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Abstract—One of the challenges in social media research is
that, often times, researchers or third parties could not obtain
the massive of data collected by a limited number of “big
brothers” (e.g., Facebook and Google). In this paper, we shed
light on leveraging social network topological properties and
local information to effectively conduct search in Online Social
Networks (OSN). The problem we focus on is to discover the
reachability of a group of target people in an OSN, particularly
from the perspective of a third-party analyst who does not have
full access to the OSN. We developed effective and efficient
detection techniques which demand only a small number of
queries to discover people’s connections (e.g. friendship) in the
OSN. After conducting experiments on real-world data sets, we
found that our proposed techniques perform as well as the
centralized detection algorithm, which assumes the availability
of the global information in the OSN.

Index Terms—online social networks, subgraph connectivity,
search, local view, minimum steiner tree

I. INTRODUCTION

In the past decade, a large number of researchers have

shown their interest in Online Social Networks (OSNs). Par-

ticularly, they have been dedicated to designing algorithms to

solve complex problems relevant to the topological structures

of OSN graphs, for example, community detection [1]–[3],

detecting subgraphs with a given pattern [4] and sampling

social network graphs [5]. Most of those problems assume the

availability of entire network graphs, which, however, may not

be realistic. Therefore, in recent years, more attention has been

paid to leveraging local information and designing distributed

algorithms [6]–[10] to solve issues in massive OSNs.

This paper considers the problem of discovering a small

subgraph which connects a group of target people in an OSN.

We discuss this problem particularly from the perspective of a

third-party analyst who does not have a full view of the friend-

ship graph of the OSN site. As a motivating example, consider

that a person plans to organize a successful party/workshop,

where the success is subject to three constraints: (1) a list of

people must be invited to the event (i.e., target people); (2)

all target participants should be acquainted with each other

directly or through people who need to be invited additionally;

and (3) the number of people additionally invited should be

minimized due to some reasons, such as budget or space limit.

Solving this problem is challenging for two reasons. First,

in an OSN, the information that a third-party analyst can

use is limited. The analyst can gather some data either by

visiting individual users’ profile pages or by sending queries

through OSN APIs. What he can see is local to the visited or

queried users. Second, even discovering such local information

demands effort. One can write script to crawl the web site to

collect such data; however, intensively querying the OSN may

cause the server to get overwhelmed. This is why many OSNs

limit the number of web queries from the same IP address

or a particular group of IP addresses per day. Therefore, a

third-party analyst needs less-cost searching techniques. The

contribution of this paper can be summarized as follows:

• We proposed a subgraph discovery problem in OSNs

from the perspective of a third-party analyst.

• We developed technical solutions which integrate some

well-known topological properties of social networks to

speed the discovery process.

• We conducted experiments on real-world data sets to

evaluate the performance of our proposed techniques and

found that the reachability of any group of arbitrarily

selected nodes could be discovered with a small number

of queries in massive OSNs.

The roadmap of this paper is outlined as follows. Sec-

tion II introduces some preliminaries including the topological

properties of social networks, system model and problem

definition. Section III and Section IV address the two steps

of our proposed searching techniques, online searching and

offline detection. Section V discusses the experimental results.

Section VI introduces the related work, followed a conclusion

in Section VII.

II. PRELIMINARIES

A. Topological properties of Social Networks

Through many years of research in social networks, re-

searchers have detected some important topological properties

of social networks after conducting a large number of experi-

ments and analyzing a myriad of real-world data sets.

Small-world Property: It is also translated into “six degrees

of separation.” It was first observed through a series of exper-

iments conducted by Stanley Milgram and his coworkers in

the 1960’s [11]–[13]. This property causes the small diameter

of social networks and ensures the existence of a short path

between any pair of nodes in the social network graphs.
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Fig. 1: An example of the search problem
Scale-free Property: A scale-free network has a power-law

degree distribution, at least asymptotically, which means only

a small number of nodes have very large degrees.

Well-connectivity Among High-degree Nodes: The work [14]

has discovered that nodes of high degrees in social network

graphs are well connected. In fact, we can prove that even in

a random graph, high-degree nodes have higher probability of

linking with each other. Our proof is omitted in this paper due

to space limit.

B. System Model

Although most OSNs provide all kinds of user relationship

information (e.g., friendship or dating relationship) which can

be used to measure the acquaintance between people, we

consider only friendship and we do not quantify its strength.

Therefore, we can use an undirected and unweighted graph,

G(V,E), to model the friendship network of an OSN. In the

graph model, the node set V represents users and the edge set

E denotes the friendship among users.

Then querying a node’s friendlist can be modeled as dis-

covering its neighboring friends which we call local view. The

number of a node’s friends is denoted as its degree. When

searching for a desired subgraph of friendship with queries,

we keep track of not only nodes already queried but also

the list of candidates from where the next node for query

is chosen. A candidate is a node which has been discovered

in the query results but has not been queried yet. As more

nodes are queried, our view will grow. Figure 1 illustrates an

example of a snapshot of an OSN being searched with queries,

where blue dots represent nodes already queried, white ones

are candidate nodes, and the gray node represents the one

which exists in the OSN but has not been discovered yet.

C. Problem Definition

We define Local-view based Minimum Subgraph Detection

problem (LMSD) in Problem 1. The LMSD problem requires

both the size of the detected subgraph in terms of the number

of nodes and the number of queries be minimized, which,

however, is hard to achieve at the same time. To cope with

this challenge, we heuristically interpret the problem and break

it down to two steps. We first conduct online search with a

small number of queries to find a connected subgraph covering

all target nodes, and then in the detected subgraph we aim to

discover the subgraph which keeps all target nodes connected

with the minimum number of nodes involved. The rationale

of the effectiveness of our interpretation in solving the LMSD

problem is if the number of nodes queried in the first step is

small, the size of the finally detected subgraph should not be

very large.

Problem 1 Local-view based Minimum Subgraph Detection

(LMSD): Given a set of target nodes S0 in a graph, G(V,E),
the full topology of which is unknown initially, find the

minimum number of nodes from V \ S0 to make all target

nodes connected with the minimum number of node queries

for local-view discovery.

Given the subgraph discovered in the first step, we name the

minimum subgraph detection problem in the second step the

Centralized Minimum Subgraph Detection problem (CMSD):

given a graph and a group of target nodes, we look for the

minimum number of extra nodes to connect all of the target

nodes together. The CMSD problem is a hard problem as

proved in Theorem 1. The complexity of the CMSD indirectly

indicates the hardness of the LMSD problem. Based on our

two-step based interpretation, we will first discuss how to

detect the connectivity of target nodes via a small number

of queries in Section III and then address how to discover the

reachability of target nodes offline through a small number of

extra nodes in the subgraph from the previous step.

Theorem 1 The Centralized Minimum Subgraph Detection

problem (CMSD) is NP-hard. ✷

PROOF We will prove the NP-hardness of CMSD by a reduc-

tion to the Steiner Tree problem (ST). The definition of ST

is: Given an unweighted graph G and a set of nodes Vt in it,

find a tree with minimum number of edges in G, which make

any two nodes in Vt reachable to each other either directly

or indirectly via other nodes in G. As is well known, the ST

problem is NP-hard [15]. The decision version of ST is that

given an unweighted graph G(V,E), a set of nodes Vt ⊆ V
and an integer k, we are looking for a tree which involves all

nodes in Vt and contains at most k edges from E. The decision

version of CMSD problem is that given an unweighted graph

G′(V ′, E′), a set of nodes V ′

t
⊆ V ′ and an integer k′, we are

searching for a subgraph of G′ which includes all nodes in V ′

t

and covers at most k′ nodes from V ′ \ V ′

t
.

We can demonstrate that there is a solution for ST if and

only if there is a solution for CMSD. Evidently, the nodes

in any steiner tree with at most k edges will be the solution

of CMSD, where k′ = k + 1 − |Vt|. On the other hand, any

spanning tree of the subgraph found in CMSD can form a

steiner tree with at most k′+|V ′

t
|−1 edges. Here the spanning

tree is referred to as a tree composed of all the nodes and some

(or perhaps all) of the edges of a given graph. Therefore, the

CMSD problem is NP-Hard. �

III. ONLINE SEARCHING

In the online searching, we search for a subgraph to connect

all target nodes in the OSN with a small number of queries.

The traditional graph searching techniques, such as Depth First
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Search (DFS) or Breadth First Search (BFS), can be applied

as the brute-force subgraph detection techniques; however,

their cost on queries for location view discovery is non-trivial,

due to the lack of global topology information of the OSN.

Therefore, we are motivated to design more efficient searching

techniques to discover the connectivity of targets.

A. The starting point of search

Without any prior knowledge, the search should start from

the target nodes. After all target nodes are queried, each of

them and its neighbors discovered through the OSN API form

a subgraph, as illustrated in Figure 1, where nodes 1, 2 and

3, are targets. These subgraphs are most likely disjoint due

to the structural sparsity of social networks. Each of these

subgraphs has its own node candidate set. The candidate set

of a subgraph initially contains only the neighbors of its target

node, but it grows as more nodes are queried.

Given the scattered subgraphs, efficiently discovering the

connectivity of target nodes requires merging all of these

subgraphs quickly by querying a small number of nodes.

Therefore, the selection of nodes for query is critical. In the

following subsections, we will discuss how to evaluate the

importance of a node in the online searching.

B. The evaluation of node candidates

In a dense graph (|E| ≫ |V |), it’s straightforward to pick

a good node candidate for query. Basically, a node which

can make more target nodes accessible to each other should

be selected. However, such a criterion is not sufficient to

determine a candidate node in a sparse graph, such as social

network graphs, and may even lead to the failure of the search

process. The reason is that in a sparse graph, more likely, none

of the node candidates can directly improve the reachability of

target nodes. Therefore, we need a new criterion to evaluate a

node’s capability of facilitating the merging of subgraphs.

Inspired by the critical role of high-degree nodes in search-

ing in social network graphs [16], [17], we prioritize node

candidates of high degrees for query in the online searching.

However, often times, the real degree of a node candidate

is unknown until we query it, and thus, we estimate node

degree based on the discovered information to reduce query

cost. Specifically, we count the number of a node’s connections

alredy discovered in the online searching upon to a time point

and use it to estimate the node’s degree, which we call Pre-

Degree. In Figure 1, the pre-degree of node 9 at that time point

is one, as we only see its connection with node 3. As more

nodes are queried, we may discover more connections with

node 9 which will cause its pre-degree to increase accordingly.

The rationale of estimating a node degree with its pre-degree

is that since social network graphs have power law degree

distributions, if we see a node has a high pre-degree, the real

degree of that node will probably be high as well. Of course,

this may not always be accurate when a node’s pre-degree is

low.

In fact, we also explored to use some other information than

pre-degree to estimate node real degree, such as user account

creation time. We ran some experiments to compare it with the

pre-degree and real degree startegies; however, the discussion

is omitted in this paper due to space limit.

C. Algorithmic Techniques for Online Searching

We propose two online search techniques, called Unbal-

anced Multiple-Subgraph Searching (UMS), and Balanced

Multiple-Subgraph Searching (BMS), respectively. The two

techniques have similar algorithmic logic, as illustrated in

Algorithm 1. The techniques consist of three steps: (1) query

all of the target nodes in the OSN graph and form their

individual subgraphs; (2) select a subgraph as the target

subgraph; and (3) query the candidate node of the largest

estimated degree (e.g., pre-degree) in the target subgraph. A

tie will be broken arbitrarily. If a query discovers any overlap

of the subgraphs, then merge them as one. The last two steps

will be repeated until all subgraphs of target nodes are merged

together.

The difference between UMS and BMS is how to select

target subgraph. In order to evaluate a subgraph, we define

subgraph degree as the maximum (estimated) degree of nodes

in the subgraph. UMS picks the subgraph with maximum

subgraph degree, while BMS selects the subgraph with min-

imum subgraph degree. In Figure 1, after querying the target

nodes, 1, 2 and 3, individually, we get three disjoint subgraphs

which have degrees of 4, 1 and 1, respectively. With UMS,

Subgraph 1 is assigned as the target subgraph and then node

4 is queried (break tie arbitrarily). For UMS, once a target

subgraph is determined, it will not be reassigned. This is

because a query upon the target subgraph will lead to the

discovery of more edges so that its subgraph degree will

increase, thereby keeping the maximum degree among all

subgraphs. However, for BMS, once a query is made, the

current target subgraph may not have the minimum degree

any more. Let’s continue to use the example illustrated in

Figure 1. With BMS, Subgraph 2 or 3 (break tie arbitrarily)

will be selected as the target as they have a low degree of 1.

The inspiration in designing BMS comes from our concern

over the efficiency of searching with UMS. One can see that

essentially UMS prioritizes high-degree nodes in the search,

which may not be able to efficiently reach the target nodes of

low degrees. As illustrated in Figure 1, with UMS, Subgraphs

2 and 3 have to wait until the search reaches them. We

believe since the high-degree nodes in social networks are well

connected as we introduced in Section II, if we could reduce

the degree difference among the subgraphs by prioritizing

the subgraphs of low degrees in searching, the procedure of

merging subgraphs may perform faster. Therefore, we develop

this technique called Balanced Multiple-Subgraph Searching.

IV. OFFLINE DETECTION

In the offline detection phase, we aim to find a smaller

subgraph from the subgraph discovered in the online searching

which can maintain the connectivity of all target nodes.

Considering the association between the CMSD problem and

the Steiner Tree problem (ST) as we discussed in Section II,
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Algorithm 1: The Framework of Our Online Searching

Techniques

Input: Set of target nodes, TS, and an oracle of

querying nodes in the OSN

Output: A connected subgraph covering all nodes in TS
foreach Node vi in TS do

subgraph(i) = Query(vi);
list.add(subgraph(i));

while list.size != 1 do

tsg = SelectTargetSubgraph(list);
tn = SelectNode(tsg);

subgraph(tsg).add(Query(tn));

if CheckOverlap(list, tsg) then

Merge(list, tsg);

foreach Node candidate vm in tsg do

Update(D(vm));

we apply a classic approximate ST algorithm [18] to detect a

smaller subgraph in the offline detection phase.

There are two main reasons for us to apply the ST algorithm

[18]. First, it can guarantee the size of the detected subgraph

is no larger than 2(1 − 1/ℓ) times the size of the optimal

subgraph, where ℓ is the number of leaves in the optimal tree.

Second, it runs faster with the time complexity |S0||V |2, which

is a critical concern when running algorithms on large-scale

OSN data sets.

Given an undirected and unweighted graph G(V,E) and

a set of target nodes S0 ⊆ V , there are four steps to find

a heuristic minimum steiner tree in [18]: (1) construct the

complete undirected graph G1(V1, E1) by creating an edge

between each pair of nodes in S0 with a label of the length of

their shortest path on G; (2) find the minimal spanning tree

T1 of G1; (3) construct a subgraph Gs of G by replacing each

edge in T1 by its corresponding shortest path in G; and (4)

find the minimal spanning tree Ts of Gs. Delete from Ts edges

with leaves which are non-steiner points.

V. EXPERIMENTAL STUDY

To evaluate the performance of our techniques in solving

the LMSD problem, we conducted experiments on large-scale

real-world data sets. In this section, we will first introduce the

data sets used in our experiments and analyze their topological

properties, including the degree distribution and the connec-

tivity of high-degree nodes. Then, we will evaluate the two

steps of our online searching techniques, node selection and

target subgraph selection.

A. Data Sets

We used two real-world data sets in our experiments, which

can be downloaded from the repository [19] .

(1) Gowalla data set [20]: Gowalla is a location-based

social networking website where users share their locations

by checking in. The data collected from Gowalla present the

friendship network which is undirected.

TABLE I: Subgraphs of high-degree nodes

≥ Degree 100 200 300 400 500 600

Gowalla

nodes 1787 494 245 143 99 77
Comps 1 1 1 1 1 1

Avg. Dist. 2.32 1.96 1.82 1.70 1.63 1.58

Brightkite

nodes 408 89 30 14 9 7
Comps 1 1 1 1 1 1

Avg. Dist. 2.29 1.95 1.88 1.78 1.67 1.71

(2) Brightkite data set [20]: Brightkite was once a location-

based social networking service provider where users shared

their locations by checking-in. The friendship network is

originally directed but we have constructed a network with

undirected edges whenever there is a friendship regardless of

the direction.

As we study on how to connect a group of nodes together on

an OSN, we need to ensure all of the target nodes are indeed

reachable to each other in the data sets, which means the

undirected input graph of each data set should be connected.

Therefore, we processed the original data sets by extracting

their largest connected components. The largest components

still retain a large number of nodes and edges: 196591 and

950327 in Gowalla; and 56739 and 212945 in Brightkite.

B. Topological Properties of Data Sets

We examine some of the topological properties of our data

sets which we introduce in Section II, including power-law

degree distribution and the well connectivity of high-degree

nodes, .

1) Power-law degree distribution: We apply the statistical

framework for discerning and quantifying power-law behavior

in empirical data proposed in [21] to check the degree distri-

bution of our data sets. The framework code is available at

[22]. In power-law distribution, P (x) ∼ x−α, α is known as

the exponent or scaling parameter, which typically lies in the

range 2 < α < 3. More often the power law applies only for

values greater than some minimum xmin. In such cases we

usually say that the tail of the distribution follows a power

law. Therefore, we check the values of the two parameters, α
and xmin, for our data sets: for Gowalla, α = 2.83 and xmin
= 95; and for Brightkite, α = 2.56 and xmin = 24.

2) Connectivity of High-Degree Nodes: To evaluate the

connectivity of high-degree nodes in our data sets, we first

extracted the subgraph consisting of nodes with a degree more

than a certain threshold and their edges. The threshold ranges

from 100 to 600 in increments of 100. We analyze the number

of the connected components and the average distance of

shortest paths between any pair of nodes for each data set.

From Table I, we can see that although the number of nodes

decreases as the degree threshold goes up, the nodes of high

degree are still connected well. Also, we can see the average

distance between any pair of reachable nodes is about 2. These

results demonstrate the well-connectivity among high-degree

nodes in our OSN data sets.

C. The Evaluation of Techniques

We conduct multiple groups of experiments for each data set

by varying the number of target nodes, ranging from 20 to 100
in increments of 20. Given a specific number of target nodes,
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(a) (b)

Fig. 2: The number of queries with different node selection

strategies. (a) Gowalla; (b) Brightkite.

(a) (b)

Fig. 3: The number of extra nodes with different node selection

strategies. (a) Gowalla; (b) Brightkite.

(a) (b)

Fig. 4: The number of queries with BMS and UMS. (a)

Gowalla; (b) Brightkite.
we run the experiment 100 times, each time selecting target

nodes uniformly at random from each data set. As discussed

in Section III, there are two steps in the online searching,

choosing the target subgraph first and then selecting a node to

query. Therefore, we evaluate these two steps, respectively.

1) Node selection (NS): In this group of experiments, we

evaluate the pre-degree based node selection by comparing it

with the node selection of using their real degrees. We validate

whether high-degree nodes are good choice for search. Also,

we aim to verify the goodness of using pre-degree to estimate

the real degree of a node candidate. In the experiments,

along with the node selection techniques, we use the balanced

subgraph selection, which targets the subgraph with the lowest

degree. We evaluate node selection techniques in terms of

the number of online queries and the number of extra nodes

selected in the offline to make the target nodes reachable.

In terms of the number of queries, in Figures 2a-2b, we can

see: (1) on the average, the number of queries issued with the

pre-degree based node selection (BalancedPreD) is more than

that number with the node selection of using their real degrees

(BalancedRealD). (2) BalancedPreD needs less queries than 2

times of the number of targets.

In terms of the number of extra nodes needed to connect the

targets, in Figures 3a-3b, the performances of BalancedPreD,

and BalancedRealD are quite similar to that of the centralized

algorithm (Central) which runs the MST on the entire input

data set. It demonstrates that with the local view in the social

network graph we can still efficiently discover the connectivity

of a group of target nodes in a massive OSN.

(a) (b)

Fig. 5: The number of extra nodes with BMS and UMS. (a)

Gowalla; (b) Brightkite.

2) Subgraph Selection (SS): In the experiments of evalu-

ating subgraph selection techniques, we test the unbalanced

subgraph selection (UMS), and the balanced subgraph selec-

tion (BMS). The UMS always targets the subgraph with the

largest degree, while the BMS always chooses the subgraph

with lowest degree. In this group of experiments, we apply the

real degree to node selection aiming at eliminating the impact

of node selection on evaluating the performance of subgraph

selection techniques. After running some experiments, we

realized that the number of queries issued with BMS is about

two times of the number of target nodes; however, the UMS

may search through a large portion of the data set. Therefore,

for the UMS, we set a termination condition: if the number of

queries issued is more than 10 times of the number of targets,

we will terminate the search.

In Figures 4a-4b, we can see that the BalancedRealD uses a

fewer number of queries to discover the connectivity of target

nodes. However, in most of the cases, the UnbalancedReal was

terminated by the condition we set, which means the number

of queries issued with UMS is more than 10 times of the

number of the target nodes.

In terms of the extra nodes needed for connecting the

targets offline, since the connectivity wasn’t achieved, we only

compare BalancedRealD with Central. Their performance is

quite similar, as displayed in Figures 5a-5b.

VI. RELATED WORK

A. Subgraph Connectivity

Our subgraph detection problem is relevant to the subgraph

connectivity in the domain of graph mining. [23] proposes

solutions for finding a subgraph that connects a set of query

nodes in a graph, where the proximity between nodes is

defined depending on the global topology of the graph. [24]

addressed the searching for the densest community containing

all query nodes with and without size constraint. Most recently,
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[25] examines the Steiner Maximum-Connected Subgraph

(SMCS) problem. The main difference between our proposed

problem and the above line of research is two-fold: (1) The

existing work addresses subgraph connectivity with pre-known

global topology; however, we consider the subgraph detection

by a third-party analyst. (2) Our problem is different as we

consider small subgraph connectivity as well as query cost.

B. Local View Based Graph Algorithms

[9] proposes local graph clustering methods to find a cluster

of nodes by exploring a small region of the graph, which

enable targeted clustering around a given seed node and are

faster than traditional global graph clustering methods because

their runtime does not depend on the size of the input graph.

Additionally, [8] proposes a local search in the neighborhood

of a node to find the best community for the node. The

difference between our work and the above work is that we

consider a different search problem, and also, we particularly

take advantage of topological properties of social networks in

the design of search strategies.

VII. CONCLUSION

In this paper, we propose a problem of discovering a

minimum subgraph covering a given group of nodes from the

perspective of third-party analysts in OSNs, namely local-view

based minimum subgraph detection (LMSD). To solve this

problem, we propose two searching techniques, called Un-

balanced Multiple-Subgraph (UMS) and Balanced Multiple-

Subgraph (BMS), which are based on the well-known topo-

logical properties of social networks, including small-world

phenomenon, power-law node degree distribution and the well-

connectivity of nodes of high degrees.

Through experiments over large-scale real-world data sets,

we evaluate the performance of our proposed techniques. The

BMS technique performs better than UMS, which demon-

strates that the well-connectivity property in social networks

is not restricted to nodes of high degrees in OSNs, rather, the

entire OSNs are well connected, as any group of arbitrarily

selected nodes can reach connectivity by a small number of

node queries. Furthermore, the design principle in BMS of

searching from low-degree subgraphs shows great impact on

the efficiency in solving the LMSD problem. Our work sheds

light on leveraging social network topological properties to

conduct search efficiently, which may improve some of the

existing searching-related research work in OSNs.
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