2018 IEEE 16th Int. Conf. on Dependable, Autonomic & Secure Comp., 16th Int. Conf. on Pervasive Intelligence &
Comp., 4th Int. Conf. on Big Data Intelligence & Comp., and 3rd Cyber Sci. & Tech. Cong.

Fake News Detection Enhancement with Data
Imputation

Chandra Mouli Madhav Kotteti, Xishuang Dong
CREDIT Center
Prairie View A&M University
Texas A&M University System
Prairie View, TX 77446, USA
ckotteti @student.pvamu.edu, dongxishuang @ gmail.com

Abstract—Raw datasets collected for fake news detection
usually contain some noise such as missing values. In order to
improve the performance of machine learning based fake news
detection, a novel data preprocessing method is proposed in
this paper to process the missing values. Specifically, we have
successfully handled the missing values problem by using data
imputation for both categorical and numerical features. For
categorical features, we imputed missing values with the most
frequent value in the columns. For numerical features, the mean
value of the column is used to impute numerical missing values.
In addition, TF-IDF vectorization is applied in feature extraction
to filter out irrelevant features. Experimental results show that
Multi-Layer Perceptron (MLP) classifier with the proposed data
preprocessing method outperforms baselines and improves the
prediction accuracy by more than 15%.

Index Terms—fake news, machine learning, data imputation,
feature extraction

I. INTRODUCTION

Social media has become the fast and easy way to proliferate
news across the world and they make news readily available
for the news consumers. However, fake news on social media
has been proliferated for personal or social benefits. Fake news
is typically a piece of false information in nature, where its
primary purpose is to deceive or mislead readers. It has many
similarities with spam messages since they share common
features such as grammatical mistakes, false information, using
similar limited set of words, and they contain emotionally
colored information that affects the reader’s opinion [1].

Detecting fake news is a layered process that involves
analysis of the news contents to determine the truthfulness
of the news. The news could contain information in various
formats such as text, video, image, etc. Combinations of
different types of data make the detection process difficult.
In addition, raw data collected is always expected to be
unstructured and contains missing values in the data. As fake
news produces the big, incomplete, unstructured, and noisy
data [2], raw data pre-processing is extremely important to
clean and structure the data before feeding it into detection
models.

Fake news detection is a nontrivial task as fake news is
mainly intended to mislead readers. To enhance the existing
fake news detection algorithms, only news content is not

978-1-5386-7518-2/18/$31.00 ©2018 IEEE
DOI 10.1109/DASC/PiCom/DataCom/CyberSciTec.2018.00042

Department of Computer Science
Prairie View A&M University
Texas A&M University System Texas A&M University System

Prairie View, TX 77446, USA

Na Li Lijun Qian
CREDIT Center
Prairie View A&M University

Prairie View, TX 77446, USA

nali@pvamu.edu ligian@pvamu.edu

adequate. This opens the gates for the necessity of auxiliary
information, such as user social engagements on social media
for the better detection of fake news [2]. The availability of
good quality datasets for fake news detection is also a big
challenge. Wang [3] presents that inadequate availability of
manually labeled datasets on fake news problem causes limited
opportunity to use currently available advanced computational
power and enhanced machine learning models. Another chal-
lenge is manually labeling a dataset is a time-consuming task
[4]. Fortunately, LIAR dataset' is one of the available labeled
datasets for fake news detection. It provides not only the actual
news content but also auxiliary information, such as subject
type, context of the news and speaker’s details. However,
this dataset contains combination of both categorical (text)
and continuous (numbers) values and the muddled presence
of missing values. These missing values reduce the detection
performance significantly if left untreated.

In this paper, we pre-processed the data by employing
imputing strategies for the missing values in the dataset, where
sklearn-pandas® categorical imputing and sklearn’s Imputer?
with mean imputing strategies are employed for categorical
data and continuous data, respectively. Categorical and nu-
merical features are handled together using sklearn-pandas’
DataFrameMapper method. After the data pre-processing and
feature extraction phases are completed, we supplied the
cleaned dataset into classifiers such as Support Vector Ma-
chines, Decision Tree, Multi-layer Perceptron and Gradient
Boosting for our analysis and comparison. Our experimental
results show that the state-of-the-art prediction accuracies are
improved by 16%.

The contributions of this paper include:

o The raw dataset has many missing values spread across
multiple columns. We successfully process the missing
categorical and continuous values by categorical imputer
and mean imputer.

« We combine traditional machine learning models that are
capable of handling multi-class classification tasks with

Uhttps://www.cs.ucsb.edu/~william/data/liar_dataset.zip

2https://github.com/scikit-learn-contrib/sklearn-pandas

3http://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.
Imputer.html

EE

IE
computer
psouety

Authorized licensed use limited to: Prairie View A M University. Downloaded on August 05,2023 at 02:51:47 UTC from IEEE Xplore. Restrictions apply.



our preprocessing methods, and show that multi-layer
perceptron model significantly outperforms the state-of-
the-art [3].
The outline of the paper is as follows: Section II introduces the
LIAR dataset. Our proposed method is discussed in Section
III. Experimental results and analysis are shown in Section IV.
Related work is discussed in Section V followed by Section
VI that concludes our work.

II. LIAR DATASET

LIAR dataset' is a benchmark dataset for fake news de-
tection collected from PolitiFact*. It includes both categorical
and numerical features combined for a total of 14 columns.
Columns containing categorical (text) data include statement
identifier, statement, subjects discussed by the speaker, and
meta-data for each speaker, such as speaker’s job title, state,
party, and the location of the speech. The numerical features
contain the speaker’s total credit history count, including the
current statement which are named as, barely true, false, half
true, mostly true, and pants on fire counts [3]. The target labels
consist of six classes including pants-fire, false, barely-true,
half-true, mostly-true, and true. This dataset is human labeled
and each statement is evaluated by a PolitiFact editor for its
truthfulness. Overall dataset contains 12,836 records in which
training set has 10,269 records, validation and testing sets have
1,284 and 1,283 records, respectively. The training, validation,
and test sets are supplied in separate files.

III. PROPOSED METHODOLOGY
A. Data preprocessing

1) Mitigate Missing Values: LIAR dataset! consists of
a combination of categorical and numerical features. This
dataset has many randomly located missing values for both
type of features. It is not possible to check that the ob-
served data contains missing values of Missing Completely
at Random (MCAR) or Missing Not at Random (MNAR) [5].
Therefore, missing data imputation would be a good solution
to handle these missing values. Typical imputation methods
such as “mean” or “mode” rely on explicit model assumptions.
In general, mean is preferred for quantitative data and mode
is for qualitative data [5].

In this study, we use scikit-learn’s Imputer with “mean”
strategy for handling missing values in the numerical columns
which replaces the missing values with the mean along the axis
(0 - along columns, 1 - along rows) [6]. Categoricallmputer is
a new method available in sklearn-pandas module for handling
categorical missing values. It is applied to data columns that
are of type “string” and it substitutes null values with the most
frequent value in the column. Researchers who use scikit-learn
module cannot impute missing categorical values since scikit-
learn module imputing methods are limited to numerical data.
Therefore, the Categoricallmputer method is helpful in imput-
ing missing categorical values whereas imputing methods in
the scikit-learn module could be applied to numerical data.

“http://www.politifact.com/

188

2) Feature Extraction: Wu et. al [7] stated that extracting
useful features from the actual news content is a challenging
task because fake news spreaders could make the content of
the fake news look like real news. In our work, we used
term frequency and inverse document frequency (TF-IDF)
to identify the useful features from news contents. TF-IDF
technique is used to produce a composite weight for each term
in the document which is called tf-idf weight [8]. Calculating
tf-idf weight has great importance in information retrieval and
text mining tasks as it determines the significance of a term
or word in a document as well as in a corpus.

tf — idftﬁd = tft,d X idfy

In equation 1, ¢ means a term and d refers to a document.
The term frequency ¢ f; 4 means the measure of the frequency
for a particular term ¢ in a document, in other words, how
many times term ¢ appeared divided by total number of terms
in the document and inverse document frequency idf; is the
logarithm of total number of documents in the corpus divided
by the number of documents where term ¢ appears. idf:
measure helps in knowing the importance of term ¢.

M

B. Model

We treat fake news detection as a multi-class classifica-
tion problem. Traditional machine learning classifiers such
as Support Vector Machines (SVM), Decision Trees, Multi-
layer Perceptron and Gradient BoostingGradient Boosting are
selected. For SVM models, we use classical SVC, Linear SVC
with “crammer_singer”, “one-vs-rest” multi-class strategies,
and Nu-SVC as classifiers.

1) Support Vector Machines: Support vector machine has
great importance in solving classification problems consisting
of nonlinearly separable classes. In our work, we used Sup-
port Vector Classification (SVC), Nu-Support Vector Classi-
fication (NuSVC) and Linear Support Vector Classification
(LinearSVC) to handle multi-class classification tasks. The
one-vs-one scheme is implemented by SVC and NuSVC for
multi-class classification, where the classifiers are constructed
based on the number of classes presented in the dataset.
NuSVC is similar to SVC, but NuSVC controls the number
of support vectors and training errors using a parameter .
LinearSVC is also similar to SVC but the kernel used for
classification is “linear”. It can implement “one-vs-rest” and
“crammer_singer” multi-class strategies in which the former
strategy is generally preferred as the latter strategy is more ex-
pensive to compute and better performance is rarely achieved.

2) Decision Trees: Decision Trees is a supervised classifi-
cation and regression model that relies on the decision rules
derived from the data features. It could be applied to binary
classification problems as well as multi-class problems. It is
capable of handling both categorical and numerical data and
requires little data preparation. On the other hand, sometimes
this model could create over-complex trees (i.e. over-fitting).
Data alteration may change the complexity of the decision
tree.

Authorized licensed use limited to: Prairie View A M University. Downloaded on August 05,2023 at 02:51:47 UTC from IEEE Xplore. Restrictions apply.



3) Multi-layer Perceptron: Multi-layer Perceptron is a su-
pervised learning algorithm that learns a function f(-): R™ —
R° by training on a dataset, where m is the number of
dimensions for input and o is the number of dimensions for
output. It consists of one or more non-linear layers, called
hidden layers between input and output layers. Input features
are a set of neurons {z;|z1,x2,...,Zm} , and in the hidden
layer each neuron transforms previous layers values by using
a weighted linear summation w121 + waxa + ... + Wy T
and non-linear activation function g(-): R — R. Values from
the last hidden layer are transformed into output values by
the output layer. It is useful for on-line learning and to learn
non-linear models.

4) Gradient Boosting: Gradient Tree Boosting is one of the
ensemble-based methods. Gradient Boosting builds a forward
stage-wise additive model. It could be used for both classifi-
cation and regression problems. In this model heterogeneous
features are naturally handled, but scalability is an issue
because of the sequential nature of boosting.

IV. EXPERIMENT

We employ LIAR dataset! to verify our models. Four
evaluation metrics, namely accuracy, precision, F1-score and
recall are used to evaluate the performance of our models. One
of the major challenges of performing classification on this
dataset is to handle missing values. To mitigate this problem,
we applied three data preprocessing methods on the dataset,
and examine how effectively each method could impact the
performances of the classifiers. For all three methods we
performed feature extraction on the dataset as discussed in
Section III-A2 and we utilized all features except statement id
for our analysis. Additionally, we examine the computational
complexity of the models by monitoring the training and
prediction time for different classifiers, and they are presented
in hours, minutes, seconds and milliseconds (HH:MM:SS:ms)
format. The three methods we used are as follows:

A. Delete records containing missing values

In this method, we simply deleted records consisting of
missing values. This method removed more than 4,000 records
from the dataset. MLP classifier outperformed other classifiers
in predicting validation and test sets. The performances are
shown in TABLES II and III.

B. Replace missing values with empty text

We used empty text to replace the missing values in the
dataset. With this method we successfully prevented the data
loss problem because no records are deleted. Again, MLP
classifier stood top in the list in terms of performance. This
time the prediction accuracies for validation and test sets are
improved compared to that using delete method. TABLES V
and VI show the respective performance results for validation
and test sets with replace method.

189

TABLE 1
TRAINING TIME OF DIFFERENT CLASSIFIERS WITH DELETE METHOD.

Classifier Training Time
(HH:MM:SS:ms)
svc 0:21:33.292383

LinearSVC_CS 0:03:11.075396

LinearSVC_OVR 0:00:09.173900

NuSVC 0:13:13.883099
DecisionTree 0:00:06.170634
MLPClassifier 1:40:09.743315

GradientBoosting 0:21:42.929440

TABLE II
PERFORMANCE RESULTS ON VALIDATION SET WITH DELETE METHOD.

Classifier Prediction Time Accuracy F1-Score Precision Recall
(HH:MM:SS:ms) %
svc 0:01:56.706200 0.283 0.182 0.217  0.234
LinearSVC_CS  0:00:00.634472 0.174 0.173 0.179  0.181
LinearSVC_OVR 0:00:00.021058 0.265 0.228 0.258  0.237
NuSVC 0:01:29.970123 0.258 0.240 0.255  0.244
DecisionTree 0:00:00.047126 0.326 0.324 0.328  0.322
MLPClassifier ~ 0:00:00.105282 0.416 0.370 0.515  0.370
GradientBoosting 0:00:00.071388 0.400 0.377 0.441  0.368
TABLE III

PERFORMANCE RESULTS ON TEST SET WITH DELETE METHOD.

Classifier Prediction Time Accuracy F1-Score Precision Recall
(HH:MM:SS:ms) %

svc 0:01:58.420455 0.286 0.174 0.179  0.230
LinearSVC_CS  0:00:00.040109 0.173 0.166 0.172  0.174
LinearSVC_OVR 0:00:00.025069 0.225 0.210 0.224  0.217
NuSVvC 0:01:26.568999 0.247 0.229 0.239  0.238
DecisionTree 0:00:00.044117 0.339 0.343 0.338  0.351
MLPClassifier ~ 0:00:00.079210 0.394 0.359 0.515  0.356
GradientBoosting 0:00:00.086864 0.390 0.391 0.438 0.381

C. Impute missing values using data imputation techniques

In this method, we evaluated our data preprocessing method
as discussed in Section III-A1 using different machine learning
classifiers on validation and test datasets after these models are
trained successfully. TABLES VIII and IX show the perfor-
mance results on the validation set and test set, respectively. It
is observed that the classifiers with data imputation outperform
those with delete method in Section IV-A. Moreover, replace
and data imputation methods achieved almost similar perfor-
mance results. With delete method we obtain examples by
eliminating records with any missing values, which reduces the
actual dataset size and causes information loss. This method
is suggested only for large datasets with small percentage

Authorized licensed use limited to: Prairie View A M University. Downloaded on August 05,2023 at 02:51:47 UTC from IEEE Xplore. Restrictions apply.



TABLE IV
TRAINING TIME OF DIFFERENT CLASSIFIERS WITH REPLACE METHOD.

Classifier Training Time
(HH:MM:SS:ms)
SvC 1:38:25.423104

LinearSVC_CS 0:06:32.412224

LinearSVC_OVR 0:00:15.322742

NuSVC 1:05:17.864797
DecisionTree 0:00:24.834177
MLPClassifier 0:42:30.996866
GradientBoosting 1:12:06.434310

TABLE V
PERFORMANCE RESULTS ON VALIDATION SET WITH REPLACE METHOD.

Classifier Prediction Time Accuracy F1-Score Precision Recall
(HH:MM:SS:ms) %
svc 0:06:49.043784 0.243  0.198 0.291  0.230
LinearSVC_CS  0:00:00.083121 0.191 0.183  0.183  0.183
LinearSVC_OVR 0:00:00.066884 0.280 0.273  0.294 0.277
NuSVC 0:06:25.410218 0.354  0.347  0.363  0.342
DecisionTree 0:00:00.110789 0.393  0.391 0.394 0.389
MLPClassifier ~ 0:00:00.474289 0.458  0.454  0.553  0.443
GradientBoosting 0:00:00.157420 0446  0.441 0.486  0.432
TABLE VI

PERFORMANCE RESULTS ON TEST SET WITH REPLACE METHOD.

Classifier Prediction Time Accuracy F1-Score Precision Recall
(HH:MM:SS:ms) %

svc 0:07:35.188419 0.248 0.188 0.254 0.224
LinearSVC_CS  0:00:00.084752 0.184 0.174 0.176  0.175
LinearSVC_OVR 0:00:00.061115 0.256 0.242 0.258  0.249
NuSVC 0:06:59.119033 0.353 0.341 0.351  0.337
DecisionTree 0:00:00.116335 0.370 0.381 0.379  0.384
MLPClassifier ~ 0:00:00.502584 0.434 0.434 0.533  0.434
GradientBoosting 0:00:00.205547 0.426 0.432 0.465  0.426

of missing values occurrence, and analysis of the complete
examples should not make dataset seriously biased [9]. On
the other hand, with replace and data imputation methods we
eliminate the problem of data loss. For the replace method,
we consider missing values as blank values and treat them in
the same way as other values. Data imputation methods are
simple and effective solutions when the missing values caused
by missing at random (MAR) mechanism which is the case
here [9].

Compared to the state-of-the-art [3], our proposed method
for data preprocessing together with MLP Classifier has sig-
nificantly improved the accuracies on validation set and test
set by 21% and 16%, respectively. Training iterations are

190

limited to 200 with a fixed random state value, and we em-
ployed stochastic gradient descent to optimize MLP classifier.
Gradient Boosting, Decision Tree and NuSVC classifiers also
achieved satisfactory performances where Decision Tree Clas-
sifier consumed less time for training. It is also observed that
classifiers including SVC, LinearSVC with “crammer_singer”
and “one-vs-rest” strategies performed poorly and achieved
less accuracy scores since the dimensionality of the feature is
high. Additionally, we measured the total time consumed for
the prediction on both validation and test sets, as well as some
other metrics, such as F1—Score, Precision, Recall.

TABLE VII
TRAINING TIME OF DIFFERENT CLASSIFIERS WITH DATA IMPUTATION
METHOD.
Classifier Training Time
(HH:MM:SS:ms)
svc 1:37:29.514189
LinearSVC_CS 0:07:52.727027
LinearSVC_OVR 0:00:20.665244
NuSVC 1:32:44.329309
DecisionTree 0:00:12.401620
MLPClassifier 0:48:19.175377
GradientBoosting 1:02:10.105386
TABLE VIII
PERFORMANCE RESULTS ON VALIDATION SET WITH DATA IMPUTATION
METHOD.
Classifier Prediction Time Accuracy F1-Score Precision Recall
(HH:MM:SS:ms) %
svC 0:08:10.334100 0.245 0.200  0.293  0.232
LinearSVC_CS  0:00:00.086328 0.195 0.190  0.189  0.191
LinearSVC_OVR 0:00:00.150023 0.267 0.264  0.274  0.272
NuSVC 0:07:54.447672 0.367 0.359  0.394  0.349
DecisionTree 0:00:00.075579 0.394 0.395  0.400 0.393
MLPClassifier ~ 0:00:00.491813 0.457  0.455  0.504  0.444
GradientBoosting 0:00:00.107796 0.442 0.437  0.484 0428

We run MLP Classifier with our proposed methods for ten
rounds to observe its performance without using random state
value. The number of iterations are limited to 300 for the
MLP classifier. TABLE X lists the results for the training set.
It shows that the MLP classifier combined with proposed data
preprocessing method is stable by maintaining training loss
consistency.

Figure 1 gives the training loss curves versus the number of
iterations. TABLES XI and XII show the details of the MLP
Classifier performance for ten rounds on validation and test
sets. It is observed that the training loss curves for all the ten
rounds are consistent with average final loss value of 1.279.

Authorized licensed use limited to: Prairie View A M University. Downloaded on August 05,2023 at 02:51:47 UTC from IEEE Xplore. Restrictions apply.



TABLE IX
PERFORMANCE RESULTS ON TEST SET WITH DATA IMPUTATION METHOD.

TABLE XI
MLP CLASSIFIER PERFORMANCE RESULTS ON VALIDATION SET.

Classifier Prediction Time Accuracy F1-Score Precision Recall Prediction Time Accuracy F1-Score Precision Recall
(HH:MM:SS:ms) % (HH:MM:SS:ms) %
SvC 0:08:15.804666 0.248 0.188 0.254 0.224 0:00:00.480897 0.465 0.454 0.574 0.446
LinearSVC_CS  0:00:00.088085 0.178 0.170 0.171 0.171 0:00:00.357233 0.470 0.462 0.577 0.454
LinearSVC_OVR 0:00:00.209324 0.239 0.231 0.238 0.244 0:00:00.385952 0.453 0.446 0.571 0.438
NuSVC 0:07:37.068152 0.360 0.342 0.366 0.338 0:00:00.481820 0.451 0.445 0.570 0.437
DecisionTree 0:00:00.078278 0.381 0.391 0.386 0.397 0:00:00.469991 0.469 0.458 0.577 0.452
MLPClassifier  0:00:00.462904 0.436 0.440 0.492 0.435 0:00:00.395029 0.467 0.458 0.557 0.449
GradientBoosting 0:00:00.104769 0.426 0.432 0.463 0.426 0:00:00.334350 0.450 0.449 0.486 0.439
0:00:00.434091 0.461 0.453 0.576 0.447
TABLE X 0:00:00.345711 0.459 0.453 0.555 0.443
PERFORMANCE OF MLP CLASSIFIER. 0:00:00.355381 0.462 0.457 0.560 0.448
Round Training Time Training Loss No. of Iterations
(HH:MM:SS:ms) TABLE XII
1 0:39:48.745564 1.303 127 MLP CLASSIFIER PERFORMANCE RESULTS ON TEST SET.
2 0:49:54.880182 1.280 154 Prediction Time Accuracy F1-Score Precision Recall
3 0:47:42.052116 1.286 148 (HH:MM:SS:ms) %
4 0:55:40.648856 1.270 171 0:00:00.453560 0.443 0.439 0.532 0.439
5 1:04:42.601990 1.265 17 0:00:00.437473 0.430 0.429 0.533 0.428
6 1:16:18.708549 1.254 197 0:00:00.355367 0.449 0.444 0.551 0.445
7 0:37:16.882210 1.322 116 0:00:00.470456 0.443 0.441 0.548 0.441
8 0:48:07.396703 1.265 175 0:00:00.622739 0.449 0.443 0.550 0.443
9 0:48:46.390700 1.266 17 0:00:00.294496 0.445 0.441 0.538 0.443
10 0:41:38.946055 1.282 152 0:00:00.443745 0.448 0.455 0.483 0.447
0:00:00.251151 0.436 0.433 0.540 0.433
Loss Curve 0:00:00.331610 0.444 0.440 0.539 0.441
18 ! Rlound T b 0:00:00.283757 0.443 0.438 0.539 0.441
\ —=- Round 2
}& Round 3
17 ) ===—Round 4~
\ Round 5 based on similarities between fake news and rumor. Machine
56 \\ i :‘;3:33 i learning, especially deep learning, plays a key technique
" \ o BETEE for fake news detection. Ma et.al [11] automatically detect
8 s \ =) 223:3 ?0_ deep Qata repr.esentati.ons for the enhanc.ement .Of .the rumor
\ detection. Their experiments focus on using variations in the
My, contextual information of relevant posts over time for rumor
L4 *‘\‘ detection instead of using manually extracted features. Not
e - only relying on the contents of the news, ‘the n.etwo.rk structure
13 = ] of the news could alsg be.helpful for 1de.nt1ﬁcat10n of fake
~~~~~ news [12]. Early detection is also a proactive method to deal
0 = =5 75 00 195 150 175 200 with fake news detection problem. In [13], they present early

Number of Iterations

Fig. 1. Training loss curves.

V. RELATED WORK

Fake news detection attracts amount of attentions because
of its application values. And they employ ideas for detecting
rumor [10] from texts for implementing fake news detection

191

detection of rumors in social media based on identifying sig-
nature text phrases in social media posts, for example, “Is this
true?, Really?”. In [14], they propose an automatic mechanism
for fake news classification using four important processes i.e.
extracting features for prediction accuracy, dataset alignment,
per-set feature selection and evaluating model transfer.

Fake news detection could be addressed based on propa-
gation patterns of fake news as well. Ma et. al [15] use the
propagation structure technique for rumor detection problem.

Authorized licensed use limited to: Prairie View A M University. Downloaded on August 05,2023 at 02:51:47 UTC from IEEE Xplore. Restrictions apply.



They used propagation trees to identify clues on how an
original message is spread over time. Kwon et. al [16] employ
temporal, structural and linguistic characteristics of rumor
propagation, and propose a new periodic time series model to
identify temporal features. They also identified key structural
and linguistic features in the rumor propagation and achieved
better performance results over existing state of the arts on
rumor classification.

Extracting and selecting useful features could enhance the
performance of machine learning based fake news detection. In
[17], they explored the importance of content-based features,
network-based features and microblog-specific memes for the
identification of rumors. Content-based features are extracted
from text data whereas network-based features focus on user’s
behavior. Moreover, features such as hangtags and URLs
extracted from microblog-specific (Twitter specific) memes
could be helpful in enhancement of rumor detection models.

VI. CONCLUSION

In this paper, data imputation preprocessing method is
proposed for enhancing machine learning based fake news
detection. Our proposed method focuses on how to process
the missing values in the raw data using data imputation
techniques. Experimental results show that machine learn-
ing models combined with the proposed data preprocessing
method outperform baselines. It would be interesting to test
our proposed method on other data sets for fake news detection
and it will be one of our future works.

ACKNOWLEDGMENT

This research work is supported in part by the U.S. National
Science Foundation (NSF) under award 1712496 and the
U.S. Office of the Under Secretary of Defense for Research
and Engineering (OUSD(R&E)) under agreement number
FA8750-15-2-0119. The U.S. Government is authorized to
reproduce and distribute reprints for governmental purposes
notwithstanding any copyright notation thereon. The views
and conclusions contained herein are those of the authors
and should not be interpreted as necessarily representing the
official policies or endorsements, either expressed or implied,
of the U.S. NSF or the Office of the Under Secretary of
Defense for Research and Engineering (OUSD(R&E)) or the
U.S. Government.

REFERENCES

[1] M. Granik and V. Mesyura, “Fake news detection using naive bayes

classifier,” in 2017 IEEE First Ukraine Conference on Electrical and

Computer Engineering (UKRCON), May 2017, pp. 900-903.

K. Shu, A. Sliva, S. Wang, J. Tang, and H. Liu, “Fake news detection on

social media: A data mining perspective,” CoRR, vol. abs/1708.01967,

2017. [Online]. Available: http://arxiv.org/abs/1708.01967

[31 W. Y. Wang, “’liar, liar pants on fire”: A new benchmark dataset

for fake news detection,” CoRR, vol. abs/1705.00648, 2017. [Online].

Available: http://arxiv.org/abs/1705.00648

A. Vlachos and S. Riedel, “Fact checking: Task definition and dataset

construction,” in Proceedings of the ACL 2014 Workshop on Language

Technologies and Computational Social Science, 2014, pp. 18-22.

[5] J. Poulos and R. Valle, “Missing Data Imputation for Supervised
Learning,” ArXiv e-prints, Oct. 2016.

(2]

(4]

192

(6]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay, “Scikit-learn: Machine learning in Python,” Journal of Machine
Learning Research, vol. 12, pp. 2825-2830, 2011.

L. Wu and H. Liu, “Tracing fake-news footprints: Characterizing social
media messages by how they propagate,” 2018.

C. D. Manning, P. Raghavan, and H. Schiitze, Introduction to Infor-
mation Retrieval. New York, NY, USA: Cambridge University Press,
2008.

J. Kaiser, “Dealing with missing values in data,” vol. 5, pp. 42-51, 01
2014.

A. Zubiaga, A. Aker, K. Bontcheva, M. Liakata, and R. Procter,
“Detection and resolution of rumours in social media: A survey,”
CoRR, vol. abs/1704.00656, 2017. [Online]. Available: http://arxiv.org/
abs/1704.00656

J. Ma, W. Gao, P. Mitra, S. Kwon, B. J. Jansen, K.-F. Wong, and M. Cha,
“Detecting rumors from microblogs with recurrent neural networks.” in
IJCAI 2016, pp. 3818-3824.

L. Wu, F. Morstatter, X. Hu, and H. Liu, “Mining misinformation in
social media,” Big Data in Complex and Social Networks, pp. 123-152,
2016.

Z. Zhao, P. Resnick, and Q. Mei, “Enquiring minds: Early detection
of rumors in social media from enquiry posts,” in Proceedings of the
24th International Conference on World Wide Web, ser. WWW ’15.
Republic and Canton of Geneva, Switzerland: International World Wide
Web Conferences Steering Committee, 2015, pp. 1395-1405. [Online].
Available: https://doi.org/10.1145/2736277.2741637

C. Buntain and J. Golbeck, “Automatically identifying fake news in
popular twitter threads,” in 2017 IEEE International Conference on
Smart Cloud (SmartCloud), Nov 2017, pp. 208-215.

J. Ma, W. Gao, and K.-F. Wong, “Detect rumors in microblog posts
using propagation structure via kernel learning,” in ACL, 2017.

S. Kwon, M. Cha, K. Jung, W. Chen, and Y. Wang, “Prominent features
of rumor propagation in online social media,” in 2013 [EEE 13th
International Conference on Data Mining, Dec 2013, pp. 1103-1108.
V. Qazvinian, E. Rosengren, D. R. Radev, and Q. Mei, “Rumor
has it: Identifying misinformation in microblogs,” in Proceedings
of the Conference on Empirical Methods in Natural Language
Processing, ser. EMNLP ’11. Stroudsburg, PA, USA: Association for
Computational Linguistics, 2011, pp. 1589-1599. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2145432.2145602

Authorized licensed use limited to: Prairie View A M University. Downloaded on August 05,2023 at 02:51:47 UTC from IEEE Xplore. Restrictions apply.



