untwisted) combinatoric
amplitudes on genus one surfaces. The key formula, which takes the same form in the
twisted case, is (C.67), which implies

1

|G|
δ(ΠT l

[g]) =
∑︂
R

(︃
χR(g)

dimR

)︃l

. (3.59)

Using the power sums, we solve a polynomial equation to get the normalized characters
for the twist fields T[g]. The polynomial equation is actually the eigenvalue equation for

the matrix of structure constants (C[g])
β
α = Cβ

[g]α where T[g]Tα = Cβ
[g]αTβ. After the nor-

malized characters have been found, the dimensions can be found using the orthogonality
relation (B.4), which implies∑︂

R

1

ω(g, g−1)
χR(g)χR(g−1) =

|G|
|[g]|

. (3.60)

It is interesting to consider the implications for the character algorithms of knowing
a subset of (ω-regular) conjugacy classes whose normalized characters determine the ir-
reducible representations. Suppose a set of central elements {C1, C2, · · · , Ck} (possibly
including Π) are known to multiplicatively generate the center Z(Cω(G)) of a (possibly
twisted) group algebra. In the case of the untwisted group algebra of Sn (for n < 80) it
has been shown [38] that there are interesting small (compared to n) subsets which have
this property. In section 3.3 we explain how to find such minimal generating subsets.

Let us first consider the case where a single operator C1 ∈ Z(Cω(G)) multiplicatively
generates the center, as we have seen occurs in examples in sections 3.1.1, 3.1.3. In this
case, following a construction similar to the use of the Vandermonde matrices in section
2, we can compute the characters of any (represented, ω-regular) conjugacy class Cµ from
the genus one amplitudes associated with C1, Tµ and the normalized characters of C1.
Specifically we start with the string amplitudes (C.67)

1

|G|
δ(ΠCk

1Tµ) =
∑︂
R

(︃
χR(C1)

dimR

)︃k
χR(Tµ)

dimR
. (3.61)
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(It suffices to only consider k ∈ {0, 1, · · · , K − 1}, where K is the number of conjugacy
classes.)

In terms of the Vandermonde matrix

Vk,R =

(︃
χR(C1)

dimR

)︃k

(3.62)

the expression (3.61) is an invertible linear system of equations relating string amplitudes
to the normalized characters of Tµ. By using the inverse of the Vandermonde matrix, we
can solve for the normalized characters χR(Tµ)/ dimR in terms of the string amplitudes
in (3.61) and the normalized characters of the generator C1, both assumed known.

Suppose now that {C1, C2} are a minimal set that multiplicatively generate Z(Cω(G)),
as we have seen in examples in sections 3.1.2, 3.1.3, 3.1.6. In such cases the lists
{χR(C1)/ dimR,χR(C2)/ dimR} uniquely determine the irreducible representations R.
Now, we can again consider the problem of determining the normalized characters for
a general conjugacy class (with specified representative) Tµ, from the string amplitudes.
Start with the amplitudes

1

|G|
δ(ΠCk

1Tµ) =
∑︂
R

(︃
χR(C1)

dimR

)︃k
χR(Tµ)

dimR
. (3.63)

(As before, it suffices to restrict to k ∈ {0, 1, · · · , K ′ − 1}, where K ′ is the number
of distinct normalized characters χR(C1)/ dimR.) Let R′ run over a set of irreducible
representations (of size K ′) with distinct normalized characters χR′(C1)/ dimR′, and [R :
R′] over the irreducible representations with the same normalized characters as R′. We
write

1

|G|
δ(ΠCk

1Tµ) =
∑︂
R′

(︃
χR′

(C1)

dimR′

)︃k ∑︂
[R:R′]

χR(Tµ)

dimR
. (3.64)

By inverting3 the K ′ ×K ′ Vandermonde matrix with matrix elements

Vk,R′ =

(︃
χR′

(C1)

dimR′

)︃k

(3.65)

we now determine the sums ∑︂
[R:R′]

χR(Tµ)

dimR
(3.66)

3The reader should note that if for example C1 = T[1] = 1, then the Vandermonde matrix may not
be invertible, and this procedure would not work. However, we exclude that case from consideration, by
restricting to minimal generating sets.
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ranging over the distinct irreducible representations R having the same normalized char-
acter χR(C1)/ dimR as R′. We denote the number of such R (the number of elements of
[R : R′]) by D1;R′ .

Using the fact that {︃
χR(C1)

dimR
,
χR(C2)

dimR

}︃
(3.67)

distinguish all irreducible representations, we know that for any R′, as R ranges over the
set [R : R′], the list {χR(C2)/ dimR} has no repeated elements. Now for each R′, and
each l ∈ {0, 1, · · · , D1,R′ − 1} we can consider

1

|G|
δ
(︁
ΠCk

1 (C
l
2Tµ)

)︁
=
∑︂
R

(︃
χR(C1)

dimR

)︃k (︃
χR(C2)

dimR

)︃l
χR(Tµ)

dimR
,

=
∑︂
R′

(︃
χR′

(C1)

dimR′

)︃k ∑︂
[R:R′]

(︃
χR(C2)

dimR

)︃l
χR(Tµ)

dimR
. (3.68)

As k ranges over {0, 1, · · · , K ′ − 1}, we have a linear system of equations for

∑︂
R:R′

(︃
χR(C2)

dimR

)︃l
χR(Tµ)

dimR
(3.69)

given by the invertible K ′ ×K ′ Vandermonde matrix (3.65). By using the inverse of the
Vandermonde matrix, we obtain∑︂

R:R′

(︃
χR(C2)

dimR

)︃l
χR(Tµ)

dimR
. (3.70)

Collecting the results for all the l ∈ {0, 1, · · · , D1,R′ − 1}, we now have a linear system
for χR(Tµ)/ dimR for all the R in the set [R;R′], given by the invertible D1,R′ × D1,R′

Vandermonde matrix with matrix elements

Vℓ,R =

(︃
χR(C2)

dimR

)︃l

. (3.71)

By inverting the Vandermonde matrix, we obtain χR(Tµ)/ dimR for all R with the prop-
erty that

χR(C1)

dimR
=

χR′
(C1)

dimR′ . (3.72)

It is clear that the above procedure can be iterated to give a procedure for constructing
normalized characters Tµ in cases where a longer list{︃

χR(C1)

dimR
,
χR(C2)

dimR
, · · · , χ

R(Ck)

dimR

}︃
(3.73)
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distinguish the irreducible representations (equivalently {C1, C2, · · · , Ck} generate the
center). Note that the generating set of central elements can all be obtained by averaging
over fixed conjugacy classes, and may also include central operators such as the handle
operator Π as discussed in section 3.1.

3.2.1 Untwisted example: Zn

In this section we will illustrate the method in a case with well-known results, specifically,
the case G = Z3.

As discussed in section 3.1.1, if g generates the group Zn, then Tg generates the center
multiplicatively. Following the prescription given above, the Dijkgraaf-Witten amplitudes
determine the normalized characters of any other conjugacy class. Specifically, write

1

|G|
δ
(︁
ΠT k

[g]Tµ

)︁
=
∑︂
R

Vk,R
χR(Tµ)

dimR
, (3.74)

where

Vk,R =

(︃
χR(T[g])

dimR

)︃k

. (3.75)

Using table 1, we have

Vk,R=1 = 1, (3.76)

Vk,R=R1 = ξk, (3.77)

Vk,R=R2 = ξ2k, (3.78)

for ξ a generator of cube roots of unity, hence

V =

⎡⎣ 1 1 1
1 ξ ξ2

1 ξ2 ξ

⎤⎦ , V−1 =
1

3

⎡⎣ 1 1 1
1 ξ2 ξ
1 ξ ξ2

⎤⎦ . (3.79)

Let us also take as given the string amplitudes

1

|G|
δ
(︁
ΠT k

[g]T1

)︁
= 3δ0,k mod 3, (3.80)

1

|G|
δ
(︁
ΠT k

[g]T[g]

)︁
= 3δ0,k+1 mod 3, (3.81)

1

|G|
δ
(︁
ΠT k

[g]T[g2]

)︁
= 3δ0,k+2 mod 3. (3.82)

From these string amplitudes we then compute(︃
χR(T[1])

dimR

)︃
= V−1

⎡⎣ 3
0
0

⎤⎦ =

⎡⎣ 1
1
1

⎤⎦ , (3.83)
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matching the known result
χR(T[1])

dimR
= 1 (3.84)

for each representation R. Similarly,

(︃
χR(T[g])

dimR

)︃
= V−1

⎡⎣ 0
0
3

⎤⎦ =

⎡⎣ 1
ξ
ξ2

⎤⎦ , (3.85)

matching the result

χ1(T[g])

dim 1
= 1,

χR1(T[g])

dimR1

= ξ,
χR2(T[g])

dimR2

= ξ2. (3.86)

Finally, (︃
χR(T[g2])

dimR

)︃
= V−1

⎡⎣ 0
3
0

⎤⎦ =

⎡⎣ 1
ξ2

ξ

⎤⎦ , (3.87)

matching the result

χ1(T[g])

dim 1
= 1,

χR1(T[g])

dimR1

= ξ2,
χR2(T[g])

dimR2

= ξ. (3.88)

Again, we emphasize that the point of this section is merely to illustrate the method in a
simple well-known example.

3.2.2 Twisted example: Z2 × Z2

Let us apply the algorithm above to the case of Z2 × Z2 with a twist, as discussed in
section 3.1.5.

As discussed there, the center is one-dimensional, generated by Π.
Now, suppose we are given the string amplitudes

Yk =
1

|G|
δ
(︁
ΠΠkT[1]

)︁
, (3.89)

and we want to compute the normalized characters of T[1]. (Clearly, this will be trivial,
but [1] is the only ω-regular conjugacy class, so for purposes of illustrating the method,
we will walk through this example.) From (C.67), we know that

1

|G|
δ
(︁
Πk+1T[g]

)︁
=
∑︂
R

(︃
|G|

dimR

)︃2(k+1)−2(︃
χR(g)

dimR

)︃
, (3.90)
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which is a linear system of equations relating the normalized characters χR(1)/ dimR to
the Yk and the Vandermonde matrix

Vk,R =

(︃
|G|

dimR

)︃2k

, (3.91)

and can be written in the form
Y⃗ = Vχ⃗, (3.92)

where χ⃗ is the vector of normalized characters χR(1)/ dimR desired.
In the present case, Z2 × Z2 with a twist, there is only one irreducible projective

representation, of dimension 2, hence

Vk,R =

(︃
|G|
2

)︃2k

= 22k, (3.93)

so our system of equations is simply

Yk = (22k)

(︃
χR(1)

dimR

)︃
. (3.94)

(To be clear, this is many equations for one unknown, which is why in general we restrict
to a finite number of values of k.)

In principle this allows one to compute the normalized characters in terms of the Yk.
In this particular case, it is a fact that Yk = 22k, so we see that

χR(1)

dimR
= 1, (3.95)

or simply,
χR(1) = dimR, (3.96)

a result which will not surprise the reader, but which will hopefully help to illuminate the
idea of the method.

3.2.3 Twisted example: D4

Now, let us apply these ideas to the case of D4 with a twist, using the computations in
section 3.1.6. Here, let us take the (two-dimensional) center of the twisted gruop algebra
to be generated by {T[b]}, and use the string amplitudes (Dijkgraaf-Witten correlation
functions) to compute the normalized characters and reproduce the character table 5.

As before, suppose we are given the string amplitudes

Y (µ)k =
1

|G|
δ
(︁
ΠT k

[b]Tµ

)︁
, (3.97)
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which are related to the normalized characters of Tµ by

Y (µ)k =
∑︂
R

Vk,R
χR(Tµ)

dimR
, (3.98)

for

Vk,R =

(︃
χR(T[b])

dimR

)︃k

. (3.99)

As there are only two irreducible projective representations, it suffices to take k ∈ {0, 1}
and write Vk,R as the entries of a matrix

V =

[︃
1 1

+(1 + i)/2 −(1 + i)/2

]︃
=

[︃
1 1

+ exp(iπ/4)/
√
2 − exp(iπ/4)/

√
2

]︃
. (3.100)

Using

V−1 =
1

2

[︃
1 +

√
2 exp(−iπ/4)

1 −
√
2 exp(−iπ/4)

]︃
, (3.101)

one can then compute normalized characters from string amplitudes, formally as(︃
χR(Tµ)

dimR

)︃
= V−1Y⃗ (µ). (3.102)

For example, for µ = [b3], the string amplitudes are

Y⃗ ([b3]) =

[︃
0
2

]︃
, (3.103)

which implies (︃
χR(T[b3]

dimR

)︃
= V−1Y⃗ =

[︃
+(1− i)
−(1− i)

]︃
, (3.104)

correctly matching table 5.

3.2.4 Twisted example: Sn

In this section we discuss the symmetric group Sn with discrete torsion.
First, let us describe the discrete torsion. We can do this implicitly using the ex-

tension S̃n presented in section 3.1.4, and comparing to the presentation of Sn itself in
section 3.1.3. Specifically, the extension is determined by an element of H2(Sn,Z2), which
maps into H2(Sn, U(1)) and so determines an element of discrete torsion.

We can compute the cocycle as follows, following [53, pp. 9-10]. Let θ : S̃n → Sn be
the projection, with kernel {1, z}, and let r be a section, meaning a map r : Sn → S̃n,
such that θ(r(a)) = a and r(1) = 1. A cocycle is given explicitly by

αr(a, b) = (−1)nr(a,b), (3.105)
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where

r(a)r(b) = znr(a,b)r(ab). (3.106)

We can pick

θ(ti) = xi,
θ(z) = 1,
r(xi) = ti r(xi1xi2 · · · ) = ti1ti2 · · · (3.107)

The section can also be used to construct projective representations of Sn from the or-
dinary representations of S̃n. Given representation matrices R(g̃) for g̃ ∈ S̃n, one gets
projective representation matrices P (g) as

P (g) = R(r(g)) (3.108)

as in [53, Theorem 1.4].
As an example to illustrate the use of the above equations, consider the symmetric

group S4. It has three generators {x1, x2, x3}, which are the adjacent transpositions
x1 = (1, 2), x2 = (2, 3), x3 = (3, 4). The section r is defined by mapping words in the xi

to words in ti. As an example of cocycle factors deduced from the above equations, note
that

r(x1).r(x1) = t1t1 = z = zr(x2
1) (3.109)

Hence

α(x1, x1) = (−1). (3.110)

Using the projection θ and the section r, the above equations specify a map from
C(S̃4) to Cω(S4). Using the character table for S̃4 (Table 4), we note that the characters
for elements in S̃4, in the last three rows associated with non-trivial twist, and corre-
sponding to cycle structures (2, 12), (3, 1) are zero. This means that the only non-zero
ω-regular classes in Cω(S4) correspond to cycle structures (14), (3, 1), (4). The equality of
the number of ω-regular conjugacy classes and irreducible projective reps illustrates our
discussion of the center Z(Cω(G)): we observed that there is a basis for the center in terms
of twist operators labelled by ω-regular conjugacy classes and another basis in terms of
projectors, labelled by irreducible projective representations. The splitting of (3, 1) and
(4) into two columns illustrates the fact that characters are not class functions in the case
of projective representations. Focusing on the column (4)′, and taking into account the
dimensions of irreducible projective reps (given in the last three entries in the first column
labelled by (14)), we find that the normalized characters {1/

√
2,−1/

√
2, 0} distinguish

the three irreducible projective reps. Following our discussion in section 3.1, this means
that a central element labelled by conjugacy class (4) can be used to multiplicatively
generate the center of Z(Cω(S4)).
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3.3 Algorithm for minimal generating subsets

In the above, we have assumed we are given central elements which distinguish irreducible
representations, or equivalently, multiplicatively generate the center Z(Cω(G)). In this
section, we outline an algorithm finding a minimal generating subset of the center of
a twisted group algebra, using the topological field theory amplitudes. We start with
a central element Ca. We can determine its normalized characters using the Burnside
algorithm [45–47], equivalently as explained earlier, by considering genus one amplitudes
with insertions of boundaries labelled by Ca. If the number of distinct eigenvalues, i.e. the
number of distinct normalized characters χR(Ca)

dimR
is equal to the dimension of Z(Cω(G)),

then we know that Ca generates the center. But suppose the number of distinct eigenvalues
is smaller. Let us ask how to determine whether adding another central element Cb indeed
generates the center. This can be done by considering the structure constants of the
multiplication operator for Ca, Cb in the basis of central elements labelled by conjugacy
class operators Tµ

CaTµ = (Ca)
ν
µTν , (3.111)

CbTµ = (Cb)
ν
µTν . (3.112)

These structure constants can be obtained from G-CTST amplitudes on the sphere:

1

|Tν |
δ(CaTµTν) = Cν

aµ, (3.113)

1

|Tν |
δ(CbTµTν) = Cν

bµ. (3.114)

We know from (2.27) that the projectors PR obey

CaPR =
χR(Ca)

dimR
PR, (3.115)

CbPR =
χR(Cb)

dimR
PR. (3.116)

If Ca, Cb generate the center, then the simultaneous eigenspaces of the matrices (Ca), (Cb)
are one-dimensional with eigenvalues(︃

χR(Ca)

dimR
,
χR(Cb)

dimR

)︃
. (3.117)

Motivated by AdS/CFT applications of minimal generating subspaces, we can start
with the twist field associated to (a representative of) the smallest conjugacy class Ta1

(excluding the conjugacy class of the identity) and the associated structure constant
matrix Ca1 obtained from G-CTST amplitudes involving Ta1 , then alongside consider Ca2
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for the next smallest conjugacy class. If the simultaneous eigenspaces are one-dimensional,
we have a generating subspace spanned by (Ta1 , Ta2). If the simultaneous eigenspaces
are more than one-dimensional, we add another central element Ta3 and simultaneously
diagonalize Ca1 ,Ca2 ,Ca3 . If the eigenspaces are one-dimensional, then the ordered lists of
eigenvalues of {Ca1 ,Ca2 ,Ca3} which give{︃

χR(Ta1)

dimR
,
χR(Ta2)

dimR
,
χR(Ta3)

dimR

}︃
, (3.118)

can be used to label the irreducible representations.
To find the eigenvalues for these basis elements in a minimal generating subspace, we

have to solve the eigenvalue equations for the K ×K matrices, where K is the dimension
of the center. For the characters of the remaining conjugacy classes, we use the inversion
of Vandermonde matrices of smaller size as explained above.

3.4 G-CTST and properties of characters of finite groups

In this section we will use the properties of handle-creation operators in G-CTST from
section 2, and the AdS/CFT-inspired construction of characters using minimal generat-
ing subspaces from the previous subsections 3.1, 3.2, 3.3, to derive certain integrality
properties of residues of poles of partition functions appearing in G-CTST.

Along the road to those physics results, we will derive some mathematical properties
of characters of finite groups. We expect that these properties are already known in
the mathematical literature; we are not claiming any fundamental mathematical novelty.
We include them because they follow from the framework of G-CTST and are related
to the properties of singularities in generating functions arising therein. The methods
in the proof are based on the combinatorics of group multiplications along with linear
algebra. Similar methods have been used to obtain integrality properties of characters in,
for example, [54]. A comprehensive textbook discussion of these properties is in Chapter
3 of [55].

In section 3.4.1 we begin by deriving integrality properties for sums of characters of a
given conjugacy class Cµ, where the characters are being summed over certain restricted
classes of irreducible representations. The restrictions depend on the dimension of the
irreducible representation or the character of certain additional specified conjugacy classes,
where these conjugacy classes have the property that all their characters are integers. In
section 3.4.2 we extend the discussion to obtain integrality properties of sums of powers
of characters, where the sums are constrained by similar restrictions as in 3.4.1. We
show that the integrality of these power sums is equivalent to factorisation properties of
polynomials arising in the Burnside algorithm [45–47] for the computation of characters,
which we will refer to as Burnside character polynomials. In section 3.4.3 we show that
the integer sums of normalized characters considered in 3.4.1 and 3.4.2 arise as residues
of singularities in generating functions of G-CTST.
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For simplicity we will restrict to Dijkgraaf-Witten theories without discrete torsion
(twisting) in this section.

3.4.1 Integrality properties of some character sums

In this subsection we will derive some properties of characters that we will use in the
analysis of poles of G-CTST generating functions.

First, it is useful to rewrite (3.59) with an adjusted normalization

1

|G|
δ(Π(|[g]|T[g])

l) =
∑︂
R

(︃
|[g]|χR(g)

dimR

)︃l

. (3.119)

The ratios |[g]|χR(g)/ dimR in the right-hand side are known to be algebraic integers.
This follows from the fact that eigenvalues of integer matrices (in this case, the matrix
of structure constants of multiplication by the central elements |[g]|T[g] in Z(C(G))) are
algebraic integers (see e.g. [31, chapter 3]). It is also known that algebraic integers form
a ring. Hence a sum of algebraic integers is an algebraic integer. Thus, the sum

|[g]|χR̃
′
(g)

dimR′ =
∑︂
R:R′

|[g]|χR(g)

dimR
, (3.120)

(where the sum is over all the irreducible representations R with a fixed dimR′ = dimR
as in section (2.2.2)) is an algebraic integer. It is useful to rewrite (2.50) with the nor-
malization

1

|G|
δ
(︁
Πh|[g]|T[g]

)︁
=
∑︂
R′

(︃
|G|2

(dimR′)2

)︃h−1 |[g]|χR̃
′
(g)

dimR′ . (3.121)

For the untwisted case C(G) the left-hand side gives a sequence of rational numbers for
different values of h. In section (2.2.2) we inverted the Vandermonde matrix of integers,
applied it to a finite vector with the rational numbers on the left-hand side above, to

give the characters χR̃
′
(g)/ dimR′. Applying the same procedure here, we see that the

normalized characters |[g]|χR̃
′
(g)/ dimR′ are rational numbers. Now, any algebraic integer

which is rational is also integer (see e.g. [31, chapter III]). This means that the sums of
normalized characters in (3.120) are always integers, for any C(G) (even though the
individual terms in the sum may not be integers).

To summarize, these arguments suggest the following

Proposition 3.4.1-I: The sum of normalized characters∑︂
R:R′

|[g]|χR(g)

dimR
=

|[g]|
dimR′

∑︂
R:R′

χR(g) (3.122)
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over all the irreducible representations R of a fixed dimension dimR′ is an integer for any
finite group G.

This is easy to verify in examples by inspection of finite group character tables. In
addition, we expect that the statement above, as well as the other propositions in this
section, likely already exist in the literature, though we are not able to give precise
references. We include them here because we will use these results in the analysis of poles
of G-CTST generating functions. We are not claiming any fundamental mathematical
novelty.

It is also known that the characters χR(g) are algebraic integers (e.g. [31, chapter III]),
hence the sum

χR̃
′
(g) ≡

∑︂
R:R′

χR(g) (3.123)

is an algebraic integer. The rationality of |[g]|χR̃
′
(g)/ dimR′ explained above also implies

that χR̃
′
(g) is rational. Using again the fact that rational algebraic integers are integers,

we conclude that χR̃
′
(g) are integers. We state this as

Proposition 3.4.1-II: The sum of the characters∑︂
R:R′

χR(g) (3.124)

over all irreducible representations R with a fixed dimension dimR′, is an integer, for any
finite group G.

A corollary of the discussion on integrality of character sums above, is that if for every
irreducible representation R of a finite group G which has a unique value of the dimension,

i.e. a value not shared by any other irreducible representation, the characters |[g]|χR(g)
dimR

and
χR(g) are integers for g in any conjugacy class.

Following the discussion in section 3.2 where we consider linear systems for a given
χR(Tµ)

dimR
using a pair of central elements, we can generalize the above argument. We start

again with the untwisted case C(G). Consider central elements {C1, C2}, chosen to have

the property that χR(C1)
dimR

and χR(C2)
dimR

are both integers for all R. We do not require here
that C1, C2 generate the center Z(C(G)) in the present discussion. The key equation is
(3.68), part of which we repeat for convenience, is

1

|G|
δ
(︁
ΠCk

1 (C
l
2|Cµ|Tµ)

)︁
=
∑︂
R

(︃
χR(C1)

dimR

)︃k (︃
χR(C2)

dimR

)︃l
χR(|Cµ|Tµ)

dimR
. (3.125)

It is worth noting that the product in the sum above, namely(︃
χR(C2)

dimR

)︃l
χR(|Cµ|Tµ)

dimR
, (3.126)
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is a product of algebraic integers and hence itself an algebraic integer. Using the discussion
in section 3.2, we can construct the character sums∑︂

R:[C1,C2]

χR(|Cµ|Tµ)

dimR
(3.127)

where R is being summed over all the irreducible representations having a fixed pair of
eigenvalues for [C1, C2], using inverses of integer Vandermonde matrices multiplying the
combinatoric data on the left-hand side of (3.125) consisting of rational numbers. Thus we
conclude that these sums, which are known to be algebraic integers, are in fact integers.
This also means that the character of a χR(g) of a group element g ∈ Cµ is rational,
and since it is known to be an algebraic integer, also in fact integer. By taking C1 to be

the handle creation operator with eigenvalues |G|2
(dimR)2

and C2 the sum of elements in a

conjugacy class C with the property that χR(g) for g ∈ C is an integer for all irreducible
representations R, we conclude

Proposition 3.4.1-III: The character sums∑︂
R:[dimR′,χR′′ (C)]

χR(|Cµ|Tµ)

dimR
(3.128)

and ∑︂
R:[dimR′,χR′′ (C)]

χR(g) for g ∈ Cµ (3.129)

for any conjugacy class Cµ, over irreducible representations with a fixed specified dimension
denoted dimR′ and a fixed value of the character for the conjugacy class C, are integers.

If we take [C1, C2] to be two conjugacy classes having integer characters, then we have

Proposition 3.4.1-IV: The character sums∑︂
R:[χR1 (C1),χR2 (C2)]

χR(|Cµ|Tµ)

dimR
(3.130)

and ∑︂
R:[χR1 (C1),χR2 (C2)]

χR(g) for g ∈ Cµ (3.131)

for any conjugacy class Cµ are integers, where the sum is over all irreducible representations
which have fixed characters [χR1(C1), χR2(C2)] for two conjugacy classes C1, C2, and where
these latter are conjugacy classes known to have integer characters for all irreducible
representations R. This property for Cµ generalizes to the case where we fix the characters
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for any number of conjugacy classes {C1, C2, · · · , Cm} having the property that all their
irreducible characters are integers. We also have this integrality property for Cµ when we
fix {dimR, C1, C2, · · · , Cm}.

Integrality properties of fusion matrices and quantum dimensions have recently been
studied using Galois theory methods [56] in the context of 3D topological quantum field
theories. The combination of Galois theory methods with the constructive methods used
here in general classes of topological field theories would be an interesting area for future
investigation.

3.4.2 Integrality of power sums and factorisation properties of character
polynomials

In the previous subsection, as part of our physical analysis of G-CTST, we derived some
intermediate mathematical integrality properties involving single characters. In this sub-
section we similarly derive integrality properties for power sums of characters which have
implications for the factorization properties of the Burnside character polynomials. In
the next subsection we will apply these properties to the analysis of generating functions
in G-CTST.

For a conjugacy class Cµ consider a diagonal matrix Xµ of size K, with entries |Cµ|χR(g)

dimR

for g ∈ Cµ where K is the number of conjugacy classes in G. The determinant det(x−Xµ)
is a polynomial in x

det(x−Xµ) = xK − xK−1trX + · · ·+ (−1)K detXµ,

=
K∑︂
i=1

(−1)ixK−iei(X) (3.132)

where ei(X) are elementary symmetric polynomials. They can be expressed in terms of
traces of X and in terms of the eigenvalues of xi of X as

ek(X) =
∑︂
p⊢k

(−1)k−
∑︁

i pi∏︁
i i

pipi!

∏︂
i

(trX i)pi ,

=
∑︂

1≤i1<i2<···<ip≤n

xi1xi2 · · · xik (3.133)

Here p is a partition of k, with pi parts of length i, so that
∑︁

i ipi = k. As reviewed
in [11] the quantity det(x − Xµ), viewed as a polynomial in x, is also the characteristic

polynomial for the integer matrix |Cµ||Cν |
|Cλ|

(Cµ)
λ
ν of structure constants of Z(C(G)). Solving

for the eigenvalues of the matrix of structure constants for conjugacy classes Cµ is a step
in determining the character table in the Burnside algorithm [45]. A useful piece of
terminology is that det(x−Xµ) is an integer monic polynomial: a monic polynomial has

37



the coefficient of the highest power of x to be equal to 1 while all the other coefficients
are also integers.

The above arguments for integrality of sums of characters apply equally well for the
power sums. In this case we consider, for fixed k and for h ∈ {0, 1, · · · , K − 1}

1

|G|
δ
(︁
Πh(|[g]|T[g])

k
)︁

=
∑︂
R

(︃
|G|2

(dimR)2

)︃h−1(︃ |[g]|χR(g)

dimR

)︃k

,

=
∑︂
R′

(︃
|G|2

(dimR′)2

)︃h−1∑︂
R:R′

(︃
|[g]|χR(g)

dimR

)︃k

. (3.134)

The last line includes a sum over irreps R having a fixed dimension dimR′. This allows
us to write, in terms of an inverse Vandermonde matrix, the power sums over irreducible
representations R of G with a fixed dimension dimR = dimR′

∑︂
R:R′

(︃
|[g]|χR(g)

dimR

)︃k

. (3.135)

These are known, on general grounds, to be algebraic integers. Applying the reasoning
in section 3.4.1 above to these power sums, they can be expressed as a matrix product of
a rational matrix (inverse of a Vandermonde matrix) times a vector of rational numbers
(obtained from the evidently rational numbers on the LHS of (3.134)). This means that
these sums of powers, restricted to all irreducible representations R having the same
dimension as R′, are actually integers.

It is now useful to consider a diagonal matrix X
(R′)
µ of size equal to the number K(R′)

of distinct irreducible representations with the same dimension as R′, and with entries

equal to |[g]|χR(g)
dimR

as R ranges over the distinct R with the specified dimension. We can

construct a polynomial det(x −X
(R′)
µ ) of degree K(R′). The coefficients of the powers of

x are elementary symmetric polynomials ei(X
(R′)), expressible as polynomials in these

normalized characters |[g]|χR(g)
dimR

for R having fixed dimension dimR′. Since these normal-
ized characters are known to be algebraic integers, the elementary symmetric polynomial
functions of these (which are sums of products of these according to the second line in
(3.133)) are algebraic integers. These elementary symmetric polynomials are also express-
ible in terms of linear combinations with rational coefficients of power sums (first line of
(3.133)). These power sums are integers as explained above. Combining these facts, and
since numbers which are rational and algebraic integer are also integers, we conclude that

these coefficients of powers of x in det(x−X
(R′)
µ ) are actually integers. Thus det(x−X

(R′)
µ )

is an integer monic polynomial in the variable x. Since the diagonal entries of the diagonal

matrix X
(R′)
µ form a subset of the entries of the diagonal matrix Xµ defined above, we
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see that det(x−X
(R′)
µ ) is an integer monic polynomial which is a factor of the Burnside

character polynomial det(x−Xµ). We summarise this conclusion as

Proposition 3.4.2-I: The Burnside character polynomial for any conjugacy class Cµ,
which is an integer monic polynomial, factorises into lower degree integer monic polyno-
mials parametrised by the list of distinct dimensions dimR′

det(x−Xµ) =
∏︂
R′

det(x−X(R′)
µ ). (3.136)

Following the discussion in section 3.3.1, we can also consider further integrality prop-
erties for powers of normalised characters summed over sets of irreps restricted by dimen-
sion as well as characters of conjugacy classes. By following the argument above, this
integrality of power sums leads to more refined factorisation properties of the Burnside
character polynomials. Suppose C1 is a conjugacy class with integer characters. i.e. for
all irreducible representations R of G, the characters χR(g) for g ∈ C1 are integers. Let
χC1;R′

1 be the list of the distinct values of these characters, and KC1;R′
1 be the multiplicity

of the eigenvalue. We have
∑︁

R′
1
KC1;R′

1
= K. Let X

(C1;R′
1)

µ be the diagonal matrix with

entries χR(Cµ)
dimR

for irreducible representations R having

χR(g) = χR′
1(g) for g ∈ C1, χR(g) = χC1;R′

1 . (3.137)

The polynomial det(x−X
C1;R′

1
µ ) is an integer monic polynomial.

Proposition 3.4.2-II: The Burnside character polynomial for any conjugacy class Cµ,
which is an integer monic polynomial, factorises into lower degree integer monic polyno-
mials parametrised by the list of distinct characters χC1;R′

1

det(x−Xµ) =
∏︂
R′

1

det(x−XC1;R′
1

µ ). (3.138)

Let the pair [R′, R′
1] be labels for pairs of irreducible representations which run over

the distinct possible values of [dimR,χR(g)] for g ∈ C1. Let KΠ,C1;R′,R′
1 be the multiplicity

of the pair of values associated with [R′, R′
1]. For any other conjugacy class Cµ ̸= C1, we

can construct the integer monic polynomial det(x−X
Π,C1;R′,R′

1
µ ) of degree KΠ,C1;R′,R′

1 . We
have the factorisation property

Proposition 3.4.2-III: The Burnside character polynomial for any conjugacy class Cµ,
which is an integer monic polynomial, factorises into lower degree integer monic polyno-
mials parametrised by the list of distinct ordered pairs [dimR′, χR(g)] for g ∈ C1

det(x−Xµ) =
∏︂
R,R′

1

det(x−XΠ,C1;R′,R′
1

µ ). (3.139)
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These factorisation properties can further be generalised to run over lists
[dimR′, χR(g1), · · · , χR(gm)] for g1 ∈ C1, g2 ∈ C2, · · · , gm ∈ Cm where C1, C2, · · · , Cm have
integer characters. We can also drop dimR′ from the lists to have factorisation over
distinct lists [χR(g1), · · · , χR(gm)].

3.4.3 Integral power sums as residues of singularities in G-CTST generating
functions

In this subsection we now apply the properties we have derived to the analysis of G-CTST
generating functions.

We observe that the integer sums of normalized characters and sums of powers of
normalized characters derived in sections 3.4.1 and 3.4.2 arise as residues at singularities
of G-CTST generating functions. The argument is an extension of the one in section 5
of [11]. Let us define a sum over arbitrary numbers of handles of the string amplitude
with one boundary labelled by conjugacy class Cµ (3.121) weighted by the appropriate
power of the string coupling. Taking g ∈ Cµ, i.e. [g] = Cµ we write

g−1
st Z(gst; Cµ)

=
∞∑︂
h=0

g2h−2
st

|G|
δ
(︁
Πh|[g]|T[g]

)︁
=
∑︂
h

∑︂
R′

(︃
g2st|G|2

(dimR′)2

)︃h−1 |[g]|χR̃
′
(g)

dimR′ , (3.140)

=
∑︂
R′

1

(1− g2st|G|2/(dimR′)2)

|[g]|χR̃
′
(g)

dimR′ . (3.141)

The poles of this generating function are at

gst =
(dimR′)

|G|
, (3.142)

and the residues are

|[g]|χR̃
′
(g)

dimR′ =
|[g]|

dimR′

∑︂
R:R′

χR(g), (3.143)

which we showed to be integers (proposition 3.4.1-I). Similarly we can define a stringy
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generating function for the k’th power sums

gk−2
st Z(gst; Cµ, k)

=
∞∑︂
h=0

g2h−2
st

|G|
δ
(︁
Πh(|[g]|T[g])

k
)︁
, (3.144)

=
∞∑︂
h=0

∑︂
R

(︃
g2st|G|2

(dimR)2

)︃h−1(︃ |[g]|χR(g)

dimR

)︃k

, (3.145)

=
∞∑︂
h=0

∑︂
R′

(︃
g2st|G|2

(dimR′)2

)︃h−1∑︂
R:R′

(︃
|[g]|χR(g)

dimR

)︃k

, (3.146)

=
∑︂
R′

1

(1− g2st|G|2/(dimR′)2)

∑︂
R:R′

(︃
|[g]|χR(g)

dimR

)︃k

. (3.147)

The singularities are at

gst =
(dimR′)

|G|
, (3.148)

while the respective residues are∑︂
R:R′

(︃
|[g]|χR(g)

dimR

)︃k

. (3.149)

As shown in proposition 3.4.1-II these residues of the G-CTST generating function defined
are integers.

The connection between integer character sums and residues of G-CTST partition
functions extends to the more refined sums considered in sections 3.4.1 and 3.4.2. As
an example consider (3.125) involving powers of two conjugacy class sums C1, C2 and a
single power of Cµ and let us introduce a partition function depending on two chemical
potentials µ1, µ2

Z(µ1, µ2;C1, C2)

=
∞∑︂

k,l=0

µk
1µ

l
2

1

|G|
δ
(︁
ΠCk

1 (C
l
2|Cµ|Tµ)

)︁
,

=
∞∑︂

k,l=0

∑︂
R

(︃
µ1χ

R(C1)

dimR

)︃k (︃
µ2χ

R(C2)

dimR

)︃l
χR(|Cµ|Tµ)

dimR
,

=
∑︂
R

1

(1− µ1χR(C1)
dimR

)

1

(1− µ2χR(C2)
dimR

)

χR(|Cµ|Tµ)

dimR
,

=
∑︂
R1,R2

1

(1− µ1χR1 (C1)
dimR1

)

1

(1− µ2χR2 (C2)
dimR2

)

∑︂
R:[χR1 (C1),χR2 (C2)]

χR(|Cµ|Tµ)

dimR
. (3.150)
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In the last line, we have introduced sums over a complete set of pairs of irreducible
representations R1, R2 which have distinct character values [χR1(C1), χ

R2(C2)]. For each
pair of values, we have a sum over R running over the distinct irreducible representations
having these characters. It follows that the singularities of these generating functions are
at

µ1 =
dimR1

χR1(C1)
, µ2 =

dimR2

χR2(C2)
. (3.151)

The residues at these simgularities are∑︂
R:[χR1 (C1),χR2 (C2)]

χR(|Cµ|Tµ)

dimR
. (3.152)

These residues are integers as explained in Proposition 3.3.2-IV.

4 Further remarks on G-CTST and future directions

We collect a few comments here on the stringy interpretation of the determinants that have
played a central role in the algorithms earlier in the paper. We find a link to plethystic
exponentials of low genus amplitudes. The plethystic exponential function has well known
applications in AdS/CFT relating the counting of single trace gauge invariants in CFT to
multi-trace counting [58] . It also has a related application in tensor model holography,
relating the counting of connected and disconnected surfaces which are related to tensor
model invariants [59]. Careful quantum gravitational discussions of the normalizations of
partition functions relevant to combinatoric topological strings are in [9, 10,13].

The second point we develop is S-duality for G-CTST. While S-duality was discussed
in [11] in terms of entangled disconnected surfaces, we observe that there is also an
interpretation of the S-dual amplitudes in terms of the inversion of the handle-creation
operator in the group algebra of G. We observe that for both the untwisted and untwisted
case this inverse operator is well-defined. We give an expression for the inverse handle
creation operator as an expansion in the projector basis Z(Cω(G)). A combinatoric
description of the expansion in terms of the conjugacy class basis for Z(Cω(G)) is an
interesting question. The third point concerns the implications of finiteness of G for
relations between G-CTST amplitudes.

4.1 Construction of integer ratios |G|2/(dimR)2 and stringy in-
terpretation
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4.1.1 Background

The construction of the integer ratios |G|/ dimR from group multiplications in [11] used
the determinant det(x−X), and its expansion in terms of products of traces

det(x−X) = xK − e1(X)xK−1 + e2(X)xK−2 + · · ·+ (−1)KeK(X), (4.1)

where the ei denote the elementary symmetric functions, given by

e0(X) = 1,

e1(X) =
∑︂
i

Xi,

e2(X) =
∑︂

1≤i<j≤K

XiXj,

el(X) =
∑︂

1≤i1<i2<···<il≤K

Xi1Xi2 · · ·Xil . (4.2)

The elementary symmetric functions can be expressed in terms of traces ofX as in (3.133).
As was argued in [11], the algorithm presented there was a stringy construction more

than a field theoretic construction, since it involved combining amplitudes of different
genera, but there was not a crisp simple connection between the algorithm and a stringy
observable.

As a first step in this direction, note that e1(X) is trX = Zh=2. In a stringy partition
function this is naturally weighted with g2st. The next elementary symmetric polynomial,
e2(X), is a linear combination of trX2 = Zh=3 and (trX)2 = Z2

h=2. Both of these are
weighted with g4st. The next elementary symmetric polynomial, e3(X), is a linear combi-
nation of Zh=4, Zh=3Zh=2, and Z3

h=2, all of which are naturally weighted by g6st. In general,
ek(X) is associated with g2kst .

The determinant above can be written as

det(X − x) = xK
(︁
1− e1(X)x−1 + e2(X)x−2 + · · ·+ (−1)Kx−KeK(X)

)︁
. (4.3)

By substituting x → g−2
st , we can write

x−K det(X − x)|x=g−2
st

= 1− e1(X)g2st + e2(X)g4st + · · ·+ (−1)kg2Kst eK(X). (4.4)

This looks like a stringy observable. We develop a link with disconnected string diagrams
below.
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4.1.2 Determinant from generating function of disconnected worldsheets

Start with the observation that a generating function of disconnected diagrams of genus
2 or higher can be obtained by expanding the exponential of a sum

Zdisconn(g
2
st) = exp

∞∑︂
k=1

g2kst
Zk+1

k
= exp

∞∑︂
k=1

g2kst
trXk

k
, (4.5)

=
∞∏︂
k=1

∞∑︂
pk=0

g2kpkst

pk!

(︃
trXk

k

)︃pk

, (4.6)

=
∞∑︂

pk=0

∞∏︂
k=1

g
∑︁

k 2kpk
st

kpkpk!
(trXk)pk . (4.7)

The argument of the exponential is motivated by the plethystic exponential function as
studied in [58,59]. Now observe that the first line is a determinant:

exp
∞∑︂
k=1

g2kst
trXk

k
= exp

(︁
−tr log(1− g2stX)

)︁
=

1

det(1− g2stX)
, (4.8)

where in the last equality, we used

det(A) = exp tr log(A). (4.9)

We conclude

det(1− g2stX) =
1

Zdisconn(g2st)
. (4.10)

So the determinant used in the algorithm for |G|2/(dimR)2 is nothing but the inverse
of the generating function for the disconnected diagrams. The zeroes of this inverse
generating function are at g2st = (dimR)2/|G|2, or g−2

st = |G|2/(dimR)2. A remarkable
fact is that this inverse generating function truncates at a finite power of g2st. This is due
to the finiteness properties of the theory. Another way to express the remarkable fact is
that the generating function of disconnected string diagrams is a rational function.

In [11], it was observed that finding the zeroes of det(x − X) in (4.1), viewed as a
function of x, gives a finite algorithm (which uses as input the products of traces of X
available from G-CTST partition functions) to arrive at the integer ratios |G|/ dimR. The
identification of the formal variable x with g−2

st above and the equation (4.10) shows that
the integer ratios have the physical interpretation of being the locations in the g−2

st plane
of the poles of the generating function of disconnected amplitudes. It was also observed
in [11] that the poles of the connected generating function as a function of gst are given in
terms of the integer ratios |G|/ dimR. Connected and disconnected generating functions
are related through the plethystic exponential function (see [58] for applications of the
plethystic exponential in the combinatorics of moduli spaces of supersymmetric gauge
theories).
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4.2 S-duality in G-CTST and the inverse handle-creation oper-
ator

Following the discussion in [11], the generating function of connected closed string ampli-
tudes is

Z(gst) =
∞∑︂
h=0

g2h−2
st

∑︂
R

(|G|)2h−2

(dimR)2h−2
, (4.11)

=
∑︂
R

(dimR)4

g2st|G|2((dimR)2 − |G|2g2st)
. (4.12)

An S-dual generating function is defined as

Z̃(g̃st) = −g̃−4
st Z(gst → g̃−1

st ). (4.13)

It is calculated to be

Z̃(g̃st) =
∑︂
R

(dimR)4

|G|4

(︃
1− g̃2st

(dimR)2

|G|2

)︃−1

, (4.14)

=
∑︂
R

(dimR)4

|G|4

(︃
1 + g̃2st

(dimR)2

|G|2
+ g̃4st

(dimR)4

|G|4
+ · · ·

)︃
, (4.15)

=
∑︂
R

∞∑︂
k=1

g̃2+2k
st

(dimR)2+2k

|G|2+2k
. (4.16)

In [11] a geometrical interpretation for the positive power sums of dimensions was given in
terms of disconnected entangled surfaces. Here we develop an alternative interpretation
of this S-dual expansion.

Recall the handle creation operator

Π =
∑︂
R

|G|2

(dimR)2
PR (4.17)

with the property δ(PR) =
(dimR)2

|G| so that the genus h partition function is obtained by
taking the trace of h powers of Π.

Zh =
1

|G|
δ(Πh) =

∑︂
R

(dimR)2h−2

|G|2h−2
. (4.18)

We observe that the handle creation operator has an inverse element in the center of the
group algebra, which is given by

Π−1 =
∑︂
R

(dimR)2

|G|2
PR. (4.19)
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We have

ΠΠ−1 =
∑︂
R,S

(dimR)2

|G|2
|G|2

(dimS)2
PRPS, (4.20)

=
∑︂
R

PR = 1. (4.21)

We propose to interpret the inverse handle creation operator Π−1 as the handle creation
operator of the S-dual theory and denote it as Π−1 = Π̃.

Note that the leading order term in the S-dual generating function (4.14) is

1

|G|
δ(Π̃) =

∑︂
R

1

|G|
(dimR)2

|G|2
δ(PR), (4.22)

=
∑︂
R

(dimR)4

|G|4
. (4.23)

Since there is a single power of Π̃, it is natural to interpret this as the partition function
at genus one of the S-dual theory. The higher powers are

1

|G|
δ(Π̃

k
) =

∑︂
R

(dimR)2+2k

|G|2+2k
(4.24)

which can therefore be interpreted as genus k partition function of the dual theory.
Remark: It would be interesting to understand if there is a string field theory that

generates the S-dual perturbation expansion above. One may be able to get some hints
by examining the coefficients of the expansion of Π−1 in a basis of twist fields. Such an
expression could be obtained using the character expansion of PR to obtain a formula for
Π−1 as an expansion in terms of the twist operator basis of Z(Cω(G)). The expansion
coefficients involve the calculation of the sums∑︂

R

(dimR)3χR(g). (4.25)

These sums are some functions of g. It would be interesting to find out how these depend
on the conjugacy class of g.

For example in C(S3) it is easy to calculate

Π = 18 + 9((1, 2, 3) + (1, 3, 2)),

Π−1 =
1

12
− 1

36
((1, 2, 3) + (1, 2, 3)). (4.26)

It would be interesting to explore this for general C(Sn) and other group algebras.
Dualities in the context of discrete gauge theories have been discussed in [56,57]. It will

be interesting to investigate potential relations between these dualities and the S-duality
considered here.
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4.3 Finiteness relations

Systematic studies of the consequences of finiteness of G on the string amplitudes of G-
CTST, both in untwisted and twisted case, are interesting future directions. For any
group G, with K conjugacy classes, there are universal K-dependent finiteness relations
which were described explicitly in [11]. Requiring that these finite K relations appear as
null states of an inner product led to a discussion of the factorization puzzle in 2D/3D
holography [60]. The inner product discussed in [11] was not uniquely determined. It
would be interesting to investigate if there is a natural inner product, determined by the
finiteness relations, possibly with additional data naturally related to G-CTST. As we
have seen in this paper, the degeneracies of representation theoretic data (e.g. of values
of dimensions of irreps) have important implications for integrality. They can be expected
to play a role in G-dependent refinements of the finite K relations.
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A Basics of group cohomology

Briefly, group cohomology Hn(G,U(1)) can be represented by cochains Cn(G,U(1)),
meaning maps Gn → U(1), which are closed in the sense dω = 0 for

d : Cn(G,U(1)) −→ Cn+1(G,U(1)) (A.1)

defined by

(dω)(g1, · · · , gn+1) = ω(g2, · · · , gn+1)

[︄
n∏︂

i=1

(ω(g1, · · · , gi−1, gigi+1, gi+2, · · · ))(−)i

]︄
· (ω(g1, · · · , gn))(−)n+1

, (A.2)

modulo coboundaries, meaning the image of d : Cn−1(G,U(1)) → Cn(G,U(1)).
For example, [ω] ∈ H2(G,U(1)) are maps ω : G2 → U(1) such that

ω(g2, g3)

ω(g1g2, g3)

ω(g1, g2g3)

ω(g1, g2)
= 1, (A.3)
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modulo equivalences

ω(g1, g2) ∼ ω(g1, g2)
b(g1) b(g2)

b(g1g2)
(A.4)

for b : G → U(1).
One can always pick cocycles so that, for example for 2-cocycles,

ω(1, g) = 1 = ω(g, 1) (A.5)

for any group element g. We work with such normalized cocycles in in this paper.

B Characters of projective representations

In this appendix we review some basics facts and results on characters of projective
representations of finite groups that are used elsewhere in this paper.

Perhaps the first result to recall is that, unlike characters of ordinary group repre-
sentations, characters of projective representations are not class functions (not invariant
under conjugation), but instead obey [42, section 7.2, prop. 2.2]

χR(g) =
ω(g, h−1)

ω(h−1, hgh−1)
χR(hgh−1), (B.1)

as was previously mentioned in (2.10).
Second, these characters vanish on non-ω-regular group elements, see e.g. [42, section

7.2, prop. 2.2], where an element g ∈ G is said to be ω-regular if for all h commuting
with g,

ω(g, h) = ω(h, g). (B.2)

Irreducible projective representations are in one-to-one correspondence with ω-regular
conjugacy classes.

Next, we know (see e.g. [42, section 7.3], [61, section 31.1], [16, equ’ns (B.4), (B.20)])

1

|G|
∑︂
g∈G

DR(g)juD
S(g−1)ik

ω(g, g−1)
=

δR,S

dimR
δjkδui, (B.3)

and, for [g], [h] both4 ω-regular conjugacy classes,

∑︂
R

χR(g)χR(h−1)

ω(h, h−1)
=

⎧⎪⎨⎪⎩
0 g, h not conjugate,
|G|
|[g]| g = h,

ω(a,g)
ω(h,a)

|G|
|[g]| g = a−1ha,

(B.4)

4If either is not an ω-regular conjugacy class, then the corresponding characters vanish, and the sum
equals zero.
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where R, S are irreducible projective representations (with respect to ω), DR(g) is a
matrix representing g ∈ G in R, meaning

DR(g)DR(h) = ω(g, h)DR(gh), (B.5)

the sum in the second identity is over irreducible projective representations, and |[g]|
denotes the number of elements in a conjugacy class containing g.

For use in other sections, from the expressions above one can show (see e.g. [16,
appendix B])

1

|G|
∑︂
g∈G

ω(a, g)ω(g−1, b)

ω(g, g−1)
χR(ag)χS(g−1b) =

δR,S

dimR
ω(a, b)χR(ab). (B.6)

1

|G|
∑︂
g∈G

ω(g, a)ω(b, g−1)

ω(g, g−1)
χR(ga)χS(bg−1) =

δR,S

dimR
ω(a, b)χR(ab). (B.7)

1

|G|
∑︂
g∈G

ω(g, a)ω(g−1, b)ω(ga, g−1b)

ω(g, g−1)
χR(gag−1b) =

1

dimR
χR(a)χR(b). (B.8)

1

|G|
∑︂
g∈G

ω(a, g)ω(b, g−1)ω(ag, bg−1)

ω(g, g−1)
χR(agbg−1) =

1

dimR
χR(a)χR(b). (B.9)

(Alternatively, by writing in terms of characters of products of τ ’s, one can produce
equivalent expressions without factors of ω.)

Furthermore, from (B.4), it is straightforward to show that

δ (g) =
∑︂
R

dimR

|G|
χR (g) . (B.10)

Let us check that this identity is well-defined under conjugation. Using (B.1),

δ
(︁
hgh−1

)︁
=

∑︂
R

dimR

|G|
χR
(︁
hgh−1

)︁
, (B.11)

=
ω(h−1, hgh−1)

ω(g, h−1)
δ(g). (B.12)

If hgh−1 ̸= 1, then both sides vanish, so there is no ambiguity. Similarly, if hgh−1 = 1,
then g = 1, and

ω(h−1, hgh−1)

ω(g, h−1)
= 1, (B.13)

so again the identity is unambiguous.
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In passing, for the projector PR given in equation (2.17), note that this implies

δ (PR) =
dimR

|G|
∑︂
g∈G

χR(g−1)

ω(g, g−1)
δ(g), (B.14)

=
dimR

|G|2
∑︂
g∈G

χR(g−1)

ω(g, g−1)

∑︂
S

(dimS)χS(g), (B.15)

but from (B.6), one has ∑︂
g∈G

χR(g)χS(g−1)

ω(g, g−1)
= |G|δRS, (B.16)

hence

δ (PR) =
∑︂
S

(dimR)(dimS)

|G|2
|G|δRS, (B.17)

=
(dimR)2

|G|
. (B.18)

Another identity that will be useful involves the handle creation operator Π given
in (C.39). Using (B.6), first note that

χS(PR) =
dimR

|G|
∑︂
g∈G

χR(g−1)χS(g)

ω(g, g−1)
= (dimR)δR,S. (B.19)

Then,

χS(Π) =
∑︂
R

(︃
|G|

dimR

)︃2

χS(PR), (B.20)

=
|G|2

dimR
. (B.21)

One of the consequences of the fact that characters of projective representations are
not invariant under conjugation is that, unlike characters of ordinary representations for
which

χR(gh) = χR(hg) (B.22)

characters of projective representations instead have the property

χR(gh) ̸= χR(hg) (B.23)

in general. For example, for representations of D4 with nontrivial discrete torsion, then
from [16, section 4.5] and references therein,

χr(b = baa) ̸= χr(aba = bz). (B.24)
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For example, in the notation of that reference,

χ1(b) = 1 + i, χ1(bz) = 1− i. (B.25)

In fact, we can derive a general relation between χR(gh) and χR(hg) as follows. In
principle,

χR(g) = Tr ρR(g), (B.26)

where ρR(g) is a matrix representing g. Now,

χR(gh) = Tr ρR(gh), (B.27)

= ω(g, h)−1Tr ρR(g)ρR(h), (B.28)

= ω(g, h)−1Tr ρR(h)ρR(g), (B.29)

=
ω(h, g)

ω(g, h)
Tr ρR(hg), (B.30)

=
ω(h, g)

ω(g, h)
χR(hg). (B.31)

As a consistency check, we claim that δ(gh) = δ(hg). Now, from (B.10),

δ(gh) =
∑︂
R

dimR

|G|
χR(gh), (B.32)

=
ω(h, g)

ω(g, h)

∑︂
R

dimR

|G|
χR(hg), (B.33)

=
ω(h, g)

ω(g, h)
δ(hg). (B.34)

Now, if gh ̸= 1, then hg ̸= 1, so both sides of the relation above vanish, and in particular,
δ(gh) = δ(hg) = 0. Suppose instead that gh = 1, so that δ(gh) = 1. In this case, h = g−1,
and from

(dω)(g, g−1, g) = 1, (B.35)

we have
ω(g, g−1) = ω(g−1, g). (B.36)

Thus, if gh = 1, then δ(gh) = δ(hg) = 1, so for all g and h, δ(gh) = δ(hg).

C Two-dimensional Dijkgraaf-Witten theory

In this appendix we collect some technical results on two-dimensional twisted Dijkgraaf-
Witten theory that are used in the main text. Although we have not located a complete
set of prior references, we believe these results were known previously; we include them
and their derivations here for completeness and to make the detailed arguments of the
main text convincing.
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C.1 Partition functions

In this section we will compute genus g partition functions of two-dimensional Dijkgraaf-
Witten theory with discrete torsion, in the same style as the analysis of [11, section
2] to include discrete torsion. Now, to be clear, these partition functions have been
computed previously in the literature, see for example [10] in the physics literature for a
recent computation in two-dimensional Dijkgraaf-Witten theory specifically, [27, appendix
C.1] for a recent review of results on partition functions of 2d TQFTs, and in the math
literature, see for example [62–66] for partition functions and one-point functions in cases
without5 discrete torsion, where these are given as the orbifold Euler characteristics of
the moduli space of flat G bundles,

χorb (MG(Σ)) = χorb (Hom(π1(Σ), G)/G) , (C.1)

=
|Hom(π1(Σ), G)|

|G|
, (C.2)

=
∑︂

ρ∈Hom(π1(Σ),G)/G

1

|Aut(ρ)|
, (C.3)

=
∑︂
R

(︃
dimR

|G|

)︃χ(Σ)

. (C.4)

(We do not claim to give a complete list of references, but merely list a few represen-
tative examples; additional references are given in e.g. [63, 66, 67].) Also, in passing, an
alternative computation of the same result is given in section 2.2.1.

First, we consider the genus-one partition function. Using (B.3) it is straightforward
to check ∑︂

g1,g2∈G

DR(g1)abD
R(g2)bcD

R(g−1
1 )cdD

R(g−1
2 )de

ω(g1, g
−1
1 )ω(g2, g

−1
2 )

=

(︃
|G|

dimR

)︃2

δae. (C.5)

(Compare [11, equ’n (2.4)].) From this one immediately derives

∑︂
g1,g2

DR
ae ([g1, g2])

ω(g1, g2)ω(g
−1
1 , g−1

2 )ω(g1g2, g
−1
1 g−1

2 )

ω(g1, g
−1
1 )ω(g2, g

−1
2 )

=

(︃
|G|

dimR

)︃2

δae, (C.6)

where
[g1, g2] = g1g2g

−1
1 g−1

2 . (C.7)

5Partition functions including discrete torsion have certainly been computed previously in the physics
literature, see e.g. [1]. We include such computations here for completeness. Our expectation is that
partition functions including discrete torsion were also computed, albeit in different language, in the
mathematics literature in the same era as [64, 65], though we have not been able to find a specific
mathematics reference.
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In particular,∑︂
g1,g2

χR ([g1, g2])
ω(g1, g2)ω(g

−1
1 , g−1

2 )ω(g1g2, g
−1
1 g−1

2 )

ω(g1, g
−1
1 )ω(g2, g

−1
2 )

=

(︃
|G|

dimR

)︃2

dimR. (C.8)

By multiplying in
(dω)(g2, g1, g

−1
1 )

(dω)(g1g2, g
−1
1 , g−1

2 )
= 1, (C.9)

one finds that in the special case g1g2 = g2g1,

ω(g1, g2)ω(g
−1
1 , g−1

2 )ω(g1g2, g
−1
1 g−1

2 )

ω(g1, g
−1
1 )ω(g2, g

−1
2 )

=
ω(g1, g2)

ω(g2, g1)
. (C.10)

Using (B.10),

δ ([g1, g2]) =
∑︂
R

dimR

|G|
χR ([g1, g2]) . (C.11)

Assembling these pieces, we have that the genus-one partition function (with discrete
torsion) is given by

Zg=1 =
1

|G|
∑︂
g1,g2

δ ([g1, g2])
ω(g1, g2)

ω(g2, g1)
, (C.12)

=
1

|G|
∑︂
g1,g2

δ ([g1, g2])
ω(g1, g2)ω(g

−1
1 , g−1

2 )ω(g1g2, g
−1
1 g−1

2 )

ω(g1, g
−1
1 )ω(g2, g

−1
2 )

, (C.13)

=
1

|G|
∑︂
g1,g2

[︄∑︂
R

dimR

|G|
χR ([g1, g2])

]︄
ω(g1, g2)ω(g

−1
1 , g−1

2 )ω(g1g2, g
−1
1 g−1

2 )

ω(g1, g
−1
1 )ω(g2, g

−1
2 )

,

=
∑︂
R

dimR

|G|2

[︄∑︂
g1,g2

χR ([g1, g2])
ω(g1, g2)ω(g

−1
1 , g−1

2 )ω(g1g2, g
−1
1 g−1

2 )

ω(g1, g
−1
1 )ω(g2, g

−1
2 )

]︄
, (C.14)

=
∑︂
R

dimR

|G|2

(︃
|G|

dimR

)︃2

dimR, (C.15)

=
∑︂
R

(1), (C.16)

where we used (C.8). This recovers the result in [1, equ’n (6.40)].
Next, we compute the partition functions on Riemann surfaces of general genus. We

will follow the notation of [68]. Consider a Riemann surface of genus g, with insertions
defined by group elements ai, bi, i ∈ {1, · · · , g}. Define γi = [ai, bi], and

X =

[︄∏︂
i

ω(ai, a
−1
i )
∏︂
i

ω(bi, b
−1
i )

]︄−1

. (C.17)
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Then, from (B.3), we have that∑︂
ai,bi

DR(a1)D
R(b1)D

R(a−1
1 )DR(b−1

1 ) · · ·DR(b−1
g )

ω(a1, a
−1
1 )ω(b1, b

−1
1 ) · · ·ω(bg, b−1

g )
=

(︃
|G|

dimR

)︃2g

I, (C.18)

=
∑︂
ai,bi

DR (γ1 · · · γg)Xω(a1, b1)ω(a1b1, a
−1
1 )ω(a1b1a

−1
1 , b−1

1 )ω(γ1, a2)ω(γ1a2, b2)ω(γ1a2b2, a
−1
2 )

·ω(γ1a2b2a−1
2 , b−1

2 )ω(γ1γ2, a3) · · ·ω(γ1 · · · γg−1agbga
−1
g , b−1

g ). (C.19)

Now, the phase factor assigned by discrete torsion to a genus g Riemann surface
is [68, equ’n (15)] (see also [69])

ϵg(ai, bi) ≡ Xω(a1, b1)ω(a1b1, a
−1
1 )ω(a1b1a

−1
1 , b−1

1 )ω(γ1, a2)ω(γ1a2, b2)ω(γ1a2b2, a
−1
2 )

·ω(γ1a2b2a−1
2 , b−1

2 )ω(γ1γ2, a3) · · ·ω(γ1 · · · γg−1agbga
−1
g , b−1

g ). (C.20)

Thus, we can write the expression above as∑︂
ai,bi

DR (γ1 · · · γg) ϵg(ai, bi) =

(︃
|G|

dimR

)︃2g

I. (C.21)

In particular, ∑︂
ai,bi

χR (γ1 · · · γg) ϵg(ai, bi) =

(︃
|G|

dimR

)︃2g

(dimR). (C.22)

Applying the identity (B.10)

δ(γ1 · · · γg) =
∑︂
R

dimR

|G|
χR(γ1 · · · γg), (C.23)

we then compute

Zg =
1

|G|
∑︂
ai,bi

δ

(︄∏︂
i

γi

)︄
ϵg(ai, bi), (C.24)

=
1

|G|
∑︂
ai,bi

[︄∑︂
R

dimR

|G|
χR(γ1 · · · γg)

]︄
ϵg(ai, bi), (C.25)

=
1

|G|
∑︂
R

dimR

|G|

[︄∑︂
ai,bi

χR(γ1 · · · γg)ϵg(ai, bi)

]︄
, (C.26)

=
1

|G|
∑︂
R

dimR

|G|

[︄(︃
|G|

dimR

)︃2g

(dimR)

]︄
, (C.27)

=
∑︂
R

(︃
|G|

dimR

)︃2g−2

, (C.28)

where we have used equation (C.22).
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C.2 Handle creation operator

In this section, we will describe the handle creation operator in the presence of discrete
torsion, and its basic properties.

Without discrete torsion, the handle creation operator is [11, equ’n (6.23)]

Π =
∑︂

g1,g2∈G

τg1τg2τ
−1
g1

τ−1
g2

, (C.29)

and it is claimed that

Π =
∑︂
R

(︃
|G|

dimR

)︃2

PR, (C.30)

for PR the projection operator.
As a consistency test, note this implies∑︂

g1,g2∈G

DS
(︁
g1g2g

−1
1 g−1

2

)︁
=
∑︂
R

(︃
|G|

dimR

)︃2

DS(PR). (C.31)

Let us check that this implication is correct for every irreducible representation S.
First, from (C.6), in the absence of discrete torsion, we have∑︂

g1,g2∈G

DS
(︁
g1g2g

−1
1 g−1

2

)︁
=

(︃
|G|

dimS

)︃2

I. (C.32)

Now,

PR =
dimR

|G|
∑︂
g∈G

χR(g−1)τg, (C.33)

hence

DS(PR) =
dimR

|G|
∑︂
g∈G

χR(g
−1)T S(g), (C.34)

= δR,SI using (B.3), (C.35)

hence ∑︂
g1,g2∈G

DS
(︁
g1g2g

−1
1 g−1

2

)︁
=

∑︂
R

(︃
|G|

dimR

)︃2

δR,SI, (C.36)

=
∑︂
R

(︃
|G|

dimR

)︃2

DS(PR), (C.37)

confirming (C.31. Since this holds for any irreducible representation S, we take this as a
confirmation of the handle creation operator identity (C.30).
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Now, let us turn to the case with discrete torsion.
Here, we define the handle creation operator to be

Π =
∑︂

g1,g2∈G

τg1τg2τ
−1
g1

τ−1
g2

=
∑︂

g1,g2∈G

ω(g1, g2)ω(g
−1
1 , g−1

2 )ω(g1g2, g
−1
1 g−1

2 )

ω(g1, g
−1
1 )ω(g2, g

−1
2 )

τg1g2g−1
1 g−1

2
, (C.38)

and we claim that

Π =
∑︂
R

(︃
|G|

dimR

)︃2

PR. (C.39)

As a consistency check, this implies that∑︂
g1,g2∈G

ω(g1, g2)ω(g
−1
1 , g−1

2 )ω(g1g2, g
−1
1 g−1

2 )

ω(g1, g
−1
1 )ω(g2, g

−1
2 )

DS
(︁
g1g2g

−1
1 g−1

2

)︁
=
∑︂
R

(︃
|G|

dimR

)︃2

DS(PR).

(C.40)
Let us check that this implication is correct for every irreducible representation S.

First, from (C.6), we have∑︂
g1,g2∈G

ω(g1, g2)ω(g
−1
1 , g−1

2 )ω(g1g2, g
−1
1 g−1

2 )

ω(g1, g
−1
1 )ω(g2, g

−1
2 )

DS
(︁
g1g2g

−1
1 g−1

2

)︁
=

(︃
|G|

dimR

)︃2

I. (C.41)

Now, with discrete torsion,

PR =
dimR

|G|
∑︂
g∈G

χR(g−1)

ω(g, g−1)
g, (C.42)

so

DS(PR) =
dimR

|G|
∑︂
g∈G

χR(g−1)

ω(g, g−1)
DS(g), (C.43)

= δR,SI using (B.3), (C.44)

hence ∑︂
g1,g2∈G

ω(g1, g2)ω(g
−1
1 , g−1

2 )ω(g1g2, g
−1
1 g−1

2 )

ω(g1, g
−1
1 )ω(g2, g

−1
2 )
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(︁
g1g2g
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1 g−1

2

)︁
=

∑︂
R

(︃
|G|

dimR

)︃2

δR,SI, (C.45)

=
∑︂
R

(︃
|G|

dimR

)︃2

DS(PR) (C.46)

confirming (C.40). Since this holds for any irreducible representation S, we take this as
a confirmation of the handle creation operator identity (C.39).
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C.3 Handle creation operator identities

In this section, we will describe some handle-operator creation identities.
First, we claim that

δ
(︁
ΠnT[g]

)︁
=
∑︂
R

(︃
|G|

dimR

)︃2n−1

χR(g). (C.47)

To this end, recall the identity (C.39)

Π =
∑︂
R

(︃
|G|

dimR

)︃2

PR, (C.48)

where PR is the projector given by [16, equ’n (2.43)]

PR =
dimR

|G|
∑︂
k∈G

χR(k−1)

ω(k, k−1)
τk, (C.49)

hence

Πn =
∑︂
R

(︃
|G|

dimR

)︃2n

PR, (C.50)

and [16, equ’n (2.17)]

T[g] =
1

|G|
∑︂
h∈G

ω(h, g)ω(hg, h−1)

ω(h, h−1)
τhgh−1 . (C.51)

Thus,

δ
(︁
ΠnT[g]
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=
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where we have used the fact that

τgτh = ω(g, h)τgh. (C.53)

Using
(dω)(kh, g, h−1)

(dω)(k, hg, h−1) (dω)(k, h, g)
= 1 (C.54)

we have

ω(h, g)ω(hg, h−1)ω(k, hgh−1)

ω(h, h−1)
=

ω(k, h)ω(g, h−1)ω(kh, gh−1)
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, (C.55)
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hence
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Using (B.9),
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R
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using (B.6).
Next, we compute
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. (C.60)

Using (C.55) and (B.9), this reduces to
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Modulo the factor of χS(g2), this now essentially reduces to the previous computation.
Using (C.55) and (B.9) again, we have
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and using (B.6), we have
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At this point, it is straightforward to derive an analogous expression for cases with
more factors of T[g]. Define

γi = higih
−1
i , Ai =
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, (C.62)

we have
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Applying (C.55) and (B.9) to perform the sum over hm, this becomes
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Iterating that procedure, and then using (B.6), we find
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Since this is linear in each factor, this immediately implies that for S1, · · · , Sm any
elements of the center of the group algebra,
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As a consistency check, note that if S1 = Π, say, then from (B.21), we have
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= |G|
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. (C.70)
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