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Abstract—One of the challenges in social media research is
that, often times, researchers or third parties could not obtain
the massive of data collected by a limited number of “big
brothers” (e.g., Facebook and Google). In this paper, we shed
light on leveraging social network topological properties and
local information to effectively conduct search in Online Social
Networks (OSN). The problem we focus on is to discover the
reachability of a group of target people in an OSN, particularly
from the perspective of a third-party analyst who does not have
full access to the OSN. We developed effective and efficient
detection techniques which demand only a small number of
queries to discover people’s connections (e.g. friendship) in the
OSN. After conducting experiments on real-world data sets, we
found that our proposed techniques perform as well as the
centralized detection algorithm, which assumes the availability
of the global information in the OSN.

Index Terms—online social networks, subgraph connectivity,
search, local view, minimum steiner tree

I. INTRODUCTION

In the past decade, a large number of researchers have
shown their interest in Online Social Networks (OSNs). Par-
ticularly, they have been dedicated to designing algorithms to
solve complex problems relevant to the topological structures
of OSN graphs, for example, community detection [1]-[3],
detecting subgraphs with a given pattern [4] and sampling
social network graphs [5]. Most of those problems assume the
availability of entire network graphs, which, however, may not
be realistic. Therefore, in recent years, more attention has been
paid to leveraging local information and designing distributed
algorithms [6]-[10] to solve issues in massive OSNs.

This paper considers the problem of discovering a small
subgraph which connects a group of target people in an OSN.
We discuss this problem particularly from the perspective of a
third-party analyst who does not have a full view of the friend-
ship graph of the OSN site. As a motivating example, consider
that a person plans to organize a successful party/workshop,
where the success is subject to three constraints: (1) a list of
people must be invited to the event (i.e., target people); (2)
all target participants should be acquainted with each other
directly or through people who need to be invited additionally;
and (3) the number of people additionally invited should be
minimized due to some reasons, such as budget or space limit.

Solving this problem is challenging for two reasons. First,
in an OSN, the information that a third-party analyst can

Sajal K. Das
Department of Computer Science
Missouri University of Science and Technology
Rolla, MO USA
sdas@mst.edu

use is limited. The analyst can gather some data either by
visiting individual users’ profile pages or by sending queries
through OSN APIs. What he can see is local to the visited or
queried users. Second, even discovering such local information
demands effort. One can write script to crawl the web site to
collect such data; however, intensively querying the OSN may
cause the server to get overwhelmed. This is why many OSNs
limit the number of web queries from the same IP address
or a particular group of IP addresses per day. Therefore, a
third-party analyst needs less-cost searching techniques. The
contribution of this paper can be summarized as follows:

e We proposed a subgraph discovery problem in OSNs
from the perspective of a third-party analyst.

o We developed technical solutions which integrate some
well-known topological properties of social networks to
speed the discovery process.

o We conducted experiments on real-world data sets to
evaluate the performance of our proposed techniques and
found that the reachability of any group of arbitrarily
selected nodes could be discovered with a small number
of queries in massive OSNs.

The roadmap of this paper is outlined as follows. Sec-
tion II introduces some preliminaries including the topological
properties of social networks, system model and problem
definition. Section IIl and Section IV address the two steps
of our proposed searching techniques, online searching and
offline detection. Section V discusses the experimental results.
Section VI introduces the related work, followed a conclusion
in Section VIL

II. PRELIMINARIES
A. Topological properties of Social Networks

Through many years of research in social networks, re-
searchers have detected some important topological properties
of social networks after conducting a large number of experi-
ments and analyzing a myriad of real-world data sets.

Small-world Property: It is also translated into “six degrees
of separation.” It was first observed through a series of exper-
iments conducted by Stanley Milgram and his coworkers in
the 1960’s [11]-[13]. This property causes the small diameter
of social networks and ensures the existence of a short path
between any pair of nodes in the social network graphs.
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Fig. 1: An example of the search problem
Scale-free Property: A scale-free network has a power-law

degree distribution, at least asymptotically, which means only
a small number of nodes have very large degrees.

Well-connectivity Among High-degree Nodes: The work [14]
has discovered that nodes of high degrees in social network
graphs are well connected. In fact, we can prove that even in
a random graph, high-degree nodes have higher probability of
linking with each other. Our proof is omitted in this paper due
to space limit.

e

B Subgraph 1

B. System Model

Although most OSNs provide all kinds of user relationship
information (e.g., friendship or dating relationship) which can
be used to measure the acquaintance between people, we
consider only friendship and we do not quantify its strength.
Therefore, we can use an undirected and unweighted graph,
G(V, E), to model the friendship network of an OSN. In the
graph model, the node set V' represents users and the edge set
E denotes the friendship among users.

Then querying a node’s friendlist can be modeled as dis-
covering its neighboring friends which we call local view. The
number of a node’s friends is denoted as its degree. When
searching for a desired subgraph of friendship with queries,
we keep track of not only nodes already queried but also
the list of candidates from where the next node for query
is chosen. A candidate is a node which has been discovered
in the query results but has not been queried yet. As more
nodes are queried, our view will grow. Figure 1 illustrates an
example of a snapshot of an OSN being searched with queries,
where blue dots represent nodes already queried, white ones
are candidate nodes, and the gray node represents the one
which exists in the OSN but has not been discovered yet.

C. Problem Definition

We define Local-view based Minimum Subgraph Detection
problem (LMSD) in Problem 1. The LMSD problem requires
both the size of the detected subgraph in terms of the number
of nodes and the number of queries be minimized, which,
however, is hard to achieve at the same time. To cope with
this challenge, we heuristically interpret the problem and break
it down to two steps. We first conduct online search with a
small number of queries to find a connected subgraph covering
all target nodes, and then in the detected subgraph we aim to
discover the subgraph which keeps all target nodes connected

with the minimum number of nodes involved. The rationale
of the effectiveness of our interpretation in solving the LMSD
problem is if the number of nodes queried in the first step is
small, the size of the finally detected subgraph should not be
very large.

Problem 1 Local-view based Minimum Subgraph Detection
(LMSD): Given a set of target nodes Sy in a graph, G(V, E),
the full topology of which is unknown initially, find the
minimum number of nodes from V \ Sy to make all target
nodes connected with the minimum number of node queries
for local-view discovery.

Given the subgraph discovered in the first step, we name the
minimum subgraph detection problem in the second step the
Centralized Minimum Subgraph Detection problem (CMSD):
given a graph and a group of target nodes, we look for the
minimum number of extra nodes to connect all of the target
nodes together. The CMSD problem is a hard problem as
proved in Theorem 1. The complexity of the CMSD indirectly
indicates the hardness of the LMSD problem. Based on our
two-step based interpretation, we will first discuss how to
detect the connectivity of target nodes via a small number
of queries in Section III and then address how to discover the
reachability of target nodes offline through a small number of
extra nodes in the subgraph from the previous step.

Theorem 1 The Centralized Minimum Subgraph Detection
problem (CMSD) is NP-hard. o

PROOF We will prove the NP-hardness of CMSD by a reduc-
tion to the Steiner Tree problem (ST). The definition of ST
is: Given an unweighted graph G and a set of nodes V; in it,
find a tree with minimum number of edges in GG, which make
any two nodes in V; reachable to each other either directly
or indirectly via other nodes in G. As is well known, the ST
problem is NP-hard [15]. The decision version of ST is that
given an unweighted graph G(V, E), a set of nodes V; C V
and an integer k, we are looking for a tree which involves all
nodes in V; and contains at most k edges from F. The decision
version of CMSD problem is that given an unweighted graph
G'(V',E’), a set of nodes V; C V' and an integer k', we are
searching for a subgraph of G’ which includes all nodes in V
and covers at most k£’ nodes from V' \ V.

We can demonstrate that there is a solution for ST if and
only if there is a solution for CMSD. Evidently, the nodes
in any steiner tree with at most k£ edges will be the solution
of CMSD, where k' = k + 1 — |V4]. On the other hand, any
spanning tree of the subgraph found in CMSD can form a
steiner tree with at most &'+ |V//| —1 edges. Here the spanning
tree is referred to as a tree composed of all the nodes and some
(or perhaps all) of the edges of a given graph. Therefore, the
CMSD problem is NP-Hard. ™

III. ONLINE SEARCHING

In the online searching, we search for a subgraph to connect
all target nodes in the OSN with a small number of queries.
The traditional graph searching techniques, such as Depth First
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Search (DFS) or Breadth First Search (BFS), can be applied
as the brute-force subgraph detection techniques; however,
their cost on queries for location view discovery is non-trivial,
due to the lack of global topology information of the OSN.
Therefore, we are motivated to design more efficient searching
techniques to discover the connectivity of targets.

A. The starting point of search

Without any prior knowledge, the search should start from
the target nodes. After all target nodes are queried, each of
them and its neighbors discovered through the OSN API form
a subgraph, as illustrated in Figure 1, where nodes 1, 2 and
3, are targets. These subgraphs are most likely disjoint due
to the structural sparsity of social networks. Each of these
subgraphs has its own node candidate set. The candidate set
of a subgraph initially contains only the neighbors of its target
node, but it grows as more nodes are queried.

Given the scattered subgraphs, efficiently discovering the
connectivity of target nodes requires merging all of these
subgraphs quickly by querying a small number of nodes.
Therefore, the selection of nodes for query is critical. In the
following subsections, we will discuss how to evaluate the
importance of a node in the online searching.

B. The evaluation of node candidates

In a dense graph (|E| > |V|), it’s straightforward to pick
a good node candidate for query. Basically, a node which
can make more target nodes accessible to each other should
be selected. However, such a criterion is not sufficient to
determine a candidate node in a sparse graph, such as social
network graphs, and may even lead to the failure of the search
process. The reason is that in a sparse graph, more likely, none
of the node candidates can directly improve the reachability of
target nodes. Therefore, we need a new criterion to evaluate a
node’s capability of facilitating the merging of subgraphs.

Inspired by the critical role of high-degree nodes in search-
ing in social network graphs [16], [17], we prioritize node
candidates of high degrees for query in the online searching.
However, often times, the real degree of a node candidate
is unknown until we query it, and thus, we estimate node
degree based on the discovered information to reduce query
cost. Specifically, we count the number of a node’s connections
alredy discovered in the online searching upon to a time point
and use it to estimate the node’s degree, which we call Pre-
Degree. In Figure 1, the pre-degree of node 9 at that time point
is one, as we only see its connection with node 3. As more
nodes are queried, we may discover more connections with
node 9 which will cause its pre-degree to increase accordingly.
The rationale of estimating a node degree with its pre-degree
is that since social network graphs have power law degree
distributions, if we see a node has a high pre-degree, the real
degree of that node will probably be high as well. Of course,
this may not always be accurate when a node’s pre-degree is
low.

In fact, we also explored to use some other information than
pre-degree to estimate node real degree, such as user account
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creation time. We ran some experiments to compare it with the
pre-degree and real degree startegies; however, the discussion
is omitted in this paper due to space limit.

C. Algorithmic Techniques for Online Searching

We propose two online search techniques, called Unbal-
anced Multiple-Subgraph Searching (UMS), and Balanced
Multiple-Subgraph Searching (BMS), respectively. The two
techniques have similar algorithmic logic, as illustrated in
Algorithm 1. The techniques consist of three steps: (1) query
all of the target nodes in the OSN graph and form their
individual subgraphs; (2) select a subgraph as the farget
subgraph; and (3) query the candidate node of the largest
estimated degree (e.g., pre-degree) in the target subgraph. A
tie will be broken arbitrarily. If a query discovers any overlap
of the subgraphs, then merge them as one. The last two steps
will be repeated until all subgraphs of target nodes are merged
together.

The difference between UMS and BMS is how to select
target subgraph. In order to evaluate a subgraph, we define
subgraph degree as the maximum (estimated) degree of nodes
in the subgraph. UMS picks the subgraph with maximum
subgraph degree, while BMS selects the subgraph with min-
imum subgraph degree. In Figure 1, after querying the target
nodes, 1, 2 and 3, individually, we get three disjoint subgraphs
which have degrees of 4, 1 and 1, respectively. With UMS,
Subgraph 1 is assigned as the target subgraph and then node
4 is queried (break tie arbitrarily). For UMS, once a target
subgraph is determined, it will not be reassigned. This is
because a query upon the target subgraph will lead to the
discovery of more edges so that its subgraph degree will
increase, thereby keeping the maximum degree among all
subgraphs. However, for BMS, once a query is made, the
current target subgraph may not have the minimum degree
any more. Let’s continue to use the example illustrated in
Figure 1. With BMS, Subgraph 2 or 3 (break tie arbitrarily)
will be selected as the target as they have a low degree of 1.

The inspiration in designing BMS comes from our concern
over the efficiency of searching with UMS. One can see that
essentially UMS prioritizes high-degree nodes in the search,
which may not be able to efficiently reach the target nodes of
low degrees. As illustrated in Figure 1, with UMS, Subgraphs
2 and 3 have to wait until the search reaches them. We
believe since the high-degree nodes in social networks are well
connected as we introduced in Section II, if we could reduce
the degree difference among the subgraphs by prioritizing
the subgraphs of low degrees in searching, the procedure of
merging subgraphs may perform faster. Therefore, we develop
this technique called Balanced Multiple-Subgraph Searching.

IV. OFFLINE DETECTION

In the offline detection phase, we aim to find a smaller
subgraph from the subgraph discovered in the online searching
which can maintain the connectivity of all target nodes.
Considering the association between the CMSD problem and
the Steiner Tree problem (ST) as we discussed in Section II,
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Algorithm 1: The Framework of Our Online Searching
Techniques

Input: Set of target nodes, 7'S, and an oracle of
querying nodes in the OSN

Output: A connected subgraph covering all nodes in 7'S

foreach Node v; in T'S do
subgraph(z) = Query(v;);
list.add(subgraph(?));

while list.size /= 1 do

tsg = SelectTargetSubgraph(l¢st);

tn = SelectNode(tsg);

subgraph(tsg).add(Query(tn));

if CheckOverlap(list, tsg) then

L Merge(list, tsg);

foreach Node candidate v,,, in tsg do
| Update(D(v,0));

we apply a classic approximate ST algorithm [18] to detect a
smaller subgraph in the offline detection phase.

There are two main reasons for us to apply the ST algorithm
[18]. First, it can guarantee the size of the detected subgraph
is no larger than 2(1 — 1/¢) times the size of the optimal
subgraph, where ¢ is the number of leaves in the optimal tree.
Second, it runs faster with the time complexity |So||V |2, which
is a critical concern when running algorithms on large-scale
OSN data sets.

Given an undirected and unweighted graph G(V, E) and
a set of target nodes Sy C V, there are four steps to find
a heuristic minimum steiner tree in [18]: (1) construct the
complete undirected graph G1(V1, E1) by creating an edge
between each pair of nodes in Sy with a label of the length of
their shortest path on G; (2) find the minimal spanning tree
Ty of G1; (3) construct a subgraph G4 of G by replacing each
edge in 77 by its corresponding shortest path in G; and (4)
find the minimal spanning tree T of G . Delete from T edges
with leaves which are non-steiner points.

V. EXPERIMENTAL STUDY

To evaluate the performance of our techniques in solving
the LMSD problem, we conducted experiments on large-scale
real-world data sets. In this section, we will first introduce the
data sets used in our experiments and analyze their topological
properties, including the degree distribution and the connec-
tivity of high-degree nodes. Then, we will evaluate the two
steps of our online searching techniques, node selection and
target subgraph selection.

A. Data Sets

We used two real-world data sets in our experiments, which
can be downloaded from the repository [19] .

(1) Gowalla data set [20]: Gowalla is a location-based
social networking website where users share their locations
by checking in. The data collected from Gowalla present the
friendship network which is undirected.
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TABLE I: Subgraphs of high-degree nodes

> Degree 100 200 | 300 | 400 | 500 | 600

nodes 1787 | 494 | 245 143 99 77

Gowalla Comps 1 1 1 1 1 1
Avg. Dist. | 232 | 196 | 1.82 | 1.70 | 1.63 | 1.58

nodes 408 89 30 14 9 7

Brightkite Comps 1 1 1 1 1 1
Avg. Dist. 2.29 1.95 1.88 | 1.78 | 1.67 | 1.71

(2) Brightkite data set [20]: Brightkite was once a location-
based social networking service provider where users shared
their locations by checking-in. The friendship network is
originally directed but we have constructed a network with
undirected edges whenever there is a friendship regardless of
the direction.

As we study on how to connect a group of nodes together on
an OSN, we need to ensure all of the target nodes are indeed
reachable to each other in the data sets, which means the
undirected input graph of each data set should be connected.
Therefore, we processed the original data sets by extracting
their largest connected components. The largest components
still retain a large number of nodes and edges: 196591 and
950327 in Gowalla; and 56739 and 212945 in Brightkite.

B. Topological Properties of Data Sets

We examine some of the topological properties of our data
sets which we introduce in Section II, including power-law
degree distribution and the well connectivity of high-degree
nodes, .

1) Power-law degree distribution: We apply the statistical
framework for discerning and quantifying power-law behavior
in empirical data proposed in [21] to check the degree distri-
bution of our data sets. The framework code is available at
[22]. In power-law distribution, P(z) ~ =%, « is known as
the exponent or scaling parameter, which typically lies in the
range 2 < a < 3. More often the power law applies only for
values greater than some minimum xmin. In such cases we
usually say that the tail of the distribution follows a power
law. Therefore, we check the values of the two parameters, o
and xmin, for our data sets: for Gowalla, o = 2.83 and xmin
= 95; and for Brightkite, o = 2.56 and xmin = 24.

2) Connectivity of High-Degree Nodes: To evaluate the
connectivity of high-degree nodes in our data sets, we first
extracted the subgraph consisting of nodes with a degree more
than a certain threshold and their edges. The threshold ranges
from 100 to 600 in increments of 100. We analyze the number
of the connected components and the average distance of
shortest paths between any pair of nodes for each data set.

From Table I, we can see that although the number of nodes
decreases as the degree threshold goes up, the nodes of high
degree are still connected well. Also, we can see the average
distance between any pair of reachable nodes is about 2. These
results demonstrate the well-connectivity among high-degree
nodes in our OSN data sets.

C. The Evaluation of Techniques

We conduct multiple groups of experiments for each data set
by varying the number of target nodes, ranging from 20 to 100
in increments of 20. Given a specific number of target nodes,
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we run the experiment 100 times, each time selecting target

nodes uniformly at random from each data set. As discussed
in Section III, there are two steps in the online searching,
choosing the target subgraph first and then selecting a node to
query. Therefore, we evaluate these two steps, respectively.

6
Number of targets

1) Node selection (NS): In this group of experiments, we
evaluate the pre-degree based node selection by comparing it
with the node selection of using their real degrees. We validate
whether high-degree nodes are good choice for search. Also,
we aim to verify the goodness of using pre-degree to estimate
the real degree of a node candidate. In the experiments,
along with the node selection techniques, we use the balanced
subgraph selection, which targets the subgraph with the lowest
degree. We evaluate node selection techniques in terms of
the number of online queries and the number of extra nodes
selected in the offline to make the target nodes reachable.

In terms of the number of queries, in Figures 2a-2b, we can
see: (1) on the average, the number of queries issued with the
pre-degree based node selection (BalancedPreD) is more than
that number with the node selection of using their real degrees
(BalancedRealD). (2) BalancedPreD needs less queries than 2
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times of the number of targets.

In terms of the number of extra nodes needed to connect the
targets, in Figures 3a-3b, the performances of BalancedPreD,
and BalancedRealD are quite similar to that of the centralized
algorithm (Central) which runs the MST on the entire input
data set. It demonstrates that with the local view in the social
network graph we can still efficiently discover the connectivity
of a group of target nodes in a massive OSN.
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Fig. 5: The number of extra nodes with BMS and UMS. (a)
Gowalla; (b) Brightkite.

2) Subgraph Selection (SS): In the experiments of evalu-
ating subgraph selection techniques, we test the unbalanced
subgraph selection (UMS), and the balanced subgraph selec-
tion (BMS). The UMS always targets the subgraph with the
largest degree, while the BMS always chooses the subgraph
with lowest degree. In this group of experiments, we apply the
real degree to node selection aiming at eliminating the impact
of node selection on evaluating the performance of subgraph
selection techniques. After running some experiments, we
realized that the number of queries issued with BMS is about
two times of the number of target nodes; however, the UMS
may search through a large portion of the data set. Therefore,
for the UMS, we set a termination condition: if the number of
queries issued is more than 10 times of the number of targets,
we will terminate the search.

In Figures 4a-4b, we can see that the BalancedRealD uses a
fewer number of queries to discover the connectivity of target
nodes. However, in most of the cases, the UnbalancedReal was
terminated by the condition we set, which means the number
of queries issued with UMS is more than 10 times of the
number of the target nodes.

In terms of the extra nodes needed for connecting the
targets offline, since the connectivity wasn’t achieved, we only
compare BalancedRealD with Central. Their performance is
quite similar, as displayed in Figures 5a-5b.

VI. RELATED WORK
A. Subgraph Connectivity

Our subgraph detection problem is relevant to the subgraph
connectivity in the domain of graph mining. [23] proposes
solutions for finding a subgraph that connects a set of query
nodes in a graph, where the proximity between nodes is
defined depending on the global topology of the graph. [24]
addressed the searching for the densest community containing
all query nodes with and without size constraint. Most recently,
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[25] examines the Steiner Maximum-Connected Subgraph
(SMCS) problem. The main difference between our proposed
problem and the above line of research is two-fold: (1) The
existing work addresses subgraph connectivity with pre-known
global topology; however, we consider the subgraph detection
by a third-party analyst. (2) Our problem is different as we
consider small subgraph connectivity as well as query cost.

B. Local View Based Graph Algorithms

[9] proposes local graph clustering methods to find a cluster
of nodes by exploring a small region of the graph, which
enable targeted clustering around a given seed node and are
faster than traditional global graph clustering methods because
their runtime does not depend on the size of the input graph.
Additionally, [8] proposes a local search in the neighborhood
of a node to find the best community for the node. The
difference between our work and the above work is that we
consider a different search problem, and also, we particularly
take advantage of topological properties of social networks in
the design of search strategies.

VII. CONCLUSION

In this paper, we propose a problem of discovering a
minimum subgraph covering a given group of nodes from the
perspective of third-party analysts in OSNs, namely local-view
based minimum subgraph detection (LMSD). To solve this
problem, we propose two searching techniques, called Un-
balanced Multiple-Subgraph (UMS) and Balanced Multiple-
Subgraph (BMS), which are based on the well-known topo-
logical properties of social networks, including small-world
phenomenon, power-law node degree distribution and the well-
connectivity of nodes of high degrees.

Through experiments over large-scale real-world data sets,
we evaluate the performance of our proposed techniques. The
BMS technique performs better than UMS, which demon-
strates that the well-connectivity property in social networks
is not restricted to nodes of high degrees in OSNs, rather, the
entire OSNs are well connected, as any group of arbitrarily
selected nodes can reach connectivity by a small number of
node queries. Furthermore, the design principle in BMS of
searching from low-degree subgraphs shows great impact on
the efficiency in solving the LMSD problem. Our work sheds
light on leveraging social network topological properties to
conduct search efficiently, which may improve some of the
existing searching-related research work in OSNs.
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