
IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 14, NO. 4, APRIL 2019 833

Retrieving Hidden Friends: A Collusion Privacy
Attack Against Online Friend Search Engine

Yuhong Liu and Na Li

Abstract— Online social networks (OSNs) are providing a
variety of applications for human users to interact with families,
friends, and even strangers. One such application, the friend
search engine, allows the general public to query individual users’
friend lists and has been gaining popularity recently. However,
without proper design, this application may mistakenly disclose
users’ private relationship information. Our previous work has
proposed a privacy preservation solution that can effectively
boost OSNs’ sociability while protecting users’ friendship privacy
against attacks launched by individual malicious requestors.
In this paper, we propose an advanced collusion attack, where a
victim user’s friendship privacy can be compromised through
a series of carefully designed queries coordinately launched
by multiple malicious requestors. The effect of the proposed
collusion attack is validated through synthetic and real-world
social network data sets. The in-depth research on the advanced
collusion attacks will help us design a more robust and secure
friend search engine on OSNs in the near future.

Index Terms— Social computing, privacy, network security.

I. INTRODUCTION

O
NLINE social networks (OSNs) have become very popu-
lar in recent years, such as Facebook and Twitter, which

have been part of many people’s daily life. The OSNs provide
different applications for people to share their information and
interact with each other. One of the most popular applications
is the friend search engine, which allows users to query friend
lists of other users. To increase their sociability and attract
more users, OSNs tend to release users’ friends as many as
possible, as it is believed that the larger number of common
friends are displayed, the more likely the requestor and the
queried user would connect later.

However, this search engine may expose more friendship
information than what a queried user is willing to share, which
is considered as a privacy breach. A few researchers have
observed such an issue by randomly crawling an OSN through
the friend search API [1]. Also, they concluded that without
appropriate defenses, one could discover all users’ friendships

Manuscript received January 17, 2018; revised May 31, 2018; accepted
August 3, 2018. Date of publication August 21, 2018; date of current version
October 30, 2018. This work was supported by NSF under Grant 1712496.
The associate editor coordinating the review of this manuscript and approv-
ing it for publication was Dr. Anna Squicciarini. (Corresponding author:

Yuhong Liu.)
Y. Liu is with the Department of Computer Engineering, Santa Clara

University, Santa Clara, CA 95050 USA (e-mail: yhliu@scu.edu).
N. Li is with the Department of Computer Science, Prairie View A&M Uni-

versity, Prairie View, Prairie View, TX 77446 USA (e-mail: nali@pvamu.edu).
Color versions of one or more of the figures in this paper are available

online at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/TIFS.2018.2866309

in the OSN without using many queries [2], [3]. If such a
privacy breach is not well dealt with, the OSN users may feel
panic and hesitate to continue using the OSNs.

In our preliminary work, we designed a privacy-aware friend
display scheme in [4], which cannot only successfully preserve
users’ friendship privacy but also boost the sociability of the
OSN. This scheme is one of the most advanced researches
on preserving user privacy for friend search engines, which
has been verified to successfully prevent attacks from being
launched by independent attackers. However, collusion attacks,
where multiple malicious requestors share their knowledge and
coordinately launch queries, may make the defense scheme
ineffective. In this paper, we particularly focus on the design
of collusion attacks against users’ friendship privacy in OSNs.
The major contributions of this paper are listed as follows.

First, to the best of our knowledge, we are the first
researchers studying such advanced privacy attacks as collu-
sion attacks against friend search engine in OSNs.

Second, in-depth analysis has been provided on querying a
small scale complete graph as well as a general network in var-
ious scenarios, which well explains the fundamental reasons of
why and how the proposed attack is designed. In particular,
we observe the defense scheme’s [4] asymmetric disclosure
of users’ symmetric friendships. By taking advantage of it,
we design an advanced collusion attack, in which multiple
malicious requestors closely coordinate with one another to
launch their queries on different but related users in well
designed orders. The design logic can be generally applied to
launch attacks against any friendship privacy preserving solu-
tions that disclose the symmetric friendship in an asymmetric
way.

Third, the proposed collusion attack is designed to carefully
select which users to query, which can significantly reduce the
total amount of query effort.

Fourth, to evaluate the effectiveness of our proposed attack
strategy, we implement and run it on one synthetic data set
and three large scale real-world data sets. Experiment results
demonstrate that the proposed attack strategy works efficiently
and effectively on large scale data sets. By comparing the
proposed collusion attack with a naive direct attack, we find
that our strategy performs better in terms of both the success
rate and the required number of malicious requestors to
compromise a user’s friendship privacy.

Last but not least, our research on this advanced collusion
attack helps us better understand the attack design and shed
lights on the design of a securer privacy preserving friend
search engine in the future.

1556-6013 © 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: Prairie View A M University. Downloaded on August 05,2023 at 02:37:37 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-3717-427X

834 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 14, NO. 4, APRIL 2019

II. RELATED WORK

A. Preservation of OSN Friendship Privacy

As millions of users use OSNs everyday to conduct social
activities, search new friends and connect to them, the develop-
ment of privacy preserving friend search engines has attracted
wide attention. Fogues et al. [5] have presented a list of
threats against OSN users’ relationship privacy and the corre-
sponding requirements that privacy mechanisms should fulfill.
In [6], a trust chain based friend recommendation algorithm
is proposed with the purpose of preserving users’ privacy.
A few recent studies also work on protecting users’ location
information so that their sensitive friendship will not be
exposed because of frequent co-locations [7]. In addition,
there is a line of studies focusing on anonymizing users’
sensitive relationship when OSNs publish the data to third
parties [8]–[17].

Little attention, however, has been paid to addressing
vulnerabilities of friend search services provided by OSN
themselves, where the goal is to satisfy users’ friendship
privacy need while maintaining OSNs’ sociability at the
same time. The current solution taken by many OSNs in
practice is that, each individual user can choose to either
completely hide or completely display his/her entire friend
list. Nevertheless, the default setting of this configuration is
to expose the entire friend list, of which most users are not
aware [18]. The reason for OSNs to “quietly” make such
default setting is that if a large number of users make their
privacy settings as to completely hide the friend list, OSN’s
sociability will be dramatically affected [19]. Finer grained
friend list display strategies, which maintain OSNs’ sociability
by allowing privacy-aware users to partially display their
friend lists, are required.

Some OSNs take actions accordingly. For example, Face-
book has once limited the number of friends exposed in the
public listings to a fixed number, eight [2]. However, even
with this scheme implemented, users’ friendship privacy is
still under high risks due to three major issues. First, these
eight exposed friends are chosen randomly so that the OSN’s
sociability can be maintained by displaying diverse friend lists
to requestors. Bonneau et al. [2] show that eight friends
are already enough for a third party to crawl data so as
to estimate the network topology. Second, private friendship
information may be breached due to inconsistent privacy
settings from different users. For example, although user A
hides his/her friend list from queries, his/her friendship with
user B, whose friendships are all open to the public, can be
disclosed when user B’s friend list is queried. This problem is
called mutual effect in [4]. Various attack strategies to discover
private friendships by taking advantage of mutual effect are
discussed in [3]. Third, the Facebook solution sets a global
value, eight, as the number of friends to display for every
single user, limiting the flexibility of individual users to change
their privacy settings.

To enhance the protection of user friendship privacy,
we have previously proposed a privacy preserving scheme
in [4]. Compared to the Facebook solution, it provides the
flexibility for individual users to determine the number of

friends, say k, to display in response to friend queries. In addi-
tion, these “k” friends are determined as a fixed set of the
most “influential” friends to avoid privacy breach caused by
randomness while still maintaining OSNs’ sociability. To the
best of our knowledge, it is also the first work to successfully
handle the mutual effect while considering OSNs’ sociabil-
ity. With the deployment of this scheme, none independent
attackers can violate the privacy of any given target user [4].

B. Attacks Against OSN Friendship Privacy

Along with defense research, privacy attacks against OSN
friendship privacy are also extensively studied in the scientific
community. Specifically, such research can be classified into
two categories as attacks launched by (1) independent attackers
or (2) colluded attackers.

There are ample examples of independent attacks. A neigh-
borhood attack defined in [9] studies that an individual attacker
with some knowledge of the neighbors of a target node and
their relationship information is able to identify the target
node from a social network graph where user identifiers are
removed. Additionally, a few researchers have observed that by
randomly crawling an OSN through the friend search API [1],
an individual attacker can glean all friendship connections of
users in the OSN without many queries [2], [3].

Collusion attacks can be defined as attacks that involve
multiple malicious entities aiming at obtaining greater gain
than what the entities benefit from individually launched
attacks. The multiple entities can be fake accounts created
by a single attacker or by different real attackers [20]–[23].
Compared to individual attacks, collusion attacks can use
more complicated attack strategies and often exploit system
vulnerabilities that cannot be discovered by individual attacks.

There are a few simple collusion attacks researched in the
literature. For example, as mentioned in [24], some revoked
users can collude with legitimate users to continue accessing
the private data. However, less attention has been paid to
designing sophisticated collusion attack strategies where mul-
tiple malicious users conduct their behaviors in a highly coor-
dinated way and dynamically adjust their behaviors according
to systems’ feedback on other colluders’ behaviors. To our
best knowledge, there is very limited research on designing
comprehensive collusion attacks against user friendship pri-
vacy in OSNs.

In this paper, we fill in this gap by proposing an advanced
collusion attack where multiple attackers share their query
results with one another and coordinately launch their queries
based on others’ query results so that they can successfully
violate users’ friendship privacy.

III. ADOPTED DEFENSE SCHEME

We research the advanced collusion attack upon the defense
scheme proposed in our previous work [4], which designs a
privacy-aware display strategy to handle the tradeoff between
preserving user privacy and facilitating site sociability.

In [4], individual users are allowed to control their privacy
by setting a k value to indicate the number of friends that
they are willing to display in response to queries through the

Authorized licensed use limited to: Prairie View A M University. Downloaded on August 05,2023 at 02:37:37 UTC from IEEE Xplore. Restrictions apply.

LIU AND LI: RETRIEVING HIDDEN FRIENDS: A COLLUSION PRIVACY ATTACK AGAINST ONLINE FRIEND SEARCH ENGINE 835

Fig. 1. Illustration of previous defense scheme.

friend search engine. Different users can set different k values
according to their privacy preferences. We also assume that
an individual adversary is motivated to make many queries to
discover more friends than what users are willing to expose
to the public. The privacy preservation goal is to ensure
that all the users, including both the users queried and their
friends released in the query results, will have no more than
k friends exposed. On the other hand, the sociability of the
site, which is measured by the impact of the nodes appearing
in the query results, should be considered because ocial site
owners are prone to show their users who can stimulate more
interactions on the sites, such as motivating the querier to
request to be friend with any displayed users. The tradeoff
addressed in [4] is not trivial because the defender (i.g., social
site administrator/owner) can hardly predict the sequence of
the users the adversary plans to query. Therefore, it is very
challenging to provide the optimal set of users in response,
where the optimization means maximizing the sociability
without breaching the privacy. The proposed defense algorithm
that we proposed in [4] was able to well address such tradeoff
in a heuristic way.

Technically, we use a graph model to represent a friendship
network, where nodes and edges denote users and their friend-
ships, respectively. When a node x is queried, the defense
strategy first returns the friends whose connections with x were
already disclosed. Next, it sorts the rest neighboring friends
of x in the descending order of their impact on the sociability
of the OSN, checks each friend from the beginning of the
sequence and then chooses the neighboring friends for release
if the disclosure of their connections with x won’t violate the
privacy of other friends who are visible in the query results.
In total, it will display no more than k friends for x . The
purpose of sorting friends is to ensure that friends with high
sociability impact will be considered first in responding to
queries. This is how the scheme handles the aforementioned
trade-off between privacy and sociability. Note that in the rest
of this paper, nodes with high sociability impact in the OSN
are named as influential nodes for simplicity reasons.

In particular, we illustrate the defense scheme through an
example in Figure 1. Assume k = 2, when a requestor queries
node D and node F , the defense scheme will release node
A and B as D’s friends, and node G and H as F’s friends.
If node C is queried by the same requestor, although D is the
high influential friend, node B and J will be released as D

already has its two friends released. If node E is queried by

the same requestor, the defense scheme will not release any
friends as both D and F have reached their maximum number
of released friends.

By adopting the above mentioned defense scheme, the OSN
can record the prior query results for each individual requestor.
Such records are used to ensure that (1) the newly released
query results for any individual requestor will not violate the
privacy of any nodes that are queried by this requestor before;
and (2) when a node is queried by different requestors with the
same query history/order, the released query results are always
the same. The adopted defense scheme has been verified to be
effective when defending against independent attacks [4].

IV. COLLUSION ATTACK STRATEGY

The adopted defense scheme achieves its privacy preser-
vation goal by recording each requestor’s query history and
dynamically adjusting friendships to disclose based on the
requestor’s query history/order. However, it also opens the
possibilities for multiple colluded malicious requestors to
coordinately launch their queries in carefully designed orders
to retrieve extra information. In this section, we will investigate
the potential collusion attack strategies in details.

A. Attack Model

1) Attack Assumptions: In this work, we make the following
assumptions.

• Defense scheme. Network nodes’ privacy can be easily
violated if no defense scheme is employed. In this paper,
we adopt the scheme proposed in [4] as the defense
scheme to ensure that queries launched by individual
malicious requestor cannot violate users’ privacy. In addi-
tion, the top k friends displayed by the defense scheme
are the nodes with the highest influence on the sociability
of the OSN.

• The maximum number of friends to display - the k value.
This k value may vary due to different nodes’ personal
preferences. However, as this work is the first step to
investigate collusion attacks, we assume all the network
nodes set the same k value for simplicity reason. If a
node has friends less than k, it is impossible to violate
this node’s privacy. The study of assigning different k

values to different nodes will be conducted in the future
work.

• Multiple malicious requestors collude to compromise
the victim’s privacy by coordinately launching queries
on network nodes’ friendships and sharing their query
results. These malicious requestor accounts can be created
and manipulated by either a single or multiple real human
attacker(s).

• Attackers’ prior knowledge. Generally speaking,
the design of attack strategies is closely related with
attackers’ knowledge of the network. Attackers with
more knowledge tend to be more successful in achieving
their attack goals. In this paper, we assume that the
attacker has very limited prior knowledge - only the
existence of the victim node in the OSN.

Authorized licensed use limited to: Prairie View A M University. Downloaded on August 05,2023 at 02:37:37 UTC from IEEE Xplore. Restrictions apply.

836 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 14, NO. 4, APRIL 2019

Fig. 2. A complete graph with four nodes.

2) Attack Goal: The attack goal is to violate privacy of
a given victim node, in other words, to retrieve more than
k of the victim node’s friends. Note that there is only one
victim node for each collusion attack. Although some other
nodes’ privacy may be violated through the collusion attack,
we consider a collusion attack to be successful only when the
victim node’s privacy is breached.

3) Attack Challenge: The design of collusion attacks is
challenging. Specifically, if colluders behave in exactly the
same way as querying the same set of users in the same order,
each one of them will retrieve the same friendship information
due to the adoption of the defense scheme [4]. Such collusion
fails as it retrieves no more information than independent
attacks do. On the other hand, if colluders’ query behaviors
deviate too much, which leads to completely non-related query
results, the merging of such query results will not be able to
facilitate the privacy violation at all.

A successful collusion attack should have all the colluded
malicious requestors dynamically adjust their query targets and
orders according to their accomplices’ query results, so that
the victim node’s privacy can be violated in an effective and
efficient way. The design of such attacks is not trivial. Please
note that although the malicious requestors only know the
victim node before attack, they will learn more social network
users through continuous queries. Assume m represents the
total number of users that have been exposed to the colluded
malicious requestors so far, there would be m! unique query
orders to query these m nodes. Having m! malicious requestors
where each requestor tries one unique order is intractable
even with a moderate m value. More importantly, the m value
may keep growing when malicious requestors continue their
queries.

In this paper, we start by investigating collusion attacks in a
special social network graph, and then generalize the strategies
to fit more general network graphs.

B. Collusion Attacks in a Small Scale Complete Graph

To investigate collusion attack strategies, we would like to
start with a simple scenario - a small scale complete graph with
four nodes, as shown in Figure 2, where each node connects
to all other nodes.

For simplicity, we assume that each node only allows the
OSN to release one of its friends (i.e., k = 1). Assume these
nodes have different influences on the sociability of the OSN,
as IN1 > IN2 > IN3 > IN4 , where INi represents the influence

of node Ni . Note that the influence can be measured and
quantified through various information gathered by the OSNs.
We differentiate these nodes in sizes to represent their different
influences. In the following discussion, we will check, for each
individual node given in the Figure 2, whether a collusion
attack can successfully violate its privacy.

Recall the assumption in Section IV-A that malicious
requestors have no knowledge about the network except the
victim node. Collusion attacks under such assumption should
always start by querying the victim node. During the query
process, malicious requestors gradually learn more nodes that
are exposed in their query results, and from which they further
choose nodes to query afterwards.

First, let’s consider N1, the most influential node, as the vic-
tim node. Malicious requestor M R1 starts off by querying N1,
and then the OSN will respond with the friendship between
N1 and N2 (i.e. E(N1,N2)), since N2 is the most influential
friend of N1. If M R1 continues to query N2, and the OSN will
respond with E(N2,N1), as N1 is also the most influential friend
of N2. Note that E(N1,N2) and E(N2,N1) represent the same
relationship due to the symmetry of friendship. By queries,
M R1 will not be able to detect other friendship information
than E(N1,N2). Therefore, individual attack fails.

As a matter of fact, even if a new malicious requestor M R2

is involved to query N2, no additional information can be
discovered, since both N1 and N2 are the top one influential
friend for each other. The collusion attack fails as well. The
query process is summarized as follows.

MR1 :

Query N1−> retrieve E(N1,N2) (N1’s top 1)

Query N2−> retrieve E(N2,N1) (N2’s top 1)

MR2 :

Query N2−> retrieve E(N2,N1) (Not Violate)

Collusion Attack Result: Fail

In the same way, if the victim node is N2, regardless of
the number of malicious requestors used in the attack, only
the friendship E(N1,N2) will be retrieved. The privacy of N2

cannot be violated.
Next, let us consider N3 as the victim node. In other

words, the attacker(s) aim to find more than one friend of N3.
Malicious requestor M R1 starts off by querying node N3, and
the OSN will return E(N1,N3) as N1 is the most influential
friend of N3. Then if M R1 continues to query N1, the OSN
will return E(N1,N3) instead of E(N1,N2) although N2 is actually
the most influential friend of N1. The reason is that the
defense scheme [4] records the query history of M R1 and
figures out that releasing E(N1,N2) will disclose two friends
of N1, thereby violating N1’s privacy. The defense scheme [4]
can well protect nodes’ privacy against individual malicious
queries.

MR1 :

Query N3−> retrieve E(N3,N1) (N3’s top 1)

Query N1−> retrieve E(N1,N3) Protect N1’s privacy

Individual Attack Result: Fail

Authorized licensed use limited to: Prairie View A M University. Downloaded on August 05,2023 at 02:37:37 UTC from IEEE Xplore. Restrictions apply.

LIU AND LI: RETRIEVING HIDDEN FRIENDS: A COLLUSION PRIVACY ATTACK AGAINST ONLINE FRIEND SEARCH ENGINE 837

However, if a new malicious requestor M R2 gets involved
and queries N1, E(N1,N2) will be released since the OSN
considers M R2 as a new requestor who has no prior knowledge
about N1. Due to the release of E(N1,N2) , both N1 and N2

have reached their privacy restriction settings where k = 1.
We consider that N1 and N2 are occupied by M R2, since
no more of their friendships can be released to M R2. The
definition of occupation is given as follows.

Definition 1 (Occupation): Given a victim node Nx and its
friend Ny , Ny is considered as “occupied” by a requestor Ri if
the defense scheme believes that Ri has already learned Ny ’s
k friends (excluding Nx).

Then the same requestor M R2 can continue to query the
victim node N3. As a result of the occupation, the defense
scheme will not release E(N1,N3) or E(N2,N3). Instead, it has
to display another friendship of N3, E(N3,N4), considering node
N4 is the next most influential friend of N3. As a consequence,
N3’s privacy is violated as the attackers can see two of N3’s
friends, while k = 1. We summarize the violation process as
follows.

MR1 :

Query N3−> retrieve E(N3,N1) (N3’s top 1)

MR2 :

Query N1−> retrieve E(N1,N2) (Occupy N1)

Query N3−> retrieve E(N3,N4) (Violate)

Collusion Attack Result: N3’s privacy violated

In the similar way, if the victim node is N4 , its privacy
can also be violated by occupying node N1. As a summary,
we observe that when k = 1, the collusion attack can succeed
for all other nodes except for the top 2 influential nodes.

C. Observations and Analysis

1) Observations: Through the above simple case studies
in a small-scale complete graph, we are able to make some
interesting observations.

• For the top k + 1 influential nodes, collusion attacks
cannot retrieve more information than individual attacks
and thus cannot successfully violate privacy of any one
of these nodes. We consider these nodes form a “Black

Clique”. A clique is a graph in which all nodes directly
connect to each other [25].

• For all other nodes, colluded malicious requestors are able
to violate their privacy through occupation. In particular,
colluded malicious requestors share their query results
with each other, while hiding their knowledge from the
defense scheme and fooling the defense scheme to treat
them as independent requestors.

2) Analysis: In this section, we will study the fundamental
reason behind the above observations. We start the investi-
gation from the basic relationship: a friendship between two
nodes. In particular, the existence of an edge E(A,B) between
two nodes A and B indicates their friendship.

We use two different sizes, as large and small, to indicate
whether a node is in the top k influential friend list of its friend.

Fig. 3. Three types of friendship between two nodes.

For example, node A is a large node if it is one of node B’s top
k influential friends. Otherwise, it will be a small node. The
size of node B is determined in the same way. According to
the discussion above, the friendship between two nodes can be
classified into three categories in terms of their relative sizes:
large-large friendship, small-large (or large-small) friendship
and small-small friendship, as shown in Figure 3. We discuss
these three types of friendship in details in the following
paragraphs.

a) Large-large friendship: The large-large friendship,
as illustrated in Figure 3-(a), represents that both node A1

and node B1 are in each other’s top k friend list. Therefore,
the OSN will respond the friendship E(A1,B1) to the queries on
either A1 or B1. This is considered as the defense system’s

symmetric responses on the symmetric friendship. In this
case, node A1’s privacy cannot be compromised by directly

querying B1 regardless the number of malicious requestors

involved in the collusion attack.
b) Top k + 1 “black clique”: The large-large friendship

explains the observation of the top k + 1 “black clique”
discussed previously. In the previous discussion, we observe
that the top k + 1 nodes (i.e. Ni , 1 ≤ i ≤ k + 1) form a “black
clique” in the graph illustrated in Figure 2. For these top k +1
nodes, they have large-large friendship between any two of
them. Therefore, no matter which node is queried, the OSN
always releases the other k most influential nodes as friends.
No additional friendships can be discovered. In this scenario,
neither individual attack nor collusion attack is able to violate
their privacy.

c) Small-large friendship: In the small-large friendship
illustrated in Figure 3-(b), A2 is represented by a small node
and B2 is represented by a large one, indicating that B2 is
one of A2’s top k friends while A2 is not in B2’s top k

friend list. In this scenario, when a new requestor launches
a query, the same friendship E(A2,B2) will be released if A2 is
queried, or be hidden if B2 is queried. We consider this as the

defense scheme’s [4] asymmetric responses on the symmetric

friendship. The defense scheme is designed to release a node’s
top k influential friends to boost OSN’s sociability. In addition,
it also helps the OSN prevent privacy leakage caused by
random disclosure.

However, taking advantage of this, attackers can violate the
privacy of the small node by using only two new requestors

Authorized licensed use limited to: Prairie View A M University. Downloaded on August 05,2023 at 02:37:37 UTC from IEEE Xplore. Restrictions apply.

838 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 14, NO. 4, APRIL 2019

marked as M R1 and M R2. Specifically, attackers can retrieve
the friendship between A2 and B2 by using M R1 to query A2.
Although this information is shared with M R2, the defense
scheme is fooled due to the belief that M R2 does not know this
friendship. Then node B2 will be “occupied” once it is queried
by M R2, as its maximum number of friends (excluding A2) are
released. Now when M R2 continues to query A2, the defense
scheme [4] will hide E(A2,B2) so that B2 will not have more
than k friends exposed to M R2. To disclose k of A2’s friends,
the defense scheme has to replace E(A2,B2) by another new
friendship of A2 which has not been discovered by M R1. As a
result, the privacy of A2 is compromised.

MR1 :

Query A2−> retrieve top k friendships (including E(A2,B2))

MR2 :

Query B2−> retrieve top k friendships (excluding E(B2,A2))

Query A2−> retrieve top k friendships (excluding E(A2,B2))

Collusion Attack Result:A2’s privacy violated

As a summary, if the victim node is identified to be involved
in a small-large friendship, in which it is the small node,
its privacy can be violated when a fresh malicious requestor
queries the large friend first and the victim node next. This
inspires our design of collusion attack strategies in a general
network later.

d) Small-small friendship: A small-small friendship,
as shown in Figure 3-(c), represents that although A3 and
B3 are friends, they are not in each others’ top k friend
list. Therefore, when either A3 or B3 is queried, the other
node will not be released as a top k friend of the queried
node. As a result, it is hard for attackers to discover this
kind of relationship, let alone directly utilizing it in collusion
attacks. Thus, we will not focus on this relationship in this
paper.

D. Collusion Attacks in a General Network

In the above sections, we have investigated collusion attacks
in a small scale complete graph. The investigation not only
helps us better understand the working mechanism of collusion
attacks in a special context but also sheds light on the design of
attack strategies in more general social network graphs. In this
section, we will further investigate collusion attack strategies
in general social network settings.

Recall that if any malicious requestor is able to occupy
at least one of the top k friends of the victim node, he/she
can then compromise the victim node by directly querying
it and retrieving its additional friend(s). Following this logic,
the original attack goal of violating the victim’s privacy is
converted to a new goal as how to occupy at least one of the
victim’s top k friends.

Through this study, we discover that the answer to this
“how” question actually depends on the relationship between
the victim node and its top k friends. According to such
relationship, we would like to first classify victim nodes into
two categories as popular nodes and non-popular nodes, and
then answer the “how” question accordingly.

Fig. 4. An example of violating a non-popular node.

In particular, given an arbitrary network node Na and its top
k friend list Fk

a = {Na.i : i = 1 . . . k}, assuming each of these
top k friends has its own top k list as Fk

a.i = {Na.i. j : j =

1 . . . k}, Na will be determined as either a non-popular or a
popular node as follows.

Definition 2 (Non-Popular Node): Na is a non-popular
node if ∃Na.i ∈ Fk

a , and Na /∈ Fk
a.i . In other words, a non-

popular node has at least one small-large friendship with its
top k friends, where the non-popular node is small in that
friendship.

Definition 3 (Popular Node): Na is a popular node if Na ∈

Fk
a.i for ∀Na.i ∈ Fk

a . In other words, a popular node
has large-large friendships with all its top k influential
friends.

According to whether a victim node is a non-popular
node or a popular one, the collusion attack strategy to
“occupy” its top k friends will be different. In the following
subsections, we will discuss collusion attack strategies against
these two types of nodes separately.

1) Violating Non-Popular Nodes: Given a non-popular node
Na as the victim, malicious requestors can always identify at
least one node Na.i where Na.i ∈ Fk

a , but Na /∈ Fk
a.i . A fresh

malicious requestor will then be able to easily occupy Na.i by
directly querying it. The victim node Na ’s privacy will then
be violated when it is queried next.

Let’s use a simple example illustrated in Figure 4 to
demonstrate the collusion attack against a non-popular victim
node N0, where k = 3. Specifically, in Figure 4, each node
is connected to its top 3 friends through solid lines and to
its other friends through dotted lines. In addition, we place
the top 3 friends in the order from the left to the right. For
example, N0.1, N0.2 and N0.3 are placed at the left, the middle
and the right under N0, indicating that they are N0’s top 1,
2 and 3 friends, respectively.

From Figure 4, we observe a large-large friendship between
N0 and N0.1 since both of them have listed each other as
their top k friend. The same observation can be made for
N0 and N0.2 . Node N0.3 , however, does not have N0 as
its top k. It indicates that the friendship between N0 and
N0.3 is a small-large friendship, where N0 is the small node.
Therefore, N0 is a non-popular node, whose privacy can be
violated if malicious requestors occupy N0.3 . Specifically,
since the malicious requestors don’t know which nodes have
the small-large friendship with the victim node, all discovered
k friends of the victim node need to be queried. We illustrate

Authorized licensed use limited to: Prairie View A M University. Downloaded on August 05,2023 at 02:37:37 UTC from IEEE Xplore. Restrictions apply.

LIU AND LI: RETRIEVING HIDDEN FRIENDS: A COLLUSION PRIVACY ATTACK AGAINST ONLINE FRIEND SEARCH ENGINE 839

Fig. 5. An example of violating a popular node.

the collusion attack procedure as follows.

MR1 :

Query N0−> retrieve E(N0,N0.1), E(N0,N0.2), E(N0,N0.3)

MR2 :

Query N0.1−> retrieve E(N0.1,N0.1.1),

E(N0.1,N0), E(N0.1,N0.1.3)

Query N0.2−> retrieve E(N0.2,N0.2.1), E(N0.2,N0.2.2), E(N0.2,N0)

Query N0.3−> retrieve E(N0.3,N0.3.1), E(N0.3,N0.3.2),

E(N0.3,N0.3.3)

// N0.3 is occupied

Query N0−> retrieve E(N0,N0.1), E(N0,N0.2), E(N0,N0.4)

Collusion Attack Result: Succeed

2) Violating Popular Nodes: In this section, we will discuss
how to compromise a popular node’s privacy. The basic idea,
like compromising a non-popular node, is also to occupy at
least one of the victim node’s top k friends. However, this time
directly querying these friends will not be able to “occupy”
them (Definition 1), as the victim node appears in the top k

friend lists of all its top k friends. Therefore, we propose an
alternative way to occupy them indirectly, which is defined as
“passive displays”.

Definition 4 (Passive Display): A node Nx is passively dis-
played once to a requestor Ri , if Ri queries one of Nx ’s friends
Ny and retrieve the friendship E(Nx ,Ny).

The name “passive display” comes from the fact that the
node Nx ’s friendship is displayed to a requestor although it
is not directly queried. We further illustrate this concept with
examples in Figure 5, where k = 3. Let us use N0.1 and N0.1.1

as an example. Assume N0.1.1 is queried by a requestor Ri ,
its friendship with N0.1, its top 1 friend, will be exposed
to Ri , although N0.1 is not queried by Ri directly. In this
case, we consider N0.1 is passively displayed once.

According to Definition 1, if one of the victim node’s
(i.e. Na) top k friends, say Na.i , can be passively displayed
enough times without showing its friendship with Na , it is
“occupied.” The remaining violation process becomes the
same as violating a non-popular node. We consider the node

to occupy (i.e. Na.i) as the target node. Therefore how to find
“sufficient number” of friends to passively display the target
node becomes the key issue. It turns out that this number varies
according to the rank of Na in Na.i ’s top k friend list.

Let us assume that Na is ranked as the r th friend of Na.i ,
where 1 ≤ r ≤ k. The rest k − 1 friends of Na.i can then be
placed into two sets:

Fk.1
a.i = {Na.i.p : 1 ≤ p < r} Fk.2

a.i = {Na.i.q : r < q ≤ k},

(1)

where Na.i.p and Na.i.q represent friends that are ranked above
and below Na , respectively. When Na.i is queried, the r − 1
friends in Fk.1

a.i will be released before Na anyway. Since the
OSN will only display k friends of Na.i , in order to “push” Na

out of the k released friends of Na.i , the malicious requestors
need to retrieve another k −(r −1) friends who can passively
display Na.i . Na.i ’s friends in set Fk.2

a.i may help.
In the following paragraphs, we set N0 as the victim node

and use its top 3 friends, N0.1, N0.2 and N0.3, as examples to
demonstrate the occupation process. Please note that none of
the three friends, N0.1, N0.2 or N0.3, can be occupied by direct
querying since they all display N0 as their top 3 friend when
queried.

In the first scenario, we set N0.1 as the target node to
occupy. As shown in Figure 5, N0 is ranked as the top 1 friend
of N0.1, indicating an empty set of Fk.1

N0.1
. To occupy N0.1,

we need to passively display it three times (i.e. k − (r − 1),
where k = 3, r = 1) so that its friendship with N0 will not be
displayed by the OSN. Due to the limited attack knowledge,
malicious requestors can only query N0.1.1 and N0.1.2 .

As shown in Figure 5, when N0.1.1 is queried, N0.1 can
be passively displayed once, whereas when N0.1.2 is queried,
N0.1 cannot be passively displayed since it is not in N0.1.2’s
top k list. Intuitively, it seems that N0.1 can only be passively
displayed once. However, N0.1.2 is actually “occupied” as it
does not display N0.1 when queried. Such occupation can be
used to retrieve a new node that can passively display N0.1.

Specifically, when N0.1.2 is queried by a fresh malicious
requestor, N0.1.2.1, N0.1.2.2 and N0.1.2.3 will be released as
its top 3 friends. Then when N0.1 is queried by the same

Authorized licensed use limited to: Prairie View A M University. Downloaded on August 05,2023 at 02:37:37 UTC from IEEE Xplore. Restrictions apply.

840 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 14, NO. 4, APRIL 2019

requestor, N0.1.2 cannot be displayed as N0.1’s friend since
it already has the maximum number of friends displayed.
As a consequence, a new friend of N0.1 (e.g. N0.1.3) will be
retrieved. If N0.1.3 can passively display N0.1 , a malicious
requestor will be able to passively display N0.1 twice by
querying N0.1.1 and N0.1.3. Otherwise, similar to N0.1.2 , N0.1.3

can be used to retrieve another new friend of N0.1. This process
can be repeated until a friend that can passively display N0.1

is found.
As a result, with two friends ranked below Na , malicious

requestors can always passively display N0.1 twice. However,
N0.1 can only be occupied if it can be passively displayed
by k times, where k = 3. Consequently, the attack will fail.
We demonstrate the detailed process below.

Through this process, we observe that a target node Na.i

cannot be occupied if Fk.1
Na.i

is empty. However, for each node

Na.i.q in set Fk.2
a.i , it can either be used to passively display

Na.i or be occupied to retrieve a new node Na.i.w , w > k that
can passively display Na.i , leading to k − r times of passively
displays of Na.i . Nevertheless, recall that Na.i can only be
occupied when it is passively displayed by k − (r − 1) times,
with only nodes in set Fk.2

a.i , Na.i cannot be occupied. Hence,
we need to consider utilizing nodes in set Fk.1

a.i .

MR1 :

Query N0−> E(N0,N0.1), E(N0,N0.2), E(N0,N0.3)

MR2 :

Query N0.1−> E(N0.1,N0), E(N0.1,N0.1.1), E(N0.1,N0.1.2)

MR3 :

Query N0.1.1−> E(N0.1.1,N0.1), E(N0.1.1,N0.1.1.1), E(N0.1.1,N0.1.1.2)

// passively display N0.1

Query N0.1.2−> E(N0.1.2,N0.1.2.1), E(N0.1.2,N0.1.2.2), and

E(N0.1.2,N0.1.2.3)

// occupy N0.1.2

Query N0.1−> E(N0.1,N0), E(N0.1,N0.1.1), E(N0.1,N0.1.3)

// retrieve a new friend: N0.1.3

MR4 :

Query N0.1.3−> E(N0.1.3,N0.1), E(N0.1.3,N0.1.3.1), E(N0.1.3,N0.1.3.2)

// passively display N0.1 once

Query N0.1.1−> E(N0.1.1,N0.1), E(N0.1.1,N0.1.1.1), E(N0.1.1,N0.1.1.2)

// passively display N0.1 twice

Query N0.1−> E(N0.1,N0), E(N0.1,N0.1.1), E(N0.1,N0.1.3)

Collusion Attack Result: Fail

In the second scenario, we set N0.2 as the target node
to occupy. As shown in Figure 5, N0 is ranked as the third
friend of N0.2 (i.e. r = 3), indicating that both N0.2.2 and
N0.2.3 belong to the set of Fk.1

a.i . To occupy N0.2 , as discussed
before, the malicious requestors only need to retrieve one extra
friend (i.e. k − (r − 1), where k = 3, r = 3) beyond N0.2.1

and N0.2.2 , say N0.2.3 , that can passively display N0.2 .
Then the key part becomes how to retrieve the new friend

N0.2.3 . Let us take a closer look at N0.2.1 and N0.2.2 . When
N0.2.1 is queried, N0.2 will be displayed as a friend, which

could not help to retrieve N0.2.3. Different from N0.2.1 , when
N0.2.2 is queried, N0.2.2.1, N0.2.2.2 and N0.2.2.3 will be released
as its top 3 friends, while N0.2 is not displayed. This way,
N0.2.2 is occupied. In other words, when N0.2 is queried by the
same requestor afterwards, N0.2.2 cannot be displayed, leading
to the retrieval of another new friend of N0.2.

The following process becomes exactly the same as the
first scenario. If the newly released friend cannot passively
display N0.2 , it can be occupied to retrieve another new friend
of N0.2. Hence, we are always able to retrieve a new friend
(i.e. N0.2.3) that can passively display N0.2 . Once N0.2.3 is
retrieved, a fresh malicious requestor can query N0.2.3 first to
passively display N0.2 once, then query N0.2 next. Because the
OSN believes that the requestor already obtains one friendship
of N0.2, only two more friendships will be released. Following
the friend rank, only N0.2.1 and N0.2.2 will be released and N0

will be “pushed out” of the top k list. As a result, when N0 is
queried afterwards, the OSN will display three friends of N0

without showing E(N0,N0.2).
Through this process, we observe that if any node in the set

Fk.1
a.i can be occupied when it is directly queried, Na.i will

be occupied through passive displays. The reason is as
follows. First, malicious requestors can easily display k − 1
friends of Na.i , because (1) the k −r friends in set Fk.2

a.i can be
utilized to passively display Na.i for k − r times; and (2) the
r −1 friends in set Fk.1

a.i can be displayed before Na when Na.i

is queried. Second, if any node in the set Fk.1
a.i can be occupied

when it is queried, a new friend of Na.i will be retrieved. This
newly retrieved friend can be used either to passively display
Na.i or to retrieve another node that can passively display Na.i .

MR1 :

Query N0−> E(N0,N0.1), E(N0,N0.2), E(N0,N0.3)

MR2 :

Query N0.2−> E(N0.2,N0.2.1), E(N0.2,N0.2.2), E(N0.2,N0.2.3)

MR3 :

Query N0.2.1−> E(N0.2.1,N0.2.1.1), E(N0.2.1,N0.2), E(N0.2.1,N0.2.1.2)

Query N0.2.2−> E(N0.2.2,N0.2.2.1), E(N0.2.2,N0.2.2.2),

E(N0.2.2,N0.2.2.3)

// N0.2.2 is occupied

Query N0.2−> E(N0.2,N0.2.1), E(N0.2,N0), E(N0.2,N0.2.3)

// retrieve a new friend: N0.2.3

MR4 :

Query N0.2.3−> E(N0.2.3,N0.2.3.1), E(N0.2.3,N0.2), E(N0.2.3,N0.2.3.2)

// N0.2.3 can passively display N0.2

Query N0.2−> E(N0.2,N0.2.1), E(N0.2,N0.2.2), E(N0.2,N0.2.3)

// N0.2 is occupied

Query N0−> E(N0,N0.1), E(N0,N0.3), E(N0,N0.4)

Collusion Attack Result: Succeed

Nevertheless, it is possible that none of the nodes in the set
Fk.1

a.i can be occupied when it is directly queried. Let us use
another example to illustrate such scenario.

Authorized licensed use limited to: Prairie View A M University. Downloaded on August 05,2023 at 02:37:37 UTC from IEEE Xplore. Restrictions apply.

LIU AND LI: RETRIEVING HIDDEN FRIENDS: A COLLUSION PRIVACY ATTACK AGAINST ONLINE FRIEND SEARCH ENGINE 841

In the third scenario, we set N0.3 as the target node to
occupy. As shown in Figure 5, the victim node N0 is ranked
as the second friend of N0.3 , in the middle of N0.3.1 and N0.3.2.
We first check if N0.3.1, the only node ranked above N0,
can be occupied. If yes, following our observations made
in the second scenario, N0.3 can be occupied. Nevertheless,
as shown in Figure 5, N0.3.1 displays N0.3 as one of its top
three friends, indicating that N0.3.1 cannot be occupied when
it is directly queried.

To handle this type of scenario, we propose a recursive
process by setting N0.3.1 as the second layer target, shifting
our focus from occupying the first layer target (i.e. N0.3)
through passive displays to occupying the second layer
target N0.3.1 through passive displays. Please note that as

discussed in the first scenario, to occupy the first layer

target, the second layer target (e.g. N0.3.1) has to be

ranked above the victim node (e.g. N0) - the parent node

of the first layer target (e.g. N0.3). Once N0.3.1 is occupied,
a new friend that passively displays N0.3 (e.g. N0.3.4) can be
retrieved, which causes the occupation of N0.3 , leading to the
violation of N0’s privacy in the end.

This process actually indicates the “occupation chain”:
occupying the target node by occupying its friend, which
pushes malicious queries to the next layer - “friends of
friends.” The recursive process will succeed once a target node
can be occupied, or fail in two conditions: (1) the maximum
number of layer has been reached or (2) the current target
(i.e. Nt) cannot be occupied and there is no node available
at the next layer that can be chosen as the next layer target.
We demonstrate the example of the detailed attack process as
follows.

MR1 :

Query N0−> E(N0,N0.1), E(N0,N0.2), E(N0,N0.3)

MR2 : //set N0.3 as target

Query N0.3−> E(N0.3,N0.3.1), E(N0.3,N0), E(N0.3,N0.3.3)

MR3 :

Query N0.3.1−> E(N0.3.1,N0.3.1.1), E(N0.3.1,N0.3), E(N0.3.1,N0.3.1.3)

// N0.3.1 cannot be occupied through direct querying

MR4 : //set N0.3.1 as target

Query N0.3.1.1−> E(N0.3.1.1,N0.3.1.1.1), E(N0.3.1.1,N0.3.1.1.2),

E(N0.3.1.1,N0.3.1.1.3)

Query N0.3.1−> E(N0.3.1,N0.3), E(N0.3.1,N0.3.1.3), E(N0.3.1,N0.3.1.4)

// retrieve a new friend: N0.3.1.4

MR5 :

Query N0.3.1.4−> E(N0.3.1.4,N0.3.1), E(N0.3.1.4,N0.3.1.4.2),

and E(N0.3.1.4,N0.3.1.4.3)

Query N0.3.1.3−> E(N0.3.1.3,N0.3.1.3.1), E(N0.3.1.3,N0.3.1),

and E(N0.3.1.3,N0.3.1.3.3)

Query N0.3.1−> E(N0.3.1,N0.3.1.1), E(N0.3.1,N0.3.1.3),

and E(N0.3.1,N0.3.1.4)

// N0.3.1 is occupied

Query N0.3−> retrieve E(N0.3,N0), E(N0.3,N0.3.3), E(N0.3,N0.3.4)

// retrieve a new friend: N0.3.4

MR6 :

Query N0.3.4−> E(N0.3.4,N0.3.4.1), E(N0.3.4,N0.3), E(N0.3.4,N0.3.4.3)

Query N0.3.3−> E(N0.3.3,N0.3.3.1), E(N0.3.3,N0.3), E(N0.3.3,N0.3.3.3)

Query N0.3−> E(N0.3,N0.3.1), E(N0.3,N0.3.3), E(N0.3,N0.3.4)

// N0.3 is occupied

Query N0−> E(N0,N0.1), E(N0,N0.2), E(N0,N0.4)

Collusion Attack Result: Succeed

In summary, given the victim node Na as a popular node,
none of its top k friends can be occupied through direct
queries. Therefore, we propose to occupy at least one of its
top k friends through passive displays. We then demonstrate
the occupation process through three different scenarios. In all
the three scenarios, we observe that whether the target node
(i.e. Na.i) can be occupied through passive displays depends on
whether there exists at least one of its friends in the set Fk.1

a.i
that can be occupied. The procedure of violating a popular
node is summarized in procedure 1, shown at the end of the
paper.

3) Model Analysis: In this section, we briefly analyze
the model performance. Specifically, when randomly given
a target node, we would like to evaluate probability of the
proposed attack to succeed as well as its complexity in
terms of the number of malicious queries. Please note that
as the problem is complex due to the heterogeneity of users’
friendship, the discussions below are based on some simplified
assumptions.

Specifically, when given a node with degree as d , we assume
that the probability for one of its friends to be ranked as top k

is k
d

. Accordingly, let us consider a randomly selected victim
node N0 and one of its top k friends (i.e. N0.i) with degree
as d0.i , the probability for N0 to be on the top k list of N0.i is

{

k
d0.i

if d0.i > k

1 otherwise
(2)

which can also be represented as min(k/d0.i , 1).
According to definition 3, N0 is a popular node if it is on

the top k lists of all its top k friends. Therefore, assuming that
the probabilities for N0 to be one of the top k friends for any
two of its friends are independent, the probability for N0 to
be a popular node is

P(N0 ∈ Spop) =

k
∏

i=1

min(
k

d0.i
, 1) (3)

Please note that if N0 is a non-popular node, its privacy can
be easily violated at the first layer by using at most R|l=1 =

1+k malicious requestors. Therefore, the probability to violate
N0’s privacy at the first layer is

P(Ñ0|l=1) = P(N0 ∈ Snon−pop) = 1 −

k
∏

i=1

min(
k

d0.i
, 1) (4)

Next, we mainly focus on the case where N0 is a popular
node. Following the procedure to violate a popular node’s
privacy, we move on the the next layer and focus on N0’s top
k friends. Take the first friend N1 as an example, we assume
its top k friends have degrees as d0.1.1, d0.1.2, d0.1.3 . . . d0.1.k

Authorized licensed use limited to: Prairie View A M University. Downloaded on August 05,2023 at 02:37:37 UTC from IEEE Xplore. Restrictions apply.

842 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 14, NO. 4, APRIL 2019

Procedure 1 Violation Process for Popular Nodes bool

VioPro(Np , L, q_li st)

1: //Np is the target node of the upper layer,L represents the
layer number, q_li st returns the list of nodes to query in
order

2: if L == 7 then
3: return false
4: end if
5: for each top k friend of Np (i.e. Nt) do
6: set Nt as the target node
7: query Nt and get its top k friends in set FNt

8: if Np ∈ FNt and Np’s rank is r then

9: for each node f i
Nt

in FNt ranked above Np (i < r) do

10: if f i
Nt

cannot passively display Nt then

11: add f i
Nt

to occupy_li st

12: end if
13: end for
14: if occupy_li st is not empty then
15: for each node f k

Nt
in FNt ranked below Np (k > r)

do
16: if f k

Nt
can passively display Nt then

17: add f k
Nt

to q_li st

18: else
19: add f k

Nt
to occupy_li st

20: end if
21: end for
22: have a new requestor M Rn

23: for each node Nocc ∈ occupy_li st do
24: use M Rn to query Nocc and add it to q_li st
25: end for
26: use M Rn to query Nt and obtain F ′

Nt

27: for each node f
′ j

Nt
∈ (F ′

Nt
− FNt) do

28: if f
′ j
Nt

can passively display Nt then

29: add f
′ j
Nt

to q_li st

30: else
31: add f

′ j
Nt

to occupy_li st

32: end if
33: end for
34: add Nt to q_li st
35: return true
36: end if
37: else
38: add Nt to q_lsi t
39: return true
40: end if
41: end for
42: for each top k friend of Np (i.e. Nt) do
43: res = VioPro(Nt , L + 1, q_li st) //recursive call
44: if res == true //verify that Nt can be occupied then
45: assign a new requestor M Rm

46: for each node Nq in q_li st do
47: query Nq

48: end for
49: query Nt

50: if Nt is occupied then
51: return true
52: end if
53: end if
54: end for
55: return false

and N0 is ranked as r0.1 among these k friends. Then the
probability of successfully compromising N0 through occupy-
ing N0.1 is

P(Ñ0| ˜N0.1
) = 1 −

r0.1
∏

i=1

min(
k

d0.1.i
, 1) (5)

Applying the same analysis on other top k friends, we can
obtain the probability to successfully compromising N0’s
privacy at the second layer as

P(Ñ0|l=2) = 1 −

k
∏

i=1

r0.i
∏

j=1

min(
k

d0.i. j

, 1) (6)

If N0 is compromised at the second layer, in the worst case,
the total number of malicious requestors required is

R|l=2 = 1 + k +

k
∑

i=1

r0.i (7)

If the malicious requestors launch queries till layer L,
the probability of the attack to be succeed is

P(Ñ0|l=L) = 1 −

k
∏

i=1

r0.i
∏

j=1

r0.i. j
∏

h=1

· · ·

r0.i. jv
∏

w=1

min(
k

d0.i. j.h...v.w
, 1)

(8)

where r0.i represents N0’s rank on N0.i ’s top k list, and r0.i. j

represents N0.i ’s rank on N0.i. j ’s top k list, etc.
The corresponding total number of malicious requestors

required is

R|l=L = 1 + k +

k
∑

i=1

r0.i +

r0.i
∑

j=1

k
∑

i=1

r0.i. j + · · ·

+

r0.i. j ...v
∑

r=1

r0.i. j.h...v.w (9)

In the worst case, when

r0.i = r0.i. j = · · · = r0.i. j.h...v.w = k,

the total number of malicious requestors required is

R|l=L =

L
∑

l=0

kl . (10)

Based on the above analysis, the success probability of
the proposed scheme is closely related with four factors: the
degree of the queried nodes dq , the k value, the total number
of layers L and the rank of the friends r .

V. EXPERIMENT

In this section, we would like to validate the effectiveness
of the proposed collusion attack strategy through experiments.
Our experimental study includes an intensive set of experi-
ments on one synthetic data set and three large-scale real-
world data sets.

Authorized licensed use limited to: Prairie View A M University. Downloaded on August 05,2023 at 02:37:37 UTC from IEEE Xplore. Restrictions apply.

LIU AND LI: RETRIEVING HIDDEN FRIENDS: A COLLUSION PRIVACY ATTACK AGAINST ONLINE FRIEND SEARCH ENGINE 843

TABLE I

SOCIAL NETWORK DATA SET PROPERTY

A. Data Set

We first generate a synthetic data set by following the
Barabasi-Albert preferential attachment model, which is a
widely adopted model for generating social networks with
power law degree distributions [26]. In this model, a graph
of n nodes is grown by attaching new nodes each with m

edges that are preferentially attached to existing nodes with
high degree. In particular, we have set these two parameters
as n = 1000 and m = 11. In addition, we also adopt three
real-world social network data sets. All real-world data sets
are available at the repository [27], except the Facebook [28]
data set.

• Facebook data set [28]: The data was crawled from
Facebook.com, capturing the friendships between users,
which can be modeled as an undirected graph.

• Slashdot data set [29]: The data contains the friend-
ship/foeship among users on Slashdot. Please note that
the original data set does not distinguish friendship from
foeship between user pairs. Therefore, the links in the
original set are directional. In this work, we convert the
Slashdot data set to an undirected graph to reflect user
friendship. Specifically, if there is originally one link
between two nodes, regardless of its direction, we create
an edge between the node pairs in the corresponding
undirected graph.

• Gowalla data set [30]: Gowalla is a location-based social
networking website where users share their locations by
checking in. The data collected from Gowalla represents
the friendship network which is undirected.

We pre-process the original data sets by extracting the
largest connected component from each of them to ensure
the connectivity of all users. In Table I, we list the major
features of each data set. As shown in Table I, the four datasets
are different in the following aspects. First, they represent
different scales of social networks, where the Gowalla dataset
includes the maximum number of nodes and the synthetic
dataset includes the minimum number of nodes. Second,
they represent different distributions of users’ relationship
degree. In particular, the synthetic dataset generated based
on the Barabasi-Albert model well follows the power law
degree distributions. Other real world social network datasets,
however, reflects more flexible and diverse connections among
users. Third, the sparseness of these four datasets is different,
where Gowalla is the densest one, and Facebook data is
the sparsest one. Correspondingly, the maximum degree of
these four datasets is also different, where Gowalla and the

Fig. 6. Percentage of popular/non-popular nodes with degree greater than k.

synthetic dataset has the largest and smallest maximum degree,
respectively.

B. Nodes With Degree Greater Than k

In this section, we analyze the percentage of popular nodes
and non-popular nodes with degree greater than k. The reason
is twofold. First, in the experiments, the proposed collusion
strategy will only be applied on nodes with degree greater
than k, as there is no way to find out more than k friends
for a node with degree less than or equal to k. Second,
the effectiveness of the proposed attack heavily relies on the
property of popular nodes, since we have already proved in
Section IV-D that privacy of non-popular nodes can always be
violated by the proposed collusion strategy.

In particular, we demonstrate how the percentage of higher
degree popular/non-popular nodes changes with k value
in Figure 6, where the x-axis represents k value and the y-axis
represents the node percentage. The red stars and blue circles
represent the percentage of popular and non-popular nodes,
respectively. From Figure 6, we observe that when the value
of k increases, the percentage of popular nodes monotoni-
cally increases while that of non-popular nodes monotonically
drops. When k exceeds a certain value, which we call the peak
k value, the percentage of popular nodes reaches 1, indicating
that all the nodes with degree greater than k are popular nodes.
The peak k values for the four data sets are 46, 200, 300, and
250 respectively.

C. Comparison Scheme

We also compare the proposed attack to a naive direct
query attack, where malicious requetors continuously retrieve
new nodes and directly query these nodes to see if they are
connected with the victim node. Specifically, we also assume
that the attackers only know the victim node before attack.
By directly querying the victim node, malicious requestors
are able to retrieve k friends of the victim node. To violate

Authorized licensed use limited to: Prairie View A M University. Downloaded on August 05,2023 at 02:37:37 UTC from IEEE Xplore. Restrictions apply.

844 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 14, NO. 4, APRIL 2019

Fig. 7. Proposed attack against non-popular nodes.

the victim node’s privacy (i.e. to find one more friend of the
victim node), the direct query attack involves two types of
malicious requestors. One is “explorers” who send queries to
retrieve more nodes in the OSN, while the other is “violators”
who query newly discovered nodes to verify if it is connected
with the victim node.

D. Performance Evaluation

In this section, we analyze the effectiveness of launching
our proposed attacks against non-popular nodes and popular
nodes separately, and compare it to the naive direct attack.
In particular, the proposed collusion strategy will only be
applied on nodes with degree greater than k, as there is no
way to find out more than k friends for a node with degree
less than or equal to k.

1) Compromising Non-Popular Nodes: In Figure 7,
we demonstrate the effectiveness of the proposed attack
against non-popular nodes when k value changes. As the the
number of non-popular nodes becomes zero when k exceeds
the peak k value, we only demonstrate the k values below the
peak value. Specifically, the blue circles and the red stars rep-
resent the total number of non-popular nodes, and the number
of compromised non-popular nodes, respectively. From this
figure, we can make two observations. First, the number of
non-popular nodes decreases when k increases. It matches our
intuition that when k increases, it is easier for a node to be
included in the top k list of its friends. Second, the two charts
in each subfigure exactly overlap, validating our discussions
in Section IV-D that the proposed attack strategy can ensure
to violate privacy of all non-popular nodes.

In addition, we compare the proposed attack to the naive
direct attack in Figure 8, where red stars and black triangles
represent the number of non-popular nodes compromised by
the proposed attack and the naive direct attack, respectively.
It is obvious that the proposed attack has done a much
better job than the comparison scheme when compromising

Fig. 8. Attack comparison against non-popular nodes.

Fig. 9. Proposed attack against popular nodes.

non-popular nodes. In addition, when the k value is small,
the comparison scheme can compromise very few nodes as
small k values dramatically restrict the number of friends
that can be revealed by the comparison scheme. However,
the effectiveness of our proposed attack is not influenced by
the small k value.

2) Compromising Popular Nodes: Next, we evaluate the
effectiveness of the proposed attack strategy against popular
nodes when k value changes in Figure 9. In particular, the blue
circles and the red stars represent the total number of popu-
lar nodes, and the number of compromised popular nodes,
respectively.

From Figure 9, we first make an interesting observation
that when k gradually increases, the number of popular nodes
increases first and then decreases. The reason is as follows.
In the beginning, when k value is very small, such as 10, it is
extremely difficult for a node to appear in the top 10 friend list

Authorized licensed use limited to: Prairie View A M University. Downloaded on August 05,2023 at 02:37:37 UTC from IEEE Xplore. Restrictions apply.

LIU AND LI: RETRIEVING HIDDEN FRIENDS: A COLLUSION PRIVACY ATTACK AGAINST ONLINE FRIEND SEARCH ENGINE 845

Fig. 10. Percentage of total compromised nodes.

of its top 10 friends, leading to a limited number of popular
nodes. When k gradually increases, it is easier for a node to be
in the top k list of its top k friends, which leads to an increase
of the popular node number. When k continues increasing and
becomes very large, as the network follows power law degree
distribution, the nodes with degree greater than k become less
and less. As a result, the number of popular nodes will also
decrease.

In addition, in each subfigure, we can make the following
observations. (1) When k value is 1, the number of popular
node in different data sets equals to 2, 30, 232, 56, respectively.
However, none of them can be compromised by the proposed
attack. By further tracking these nodes, we find that these
popular nodes actually form pairs, where each node is the top
one friend of its pairing node. In other words, these popular
nodes form black cliques. As discussed in Section IV-B, their
privacy cannot be violated by the proposed collusion strategy.
(2) When k > 1, the proposed collusion strategy works
effectively, as the two charts almost overlap with each other.

To demonstrate the overall performance of the proposed
attack, we present the overall percentage of compromised
nodes in Figure 10. Specifically, we observe that regardless
of the k value, the proposed scheme can always compromise
more than 80% of nodes in the network. Please note that for
some large k values, there may be a few fluctuations in the
compromise ratio. This is mainly caused by the limited number
of nodes available. For example, for the Gowalla data, when
k = 1500, there are only 15 nodes with degree greater than k.
Among these nodes, the proposed attack is able to compromise
13 of them, resulting in a compromise ratio as 87%.

In summary, the proposed attack is very effective against
both non-popular and popular nodes. In addition, it also
outperforms the comparison attack on all types of nodes,
especially the non-popular nodes.

3) Number of Required Malicious Requestors: In this
section, we investigate the cost of the proposed attack in terms
of the average number of required malicious requestors to

Fig. 11. Average malicious requestor number against non-popular nodes
(log).

Fig. 12. Average malicious requestor number against popular nodes.

compromise a node, and compare it to that of the naive direct
attack.

We first demonstrate the average number of malicious
requestors involved to compromise each non-popular node
in Figure 11, where red stars and black triangles represent
the proposed attack and the comparison attack, respectively.
Please note that as k exceeds the peak k value, there are no
more non-popular nodes. Therefore, the average number of
required malicious requestor becomes zero. As the malicious
requestor numbers differ too much, we take log2 of the
requestor numbers for better illustration.

From Figure 11, we can observe that to violate a
non-popular node’s privacy, the proposed attack only requires
less than 4 malicious requestors regardless of the k value,
which is very efficient. However, to compromise one
non-popular node, the comparison attack may require upto

Authorized licensed use limited to: Prairie View A M University. Downloaded on August 05,2023 at 02:37:37 UTC from IEEE Xplore. Restrictions apply.

846 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 14, NO. 4, APRIL 2019

107174, 273033, 659232, 266540 (i.e. 216 ∼ 220) malicious
requestors, for the four data sets respectively, significantly
worse than the proposed attack.

Next, we demonstrate the average number of malicious
requestors involved to compromise a popular node’s privacy
in Figure 12. Similar to Figure 12, red stars and black
triangles represent the proposed attack and the comparison
attack, respectively. We can observe that compared to violating
privacy of a non-popular node, violating a popular one requires
more effort. Nevertheless, the proposed collusion strategy still
outperforms the comparison attack by using much less number
of malicious requestors.

VI. CONCLUSION AND DISCUSSIONS

In this paper, we have proposed an advanced collusion
attack strategy where multiple attackers with very limited
initial knowledge (i.e. only the victim node) can successfully
penetrate the defense and violate victim node’s privacy settings
on friend search engine. In particular, we start this study with
a simple and small social clique model, aiming to deeply
understand users’ friendship types and reveal the fundamental
reasons why collusion attacks can be done successfully. Based
on observations made from this model, we further propose
to classify social network users into non-popular users and
popular users; develop different attack strategies against them;
and illustrate the attack effectiveness in a general social
network through different scenarios. Experiment results show
that our proposed collusion attack strategy has achieved high
success rate by using limited number of malicious requestors.

Theoretically, this work has simplified the complex privacy
attack problem as a small social clique model, classified users’
friendship into three categories, and revealed the fundamen-
tal reason of the collusion attack’s success as the defense
scheme’s asymetric responses on the symmetric friendship.
Furthermore, theoretical model analysis has been conducted on
the success probability as well as the total number of malicious
requestors needed for the proposed collusion attack when a
random victim user is chosen.

Technically, the observations made from this work also shed
light on future design of advanced privacy preserving schemes.
Specifically, OSNs may utilize the large-large friendship,
so that one friendship can only be released in a symmetric
way if both friends are on each other’s top k lists. It leads
to the intuitive idea as that if a node is not so influential, not
releasing its friendship with its top influential friend could help
protecting the privacy of both nodes. However, such symmetric
design may significantly influence the OSNs’ sociability as a
node’s most influential friends may not be displayed when
the node itself is not that influential. In addition, as different
nodes may set different k values, it is extremely challenging
to always find the symmetric k friends to display for all the
nodes. Consequently, advanced design is required to better
balance friendship privacy and network sociability.

Practically, for OSNs, as people in reality often ignores that
their privacy settings may significantly influence their friends’
privacy, it is critical to educate people be aware of not only
protecting their own information privacy but also be careful
when release their friendship to third parties. In addition,

as compromising a non-popular node is much easier than
compromising a popular one, an individual node may enhance
its privacy by making itself a popular node through connecting
with more nodes, contributing more to the OSN, or setting an
appropriate k value. Specifically, when the k value is too small,
to make itself a popular node, the node has to be ranked in
the top k lists of all its top k friends, which is very difficult.
As the k value increases, it becomes easier for a node to be in
the top k lists. However, a too large k value indicates that the
node will release many friends anyway, which also hurts its
privacy. Therefore, it could be helpful for an individual node
to choose its k value based on its own situations.

REFERENCES

[1] Friendlist API. Accessed: 2016. [Online]. Available:
https://developers.facebook.com/docs/reference/fql/

[2] J. Bonneau, J. Anderson, F. Stajano, and R. Anderson, “Eight friends
are enough: Social graph approximation via public listings,” in Proc.

ACM SNS, 2009, pp. 13–18.
[3] A. Yamada, T. H.-J. Kim, and A. Perrig, “Exploiting privacy policy

conflicts in online social networks,” CyLab, Carnegie Mellon Univ.,
Pittsburgh, PA, USA, Tech. Rep., Feb. 2012, pp. 1–9.

[4] N. Li, “Privacy-aware display strategy in friend search,” in Proc. IEEE

Int. Conf. Commun. (ICC), Jun. 2014, pp. 951–956.
[5] R. Fogues, J. M. Such, A. Espinosa, and A. Garcia-Fornes, “Open

challenges in relationship-based privacy mechanisms for social network
services,” Int. J. Hum.-Comput. Interact., vol. 31, no. 5, pp. 350–370,
2015.

[6] L. Guo, C. Zhang, and Y. Fang, “A trust-based privacy-preserving
friend recommendation scheme for online social networks,” IEEE Trans.

Dependable Secure Comput., vol. 12, no. 4, pp. 413–427, Jul. 2015.
[7] Z. Feng, H. Tan, and H. Shen, “Relationship privacy protection for

mobile social network,” in Proc. Int. Conf. Adv. Cloud Big Data (CBD),
Aug. 2016, pp. 215–220.

[8] N. Li, N. Zhang, and S. K. Das, “Relationship privacy preservation in
publishing online social networks,” in Proc. 3rd IEEE Int. Conf. Social

Comput. (SocialCom), Oct. 2011, pp. 443–450.
[9] B. Zhou and J. Pei, “Preserving privacy in social networks against

neighborhood attacks,” in Proc. 24th IEEE Int. Conf. Data Eng. (ICDE),
Apr. 2008, pp. 506–515.

[10] J. Cheng, A. W.-C. Fu, and J. Liu, “K-isomorphism: Privacy preserving
network publication against structural attacks,” in Proc. SIGMOD, 2010,
pp. 459–470.

[11] S. Das, O. Egecioglu, and A. El Abbadi, “Anonymizing edge-
weighted social network graphs,” Dept. Comput. Sci., Univ. California,
Santa Barbara, Santa Barbara, CA, USA, Tech. Rep. CS-2009-03, 2009.

[12] M. Hay, G. Miklau, D. Jensen, D. Towsley, and P. Weis, “Resisting
structural re-identification in anonymized social networks,” Proc. VLDB

Endowment, vol. 1, no. 1, pp. 102–114, 2008.
[13] B. Zhou, J. Pei, and W. Luk, “A brief survey on anonymization

techniques for privacy preserving publishing of social network data,”
ACM SIGKDD Explorations Newslett., vol. 10, no. 2, pp. 12–22,
Dec. 2008.

[14] E. Zheleva and L. Getoor, “Preserving the privacy of sensitive rela-
tionships in graph data,” in Proc. 1st ACM SIGKDD Int. Workshop

Privacy, Secur., Trust KDD (PinKDD), San Jose, CA, USA, 2007,
pp. 153–171.

[15] L. Liu, J. Wang, J. Liu, and J. Zhang, “Privacy preserving in social
networks against sensitive edge disclosure,” Dept. Comput. Sci., Univ.
Kentucky, Lexington, KY, USA, Tech. Rep. CMIDA-HiPSCCS 006-08,
2008.

[16] L. Zou, L. Chen, and M. T. Özsu, “K-automorphism: A general
framework for privacy preserving network publication,” Proc. VLDB

Endowment, vol. 2, no. 1, pp. 946–957, Aug. 2009.
[17] K. Liu, K. Das, T. Grandison, and H. Kargupta, “Privacy-preserving data

analysis on graphs and social networks,” in Next Generation of Data
Mining, H. Kargupta, J. Han, P. Yu, R. Motwani, and V. Kumar, Eds.
Boca Raton, FL, USA: CRC Press, 2008.

[18] 13 Million U.S. Facebook Users Don’t Change Privacy Settings.
Accessed: May 3, 2012. [Online]. Available: https://www.zdnet.com/
article/13-million-usfacebook-users-dont-change-privacy-settings/

Authorized licensed use limited to: Prairie View A M University. Downloaded on August 05,2023 at 02:37:37 UTC from IEEE Xplore. Restrictions apply.

LIU AND LI: RETRIEVING HIDDEN FRIENDS: A COLLUSION PRIVACY ATTACK AGAINST ONLINE FRIEND SEARCH ENGINE 847

[19] Social Capital. Accessed: 2018. [Online]. Available:
https://en.wikipedia.org/wiki/Social_capital

[20] H. Yu, M. Kaminsky, P. B. Gibbons, and A. Flaxman, “SybilGuard:
Defending against sybil attacks via social networks,” ACM SIGCOMM

Comput. Commun. Rev., vol. 36, no. 4, pp. 267–278, 2006.
[21] H. Yu, P. B. Gibbons, M. Kaminsky, and F. Xiao, “SybilLimit: A near-

optimal social network defense against sybil attacks,” in Proc. IEEE
Symp. Secur. Privacy, May 2008, pp. 3–17.

[22] H. Yu, C. Shi, M. Kaminsky, P. B. Gibbons, and F. Xiao, “DSybil:
Optimal sybil-resistance for recommendation systems,” in Proc. IEEE
Symp. Secur. Privacy, May 2009, pp. 283–298.

[23] G. Danezis and P. Mittal, “Sybilinfer: Detecting sybil nodes using social
networks,” in Proc. NDSS, 2009, pp. 1–15.

[24] J. Sun, X. Zhu, and Y. Fang, “A privacy-preserving scheme for online
social networks with efficient revocation,” in Proc. 29th Conf. Inf.

Commun., Mar. 2010, pp. 2516–2524.
[25] R. D. Alba, “A graph-theoretic definition of a sociometric clique,”

J. Math. Sociol., vol. 3, no. 2, pp. 113–126, 1973.
[26] A.-L. Barabási and R. Albert, “Emergence of scaling in random net-

works,” Science, vol. 286, no. 5439, pp. 509–512, 1999.
[27] Stanford Large Network Dataset Collection. [Online]. Available: http://

snap.stanford.edu/data/
[28] B. Viswanath, A. Mislove, M. Cha, and K. P. Gummadi, “On the

evolution of user interaction in Facebook,” in Proc. 2nd ACM Workshop
Online Social Netw., 2009, pp. 37–42.

[29] J. Leskovec, K. J. Lang, A. Dasgupta, and M. W. Mahoney, “Community
structure in large networks: Natural cluster sizes and the absence of
large well-defined clusters,” Internet Math., vol. 6, no. 1, pp. 29–123,
2009.

[30] E. Cho, S. A. Myers, and J. Leskovec, “Friendship and mobility:
User movement in location-based social networks,” in Proc. 17th

ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining, 2011,
pp. 1082–1090.

Yuhong Liu received the B.S. and M.S. degrees
from the Beijing University of Posts and Telecom-
munications in 2004 and 2007, respectively, and
the Ph.D. degree from the University of Rhode
Island in 2012. She is currently an Assistant Profes-
sor with the Department of Computer Engineering,
Santa Clara University. With expertise in trustworthy
computing and cyber security, her research interests
include developing trust models and applying them
on emerging applications, such as online social
media, cyber-physical systems, and cloud comput-

ing. She was a recipient of the 2013 University of Rhode Island Graduate
School Excellence in Doctoral Research Award and the Best Paper Award at
the 9th International Conference on Ubi-Media Computing (UMEDIA 2016).
Her work on securing online reputation systems received the Best Paper Award
at the IEEE International Conference on Social Computing 2010 (acceptance
rate = 13%).

Na Li received the Ph.D. degree in computer science
from the University of Texas at Arlington in 2012.
She has been an Assistant Professor with Prairie
View A&M University (PVAMU) since fall 2015.
Prior to PVAMU, she was an Assistant Professor
with the Northwest Missouri State University. She
has been dedicated to cybersecurity research and
education. Particularly, her interests include but are
not limited to security and privacy in wireless sensor
networks, online social networks, and Internet of
Things. She is also interested in computer science

education, particularly focusing on underrepresented minorities. Her projects
have been funded by the National Security Agency and the National Science
Foundation.

Authorized licensed use limited to: Prairie View A M University. Downloaded on August 05,2023 at 02:37:37 UTC from IEEE Xplore. Restrictions apply.

