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Abstract— This paper presents a Koopman lifting lineariza-
tion method that is applicable to nonlinear dynamical sys-
tems having both stable and unstable regions. It is known
that Dynamic Mode Decomposition (DMD) and its extended
methods are often unable to model unstable systems accurately
and reliably. Here we solve the problem through merging
three methodologies: decomposition of a lifted linear system
into stable and unstable modes, deep learning of a dictionary
of observable functions in the separated subspaces, and a
new formula for obtaining the Koopman operator, called
Direct Encoding. Two sets of effective observable functions
are obtained through neural net training where the training
data are separated into stable and unstable trajectories. The
resultant learned observables are used for lifting the state
space, and a linear state transition matrix is constructed
using Direct Encoding where inner products of the learned
observables are computed. The proposed method shows a
dramatic improvement over existing DMD and data-driven
methods. Furthermore, a method is developed for determining
the boundaries between stable and unstable regions.

Index Terms— Koopman operator, Lifting linearization, Neu-
ral net observables, Koopman direct encoding

I. INTRODUCTION

Lifting linearization methods, such as those based on the
Koopman Operator, have been used to transform nonlinear
systems to linear models. The theory states that the linear
model becomes exact in modeling a nonlinear system as
the order of the linear model approaches infinity, though
some nonlinear systems have finite order representations
in lifted space [1], [2]. The Koopman Operator models
are generally constructed through data-driven methods such
as Extended Dynamic Mode Decomposition (EDMD) [3].
These Koopman-DMD methods have been applied to non-
autonomous systems to construct linear dynamic models that
allow us to apply various linear control methods, such as
linear model predictive control (MPC), to nonlinear control
systems [4].

A key component necessary to constructing a Koopman
Operator-based linear model is selection of the observable
functions that lift the state space. Prior work has studied
the use of various function families as observables, such as
polynomial basis functions, radial basis functions and time
delays [5]–[7] . There have also been formulas created for
algorithmically determining useful observables based on the
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dataset [8], [9]. Modern machine learning techniques have
been applied to learn observable functions with significant
success [10]–[12].

However, it can be difficult to formulate accurate approx-
imations of the Koopman Operator for nonlinear systems
that produce both stable and unstable trajectories. A passive
dynamic walker, for example, is essentially an unstable
system, but it can walk stably if it starts within a stable
region [13]. When concerned with only the stable regions
of a nonlinear system, methods have been developed to
construct stable Koopman models from unstable data-driven
models for systems that are known to be stable [14]–[17].
However, these methods are not applicable when needing
to predict stable trajectories for a system with unstable
regions. A key difficulty is to capture a proper dataset that
represents diverse behaviors involved in stable and unstable
trajectories. Because of the nature of unstable trajectories,
a bias towards the unstable modes can often occur when
creating the Koopman model.

Prior work discusses the potential for Koopman Oper-
ator models to describe unstable subspaces [1]. This pa-
per presents a methodology for constructing an accurate
Koopman model for nonlinear systems with both stable
and unstable regions through separation of a lifted space
into stable and unstable subspaces. Two sets of effective
observables are learned separately and superposed to con-
struct a complete model. In addition, a method will be
developed for determining a boundary between stable and
unstable regions in the original state space by analyzing
the Koopman Operator Model using modal decomposition,
which is made possible with the effective construction of
observable functions.

The current work presents two significant contributions.
One is a novel training method of subspace specific observ-
able generation (SSOG) via a neural network. The other
is application of a new formula, called Direct Encoding
[18], for obtaining Koopman Operator models through inner
product computations instead of least squares estimate.

In the following, the Koopman Direct Encoding is briefly
described in Section II, followed by the development of
the SSOG algorithm based on space separation, observable
training, and model construction using the Direct Encoding
(Section III). Numerical experiments are presented in Section
IV, and the results will be discussed in Section V.



II. KOOPMAN DIRECT ENCODING OF NONLINEAR
DYNAMICS

In this section, we give a brief overview of the Koop-
man Operator and introduce the direct encoding method
for obtaining a Koopman operator directly from nonlinear
dynamics.

Consider a discrete-time dynamical system, given by

xk+1 = f(xk) (1)

where x ∈ Rn is the independent state variable vector repre-
senting the system, f is a nonlinear function f : Rn → Rn,
and k is the current time step. Also consider a real-valued
observable function of the state variables g : Rn → R. The
Koopman Operator is an infinite-dimensional linear operator
acting on the observable function g :

(Kg)(x) = g(f(x)) = (g ◦ f)(x) (2)

where the Koopman operator K is linear, even though the
dynamic system is nonlinear.

Although this Koopman operator can be defined for an
observable involved in a general Banach space [19], we
assume that the observable function g exists in a Hilbert
space on X ⊂ Rn,

g ∈ H (3)

Then, it can be shown that the composition g ◦ f in (2) can
be expressed with an integral kernel as

(g ◦ f)(x) =
∫
X

κ(x, ξ)g(ξ)dξ (4)

where κ : X × X → C is a kernel that can be written by
using a set of orthonormal basis functions [ϕ1, ϕ2, ϕ3, ...] that
span H.

κ(x, ξ) =
∞∑
i=1

ϕi[f(x)]ϕ̄i(ξ) (5)

This demonstrates that the composition function g◦f is given
by the linear transformation of the observable function g ∈ H
[18].

Let [g1, g2, · · · ] be an independent set of observables that
spans the Hilbert space H. Let us further assume that the
compositions of gi with f are involved in the Hilbert space.

gi ◦ f ∈ H ∀i (6)

Applying the above linear transformation of the observable
function (4) to all the observables, it can be shown that
a time-evolution of the observables is given as a linear
transformation with an infinite-dimensional matrix A.

z[f(x)] = Az(x) (7)

where
z(x) =

[
g1(x) g2(x) . . .

]T
(8)

The matrix A is a state transition matrix that maps the lifted
state from one time step to the next.

In the Direct Encoding method [18], the matrix A is
determined by taking inner products of the observables

and their compositions with the nonlinear function f . Post-
multiplying zT (x) to both sides of (7) and taking integral
over X yields

Q = AR (9)

where

Q =

⟨g1 ◦ f, g1⟩ ⟨g1 ◦ f, g2 . . .
⟨g2 ◦ f, g1⟩ ⟨g2 ◦ f, g2⟩ . . .

...
...

. . .

 (10)

R =

⟨g1, g1⟩ ⟨g1, g2⟩ . . .
⟨g2, g1⟩ ⟨g2, g2⟩ . . .

...
...

. . .

 (11)

Since [g1, g2, · · · ] are independent, the matrix R is non-
singular. Therefore, the A matrix is given by

A = QR−1 (12)

This Direct Encoding method allows us to obtain a linear
model directly from a given nonlinear state equation of
function f and observable functions. The model is valid
globally.

Although the original Koopman Operator is infinite di-
mensional, effective methods have been established for ap-
proximating the operator [20]–[22].

III. SUBSPACE SPECIFIC OBSERVABLE GENERATION

This section presents a novel algorithm for obtaining an
accurate Koopman operator model for nonlinear systems
having both stable and unstable regions. The algorithm is
built upon three theoretical and technical foundations.

First, it employs the Direct Encoding formula. In DMD,
including its variants such as EDMD, the linear state tran-
sition matrix A in eq. (7) is assumed to exist and is
determined from data based on a Least Squares Estimation.
This may cause a biased estimate, as addressed previously.
In the Direct Encoding formula, however, the A matrix is
determined from the inner products of observable functions
and their composition with the nonlinear state function f
involved in the two matrices R and Q. Because both gi
and gi ◦ f are in a Hilbert space, all the inner products are
guaranteed to exist and the resultant A matrix provides an
exact linearization that does not depend on data. The linear
model is globally valid. This Direct Encoding formula is used
as a foundational framework in the new algorithm.

Second, the algorithm exploits a basic property of a linear
dynamical system. If a Koopman Operator model can be
constructed for a nonlinear system, then the system can be
represented by

zk+1 = Azk (13)

from eqs. (1) and (7). This linear system can be separated
into its individual modes using eigendecomposition.

zk+1 = VuD
t
uW

T
u zk + VmD

t
mW

T
mzk + VsD

t
sW

T
s zk (14)

where V,D, and W are the eigendecomposition of A, and the
subscripts u,m, and s represent unstable, marginally stable,



and stable subspaces. This decomposition in the lifted space
motivates us to construct observable functions that represent
the individual subspaces.

Fig. 1: The training scheme utilized to generate the architecture in
Fig. 2.

Third, the algorithm uses neural networks to find an
effective set of observables for each of the stable and
unstable subspaces. The training method, summarized in Fig
1, assumes that while the underlying system has unknown
characteristics, the trajectory data obtained from the sys-
tem can be separated into two categories: stable/marginally
stable, and unstable. Specifically, an aggregate dataset is
comprised of initial states Xk and the states at one time
step ahead Xk+1. This can then be organized into

X =
[
Xu Xs

]
(15)

for both Xk and Xk+1. These subsets of data are used to train
corresponding neural networks Gu(xi; θi) and Gs(xi; θi) and
the weights of linear output layers As and Au. The function
of the neural networks is to produce observables of a given
state, that is

G∗(x) = g∗(x) (16)

and
z∗k+1

= A∗z∗k
(17)

where ∗ can be replaced with s or u, representing the specific
subset of data, and z is the lifted state represented by

z∗ =
[
x∗ g∗(x∗)

]T
(18)

The loss function utilized in training all models is

L(z, ẑ) =
1

N

N∑
i=0

(z − ẑ)2 (19)

After the training of these networks is completed with the
trajectory dataset, the weights for the neural networks Gu

and Gs no longer are updated. We then utilize the Direct
Encoding method to produce a new estimation for the output
layer. This new regression is computed by creating a new
lifted state through concatenating the observable functions
of each network with the state vector

z =
[
x gu gs

]T
(20)

The observable functions produced by these networks
are then concatenated as shown in Fig. 2. This new linear
transition matrix can be recomputed utilizing the Direct
Encoding method. Let gi(x; θi) be the i-th observable in
the form of a neural network with parameters θi. The inner
product comprising the matrix R is give by

R = {Rij} = {⟨gi(x; θi), gj(x; θj)⟩} (21)

Similarly,

Q = {Qij} = {⟨gi(x; θi) ◦ f(x), gj(x; θj)⟩} (22)

Note that simulation data are used only for finding effec-
tive observables and not for obtaining the state transition
A matrix. The A matrix is obtained from DE by using
the neural net observables as shown in the above equation.
Algorithm 1 summarizes this procedure, referred to in latter
sections as the SSOG Model, as it joins together two neural
network models that are constructed to generate observables
specific to the subspaces they are trained on.

Algorithm 1: Training scheme for the prediction
models. Notation is explained in Table I.
Input:
Gu: xu ∼ Xu; Gs: xs ∼ Xs; Gjoint: x ∼ X;
Fu: zuk

; Fs : zsk ; Fj : zjk
Parameters: (weight variables);
Output:
Gu: gu; Gs: gs; Gjoint: gjoint
Fu: ẑuk+1

; Fs: ẑsk+1
; Fj : ẑjk+1

for number of epochs do
Sample x∗ from X∗
Generate observable function vector g∗, by
inputting x∗ through nonlinear layers

Append state vector to observable vector
z∗ = x∗ ⊕ g∗

Estimate augmented output through linear
activation F∗(z∗k

)
Forward pass through MSE Loss function L(z, ẑ);
Backward pass: update parameters for observable
functions (Wu,Ws);

end
then
Calculate augmented input guk

and gsk for
xkDE

XDE for all XDE

Append augmented inputs zkDE
= xkDE

⊕ guk
⊕ gsk

Calculate augmented output guk+1
and gsk+1

for
xk+1DE

XDE for all XDE

Append augmented outputs zk+1DE
=

xk+1DE
⊕ guk+1

⊕ gsk+1

Calculate state transition matrix for linear layer of
joint model

IV. EXPERIMENTS

The computer creating these models has a AMD Ryzen 7
3700X 8-Core Processor 3.60 GHz, and a NVIDIA GeForce



Fig. 2: Resultant model architecture of the Joint Model described
in Algorithm 1.

Notation Definition
x state vector
xu state vector belonging to unstable region
xs state vector belonging to stable region
G∗ Observable function model trained on the ∗ dataset
F∗ Linear regression model trained on ∗ dataset
x∗k state vector at initial time step
x∗k+1 state vector at next time step
W∗ weights for a model (G∗ and F∗)
z lifted state vector
L Loss function
∗ Subscript denotes being used

for stable (s), unstable (u) regions

TABLE I: Notation and definitions for variables indicated in differ-
ent parts of this paper.

GTX 1060 3GB Graphics Card. The models are created
using PyTorch. The SSOG models have two hidden layers
with ReLU activation units, and the final layer utilizes a
linear layer, which represents the Koopman Operator’s linear
transition matrix. The width of the first hidden layer is 16
units, and the width of the second hidden layer is 10 units.
These hidden layers utilize rectified linear activation units.
In the case of 40 observables, the SSOG model has 20
observables for both stable and unstable regions. In the case
of 80 observables, the division is done similarly. In addition
to these observable functions, the original state variables are
included as part of the model as well. The loss function for
the neural networks is a standard mean squared error loss
function of

LMSE =
1

N

∑
t

|zt+1 −Azt|2 (23)

where z is the lifted state variable, and A is the weights of
the final linear layer. The model is trained using an Adam
optimizer with a learning rate of α = 0.01. Hyperparameters
were equivalent between models.

The SSOG model with DE is compared to the SSOG
model without the use of DE, where the weights of the linear
activation layer is computed from a least squares regression.
It is also compared to an Aggregate model which utilizes
the same neural network structure but aggregates the dataset
together, training a single network that produces twice the
number of observable functions and is not subspace specific.

Fig. 3: Phase Plot visualization of initial conditions that yield stable
versus unstable trajectories. The green trajectories symbolize the
stable region, and the red trajectories symbolize the unstable region.

A DE version of the Aggregate model is also formulated,
recomputing the final layer of the model using DE.

Standard EDMD models are constructed to be of equiva-
lent order to the SSOG and Aggregate without deep learning.
The EDMD model’s observables are radial basis functions
that are uniformly distributed for individual states between
minimum and maximum value for that state in the dataset.
These radial basis functions are of the form

ψ = e−ω(xi−xia )
2

(24)

where ω is a parameter that was set to equal 1 for all state
variables and xi is the ith state variable, and xia is the center
of the radial basis function.

We introduce a second order nonlinear system:

ẋ = −x+ x2 + y2

ẏ = −y + y2 + x2 − x

This system has effectively two regions, a stable region and
an unstable region, visualized with a collection of trajectories
in Fig. 3.

A. Prediction Error

The prediction error for this system is calculated separately
for stable and unstable region time series trajectories with a
set of test data consisting of initial conditions not included
for either DE nor the aggregate trajectory dataset. The
equation used for prediction error is sum of squared error for
the state variables, not including observables of the system.
That is

Esse =
N∑
i=0

(xi − x̂i)
2 (25)

where i is the ith state variable for a given time step. The
estimated state variable, x̂, is the prediction from the model,
where the ground truth is denoted as x. This prediction error
is not of the total lifted state, but of the state variables



Fig. 4: Prediction error for 100 trajectories beginning at initial
conditions of a test set within the stable subspace. The shaded
region represents the variation between minimum and maximum
SSE at the given time step for the listed model. The solid lines
represent the average sum of squared error. Comparison is between
the SSOG with Direct Encoding, and Aggregate Model with and
without DE. The models plotted utilize 40 observables in addition
to the two state variables.

belonging to the original nonlinear system which are shared
between all models.

The prediction error is visualized in the set of figures, Fig.
4. The two figures compare the SSOG with DE and other
learned models. Further comparisons using this test set are
outlined in Table II. The best performing result of the labeled
order for each subspace for each set of models is in bold.

TABLE II: Average SSE prediction error after 1 and 10 time steps
for trajectories in set of test data.

Method Stable Unstable
40 Observables, 1 Time Step

SSOG 2.84 6.15
SSOG with DE 0.12 0.26

Aggregate 2.90 5.23
Aggregate with DE 0.27 1.44

EDMD 3.79× 103 2.06× 103

80 Observables, 1 Time Step
SSOG 4.16 4.80× 105

SSOG with DE 0.11 0.36
Aggregate 2.20 2.83

Aggregate with DE 0.60 1.12
EDMD 1.28× 107 7.71× 106

40 Observables, 10 Time Steps
SSOG 2.50× 1036 6.8× 10131

SSOG with DE 0.22 6.8× 10131

Aggregate 9.00 ×106 6.8× 10131

Aggregate with DE 3.60 6.8× 10131

EDMD 2.15× 1035 6.8× 10131

80 Observables, 10 Time Steps
SSOG 5.71× 1010 6.8× 10131

SSOG with DE 0.18 6.8× 10131

Aggregate 1.06× 108 6.8× 10131

Aggregate with DE 11.63 6.8× 10131

EDMD 2.10× 1073 6.8× 10131

B. Subspace Boundary Formation

Finding the boundary between stable and unstable regions
is important for analyzing nonlinear dynamics. Here we
compare each modeling method in terms of the accuracy
in finding the boundary. Consider the following quotient:

ξ =
||zu||
||z||

(26)

where
zu =WT

u z (27)

If z is in a stable region and the matrix Wu spanning the
unstable region is accurate, then the quotient ξ must be 0. On
the other hand, if Wu is inaccurate, then some fraction of the
component will enter the stable region with non-zero ξ. Fig
3 shows the plots of this quotient indicating how accurately
the true boundary is recreated.

V. DISCUSSION

The first key result found from Table II is that using
SSOG in combination with DE yields the highest accuracy is
obtained demonstrating the usefulness of subspace specific
observable functions. Secondly, the DE method is shown
to drastically lower the prediction error for both Aggregate
and SSOG models by several orders of magnitude. This
result matches the expectation that DE removes biases from
over- or undersampling of a region given its formulation
using inner products over a domain. Furthermore, the DE
method is demonstrated to have a significant impact even
with increases in order of the system. Notably however, none
of the models are capable of predicting trajectories in the
unstable subspace.

When observing Table II, it is notable that the prediction
error does not necessarily improve with increases in order
of the system. This can be explained as the tabulated results
are prediction errors of the state variables, which are shared
across all models. As the order of the systems increase, a
least squares estimation would weight the prediction error
of the state variables similarly to the observable functions
used. The additional observables may detract from the desire
to accurately predict the state variables for a significant time
horizon.

Because the prediction models used are finite order ap-
proximations of the Koopman operator, we expect inaccura-
cies to arise when using these models to locate boundaries
between regions. For that reason, the instability quotient
is introduced. Assuming complete separation of dynamic
modes, the ratio of unstable projection to state vector (in-
stability quotient) should be 0 for the stable region, and
1 for the unstable region, as shown in plot (a) of Fig. 5.
However, due to the approximation of the system as a linear
system, this discrete switch becomes blurred, depending on
the accuracy of the model which is shown in the other plots.
The SSOG Model with DE demonstrates that the instability
quotient increases significantly in the unstable region. This
does not occur for the other models. This indicates that the
observables learned for the SSOG Model are effective for



Fig. 5: Instability quotient plots for models of the system. Top: (a) Ground Truth assuming complete separation, (b) Aggregate Model,
(c) Aggregate Model with Direct Encoding. Bottom: (d) EDMD, (e) SSOG Model, (f) SSOG Model with Direct Encoding.

their specific subspaces. The DE method is also key in this
result as it demonstrates a drastic change in the dynamic
model.

VI. CONCLUSION

In this paper, we presented the subspace specific observ-
able generation (SSOG) method for learning an efficient
set of observable functions to lift the state space of non-
linear dynamic systems. In combination with an existing
method, Direct Encoding (DE), SSOG was shown to improve
accuracy given certain conditions. Separately, SSOG with
DE demonstrates a capacity to be used as an analysis tool
for finding borders between subspaces based on analytical
foundations. The work has a clear direction for improvement;
the current network structure and training does not enable the
subspaces to be fully separated as the observable functions
learned are not zero outside of their respective regions. This
would be a notable direction to explore in the future to further
improve results.

REFERENCES
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[2] S. L. Brunton, M. Budišić, E. Kaiser, and J. N. Kutz, “Modern
koopman theory for dynamical systems,” 2021. [Online]. Available:
https://arxiv.org/abs/2102.12086

[3] M. O. Williams, I. G. Kevrekidis, and C. W. Rowley, “A data–driven
approximation of the koopman operator: Extending dynamic mode
decomposition,” Journal of Nonlinear Science, vol. 25, no. 6, pp.
1307–1346, 2015.
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