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Abstract—This paper presents a data-driven method for
constructing a Koopman linear model based on the Direct
Encoding (DE) formula. The prevailing methods, Dynamic
Mode Decomposition (DMD) and its extensions are based
on least squares estimates that can be shown to be biased
towards data that are densely populated. The DE formula
consisting of inner products of a nonlinear state transition
function with observable functions does not incur this biased
estimation problem and thus serves as a desirable alternative
to DMD. However, the original DE formula requires knowledge
of the nonlinear state equation, which is not available in
many practical applications. In this paper, the DE formula
is extended to a data-driven method, Data-Driven Encoding
(DDE) of Koopman operator, in which the inner products are
calculated from data taken from a nonlinear dynamic system.
An effective algorithm is presented for the computation of
the inner products, and their convergence to true values is
proven. Numerical experiments verify the effectiveness of DDE
compared to Extended DMD. The experiments demonstrate
robustness to data distribution and the convergent properties
of DDE, guaranteeing accuracy improvements with additional
sample points. Furthermore, DDE is applied to deep learning of
the Koopman operator to further improve prediction accuracy.

I. INTRODUCTION

Dynamic Mode Decomposition (DMD) was presented as
a method to produce linear models from data generated
through nonlinear dynamical processes by using Singular
Value Decomposition (SVD) [1]. Later, this method was
developed further to create Extended Dynamic Mode De-
composition (EDMD), which introduced the concept of using
observable functions, nonlinear functions of state variables,
as a method of augmenting the state space [2]. EDMD
referenced the Koopman Operator as justification and a theo-
retical underpinning for lifting the state space. Decades prior,
Bernard Koopman showed the existence of this operator that
transforms nonlinear systems into linear systems [3]. Another
extension of DMD has shown the viability of using DMD
for control on non-autonomous systems [4]. This enabled
complex nonlinear Model Predictive Control (MPC) to be
converted to linear MPC [5], leading to numerous studies
utilizing the methodology to real systems [6]-[9].

To improve the accuracy of the models based on the
Koopman Operator, two avenues of research have formed.
The first avenue regards the selection of the observable
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functions used for constructing a lifted state space, as these
functions are a key ingredient in creating an accurate linear
model. Various methods have been developed, including deep
neural networks for learning effective observable functions
[10]-[12] and optimization [13]. However, an efficient se-
lection of observables does not solve all the issues that arise
when attempting to construct an accurate linear model. The
second avenue of research addressed the proper formulation
of the linear transition matrix. It is known that unstable
modes are involved in Koopman-based DMD models and
their extensions although the underlying nonlinear systems
are known to be stable [14]. Extensive studies have been
done to create stable linear models to remedy the situations
where an outright use of DMD would lead to the creation of
an unstable linear model [14]-[17]. Recently, an extension
of DMD, called Robust Dynamic Mode Decomposition
(RDMD), utilizes statistical measures to suppress the effect
of outliers on modeling the linear Koopman matrix [18].

A fundamental difficulty in constructing a proper linear
model is data dependency. Least Squares Estimation (LSE),
involved in all DMD based methods, often produces a
significant bias, an over weighting of samples. This bias is
due to the distribution, how prevalent similar data points are,
of the dataset. To eliminate this dependency on distribution,
the current work takes an alternative approach to LSE.

Recently, a new formulation of the Koopman Operator,
termed Koopman Direct Encoding (DE), was produced [19].
This method directly encodes the nonlinear dynamics into the
lifted linear model. Inner products of observable functions
in composition with the nonlinear state transition function
are used to construct the state transition matrix without use
of LSE. While DE theoretically guarantees the exact linear
model, it requires access to the nonlinear state equations,
which are often not available in practical applications. The
current work aims to fill the gap between DE and data-driven
approaches.

There are four significant contributions presented in this
work. The first is the conversion of the DE formula of the
Koopman Operator to a data-driven formula. The second is
a computational algorithm and proof of its convergence to
the true inner products that constitute the DE formula. The
third is numerical experiments that provide evidence that the
proposed method, unlike EDMD, does not exhibit biases
to data distribution, but can produce consistently higher
accuracy compared to EDMD. Finally, the DDE algorithm
is utilized in modeling a high order nonlinear system in
combination with deep learning.



II. KOOPMAN OPERATOR AND THE DIRECT ENCODING
METHOD

In this section, we give a brief overview of the Koopman
Operator and dynamic mode decomposition [2], and intro-
duce the direct encoding method for obtaining a Koopman
Operator directly from nonlinear dynamics [19].

A. Least Squares Estimation of the Koopman Operator

Consider a discrete-time dynamical system, given by

Ti41 = f(ﬂCt) (D

where z € X C R” is the independent state variable vector
representing the dynamic state of the system, f is a self-
map, nonlinear function f : X — X, and ¢ is the current
time step. Also consider a real-valued observable function
of the state variables g : X — R. The Koopman Operator
K is an infinite-dimensional linear operator acting on the
observable function g :

Kg=gof @)

where g o f is the composition of function g with function
f: (g0 () = g(f(a):

A common data-driven method for constructing the op-
erator is Extended Dynamic Mode Decomposition (EDMD)
[2], where observables that are experimentally obtained or
simulated from the governing equation of the system are aug-
mented by including real-valued observable functions of the
independent state vector z;. This collection of observables,
Z¢ 1S
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where m is the order of the lifted state corresponding to
the number of observable functions. Underpinned by the
Koopman Operator theory, EDMD assumes the existence
of a linear state transition matrix A relating 2,11 to z,
and determine A by solving a least squares regression that
minimizes the Sum of Squared Error (SSE) through
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Singular Value Decomposition (SVD) is used for the least
squares optimization.

B. Direct Encoding of the Koopman Operator

An alternative to the least squares estimate and EDMD is
to obtain the exact A matrix by directly encoding the self-
map, nonlinear state transition function f(z) with an inde-
pendent and complete set of observable functions through
inner product computations. This Direct Encoding method is
introduced next, while the full proof can be found in [19].

Let us first consider the case where ¢i,¢9s,93,... are
orthonormal basis functions spanning a Hilbert space H.
We assume that the self-map nonlinear function f(x) is

continuous and that the composition of g; with f is also
involved in the Hilbert space.

giofeH Vj ®)

This implies that the function g; o f can be expanded in
[glv 92,93, }

giof =Y (g;°f 9k (6)
k=1

Concatenating g1, g2, g3, ... and g1 o f,ga o f,g3 o f... in
infinite dimensional column vectors, respectively,

91[f ()]
ga2[f (24)] (7)

g1 (It)
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) 2t41 =

eqg. (6) can be written in matrix and vector form.
Zp1 = Az 3)

where A is an infinite dimensional matrix consisting of the
inner products involved in eq. (6),

(grof, 1) (g10f,92)
A= |(920f,91) (920f,92) - 9)

Eq. (8) manifests that the state lifted to the infinite dimen-
sional space Z, makes linear state transition with matrix A.

The observables g1, g2, 9s,... were assumed to be or-
thonormal basis functions in the above derivation. This
assumption can be relaxed to an independent and complete
set of basis functions spanning the Hilbert space. Hereafter,
let [g1, g2, g3, --.] be an independent and complete set of basis
functions spanning the Hilbert space.

It can be shown that the time evolution of lifted state z;
is given by a constant matrix Af for the independent and
complete set of basis functions [g1, g2, g3, ...].

(10)

The matrix Ay can be computed directly from the self-
map, state transition function f(z) and an independent and
complete set of observables [g1,¢2,9s,...] through inner
product computations. Post-multiplying the transpose of z;
to both sides of eq. (10) and integrating them over X yield:

Rt+1 = Ath

/ 2(f(2))2T (z)dx = Af/ 2(x)2T (z)dx (11)
X X
which can be written as
Q=AfR (12)
where
_<91 of,g1) (910Ff g2)
Q= (920 f,91) (920 f, 92) (13)
:<91,91> (91, 92)
R = (92,91) (92,92) (14)




Because the observables are independent, the matrix R is
non-singular. Therefore, the matrix A, is given by

Ay =QR™

This formula for obtaining the matrix A directly from the
governing nonlinear state equation with the function f(x)
and the independent observables through inner products,
which are guaranteed to exist in Hilbert space H, is the Direct
Encoding method.

15)

III. DATA-DRIVEN KOOPMAN ENCODING

The prevailing method for construction of the Koopman
Operator, EDMD, is based on LSE and SVD. This method,
however, cannot provide an unbiased estimate; the result
is biased - dependent on the distribution of data within a
dataset- as the Koopman Operator is being approximated
[20]. This dependency on distribution of a dataset occurs
because a core assumption of LSE is that the model structure
is correct; when this assumption is violated, LSE is unable to
create an unbiased estimator [21]. As the Koopman Operator
is truncated in practical use, this assumption does not hold.

Non-uniform data distributions, that is datasets where
distances between data points in the state space are not
equidistant from their nearest neighbors, inevitably occur
in practical applications. For a nonlinear dynamical system
with a stable equilibrium, for example, data collected from
experiments and/or simulation of the system tend to be dense
in the vicinity of the equilibrium, as all trajectories that begin
within a region of attraction converge to the equilibrium.
Because LSE applies equal weighting to all data points,
the model is heavily tuned to the behavior of the densely
populated region.

The Direct Encoding method described previously enables
us to obtain the exact linear state transition matrix A through
inner product computations. As the formulation is based
on integration over the entire state space, there is no bias
towards particular parts of the domain.

However, the original form of the Direct Encoding method
utilizes the nonlinear state equation, i.e. the self-map f(z),
to compute the inner products. In practical applications, such
a nonlinear function is not always available; only data are
available. The objective of this section is to establish a com-
putational algorithm to obtain the A matrix by numerically
computing the inner products, (g;,g;), (g: © f,g;), from a
given set of data.

The method presented consists of three operations.

o The integral of the inner products is reduced in range
from the entire state space to the dynamic range encap-
sulated by the data.

o The dynamic range is discretized with data points.

e The inner product integral is reduced to a weighted
summation of the integrand evaluated at each data point
multiplied by the volume Aw associated to each point.

Naturally, if data are densely populated in a small region, the
discretized integral interval is small and thereby the volume
also becomes small. Similarly, the volume tends to be larger
where the data are sparse. In the summation, the integrand

evaluated at individual data points are “weighted” by the
size of the volume. This numerical inner product calculation
prevents overemphasis of clustered data.

A. Inner Product Computation

We present the data-driven encoding method (DDE) as
an alternative data-driven method to DMD for calculating
a finite order approximation of the Koopman Operator. The
objective of this method is to compute the matrices R and
Q@ in (13) and (14) from data. This entails the computation
of inner products:

<givgj>:/XGij(f)d§ (16)
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where
Gij(@) = gu(@)g; (@), Fig(a) = /@) (@) (19)

are assumed to be Riemann Integrable; the functions are
bounded and continuous [22].

There are two data sets used for the inner product com-
putation. The first data set is
Note that all the data values are finite, |2;| < co. As such, the
integral interval of the inner products is finite in computing
them from the data. To define the integral interval, we
consider the dynamic range of the system, X p, determined
from the data set Dy. See Fig.1. The dynamic range Xp
is defined to be the minimum domain in the space X that
includes all the data points in Dy, Xp O Dy, and that is
convex. Namely, for any two states in Xp, z,2’ € Xp,

E=azx+(1-a)r' € Xp (20)

where 0 < « < 1. Each data point x; is mapped to f(x;),

X2

Fig. 1: Illustration of the dynamic range of a dataset defined by
the convex hull containing all points in the set, partitioned using a
triangulation method. The data points are in black and the convex
hull that encapsulates all data points is in grey.

following the state transition law in eq.(1). We assume that
the transferred state, too, stays within the same dynamic



range X p. Collecting all the transferred states yields the

second data set.
Df ={f(x:)|i=1, ,N;z; € Dy}

D} c Xp

21
(22)
This implies that the state space of the nonlinear system
under consideration is closed within the dynamic range X p.

With this dynamic range, we redefine our objective to
compute the inner products over Xp.

Xp
Xp

The integrals can be computed by partitioning the domain
Xp into many segments X1, --- Xp, as shown in Fig. 1.

Rij; = (23)

(24)

P
Xp=JX,
p=1

(25)

We generate these segments by applying a meshing technique
to the data set Dy, where the n-dimensional coordinates
of individual data points are treated as nodes of a mesh.
Delaunay Triangulation, for example, generates a triangular
mesh structure with desirable properties [23]. As illustrated
in Fig. 1, each triangular element is convex and has no
internal node. The volume of the dynamic range V(Xp)
is the sum of the volumes of all the elements.

P
= Z Avy,
p=1

Accordingly, the integral I2;; in eq.(23) can be segmented to

P
Rij = Z/ Gw(m)dx
p=1"%»

Suppose that the p-th element has K, nodes, as shown in
Fig.2. Renumbering these nodes 1 through K,

{[ky) Kphp=1,-,

The integrand G;; within the p-th element can be approx-
imated to the mean of the K, nodes involved in the p-th
element.

(26)

27)

x[kp] € Xpikp=1,---, P (28)

Gij(x;p) =

Gijp = Z Gij(z
K

P g,=1

sxlky) € X, (29)

If Delaunay Triangulation is used, K, = n + 1. See Fig. 2.
Substituting this into (23) yields the approximate value of
R;;.

P 1 Kp
=y — Gy (z[ky)) Av, (30)
— K,
p=1 kp=1
where
Avp:/ 1-dx (€2))
X

P

Gij(x[Kpl)

Gyj (x)

Fig. 2: Visualization of the integrand calculation process. The
volume of the partition is encapsulated by the data points is denoted
as Av,. With this grouping, the value of G;; is calculated for each
point and the average among this group is computed, G, . In turn,
this value, weighted by the volume of this partition, is summed
across other partitions (not shown) to approximate the value of the
element R;;.

Similarly, each component of the matrix () can be com-
puted by using the same meshing

Qz]*Z ZFU

p=1 pk_l

) A, (32)

Note that F;; is evaluated by using the data points in both
DY, and Dy,

Fij(xlkpl) = gilf (@[ky])1g; (2 [kp])

where f(z[k,]) € DY, thus not requiring evaluation of the
nonlinear function f.

(33)

B. Convergence

Consider the center of each partition, Z,, = f ¥ xdx/ Avy,
P
and the distance between Z, and each point, z[k,]:

Azlky) = Tp — zky) 34)

See Fig.2. The maximum distance from the center of the
partition to each point that makes up the partition is

[Ax,| = max{|Az[1]|, ... |Ax[k, — 1]|, |Ax[ky]|} (35)

Consider a sequence of refining the approximate inner prod-
uct integral Rij by increasing data points N. We can show
that, as the number of partition P tends infinity and the
maximum subintervals |Ax,,| approach zero, the approximate
inner product integral Ri]' converges to its true integral.

Rij = Jlim Z ZGU A, (36)
|Azp|—0 P= 1 kp=1

This formulation takes the form of weighted sums, specif-
ically Riemann sums. Given functions that are bounded and
continuous over the subdomain of interest, sequences of this
form are known to have a common limit and thus converge
upon refinement to the Riemann integral value over that
subdomain, according to Numerical Integration theory [22,
Section 1.5].



C. Algorithm

In the prior section, integrals (30) and (32) are presented
as summations over partitions. This computation can be
streamlined by converting the summations over partitions to
the one over nodes. Consider node 3 associated to data point
s in Fig.1, for example. This node is an apex of the 5
surrounding triangles. This implies that integrand G;;(z) is
calculated or recalled 5 times in computing (30) and (32).
This repetition can be eliminated by computing volume Auvy,
associated to node k, rather than partition p : Av,. Namely,
we compute

P Av,
Ave = =L1(k,p)

p=1 P

(37)

where I(k,p) is a membership function that takes value 1
when node k is an apex of triangle p, that is, node k is
involved in partition p. Using this volume as a new weight
we can rewrite (30) and (32) to be
K
Rij =) Gij(x[k])Avy
k=1

Qij = Y _ Fij(z[k])Avy
k=1

(38)

(39)

Using this conversion, the computation can be streamlined
and cleanly separated into three steps, as shown by pseudo-
code in Algorithm 1. The steps are: (1) Graph Creation:
data are connected to create partitions of the domain using
a mesh generator: lines 3 to 8, (2) Weighting Calculation:
calculation of the weights for each data point: lines 10 to 17,
and (3) Matrix Calculation: the calculation of the R and @)
matrices to find the matrix A, lines 19 to 21.

In comparison to EDMD, this algorithm is notably slower.
In terms of time complexity, EDMD uses Singular Value
Decomposition (SVD) which is O(mn?), while the current
method of graph creation for DDE, Delaunay Triangulation,
is O(m™'?), where n is the dimensions of the space and m is
the number of points [24] [25]. In addition, as DDE is based
on numerical integration, issues arise when the underlying
nonlinear system becomes significantly high order.

IV. EXPERIMENTS

In this section, the DDE algorithm is implemented for the
sake of evaluating its validity and comparing its modeling
accuracy to EDMD. Consider a 2nd order nonlinear system
consisting of a pendulum with a nonlinear damper. See Fig.
3. The pendulum also bounces against walls with nonlinear
compliance. The state variables for this system are x =
[0,0]T, and the equation of motion can be written as:

0 = —sin(0) + Fj, + F.

where Fj, and F, are wall reaction moment and damping
moment, respectively,

g sien®) k() ~ 57 i 1o >
0 if |0] <
F, = —sign(f) ¢ 6*

(40)

(41)

INERNE]
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Fig. 3: Diagram of pendulum with with walls. (a) depicts the range
of the pendulum where the walls are equally angularly displaced
from the vertical. (b) depicts the forces exerted on the pendulum
due to contact with walls. (c) depicts the damping force exerted
onto the pendulum.

where £ = 200 and ¢ = 1. We present a two part numerical
experiment for this system. The first experiment regards
variations in dataset size and distribution, and the second
experiment varies the usage of observable functions.

A. Dataset Variations

The datasets tested are of three types:

1) Uniform: These datasets are composed of a rectangu-
lar dynamic range which is sampled uniformly, like
an evenly divided grid. The range varies from 6 =
[—0.8,0.8] and § = [—2, 2], where the mass can hit the

Algorithm 1: Algorithm for DDE in pseudocode

Input:
1 Dy, DY,
Output:
P:p, K:k,R, QA
Graph Creation:
for z; in Dy and corresponding f(x;) in D{V do
Create node, k&
Assign node attributes for current data point
k’.It = Tt and k}.xt+1 = Tt41
Append node to node list K.

A A W N

IN]

8 end

9 then

10 Weighting Calculation:

11 Create list of triangles, P using Delaunay
Triangulation on node list K using k.x;

12 for p in P do

13 Calculate volume, V, of p

14 for k corresponding to K, do

15 Update volume of each node
k.Avg = k.Avg + 255

16 end

17 end

18 then

19 Matrix Calculation:
20 Find R and @ via (38) and (39)
21 Find A = QR™!




Fig. 4: Graph of connections for a trajectory dataset composed of
10000 points formed when utilizing the data-driven direct encoding
method. The lightly red shaded region denotes the dynamic range.
In the zoomed-in image, the difference in volumes associated to
different data points can be observed. Noting the difference in size
of the purple triangle versus the yellow triangle.

TABLE I: Sum of Squared Errors over dynamic range with varying
dataset sizes.

(a)  squared Error -EDMD

(b)  squared Error - EDMD

Gaussian
Dataset

Angular velocity
Squared Error

(c) Squared Error - DDE

Trajectory
Dataset

Angular velocity
Squared Error

Angle (rad) Angle (rad)

Fig. 5: Sum of Squared Error plots for various datasets. (a) and (b)
are EDMD models for Gaussian datasets; (a) uses a dataset that is
centered at [0, 0] and (b) uses a dataset that is centered at [0, 2]. (c)
DDE and (d) EDMD models using the trajectory dataset composed
of 2500 data points and using 25 RBFs. Circled in red are the
regions with greatest variation in SSE between models. Only the
dynamic range is shown in all plots.

TABLE II: Sum of Squared Errors over dynamic range for Gaussian
distributions with different centers. Centers of the distribution are
noted above each column.

Total SSE
Dataset Size  Center: [0, 0] Center: [0.8, 0] Center: [0, 2]
EDMD / DDE EDMD / DDE EDMD / DDE

Dataset Size Total SSE SSE Variance
EDMD / DDE EDMD / DDE
Uniform Datasets
900 19.470 / 17.167  0.0094 / 0.0097
2500 17.995 / 16.471  0.0095 / 0.0103
10000 17.010 / 16.184  0.0099 / 0.0105
22500 16.698 / 16.133  0.0101 / 0.0105
Trajectory Datasets
1000 56.532/33.392  0.0349 / 0.0193
2500 33.330 / 25.064  0.0200 / 0.0130
5000 31.690 / 25.099  0.0195 / 0.0129
10000 30.184 /25.101  0.0186 / 0.0129
25000 29.380 / 25.106  0.0181 / 0.0129

Gaussian Datasets

1000 25.565 /24377  25.161 /2298  24.338 / 22.445
2500 24991/ 23.739  25.421/22.747 24.221 / 21.590
5000 24.662 / 23.518  26.805 /22.415 23914 / 21.195
10000 24395/ 23.085  28.424 /21.825  25.770 / 21.052
25000 25219/ 22.167  30.788 / 21.687  26.941 / 20.704

walls and the damping can vary from O to a significant
value. See Fig. 3-(b), (c).

2) Gaussian: Data points are sampled with a finite-
support Gaussian distribution. The data are distributed
non-uniformly with their highest density at the peak of
the Gaussian placed at diverse locations. In addition,
each dataset contains 100 data points uniformly dis-
tributed along the border of the dynamic range to guar-
antee the same dynamic range as the uniform datasets.
Samples outside the dynamic range are excluded.

3) Trajectories: These datasets are composed of trajec-
tories, beginning from 100 initial conditions that are
simulated forward the same number of time steps. The
dynamic range of this dataset differs from the two other
dataset types.

The models constructed for DDE and EDMD use the same
observable functions. The observable functions chosen are
two dimensional radial basis functions (RBFs), uniformly
distributed between the maximum and minimum values of
each state variable in their respective dataset, and the state
variables. The total order of the system is 27th order with
25 RBFs and 2 state variables.

A trajectory dataset graph is generated using Delaunay
Triangles in DDE, shown in Fig. 4.

The accuracy of the models is tested through calculating
sum of squared errors (SSE) for one-step ahead predictions

over the dynamic range of the datasets. These error values
are calculated for a uniform grid of points, similar to that
used in the uniform datasets. A visualization of the SSE is
plotted in Fig. 5. The results of these calculations are shown
in Table I and II. In the computation, the dynamic range
is discretized, and the SSE value of each point is summed.
For the Gaussian datasets, the test is run for eight iterations
of each dataset to account for randomness and the average
result is noted.

TABLE III: Sum of Squared Errors over dynamic range with
varying order of lifted linear models.

Total SSE
# Observables EDMD DDE
Trajectory Dataset, 5000 points
27 31.690  25.099
51 36.657  21.637
83 28.437  13.613

B. Observable Function Variation

The second experiment varies the number of observable
functions selected, thus increasing the order. In this exper-
iment, the number of RBFs is varied through uniformly
increasing the density of the centers of the function over



the range of the dataset. The results are noted in Table III.
In the table, the number detailing number of observables is
the number of functions including the state variables.

C. Discussion

From these results we can make the following observa-
tions.

o All the numerical experiments show that DDE outper-
forms EDMD in total SSE.

« For uniform datasets, both models are nearly equivalent,
though DDE has slightly lower SSE in all cases, shown
in Table I. This result is expected as all data points are
weighted equally in a uniform distribution.

« EDMD models exhibit significantly different distribu-
tions of prediction error, depending on dataset distri-
bution. In Fig. 5-(a), the EDMD model learned from
a dataset with high density near the origin produces a
prediction error distribution that is low in accuracy in
the top-right and the bottom-left corners of the dynamic
range. In contrast, Fig.5-(b) illustrates that when using
EDMD to learn from data with high density at 6 =
O,é = 2, the model results in low accuracy in the lower
half of the dynamic range. DDE does not exhibit this
high distribution dependency and achieves lower total
SSE, as shown in Table II.

o In the trajectory datasets in Table I, DDE is not only
lower in total SSE than EDMD but is also smaller in
variance. Fig. 5-(c) shows that DDE has a uniformly
low error distribution across the dynamic range, while
EDMD in Fig.5-(d) has two regions, as circled in the
figure, with significantly larger error. These regions
coincide with sparsity in the dataset, providing evidence
of EDMD’s bias towards regions of high data density
and explaining the difference in performance between
models for the non-uniform datasets.

« For trajectory datasets, the total SSE converges for DDE
with small dataset sizes. This result implies that the
elements in the R and @ matrices of DDE, that is, the
inner product integral computations, converge as the
data size and the data density increase. This conver-
gence is confirmed in Fig. 6, where several elements of
the () matrix are plotted against the data size.

o The second experiment, regarding variations in observ-
able function numbers demonstrates the effect of DDE
remains even for significant increases in observable
functions, referring to Table III. In all cases tested,
DDE significantly outperforms EDMD over the dy-
namic range, as expected for a non-uniform dataset.

V. APPLICATION TO NEURAL NET KOOPMAN MODELING

The use of deep neural networks for finding effective
observable functions and constructing a Koopman linear
model has been reported by several groups [10]-[12]. This
method, sometimes referred to as Deep Koopman, is effective
for approximating the Koopman Operator to a low-order
model, compared to the use of locally activated functions,
such as RBFs, which scale poorly for high-order nonlinear

Parameter value

0.4

02 e

200 560 1DbO SDbO
Dataset size
Fig. 6: Convergence of selected elements of the () matrix. As the
dataset size increases, each element (); ; reaches a constant value.
This implies that the A matrix converges as the dataset increases.
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Fig. 7: Feedforward neural network model used to generate ob-
servable functions. The final layer of the neural network is a linear
layer. In the standard Deep Koopman model this remains the same
after the model is fully trained. However, with the DDE model, this
final layer is recalculated using DDE by taking in the dataset used
to train the model.

systems. The proposed DDE method can be incorporated into
Deep Koopman, further improving approximation accuracy.

DDE can be applied to the neural network having an
architecture similar to prior works [10]-[12]. See Fig. 7.
The input layer receives training data of independent state
variables. The hidden layers produce observable functions;
these functions feed into the output layer consisting of linear
activation units. This linear output layer corresponds to the
A matrix that maps the observables of the current time to
those of the next time step, i.e. the state transition in the
lifted space. In the Deep Koopman approach, the output
layer, that is, the A matrix, is trained together with observable
functions in the hidden layers. This A matrix can be further
improved by replacing it with the A matrix obtained from
DDE, captioned in Fig. 7.

This Deep Koopman-DDE method is applied to a sim-
ulated cable manipulation system, similar to prior art [6].
The specific system used for the simulation experiment
consists of one cable suspending a point mass, where a
winch varies the length of one cable. The system is a 6-th
order nonlinear, switched system where the cables go slack
because of the unidirectional nature of cable tension. Because



this system is higher order, it necessitates the application of
Deep Koopman for the selection of observable functions to
accurately represent the system linearly with a finite order.
More details can be found in [26]. The network is constructed
using PyTorch with the parameters shown in Table IV. From
simulated trajectories starting at diverse initial conditions,
3,000 data points are drawn. Table V compares the Deep
Koopman model to the proposed model that uses DDE.
Results are in terms of sum of squared error over a set of
test trajectories. A significant improvement is achieved by
incorporating DDE into the deep learning method.

TABLE IV: Neural network parameters and characteristics.

Parameters and Characteristics Value
Number of Hidden layers 3
Activation Functions, Both Hidden Layers | ReLU
Width of 1st Hidden Layer 16
Width of 2nd Hidden Layer 16
Width of 3rd Hidden Layer 40
Learning Rate, o 0.01

TABLE V: Average SSE prediction error for trajectories in set of
test data for single winch system.

Modeling Method 1 Time Step 20 Time Steps
Deep Koopman only 0.2471 9.8610
Deep Koopman + DDE 0.2350 4.1131

VI. CONCLUSION

In this work, a new data-driven approach to generating
a Koopman linear model based on the direct encoding of
Koopman Operator (DDE) is presented as an alternative
to dynamic mode decomposition (DMD) and other related
methods using least squares estimate (LSE). The major
contributions include: 1) The analytical formula of Direct
Encoding is converted to a numerical formula for computing
the inner product integrals from given data; 2) An efficient
algorithm is developed and its convergence conditions to the
true results are analyzed; 3) Numerical experiments demon-
strate a) greater accuracy compared to EDMD, b) lower
sensitivity to data distribution, and c) rapid convergence of
inner product computation. Furthermore, the DDE method
is incorporated to Deep Koopman, i.e. neural network based
methods for construction of the Koopman Operator, for
improving prediction accuracy. The current method, however,
is for autonomous systems. The extension to systems with
control is a challenge for the future and must be addressed
rigorously, beyond utilizing an input as an observable.
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