
Voice Controlled Smart Mirror with Multifactor
Authentication

Adokiye Charles Njaka, Na Li, and Lin Li
Department of Computer Science

Prairie View A&M University

Prairie View, Texas 77446, USA

Email: anjaka@student.pvamu.edu, {nali, lilin}@pvamu.edu

Abstract—Internet of Things, Smart Home, and Smart Cities
have become hot topics in recent years. The development of
these areas grows spirally due to the emergence of advanced
smart devices. Smart mirrors are a new addition to the smart
home family that has been getting a lot of attention nowadays
by both commercial manufacturers and academia. This paper
describes how a Raspberry Pi device can be used to enhance such
mirrors with intelligence and security. The goal is to develop a
cost effective intelligent mirror system that not only works as
a regular mirror, but also be able to display various kinds of
information, such as weather, time and location, current events,
and users. The mirror can provide multimedia services while
ensuring high end security across the entire system.

Index Terms—smart mirror, Raspberry Pi, artificial intelli-
gence, voice recognition, face recognition, Internet of Things,
Alexa voice service

I. INTRODUCTION

Smart Home has become an emerging topic in recent years

in both academia and industry. Except for the well-developed

commercial Internet of Things (IoT) products, such as smart

door locks, smart plugs, and smart thermostats, smart home

has attracted a massive number of people to work on self-

motivated projects using low-cost hardware, such as Raspberry

Pi [1]. The known Raspberry Pi based smart home projects

cover a variety of topics, from Raspberry Pi powered security

cameras to automated pool controllers [2] [3]. Due to its

low cost, such projects are very popular in education, where

students can get engaged in hands-on projects.

In this paper, the authors developed a smart mirror sys-

tem. As a new addition to the smart home family, smart

mirrors gained increasing attention recently. There have been

some interesting projects published on the Internet [4]. For

instance, Philips HomeLab [5] created an intelligent personal

care system that implemented an Interactive Mirror [6] to

provide customized services to users. The system is capable

of displaying TV feeds, monitor the latest weather, and so on.

The mirror has an LCD display combined with a mirrored

surface and a processor to provide the intended services.

Another project developed by Sam Ewen and Alpay Kasal at

Lit Studios [7] is a touch and gesture functional mirror. The

main method of interacting with the mirror is by touching

the screen. Five students at Chalmers University in Sweden

978-1-5386-5959-5/18/$31.00 2018 IEEE

designed the HUD Mirror [8]. They used a two-way mirror to

allow the LEDs mounted behind to illuminate the information.

The system can display information such as time, weather,

temperature, and a toothbrush timer.

The smart mirror described in this paper differs from the

aforementioned projects mainly in that it offers unique features

to improve the system security through biometric authentica-

tion, a voice assistant with added Alexa skills and multimedia

capabilities. The biometric authentication is implemented with

multi-factors, facial and voice, to ensure a higher security level

than that provided by only voice which has been developed

in Amazon Alex and Google Home. Plus, re-authentication

is enforced if the user has not been interacting with the

mirror for a while. Therefore, it can defend the system against

several traditional security threats, such as session hijacking

or man-in-middle attack. Additionally, the voice assistant and

the multimedia display implemented in the mirror make users

enjoy the intelligence of the smart home.

The roadmap of this paper is given as follows: Section II

describes the overview of the system. Section III discusses the

details of the system design and implementation. Section IV

presents the experimental study, and a conclusion is given in

Section V.

II. SYSTEM OVERVIEW

The smart mirror system is designed to be a user-friendly

solution that offers simplified and personalized services in the

form of a mirror. Hence, the system was structured to give the

user a complete control over all services and functions through

voice interaction. Figure 1 depicts a schematic overview of the

system, which can be divided into three distinct parts:

• Physical structure

• Smart mirror software

• Cloud services

The physical structure of the system consists of a one-way

acrylic mirror placed over a display monitor, a Raspberry Pi

device, and a microphone. The setup allows the reflection

of light rays from one surface of the mirror while allowing

light from the display to pass through. So a user can see his

refection in addition to the contents shown on the display.

The setup is finally enclosed with a wooden frame to give the

natural mirror feel to the system.

Authorized licensed use limited to: Prairie View A M University. Downloaded on August 05,2023 at 02:48:54 UTC from IEEE Xplore. Restrictions apply.

Amazon WebservicesNative Skill

Custom Skill

Request

Weather and

Location
S

m
a

rt
 M

ir
ro

r
Weather and location

API

RSS News Feeds

V
o

ic
e

 A
ss

is
ta

n
t

AWS Lambda

Custom Webservices

Host

News Headlines

Response

Processed Response to Custom Skill Request

A
u

th
e

n
ti

ca
ti

o
n

F
ra

m
e

w
o

rk

Fig. 1. System overview

Fig. 2. System voice command architecture

The smart mirror software was developed using Python

programming language. It consists of several modules which

handle individual functions of the system, including weather

information, current city, time and date information, news

feeds and multimedia display. The mirror displays white

characters over a black background for increased visibility

from the other side of the mirror.

The system is supported by two cloud services. Amazon

voice service (AVS - Alexa), Amazon web services (AWS),

and Google custom search engine. As shown in Figure 2,

Amazon voice service is used to provide the system’s voice

assistant capabilities in addition to the added Alexa skills.

Amazon web services is used to create a queuing system and

lambda functions to process special vocal instructions from

the voice assistant. Finally, Google custom search is used in

creating a customized search engine to provide multimedia

content based on voice requests by the user.

III. SYSTEM DESIGN AND IMPLEMENTATION

This section details how the system is designed and devel-

oped. First, two key components of the system, authentication

framework and voice-based command, are presented. Then the

entire smart mirror system is described. Figure 3 shows the

design of the system.

A. Authentication Framework

The authentication framework of the system is designed

to enable multifactor biometric authentication, namely, facial

recognition and voice recognition.

Fig. 3. Proposed system design

1) Facial Recognition: Facial recognition technology

adopts an image matching approach to identify individuals.

It can identify people from video sources or digital images.

While there are several facial recognition algorithms, they

generally work by comparing selected facial features from the

given images with faces within a database. The technology

has led to applications in consumer and enterprise use cases.

This project implemented facial recognition using OpenCV

library [9]. OpenCV (Open Source Computer Vision Library)

is an open source computer vision and machine learning

library. It supports face detection, face training, and face

prediction. Face detection is the process of identifying faces

Authorized licensed use limited to: Prairie View A M University. Downloaded on August 05,2023 at 02:48:54 UTC from IEEE Xplore. Restrictions apply.

Fig. 4. Face recognition and prediction

in a picture. Face training is the process of studying several

pictures of the same person to learn the features specific

to the individual. This process creates a database of the

known users. Face prediction is the process of identifying a

known or pre-registered individual in a new image. With the

support of OpenCV, two modules, namely user registration

and user authentication, were developed in the authentication

framework. Figure 4 shows the general procedure of face

recognition and registration.

• User Registration - face detection and training

This module was implemented by taking images with a

Raspberry camera. The images are passed into an OpenCV

cascade classifier to identify human faces. A cascading clas-

sifier is a model that is pre-trained with several hundred face

images, called positive examples, and negative examples -

arbitrary images of the same size. A sample code snippet is

shown as follows:

//Import opencv Library

import cv2

//Loading required cascading classifiers

face = cv2.CascadeClassifier(‘frontalface.xml’)

//Load image and convert to grayscale mode

img = cv2.imread(‘image.jpg’)

gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

//Face detection in converted image

faces = face.detectMultiScale(gray, 1.3, 5)

//Save image containing faces to disc

cv2.imwrite(‘image’+ str(Id))

If a face is identified in an image frame, the frame is saved.

This step is repeated until 20 pictures of the user are saved and

entitled with a unique integer and the image count (ranging 1 -

20). A unique integer is generated for each user in the system.

Then the training process starts. All the saved images are

loaded into an array, named faces, and passed into a recognizer.

The recognizer is created as an instance of the OpenCV Local

Binary Patterns Histograms class. Local Binary Patterns (LBP)

describes a method for extracting useful features from face

images. Basically, this method summarizes the local structure

in an image by comparing each pixel with its neighbors.

//Create a LBH face recognizer object

recognizer = cv2.createLBPHFaceRecognizer()

//Train images and extract face features

//Each user has a unique integer Id

recognizer.train(faces, np.array(Id)))

//Save extracted features to face database

recognizer.save(‘model.yml’)

As shown in the above snippet, this operation extracts the

unique face features from all the pictures and saves them to a

model file, which is known as the face database.

• User Authentication - detection and prediction

When a registered user wants to log into the system,

he needs to be authenticated. The authentication procedure

includes both face detection and face prediction. The authen-

tication mechanism uses the Raspberry camera to obtain live

images of the user. Like the previous step, a recognizer object

is created. The live images are passed to the recognizer and the

prediction method is called. This method compares the image

with the model file created earlier and returns the unique id

of the user (from the model file) whose facial features are

closest to the current image. The prediction model also returns

an integer value called the confidence which represents how

close the image is to the identified user. In this paper, a value

of zero represents a perfect match.

2) Voice Recognition: Voice recognition is a method to

identify a person based on his voice characteristics (voice

biometrics). Voice biometrics holds a significant advantage

over other biometrics as it can recover from a data leak.

If facial data were stolen, the biometric security would be

damaged as we cannot easily change our face images. How-

ever, voice biometrics employs text-dependent characteristics

and permits the creation of new voiceprints. Furthermore, in

specific situations where fingerprints or facial scans cannot be

used, such as where there is temporary damage to fingerprints

or where there is limited lighting, voice biometrics possess will

add advantages. One major concern plaguing the adoption of

voice authentication technology is the possibility of an attacker

recording a users voice or the possibility of voiceprint data

being compromised [10]. The voice recognition API used in

the project, is automatically configured to identify and reject

all authentication attempts that are too similar to one or more

previous voiceprints. This is based on the assertion that no

two voiceprints can ever be exactly the same. Another main

advantage of voice biometric is that the Equal Error Rates are

much lower than finger, iris, and face, as shown in Figure 5.

Equal error rate refers to an algorithm that describes the point

at which the false rejection rate of a biometric system equals

the false acceptance rate. A low Equal Error Rate indicates a

more accurate biometric system.

The voice recognition function was implemented using a

third-party API of VoiceIt [11]. The VoiceIt system uses

three basic steps for the recognition of a speaker: capturing,

digitalizing, and processing the sound waves using a complex

mathematical method. The voice recognition consists of two

modules: user enrollment and user authentication. Along with

facial recognition, it forms a two-factor authentication.

• User Enrollment - Voice Registration

The first step of the enrollment process is user creation. The

username of the current user is obtained from the database

and passed to the “createUser” method of the VoiceIt API

to create the user on the VoiceIt platform. To enroll a user,

the system turns on the microphone and prompts the user to

Authorized licensed use limited to: Prairie View A M University. Downloaded on August 05,2023 at 02:48:54 UTC from IEEE Xplore. Restrictions apply.

Fig. 5. Equal error rate chart [11]

Fig. 6. System learning described

say the selected pass phrase, e.g., “remember to wash your

hands before eating”. Once the pass phrase is detected using

the Google speech-to-text” API, it is saved as a wave file and

represents the user’s voiceprint. The voiceprint is then passed

to the “createEnrollment” method of the VoiceIt API to create

an enrollment for the user. Five enrollments are required from

each user to ensure high accuracy.

• User Authentication

To authenticate a user using the voice recognition module,

the microphone is turned on and the user is prompted to say the

pass phrase saved during registration. The pass phrase may not

be sensitive, but how the user says it is (i.e., the voiceprint).

Again, like in the enrollment stage, the user’s voiceprint is

recorded as a wave file and passed as a parameter to the

“authenticateUser method of the VoiceIt API. A response

is sent in the form of a JSON file indicating whether the

authentication is successful or not. A response code of “SUC”

indicates success and a response code of “ATF indicates

authentication failure, which is determined by a confidence

value that ranges from 0 to 100. A value of 100 indicates a

perfect match. The system has a learning capability wherein it

enrolls new voice prints for the user using authentications that

have a confidence of 90% and above. In this way, the system

keeps learning little changes that may occur over time in the

voice pattern of the user, as shown in Figure 6.

B. Voice Based Command

The system supports interaction between user and system.

Users can control all functions using voice commands, includ-

ing registration, authentication, searching, and signing out. The

Fig. 7. Google speech to text

implementation features three primary technologies: Google’s

“Speech-to-Text [12], Google’s “Custom Search Engine [13],

and Amazon’s “Alexa Voice Service (AVS)” [14].

1) Google Speech-to-Text Conversion: As shown in Figure

7, it enables developers to convert audio to text by applying

powerful neural network models in an easy way. The API

recognizes 120 languages and variants to support a global user

base. It can be used to enable voice command-and-control, and

more by processing real-time streaming or pre-recorded audio.

Speech-to-Text is implemented in “wake word” detection,

“pass phrase” detection and in the registration module to

accept the username. As explained, voice instructions are

obtained by using the microphone to create recording of the

users utterances. Each voice recording is passed to the Speech-

to-Text API to obtain the text transcription for the audio file.

• Wake Word Detection

Like other voice-controlled systems, this project implements

the use of a wake word. A wake word is a word or phrase that

is uttered by the user to notify the system that he is ready to

give an instruction. The system, upon detection of the wake

word, begins to wait for instructions. The smart mirror uses the

phrase “smart mirror” as the wake work. Once the smart mirror

detects the wake word, it listens for the following instruction,

such as login, logout etc.

• Pass phrase Detection

Pass phrase detection refers to accepting and validating a

voiceprint from the user. This happens before user enrollment

and user authentication.

• Registration Module

The registration module works a bit different than the two

cases described above. This module gives the user a prompt

and waits for a response. The module first asks the user to

select and say his username. It then listens to the username

before requesting a text transcription from the Speech-to-Text

API. The user is prompted to confirm if the text transcription

is accurate following which the system waits for a response,

either “yes” or “no”. Again, a text transcription of the users

response is obtained. If it is “yes”, the system proceeds to

complete the registration. If it is “no”, the system returns to

the first step to collect username.

2) Google Custom Search Engine: it is a free platform

that enables developers to perform customized searches based

on Google Search. This service also allows users to drill

down to only those actual webpages that are relevant. With

an active Google account, users can create a free custom

search engine by visiting the Google custom search page

Authorized licensed use limited to: Prairie View A M University. Downloaded on August 05,2023 at 02:48:54 UTC from IEEE Xplore. Restrictions apply.

https://cse.google.com/cse to obtain an API key and custom

search engine ID. A Python snippet is shown below to

demonstrate how to query a custom search engine.

query = ‘python programming language’;

sv = build(‘customsearch’, ‘v1’,

developerKey = key);

result = sv.cse().list(q = query, cx = cse_id,

searchType = ‘image’, num = 5,

fileType = ‘png’,’).execute();

The above code snippet creates an array called “result”

which contains the URLs to five images of PNG type that

match the description of Python programming language. This

project used a custom search engine to obtain multimedia

contents based on user voice search queries, which is discussed

in detail in the next section

3) Amazon Alexa Voice Service (AVS): AVS is a plat-

form that Amazon has provided to allow developers integrate

“Alexa” into their projects. With an AVS enabled product,

users can stream media, get updates on weather, traffic, and

news, as well as ask general knowledge questions. Alexa (the

brain behind the AVS system) is triggered when a user says the

wake word, “Alexa”. Once the device detects the wake word,

it begins to listen for a request. The request is then relayed to

cloud based voice service. It is thus a requirement to have a

functioning Internet connection. The cloud-based voice service

interprets the request and sends a command back to the device

or in this case, the smart mirror system.

Additional/custom skills - Skills are commands that Alexa

can process. They are essentially applications but tailored

specifically for AVS. Alexa provides a wide range of custom

skills that are readily available to users of Alexa enabled

devices. Perhaps the most impressive capability of AVS is

that it allows the creation of custom skills that can be used

to improve the richness of user experience. The number of

existing custom skills runs into the tens of thousands. Figures

2 and 8 show the details of the Alexa custom skill architecture

and the skill creation checklist, respectively.

This project created a new Alexa skill called “Smart mirror”.

This name represents what the uses say to indicate that they

want to interact with the skill. The skill is created by visiting

https://developer.amazon.com/alexa-skills-kit and selecting to

create a new Alexa skill and listing the intents for the new skill.

Intents are the various reasons/intentions a user could have for

invoking the skill. Once the intents have been specified, the

users need to create an interaction model. An interaction model

represents how users interact with the new skill. The model

contains various statements a user might say to interact with

each of the intents in the new skill.

Once the model has been built, the Alexa device (e.g.,

the smart mirror) connected to the amazon developer account

would be able to access the skill. A skill named “smart mirror”

for instance may contain an intent called “getTime” and a

sample utterance like “tell me the time”. If a user says “Alexa,

ask smart mirror to tell me the time”, the Alexa Voice Service

would recognize that the user is invoking the smart mirror skill.

Fig. 8. Skill creation checklist [15]

Fig. 9. Custom skill and lambda function structure

It would also recognize the users intention for requesting the

skill - “getTime”.

The new skill needs to be connected to a lambda function

that will handle the skill requests. This can be done by

specifying the endpoint of an Amazon Web Services (AWS)

lambda function. The following section highlights the steps

to create such a function. AWS Lambda is an event-driven,

serverless computing platform provided by Amazon as a part

of the Amazon Web Services. It is a compute service that

runs code in response to events and automatically manages

the compute resources required by that code.

The authors followed the steps below to create a simple

lambda function [16]. First, a free account to access the

AWS console was created. Next, they created a new function

from scratch and specified a programming language of choice.

A variety of programming languages are supported. In this

project, the authors used Python. In the “Add triggers” panel,

the “Alexa Skills Kit” should be selected to indicate that

the lambda function will be triggered by an Alexa skill and

that the Alexa Skill will pass a JSON request containing the

details of the intent and request to the lambda function. The

AWS lambda console contains an embedded IDE (Integrated

Development Environment) which is used to define the lambda

function. The lambda function used in this project parses the

JSON file from the Alexa Skill and pushes the intent and

request details into a simple queue data structure that the Smart

mirror can access, as shown in Figure 9.

Authorized licensed use limited to: Prairie View A M University. Downloaded on August 05,2023 at 02:48:54 UTC from IEEE Xplore. Restrictions apply.

Fig. 10. Smart Mirror Software Display

C. Smart Mirror Software

The smart mirror software is developed using python pro-

gramming language and PyQt 4 [17]. PyQt is a Python binding

of the cross-platform GUI toolkit Qt, implemented as a Python

plug-in. The smart mirror has a display that is made up of four

distinct sections as boxed in Figure 10.

1) Section A: This section displays weather and location

information. The data is obtained from two APIs, namely

freegeoip [18] and openweathermap [19]. Below is a code

snippet showing how to extract data using the APIs.

//Call API to fetch city and region name
url = ‘http://freegeoip.net/json/’ + ip;

r = requests.get(url);

js = r.json();

//Parse response to obtain city and region

response = (str(js[‘city’]) + ‘,’ +

js[‘region_name’]);

//Call API to fetch temperature and weather conditions
//Data retrieval using developer ID (APPID)

r = requests.get(‘http://api.openweathermap.

org/data/2.5/weather?q = ’ +

str(js[‘city’]) + ‘&APPID=b2a86......’)

result = r.json();

//Parse response to get temperature in Kelvin

temperature = (str(int(math.ceil((result

[‘main’][‘temp’]) - 273.15))) + u‘\u00b0’);

//Parse response to get weather conditions

condition = result[‘weather’][0][‘description’]

2) Section B: This section shows how time and date infor-

mation is retrieved from the computer system. A code snippet

is as follows:

//Assign current system date and time

now = datetime.datetime.now();

//format value to get current time & date

time = (now.strftime(‘%-H:%M %p’));

date = (now.strftime(‘%b %d, %Y’));

my_date = date.today();

day = (calendar.day_name[my_date.weekday()]);

This section also contains an indicator showing the status

of the voice assistant. Green means that the voice assistant is

enabled while red means that it is disabled. The voice assistant

is automatically disabled after five minutes of inactivity. Once

this happens, the user needs to be authentication again to

continue using the system.
3) Section C: This section handles the display of multi-

media content (e.g., videos, pictures, and audio files). This

section works with a listener that constantly checks the AWS

simple queue for new requests. For each new request, the

listener obtains multimedia files matching the request using

the Google custom search engine described before. Section C

in Figure 10 shows a video being played. This is in response

to the following request “Alexa, ask the smart mirror to play

pacific rim.”
4) Section D: This section shows news headlines pulled

from 16 news stations. A news feed is displayed every five

seconds. The code extract below shows how this section was

implemented.

//Declare a counter to track progress

count = 0;

//Load RSS feed URLs in list

l =[‘http://rss.cnn.com/rss/cnn_topstories.rss’,

‘http://www.tmz.com/rss.xml’];

//Use feedparser to load feeds

content = [];

f = feedparser

while count < len(l):

try:

temp = f.parse(l[count])

if len(temp[‘entries’]) > 0:

content.append(temp)

count = count + 1

except:

count = count + 1

pass

//Get title/name of first RSS station

title = (content[0]‘feed’][‘title_detail’]

[‘value’]);

//Get the first feed for the first station

feed = (content[0][‘entries’][0]

[‘title_detail’][‘value’]);

IV. EXPERIMENTAL STUDY

A series of tests were conducted to determine the appro-

priate values for some important system variables, including

frame rate, camera resolution, face recognition confidence

threshold, and voice recognition confidence threshold. Frame

rate here refers to the number of frames that are extracted

from the smart mirror webcam and displayed per second. The

camera resolution refers to the amount of detail the camera

can capture. This is further described by the height and width

of pictures taken by the camera. Face recognition confidence

refers to the distance between a face being identified and the

closest match in the known face database. Voice recognition

confidence refers to the possibility of a voiceprint being

identified as a registered user’s voiceprint record. It should

be noted that due to the different definitions, the measure of

the voice recognition confidence is the reverse of that of the

Authorized licensed use limited to: Prairie View A M University. Downloaded on August 05,2023 at 02:48:54 UTC from IEEE Xplore. Restrictions apply.

0

10

20

30

40

50

60

260 x 180 360 x 260 480 x 360 640 × 512 960 × 640 1024 x 864

Average Confidence

Frame Rate 30 Frame Rate 40 Frame rate 50

Fig. 11. Confidence comparison based on difference frame rates

0

1

2

3

4

5

6

260 x 180 360 x 260 480 x 360 640 × 512 960 × 640 1024 x 864

Average Processing Time (Seconds)

Frame Rate 30 Frame Rate 40 Frame rate 50

Fig. 12. Processing time comparison based on different frame rates

face recognition, i.e., a confidence of zero indicates a perfect

match in face recognition, while a confidence of 100 indicates

a perfect match in voice recognition.

A. Tuning frame rate and camera resolution

To find appropriate frame rate and resolution values, the

authors enrolled a new user and measured the average confi-

dence achieved for various frame rates and resolution values

during authentication. Figure 11 shows a comparison of the

confidence based on different frame rates, and Figure 12

depicts a comparison of the processing time based on different

frame rates. Please note that the data of the frame rate at 30 are

exactly same as that of the frame rate at 40. Thus, the two lines

overlapped. The results indicate that higher resolution values

significantly increase the time taken by the system to process

each frame. Despite relatively accurate results, the processing

time rules out the selection of higher resolution values. An

optimal value, as can be observed across all graphs, would be

to select a frame rate of 50 and a resolution of 480 x 360. This

is the combination that obtains the lowest average confidence

value, 25, while keeping frame processing time low.

B. Finding appropriate confidence value for face recognition

After determining the appropriate frame rate and camera

resolution values, the system was further tested to find a

confidence threshold for successful authentications. To do this,

the authors used a room with a constant lighting and asked

10 candidates to attempt logging into the system. Among the

0

10

20

30

40

50

60

70

80

Average Confidence

Fig. 13. Average confidence levels of 10 candidates on face recognition

0

20

40

60

80

100

120

Average Confidence

Fig. 14. Average confidence levels of 10 candidates on voice recognition

candidates, candidate 1 was preregistered on the system to

serve as the control setup. Thus, a lower confidence value for

candidate 1 was expected during authentication.

As shown in Figure 13, candidate 1 achieved the lowest

average confidence of 25. Candidate 2 had the second lowest

average confidence of 38. This comes in at a safe distance from

candidate 1 and alleviates fears of false acceptance. Finally, a

confidence value of 28 was selected to serve as the required

threshold for successful facial authentication of the system.

C. Confidence measurement and testing for voice recognition

Similarly, the smart mirror was tested to validate its voice

recognition authentication. To do this, the face recognition

was turned off and ten different candidates, including five

unregistered users and five registered users, were asked to

attempt logging into the system. All of the candidates knew

the pass phrase and each of them attempted five times. The

confidence value of each candidate was calculated based on

the average confidence prediction of the voice recognition.

Figure 14 shows the system’s performance on the ten can-

didates. As expected, all five registered candidates (candidates

6 to 10) have much higher confidence value than that of

the unregistered users (candidates 1 to 5). After repeating

the experiments among a number of candidates, a confidence

value of 83 was selected to serve as the required threshold for

successful voice authentication of the system.

Based on the confidence threshold, a set of experiments

were conducted to verify the voice authentication accuracy

Authorized licensed use limited to: Prairie View A M University. Downloaded on August 05,2023 at 02:48:54 UTC from IEEE Xplore. Restrictions apply.

r

w is

Fig. 15. Pass phrases in the VoiceIt account

TABLE I
COMPARISON OF SUCCESSFUL ATTEMPTS

Pass Phrase RU UU

Remember to wash your hands before eating 9 0
Never forget tomorrow is a new day 10 0
Today is a nice day to go for a walk 10 0

Zoos are filled with small and large animals 10 0

under different pass phrases. As described in Section III-A2,

the VoiceIt API is used for authentication, where a registered

user speaks his pass phrase to log into the system. In order

to use the VoiceIt API, the authors created an account on

voiceit.io. After logging into the account, one can create his

own pass phrases, but the pass phrases have to be checked

and approved by VoiceIt before application. The pass phrases

displayed in Figure 15 are the default ones provided by

VoiceIt. Table I compares the successful attempts between a

registered user (RU) and an unregistered user (UU) under four

different pass phrases. For each pass phrase, both users made

10 attempts to log into the system. The result shows that the

voice authentication has high accuracy level. The unregistered

user was never authenticated to log in. As a comparison,

except for one time on the first pass phrase, the system always

succeeded to recognize the registered user and authorize him to

log in. Similar results were also found through the experiments

conducted on other users.

V. CONCLUSION AND FUTURE WORK

This paper presented a smart mirror system that has inte-

grated several impressive features with a user-friendly archi-

tecture. A reliable and easy to use design was implemented

following a service-oriented approach. In today’s world of in-

terconnected devices, security cannot be ignored. Considering

this, this system was equipped with a strong authentication

framework to ensure end to end security of the whole system.

This feature sets this project aside from other similar works.

The future offers endless possibilities for advancement of the

prototype. The most notable is the possibility for the user to

take the smart mirror display around the entire home. This

can be achieved by connecting the smart mirror to a smart

projector [20] that is able to project the smart mirror display

on various surfaces (walls, table tops etc.) around the home.

With an added camera and a microphone, the user would be

able access the full features of the smart mirror from other

parts of the home without compromising security.

ACKNOWLEDGMENT

This research is supported in part by the National Science

Foundation under grant no. 1712496. Any opinions, findings,

and conclusions expressed in this paper are those of the

authors, and do not necessarily reflect the views of the

National Science Foundation. The authors would like to thank

Sheikh Tareq Ahmed for helping with the experiments and

the anonymous reviewers for their valuable comments and

suggestions to improve the quality of the paper.

REFERENCES

[1] R. P. I. Foundation, “Teach, learn, and make with raspberry pi,”
Raspberry Pi. [Online]. Available: https://www.raspberrypi.org/

[2] A. Orr, “Use python to build a raspberry pi-powered home security
camera,” 2018. [Online]. Available: https://medium.com/@andyorr/
use-python-to-build-a-raspberry-pi-powered-home-security-camera-for\
-50-84ab7e344e2d

[3] “Web enabled pool control - raspberry pi,”
2016. [Online]. Available: http://www.instructables.com/id/
Web-Enabled-Pool-Control-Raspberry-Pi/

[4] M. Patkar, “6 best raspberry pi smart mirror projects we’ve seen
so far,” 2016. [Online]. Available: https://www.makeuseof.com/tag/
6-best-raspberry-pi-smart-mirror-projects-weve-seen-far/

[5] P. Research, “Meet philips research - research.” [Online]. Available:
http://www.research.philips.com/technologies/misc/homelab/index.html

[6] T. Lashina, “Intelligent bathroom,” 2014. [Online]. Available: https:
//www.researchgate.net/publication/228881021 Intelligent bathroom

[7] A. Kasal and S. Ewen, “A project of the interactive mirror with artsy
visuals in lit studios,” International Journal of Engineering Technology,

Management and Applied Sciences, vol. 5, no. 5, pp. 1863–1869, May
2017.

[8] A. Bostrom and F. Ramstrom, “Head up display for enhanced user
experience,” Chalmers University of Technology in Sweden, 2014.
[Online]. Available: http://publications.lib.chalmers.se/records/fulltext/
223949/223949.pdf

[9] “OpenCV library.” [Online]. Available: https://opencv.org/
[10] “VoiceIt Technologies FAQ.” [Online]. Available: https://voiceit.io/faq
[11] “VoiceIt Technologies LLC.” [Online]. Available: https://voiceit-files.

s3.amazonaws.com/OpusResearch-Biometrics-Equal-Error-Rate.jpg
[12] “Cloud Speech-to-Text - Speech Recognition.” [Online]. Available:

https://cloud.google.com/speech-to-text/
[13] “Google Custom Search.” [Online]. Available: https://developers.google.

com/custom-search
[14] “Alexa Voice Service - Integrate Alexa Directly into Your

Connected Products.” [Online]. Available: https://developer.amazon.
com/alexa-voice-service

[15] D. Isbitski, “Announcing new alexa skill builder (beta),
a tool for creating skills,” Amazon Developer Services,
April 2017. [Online]. Available: https://developer.amazon.
com/blogs/alexa/post/02d828b6-3144-46ea-9b4c-5ed2cbfadb9c/
announcing-new-alexa-skill-builder-beta-a-tool-for-creating-skills

[16] “Aws lambda serverless compute - amazon web services,” Amazon Web

Services. [Online]. Available: https://console.aws.amazon.com/lambda
[17] “What is PyQt?” [Online]. Available: https://riverbankcomputing.com/

software/pyqt/intro
[18] “IP geolocation web server.” [Online]. Available: https://github.com/

fiorix/freegeoip
[19] “Weather API.” [Online]. Available: https://openweathermap.org/
[20] C. Lim, J. Choi, J.-I. Park, and H. Park, “Interactive augmented reality

system using projector-camera system and smart phone,” in IEEE

International Symposium on Consumer Electronics (ISCE), 2015, pp.
1–2.

Authorized licensed use limited to: Prairie View A M University. Downloaded on August 05,2023 at 02:48:54 UTC from IEEE Xplore. Restrictions apply.

