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AbstractÐMultiuser Augmented Reality (MuAR) is essential to
implementing the vision of Metaverse for its capability to provide
immersive and interactive experiences. In such experiences, peer
positions are critical to understand each other’s intentions and
actions so as to guarantee the smooth cooperation among users.
However, we find that the explicit peer positions provided by the
current practice could be incomplete and/or inaccurate in some
situations, which leads to the weakened spatial awareness. To
achieve the accurate peer tracking in MuAR, we propose a novel
multiple sensors information fusion method, CSA (Coordinate
System Alignment), to detect and correct defective relative
positions by the current practice. CSA firstly formulates problem
of correcting erroneous positions into an overdetermined system,
and then finds the solution by applying the simulated annealing
algorithm to expedite the search process. The evaluation results
show that CSA’s ability to reduce errors significantly (58.3% on
average) under long-term error duration, especially its advantage
in reducing the relative direction errors. The result confirms the
potential of CSA to provide reliable peer tracking in MuAR.
Meanwhile, it does not impose extra restrictions on users’
practice with current mobile devices in experiences.

Index TermsÐAugmented Reality, Multiuser AR, spatial
awareness, tracking

I. INTRODUCTION

With the pervasive adoption of mobile devices, Augmented

Reality (AR) is expected to mainly provide immersive ex-

periences on mobile devices [1]. Furthermore, with the in-

troduction of new AR toolkits, and advances in hardware,

AR gradually evolves to support multi-user experience [2], in

which multiple devices share a common experience to achieve

the cooperation and interaction. To facilitate the interaction

in MuAR, it is important for participating devices to share

the position, since it is often associated with peers’ intentions

and actions, and reflects the following consequences. It is

particularly important in applications such as rescue and

medical operations [3]. For example, firefighters or robots may

rely on each other’s positions to search for or coordinate their

actions when saving trapped lives in difficult environments.

Thus, the problem of the peer position computation is critical

in such applications. For the single user experience, popular

AR frameworks, such as Apple ARKit and Google ARCore

[4], [5], provide explicit devices poses, including positions

and orientations, computed by the Simultaneous Localization

and Mapping (SLAM) [6]. However, the computed positions

cannot be directly used to compute relative positions in MuAR,

because they are located with respect to independent coordi-

nate systems. In other words, in the single user experience,

the coordinate system of the AR 3D world is constructed with

respect to the initial pose of independent mobile devices [7].

So the computed information is not relative to each other and

cannot be directly used to compute relative positions.

Previous studies employ various technologies to achieve the

mobile devices localization [8]±[10]. For example, GPS can

be helpful in assisting outdoor applications, for example, the

streets or buildings. However, it does not work properly in-

doors, and its meter-level precision cannot support applications

designed for the room-scale experiences. In the case of BLE

or WiFi signals, the signal interference and multi-path effects

cause significant estimation errors [8], [10]. Moreover, the

proposed approaches requires additional hardware set up and

time-consuming calibration. However, most AR experience is

ad hoc, happening in random locations instead of the pre-

calibrated space.

To achieve peer tracking in MuAR, the industry has pro-

posed to utilize Ultra Wideband (UWB) chips, recently in-

troduced to mobile devices. The high-frequency ability of the

UWB chip is utilized for the devices communication [11].

To this end, the solution requires participating devices to

be in proximity and there is no presence of solid obstacles

between devices. The tracking support is helpful. However, the

requirements imposed by the solution restrict the movement

freedom of users, especially for MuAR, and can conflict with

the design of the application developers. More importantly,

we find in the previous study that the proposed support could

produce incomplete or inaccurate positions in some cases [12].

The unreliability poses a new challenge to MuAR, and

potentially hinder the progression of Metaverse. Instead of

upgrading mobile devices with the more advanced hardware,

we propose a novel economical approach named CSA (Co-

ordinate Systems Alignment), to deal with the unreliability.

The approach employs the device positions from the single

user and multiuser AR experiences only. It firstly formulates

the detection and correction of erroneous updates into an

overdetermined system, achieving the alignment of multiple

independent coordinate systems in MuAR. Then the approach

finds the solution to the overdetermined system by employing
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the simulated annealing algorithm, to avoid searching in an

exponential space. In this way, the relative positions of peer

devices are available by correcting incomplete or inaccurate

reported positions. Finally, we collect the dataset about users’

movement traces to evaluate the proposed solution. The results

show the potential of CSA to reduce position errors by 58.3%

on average under both short-term and long-term error duration,

especially its advantage in reducing the relative direction

errors. Therefore, it is safe to conclude CSA provides a viable

solution to the legacy devices equipped with UWB chips

running AR applications.

The rest of the paper is organized as follows. Sec. II briefly

presents our investigation results about unreliability of the

current practice. Sec. III discusses the related challenges and

our corresponding solutions for the problem.The effectiveness

of proposed solution CSA is evaluated in Sec. IV. The paper

is concluded in Sec. V.

II. NI: MEASUREMENT STUDY

Nearby Interaction (NI) is the first industry solution for

MuAR to provide peer tracking on iOS mobile devices

equipped with UWB chips. The explicit peer position output

is composed of two components: relative distance and relative

direction. However, the convenience comes at a cost. The

framework imposes a series of requirements on users’ practice,

in terms of activity sphere, device orientation and movement

style, to guarantee it performs as expected: first, the maximum

distance between any two peers is 9 meters; second, the

screens of peer devices should be kept in the portrait mode;

third, peer devices should appear within the line of sight of

each other and there is no presence of obstacles between them

[13].

We perform a series of experiments to investigate the

reliability of NI. The key findings of the study are summarized

as follows. First, the violation of the line of sight clearance

results in inaccurate relative distances, shown in Figure 1,

and unavailable direction reports, shown in Figure 2. Second,

the influence of the screen orientation, shown in Figure 2,

focuses on the availability of direction updates. The complete

description of experiment setup and results is available in [12].

Fig. 1: Impact on the DistanceFig. 2: Impact on the Direction

Next, according to the magnitude of relative distance devia-

tion, we organize the errors into three types: Type I, transient

error, similar to the glitch, reporting slightly deviated distance;

Type II, persistent error, as shown from t = 23 to 35 seconds

in Figure 2, reporting the relative distances which deviate

significantly from the truth; Type III, moderate error, is

between the other two types. For all three types, the relative

direction is missing.

III. PROBLEM SPACE: CHALLENGES AND SOLUTION

The measurement study shows the state-of-the-art support

for MuAR is unreliable. Therefore, we aim to find an econom-

ical approach by leveraging the existing framework, instead

of relying on upgraded hardware. In this section, we dissect

the problem, discuss about related challenges, and present our

solutions. Since the key is to align coordinate systems for

multiple devices in AR experiences, the proposed solution is

named as CSA (Coordinate System Alignment).

Challenge 1: Long-term unavailability of position updates.

Predicting users’ (or devices) positions in volumetric media

is a well addressed problem. A natural solution is to predict

future positions based on the past trace. However, the method

mainly works in the case of short-term prediction horizon;

once the horizon exceeds 2 seconds [14], [15], the results are

no longer accurate. On the other hand, in our case, the error

duration usually lasts much longer than that.

Solution: The reason for the traditional prediction working

only in short-term horizon is there may exist drastic changes

in users’ movement. Thus the past trace only is not always

a reliable predictor for the future. To obtain accurate relative

positions in MuAR, it is necessary to know, at least partial or

indirect, information of users’ trace during the error duration.

For this reason, we introduce the users’ traces in single user

AR experience, happening synchronously with MuAR. The

trace can be obtained from the ARKit, a framework often

used in single user AR applications development [4]. The

coordinate system used for the ARKit is shown in Figure 3.

Challenge 2: Problem formulation. The self-position by

ARKit is computed in the coordinate system constructed with

respect to the initial pose of mobile devices. Therefore, the

reported positions cannot be directly used to compute relative

positions in MuAR. With the introduction of ARKit, the

problem becomes how to use self positions in single user AR

for the computation of relative positions in MuAR without the

global coordinate system.

Solution: Our solution here is to introduce the alignment

vector among different coordinate systems. More specifically,

we suppose introduced ARKit positions are denoted as A and

B for Device A and Device B. Each record in A and B has

the same format (time, x, y, z), representing device’s position

in the direction of x, y, and z at any specific time. Also, the

relative positions by NI are denoted as AB representing the

relative position of Device A to B. The problem now can be

formulated as the computation of alignment vectors ∆ between

two systems as the Eq. 1 shows.

A− (B +∆) = AB (1)

Challenge 3: Alignment vector dissection. Once the align-

ment vector is solved, the ARKit position in single-user AR

can be used to compute relative positions. However, solving ∆
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is not straightforward. The coordinate system alignment in 3D

space often involves multiple types of transforms, including

rotation, scale and translation, as shown in Figure 4.

Solution: To describe the transform between two systems,

we introduce the rotational, scaling and translational matrices,

represented by R, S and T , respectively. Furthermore, since

no scaling is involved in the specific problem, the matrix S

can be seen as an identity matrix. Then the Eq. 1 can be

further formulated as Eq. 2, an overdetermined system about

12 unknown variables from the rotational and translational

matrices. The value of n depends on the available correct NI

records in the experiment.
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Challenge 4: Solution space size. Although solving the

overdetermined system is a well studied problem, the sys-

tem setup is not easy. Because of the enormous quantity

of available records, it is challenging to determine which

records are used in computation for the better performance.

For example, in the experiment violating the line of sight

feature only, the total number of NI records is 1,942 for a

session lasting 47 seconds. After rejecting erroneous records,

1,919 records remain available, and there would be 21,919 − 1
possible combinations. For each combination, it takes 2.53 to

16.96 seconds to solve, depending on the number of records

used (The running time data comes from our measurement on

a laptop with the 2.3 GHz Intel Core i5 processor and 8 GB

memory). Therefore, it is not feasible to test all combinations.

Solution: To expedite the search process in the exponential

solution space, we propose to formulate the problem of deter-

mining which records to be used as an optimization problem

as the Eq. 3. M is the number of position records used in

the system. PA and PB are positions of two mobile devices

, while P̂A and P̂B are corresponding truth positions. The

optimization goal is to find a solution set for matrices R

and T , to minimize the sum of squares of distances between

computed positions and corresponding truth. To this end, the

simulated annealing algorithm is employed. In our experience,

the algorithm provides a good trade-off between accuracy and

speed [16].

Minimize :
M
∑

1

∥

∥

∥[PA − (R · PB + T )]−
(

P̂A − P̂B

)∥

∥

∥

2

(3)

Fig. 3: AR Coordinate System Fig. 4: Transformation

IV. EVALUATION

The traces used for the evaluation, including users’ move-

ment traces and ground truth locations, are collected in the

same way as the motivation study in Sec. II. We adopt the

CUWB system for the ground truth collection. More detailed

setup information is available in [12]. For the collected truth

positions, the cubic spline interpolation is employed.

A. Evaluation Metrics

To evaluate the effectiveness of CSA, we use Mean Squared

Error (MSE) between computed values and ground truth

defined as Eq. 4. N is the number of defective records for

a specific trace. (x, y, z) are the ground truth positions of

participating devices, while (x̂, ŷ, ẑ) are positions computed

by CSA. The solution is regarded to be more effective with

the smaller MSE value. In addition, the effectivity of CSA on

the correction of the relative distance and direction is measured

in the distance error and direction error, as Eq. 5 and Eq. 6

show.

MSE =
1

N

N
∑

i=1

(xi − x̂i)
2 + (yi − ŷi)

2 + (zi − ẑi)
2 (4)

MSE(dist) =
1

N

N
∑

i=1

(di − d̂i)
2 (5)

Mean(dir) =
1

N

N
∑

i=1

arccos
vAB · v′

AB

∥vAB∥ ∥v′
AB∥

(6)

B. Results

Table I shows the error distribution of collected traces. For

six cases among them, only Type III error exists. For all other

cases, Type II and Type III errors coexist. Type I error is not

considered here since they are corrected by replacing with the

mean value of neighbors for all methods.

Firstly, the effectivity of CSA is evaluated. For comparisons,

we evaluate three other baseline cases: (1) no prediction (NP),

in which the mean value of previous 30 position reports is

used to replace erroneous relative distance and/or direction;
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(2) dead reckoning (DR), employing the user’s current velocity

to predict the future movement [17]; (3) autoregression model

(AR), which uses three collected traces for training and selects

the best-performing model.

TABLE I: Error Distribution for 18 Cases

User 1 2 3 4 5 6 7 8 9

TypeII ✗ ✗ ✓ ✓ ✗ ✓ ✓ ✓ ✓

TypeIII ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

User 10 11 12 13 14 15 16 17 18

TypeII ✓ ✓ ✗ ✓ ✓ ✓ ✗ ✗ ✓

TypeIII ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Figure 7 illustrates the comparison results of different meth-

ods. The figure employs the natural logarithm of MSE values

for the y axis. We can observe CSA outperforms all others

for all cases. In particular, CSA reduces errors by 58.3% on

average compared to DR, a typical method used in the position

prediction for the short-term horizon. The results support our

previous analysis in Challenge 1 in Sec. III.

Fig. 5: MSE for the relative

distance

Fig. 6: Mean error for rela-

tive direction

Next, we investigate the potential of CSA on the correction

of the relative distance and direction errors. As shown in

Figure 5, CSA has no advantage in reducing errors of the

relative distances. However, it show the best performance in

reducing the relative direction error as shown in Figure 6.

Considering the relative direction is missing for all types of

errors, the result supports our choice of CSA.

Fig. 7: Performance Compari-

son

Fig. 8: Comparison in Reduc-

ing Different Types of Errors

Lastly, Figure 8 shows the Sum Squared Error (SSE) distri-

bution of two error types for four users. In particular, for the

first two cases, only Type III error exists. For the last two case,

Type II and Type III errors coexist. And the logarithmic scale

of the y-axis is employed. Given that the immediate cause of

the persistent error is the presence of obstacles between peer

devices in MuAR, and the presence of obstacles, is hard to be

avoided, the result demonstrates CSA is the best solution in

similar situations.

V. CONCLUSION

In this work, to fix the tracking unreliability of the current

practice on legacy mobile devices in MuAR, we have proposed

an approach named CSA, which jointly uses position reports

from both single user and multiuser AR experiences, to

accomplish multiple coordinate systems alignment and correct

erroneous position reported by NI. The evaluation results show

CSA’s capability of accurate peer tracking in MuAR.
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