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Abstract—Multiuser Augmented Reality (MuAR) is essential to
implementing the vision of Metaverse for its capability to provide
immersive and interactive experiences. In such experiences, peer
positions are critical to understand each other’s intentions and
actions so as to guarantee the smooth cooperation among users.
However, we find that the explicit peer positions provided by the
current practice could be incomplete and/or inaccurate in some
situations, which leads to the weakened spatial awareness. To
achieve the accurate peer tracking in MuAR, we propose a novel
multiple sensors information fusion method, CSA (Coordinate
System Alignment), to detect and correct defective relative
positions by the current practice. CSA firstly formulates problem
of correcting erroneous positions into an overdetermined system,
and then finds the solution by applying the simulated annealing
algorithm to expedite the search process. The evaluation results
show that CSA’s ability to reduce errors significantly (58.3% on
average) under long-term error duration, especially its advantage
in reducing the relative direction errors. The result confirms the
potential of CSA to provide reliable peer tracking in MuAR.
Meanwhile, it does not impose extra restrictions on users’
practice with current mobile devices in experiences.

Index Terms—Augmented Reality, Multiuser AR, spatial
awareness, tracking

I. INTRODUCTION

With the pervasive adoption of mobile devices, Augmented
Reality (AR) is expected to mainly provide immersive ex-
periences on mobile devices [1]. Furthermore, with the in-
troduction of new AR toolkits, and advances in hardware,
AR gradually evolves to support multi-user experience [2], in
which multiple devices share a common experience to achieve
the cooperation and interaction. To facilitate the interaction
in MuAR, it is important for participating devices to share
the position, since it is often associated with peers’ intentions
and actions, and reflects the following consequences. It is
particularly important in applications such as rescue and
medical operations [3]. For example, firefighters or robots may
rely on each other’s positions to search for or coordinate their
actions when saving trapped lives in difficult environments.
Thus, the problem of the peer position computation is critical
in such applications. For the single user experience, popular
AR frameworks, such as Apple ARKit and Google ARCore
[4], [5], provide explicit devices poses, including positions
and orientations, computed by the Simultaneous Localization
and Mapping (SLAM) [6]. However, the computed positions

cannot be directly used to compute relative positions in MuAR,
because they are located with respect to independent coordi-
nate systems. In other words, in the single user experience,
the coordinate system of the AR 3D world is constructed with
respect to the initial pose of independent mobile devices [7].
So the computed information is not relative to each other and
cannot be directly used to compute relative positions.

Previous studies employ various technologies to achieve the
mobile devices localization [8]-[10]. For example, GPS can
be helpful in assisting outdoor applications, for example, the
streets or buildings. However, it does not work properly in-
doors, and its meter-level precision cannot support applications
designed for the room-scale experiences. In the case of BLE
or WiFi signals, the signal interference and multi-path effects
cause significant estimation errors [8], [10]. Moreover, the
proposed approaches requires additional hardware set up and
time-consuming calibration. However, most AR experience is
ad hoc, happening in random locations instead of the pre-
calibrated space.

To achieve peer tracking in MuAR, the industry has pro-
posed to utilize Ultra Wideband (UWB) chips, recently in-
troduced to mobile devices. The high-frequency ability of the
UWB chip is utilized for the devices communication [11].
To this end, the solution requires participating devices to
be in proximity and there is no presence of solid obstacles
between devices. The tracking support is helpful. However, the
requirements imposed by the solution restrict the movement
freedom of users, especially for MuAR, and can conflict with
the design of the application developers. More importantly,
we find in the previous study that the proposed support could
produce incomplete or inaccurate positions in some cases [12].

The unreliability poses a new challenge to MuAR, and
potentially hinder the progression of Metaverse. Instead of
upgrading mobile devices with the more advanced hardware,
we propose a novel economical approach named CSA (Co-
ordinate Systems Alignment), to deal with the unreliability.
The approach employs the device positions from the single
user and multiuser AR experiences only. It firstly formulates
the detection and correction of erroneous updates into an
overdetermined system, achieving the alignment of multiple
independent coordinate systems in MuAR. Then the approach
finds the solution to the overdetermined system by employing
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the simulated annealing algorithm, to avoid searching in an
exponential space. In this way, the relative positions of peer
devices are available by correcting incomplete or inaccurate
reported positions. Finally, we collect the dataset about users’
movement traces to evaluate the proposed solution. The results
show the potential of CSA to reduce position errors by 58.3%
on average under both short-term and long-term error duration,
especially its advantage in reducing the relative direction
errors. Therefore, it is safe to conclude CSA provides a viable
solution to the legacy devices equipped with UWB chips
running AR applications.

The rest of the paper is organized as follows. Sec. II briefly
presents our investigation results about unreliability of the
current practice. Sec. III discusses the related challenges and
our corresponding solutions for the problem.The effectiveness
of proposed solution CSA is evaluated in Sec. IV. The paper
is concluded in Sec. V.

II. NI: MEASUREMENT STUDY

Nearby Interaction (NI) is the first industry solution for
MuAR to provide peer tracking on iOS mobile devices
equipped with UWB chips. The explicit peer position output
is composed of two components: relative distance and relative
direction. However, the convenience comes at a cost. The
framework imposes a series of requirements on users’ practice,
in terms of activity sphere, device orientation and movement
style, to guarantee it performs as expected: first, the maximum
distance between any two peers is 9 meters; second, the
screens of peer devices should be kept in the portrait mode;
third, peer devices should appear within the line of sight of
each other and there is no presence of obstacles between them
[13].

We perform a series of experiments to investigate the
reliability of NI. The key findings of the study are summarized
as follows. First, the violation of the line of sight clearance
results in inaccurate relative distances, shown in Figure 1,
and unavailable direction reports, shown in Figure 2. Second,
the influence of the screen orientation, shown in Figure 2,
focuses on the availability of direction updates. The complete
description of experiment setup and results is available in [12].
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Fig. 1: Impact on the DistanceFig. 2: Impact on the Direction

Next, according to the magnitude of relative distance devia-
tion, we organize the errors into three types: Type I, transient
error, similar to the glitch, reporting slightly deviated distance;
Type II, persistent error, as shown from t = 23 to 35 seconds
in Figure 2, reporting the relative distances which deviate

215

significantly from the truth; Type III, moderate error, is
between the other two types. For all three types, the relative
direction is missing.

III. PROBLEM SPACE: CHALLENGES AND SOLUTION

The measurement study shows the state-of-the-art support
for MuAR is unreliable. Therefore, we aim to find an econom-
ical approach by leveraging the existing framework, instead
of relying on upgraded hardware. In this section, we dissect
the problem, discuss about related challenges, and present our
solutions. Since the key is to align coordinate systems for
multiple devices in AR experiences, the proposed solution is
named as CSA (Coordinate System Alignment).

Challenge 1: Long-term unavailability of position updates.
Predicting users’ (or devices) positions in volumetric media
is a well addressed problem. A natural solution is to predict
future positions based on the past trace. However, the method
mainly works in the case of short-term prediction horizon;
once the horizon exceeds 2 seconds [14], [15], the results are
no longer accurate. On the other hand, in our case, the error
duration usually lasts much longer than that.

Solution: The reason for the traditional prediction working
only in short-term horizon is there may exist drastic changes
in users’ movement. Thus the past trace only is not always
a reliable predictor for the future. To obtain accurate relative
positions in MuAR, it is necessary to know, at least partial or
indirect, information of users’ trace during the error duration.
For this reason, we introduce the users’ traces in single user
AR experience, happening synchronously with MuAR. The
trace can be obtained from the ARKit, a framework often
used in single user AR applications development [4]. The
coordinate system used for the ARKit is shown in Figure 3.
Challenge 2: Problem formulation. The self-position by
ARK:it is computed in the coordinate system constructed with
respect to the initial pose of mobile devices. Therefore, the
reported positions cannot be directly used to compute relative
positions in MuAR. With the introduction of ARKit, the
problem becomes how to use self positions in single user AR
for the computation of relative positions in MuAR without the
global coordinate system.

Solution: Our solution here is to introduce the alignment
vector among different coordinate systems. More specifically,
we suppose introduced ARKit positions are denoted as A and
B for Device A and Device B. Each record in A and B has
the same format (time, z,y, z), representing device’s position
in the direction of x, y, and z at any specific t¢me. Also, the
relative positions by NI are denoted as Ap representing the
relative position of Device A to B. The problem now can be
formulated as the computation of alignment vectors A between
two systems as the Eq. 1 shows.

A—(B+A)=Ap M

Challenge 3: Alignment vector dissection. Once the align-
ment vector is solved, the ARKit position in single-user AR
can be used to compute relative positions. However, solving A
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is not straightforward. The coordinate system alignment in 3D
space often involves multiple types of transforms, including
rotation, scale and translation, as shown in Figure 4.

Solution: To describe the transform between two systems,
we introduce the rotational, scaling and translational matrices,
represented by R, S and T, respectively. Furthermore, since
no scaling is involved in the specific problem, the matrix S
can be seen as an identity matrix. Then the Eq. 1 can be
further formulated as Eq. 2, an overdetermined system about
12 unknown variables from the rotational and translational
matrices. The value of n depends on the available correct NI
records in the experiment.
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Challenge 4: Solution space size. Although solving the
overdetermined system is a well studied problem, the sys-
tem setup is not easy. Because of the enormous quantity
of available records, it is challenging to determine which
records are used in computation for the better performance.
For example, in the experiment violating the line of sight
feature only, the total number of NI records is 1,942 for a
session lasting 47 seconds. After rejecting erroneous records,
1,919 records remain available, and there would be 21919 — 1
possible combinations. For each combination, it takes 2.53 to
16.96 seconds to solve, depending on the number of records
used (The running time data comes from our measurement on
a laptop with the 2.3 GHz Intel Core i5 processor and 8 GB
memory). Therefore, it is not feasible to test all combinations.

Solution: To expedite the search process in the exponential
solution space, we propose to formulate the problem of deter-
mining which records to be used as an optimization problem
as the Eq. 3. M is the number of position records used in
the system. P, and Pp are positions of two mobile devices
, while P, and Pp are corresponding truth positions. The
optimization goal is to find a solution set for matrices R
and 7', to minimize the sum of squares of distances between
computed positions and corresponding truth. To this end, the
simulated annealing algorithm is employed. In our experience,
the algorithm provides a good trade-off between accuracy and
speed [16].
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IV. EVALUATION

The traces used for the evaluation, including users’ move-
ment traces and ground truth locations, are collected in the
same way as the motivation study in Sec. II. We adopt the
CUWRB system for the ground truth collection. More detailed
setup information is available in [12]. For the collected truth
positions, the cubic spline interpolation is employed.

A. Evaluation Metrics

To evaluate the effectiveness of CSA, we use Mean Squared
Error (MSE) between computed values and ground truth
defined as Eq. 4. N is the number of defective records for
a specific trace. (x,y,z) are the ground truth positions of
participating devices, while (Z, ¢, 2) are positions computed
by CSA. The solution is regarded to be more effective with
the smaller MSE value. In addition, the effectivity of CSA on
the correction of the relative distance and direction is measured
in the distance error and direction error, as Eq. 5 and Eq. 6
show.

N
MSE = — Z i =)+ (-0 + (-4 @)
— .
MSE(dist) = — > (di —d;)*> (5
SE(dist) = 5 (i = df )
vap-V'aB
Mean(dir) arccos——————— (6)
Z INZVIRINVY
B. Results

Table I shows the error distribution of collected traces. For
six cases among them, only Type III error exists. For all other
cases, Type II and Type III errors coexist. Type I error is not
considered here since they are corrected by replacing with the
mean value of neighbors for all methods.

Firstly, the effectivity of CSA is evaluated. For comparisons,
we evaluate three other baseline cases: (1) no prediction (NP),
in which the mean value of previous 30 position reports is
used to replace erroneous relative distance and/or direction;
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(2) dead reckoning (DR), employing the user’s current velocity
to predict the future movement [17]; (3) autoregression model
(AR), which uses three collected traces for training and selects
the best-performing model.

TABLE I: Error Distribution for 18 Cases

User 1 2 3 4 5 6 7 8 9
Typel X X 7 7 X J 7 7 7
Typell v v / /7 /ST

User 10 11 12 13 14 15 16 17 18
Typell v Vv X Vv J J X X /
Typell v /v /v /S /7T

Figure 7 illustrates the comparison results of different meth-
ods. The figure employs the natural logarithm of MSE values
for the y axis. We can observe CSA outperforms all others
for all cases. In particular, CSA reduces errors by 58.3% on
average compared to DR, a typical method used in the position
prediction for the short-term horizon. The results support our
previous analysis in Challenge 1 in Sec. III.
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Fig. 5: MSE for the relative
distance

Fig. 6: Mean error for rela-
tive direction

Next, we investigate the potential of CSA on the correction
of the relative distance and direction errors. As shown in
Figure 5, CSA has no advantage in reducing errors of the
relative distances. However, it show the best performance in
reducing the relative direction error as shown in Figure 6.
Considering the relative direction is missing for all types of
errors, the result supports our choice of CSA.
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Lastly, Figure 8 shows the Sum Squared Error (SSE) distri-
bution of two error types for four users. In particular, for the
first two cases, only Type III error exists. For the last two case,
Type II and Type III errors coexist. And the logarithmic scale
of the y-axis is employed. Given that the immediate cause of
the persistent error is the presence of obstacles between peer
devices in MuAR, and the presence of obstacles, is hard to be
avoided, the result demonstrates CSA is the best solution in
similar situations.
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V. CONCLUSION

In this work, to fix the tracking unreliability of the current
practice on legacy mobile devices in MuAR, we have proposed
an approach named CSA, which jointly uses position reports
from both single user and multiuser AR experiences, to
accomplish multiple coordinate systems alignment and correct
erroneous position reported by NI. The evaluation results show
CSA’s capability of accurate peer tracking in MuAR.
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