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Global, Unified Representation of Heterogenous
Robot Dynamics Using Composition Operators:
A Koopman Direct Encoding Method
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Abstract— The dynamic complexity of robots and mechatronic
systems often pertains to the hybrid nature of dynamics, where
governing equations consist of heterogenous equations that are
switched depending on the state of the system. Legged robots and
manipulator robots experience contact-noncontact discrete
transitions, causing switching of governing equations. Analysis of
these systems have been a challenge due to the lack of a global,
unified model that is amenable to analysis of the global behaviors.
Composition operator theory has the potential to provide a global,
unified representation by converting them to linear dynamical
systems in a lifted space. The current work presents a method for
encoding nonlinear heterogenous dynamics into a high
dimensional space of observables in the form of Koopman
operator. First, a new formula is established for representing the
Koopman operator in a Hilbert space by using inner products of
observable functions and their composition with the governing
state transition function. This formula, called Direct Encoding,
allows for converting a class of heterogenous systems directly to a
global, unified linear model. Unlike prevalent data-driven
methods, where results can vary depending on numerical data, the
proposed method is globally valid, not requiring numerical
simulation of the original dynamics. A simple example validates
the theoretical results, and the method is applied to a multi-cable
suspension system.

Index Terms— Composition operator, Hybrid system,
Koopman operator, Direct encoding, Lifting linearization, Robot
dynamics

[. INTRODUCTION

OBOTS perform complex dynamic tasks, interacting

with the environment. As a legged robot interacts with

floor, its dynamics change discontinuously [1]. As a
manipulator robot manipulates an object, its fingers and arm are
subject to non-holonomic geometric constraints, which may
dynamically change [2]. These robot dynamics are not
unimodal; they are multi-faceted. Overall, their governing
dynamics are represented as a combination of heterogenous
equations of motion. When an independent set of generalized
coordinates are used, the equations of motion are segmented
into multiple regions, each representing specific dynamics
subject to specific constraints in that region. Depending on
contact conditions, constraints, and state locations, a different
set of dynamic equations must be applied. This heterogeneous
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nature of governing equations poses a fundamental challenge
for both dynamic modeling and control. The lack of a unified
representation that is valid globally for all diverse state
locations hinders theoretical analysis of global behaviors.

In system dynamics and control literature, Lyapunov
functions have been used for guaranteeing the global stability
of a particular class of hybrid systems. Methods have been
developed for searching for or learning appropriate Lyapunov
functions for given hybrid systems [3], [4]. However, it remains
a challenge to find a Lyapunov function for a general class of
hybrid systems, especially robotics problems. Poincare’s map
has been applied to examine convergence and stability of
periodic orbits, as observed in legged robots and others [5]. This
method requires computation of a series of points on a
transversal section, which entails numerical simulations of the
original trajectories. Furthermore, this method requires stability
analysis of the resultant nonlinear system. Reachability has
been studied extensively, and rigorous conditions for
reachability have been established [6], [7]. Although
reachability is a fundamental property, more detailed analytic
tools are required in robotics. Theoretical methodologies for
hybrid systems are still limited and analysis is largely
dependent on extensive simulations and numerical
computations. A global, unified representation of a robot’s
governing equations could open the door to an alternative
approach, which would supplement the existing theories and
methodology.

The goal of the current work is to establish a methodology
for obtaining a global, uniform representation of multi-faceted,
heterogeneous robot dynamics that is amenable to analysis. We
aim to construct a global, unified representation directly from
the governing equations of heterogeneous robot dynamics. It is
uniform in that a single model subsumes all the cases. No
segmentation and switching are required. Such a unified
representation facilitates the analysis of global behaviors,
including stability and convergence.

Our approach utilizes a lifting of the dynamics using
supernumerary state variables [8]. Unlike the standard point-
wise linearization, this lifting linearization has the potential to
construct a global linear model. As illustrated in Fig.1,
governing equations in the space of independent state variables
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are nonlinear, heterogenous, and are segmented into local
regions. As the system representation is lifted to a high-
dimensional space, it can be shown that the system behaves
linearly and, more importantly, behaves uniformly with no
segmentation nor switching. We exploit this linearity of
representation for obtaining a unified representation. Although
the governing equations are nonlinear and segmented in the
original state space, they can be unified with a linear
representation in a lifted space. All the heterogenous dynamics,
including nonholonomic constraints and discontinuous state
transitions among them, may be embedded into a single high-
dimensional linear equation.
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Fig. 1 Global, unified representation of heterogenous dynamics

The theoretical foundation of lifting dynamic modeling was
established in the era of Littlewood [9] and Koopman [10] in
the 1920’s and 30’s. Their results showed that a real, single
valued function g:X — R, called an observable, which is
compositional with a self-map F: X — X, denoted g o F, can be
written as a linear transformation of the observable, g o F =
Kg. This linearity holds although the map F is a nonlinear
function. Based on this, a nonlinear, autonomous system,
X¢41 = F(x;) and its continuous time form, can be represented
as a linear state equation in an infinite-dimensional space. This
had a significant impact upon quantum mechanics in the 1930°s
and 40’s. However, no practical application in the engineering
field had been found until Igor Mezic pioneered an effective
method for applying the Koopman operator to various fields of
engineering problems three-quarters of century after the
foundational work of Littlewood and Koopman [11].

Mezic and his peers have established the method based on
spectral properties of the Koopman operator [12], [13]. The
Koopman operator theory has been integrated with Dynamic
Mode Decomposition (DMD) and data-driven methods [14],
[15]. While the Koopman operator theory underpins the
algorithm of DMD from the function analysis viewpoint [16],
DMD provides the Koopman method with a practical data-
driven technique. Based on the Koopman method, DMD has
also been extended to a more general, effective algorithm.
Furthermore, the Koopman-DMD approach has been extended
to systems with control, or non-autonomous systems [17]. It has

opened the door to control system design, in particular, Model
Predictive Control (MPC) [18].

Many successful applications of the Koopman-DMD
approach have been reported. These include fluid mechanics
[13], power systems [12], optimal control [19], and computer
vision [20], [21]. In robotics, too, the Koopman-DMD approach
has made significant contributions in the last several years.
Among others, Abraham and Murphy applied it to active
learning for linearizing complex nonlinear dynamics [22]. The
method has also been applied to the modeling and control of
soft robotic systems, where highly nonlinear, large
deformations of soft materials have been modeled accurately
[23], [24] and modeling of human-machine systems [25].

It must be noted, however, that a few major drawbacks and
limitations exist to the DMD approach. First, it is difficult to
guarantee global validity of a model, unless a “compact” set of
data is available. Similar to other data-driven approaches,
including machine learning, the results are dependent on data
used for tuning the system. It is a challenge to collect all the
data that guarantee the complete global behaviors of the system.
Poor performance may result from insufficient data or from an
inappropriate choice of observables. Thus, it is difficult to
determine the root cause of performance issues, be it data
collection or observable choice.

Another major limitation to the DMD approach is that the
algorithm simply assumes that a linear dynamic relationship
exists in a high-dimensional space [26]. It does not address
whether linearity exists or not. It is questionable particularly
when the method is applied to heterogenous dynamical systems
that possess discontinuities in state transition and switching of
governing equations.

The method of this paper is an alternative to the DMD and
other data-driven approaches based on DMD. A linear
representation that is valid globally will be obtained directly
from governing nonlinear dynamics, which are assumed
available. In the following, the composition of an observable
with a nonlinear state transition function F will be represented
as a linear transformation of the observable function by using
an integral kernel. A new formula called Direct Encoding will
be developed to obtain the linear state transition matrix of the
nonlinear system directly from inner products of observables
and their composition with the nonlinear function F. Conditions
for applying the direct encoding formula to heterogenous
nonlinear systems with discontinuity will be discussed.

Most prior works assume that the state transition map
F:X — X is smooth and continuous. This assumption is valid in
many applications previously dealt with. However, the state
transition map F: X — X is not always smooth nor continuous
when dealing with complex heterogenous dynamic equations.
The goal of the current work is to establish a methodology for
building a global and unified model of complex dynamical
systems, which may include switching among diverse sets of
dynamical equations and discontinuous transitions of state.

To this end, properties of the state transition map F: X — X
and a system of observable functions will be examined for
finding conditions under which a linear state transition equation
exists. Three major results will be obtained; a) a proper choice
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of observables matched with a given nonlinear state transition
function F is required for obtaining a linear dynamic equation
in a lifted space; b) if the conditions are met, a global linear
model can be constructed through inner product computations
over the state space; and c) although the conditions are not
satisfied for a class of heterogenous systems, a finite-order
model can be used to approximate the heterogenous dynamics
under a specific mild condition. Because the method does not
use simulation data for training a linear model, it does not
possess the drawbacks that the DMD approach and data-driven
methods suffer from. The method will be applied to a univariate
hybrid dynamical system and a multi-cable heterogenous
dynamical system. The implication of the proposed method and
remaining open questions will be discussed at the end.

II. LINEAR REPRESENTATION OF NONLINEAR DYNAMICS

This section will present the basic formulation of the
problem, including a minimum background of functional
analysis and composition operators [27]. Although the
Koopman Operator theory has been established in a general
Banach space [28], Direct Encoding entails inner products. As
such, the following formulation assumes that all functions are
involved in a Hilbert space. This results in a simple,
straightforward transformation of nonlinear dynamics into
lifted linear state equations using basic function analysis. This
formulation based on inner products leads to the Direct
Encoding formula and lays grounds for addressing the
applicability of the method to heterogenous dynamical systems
in the subsequent section.

A. Representation of a Compositional Operator Using a
Kernel

The fundamental linearity given by the Koopman operator
theory can be manifested with use of an integral kernel.
Consider a discrete-time, autonomous dynamical system:

X1 = F(xp) (1)
Ve = g(x¢) (2)

where x, € X € R™ is an independent state vector of dimension
n, F(x,) is a real-valued vector function F: X — X, which is a
self-map called a state transition function, y, is output, and
g(x;) is an output function. In Koopman operator theory, g(x,)
is called an “observable”. Combining (1) and (2) yields

9(xes1) = glF (x)] (3)

In this section we aim to examine the properties of g[F (x;)]
from a function analysis viewpoint. In doing so we treat
g[F (x;)] as a real-valued function on X € R", and deal with a
scalar function. In the following, we drop the subscript ¢ to
emphasize transformation of the entire function over X ¢ R™,
and de-emphasize time evolution. The connection between
function transformation and time evolution will be established
in the succeeding sub-section.

Consider a Hilbert space H with an inner product
(—, =) H XH - C, expressed as

(fufa) = [y LR, 4)

where f,,f, € H, and f, represents the complex conjugate of
f>. The function in (3) is a composition of function g with a self-
map F, which is represented using a composition operator as

(g °F)(x) = g[F(x)] ©)

In the case of heterogenous dynamical systems, the state
transition function ' may be segmented into multiple regions,
called “state locations”, and the governing equations must be
changed depending on the state location. Despite such
complexities, there exists a linear relationship between
observable function g and its composition with F - thatis, g o F
- as shown next using a kernel.

Proposition 1
Let 7 be a Hilbert space on X < R™, and let {¢,, ¢, @3, ** }
be an orthonormal set of basis functions spanning #. Let F be
a state transition function F: X — X and g be a function in the

Hilbert space.
geH (6)

Then, there exists a linear relationship between function g and
its composition with F,

(g° P = [, x(x,§)g(€)dE (7

where ¢ is an integral variable, and x: X X X — C is a kernel
given by

K(x,§) = Liz1 @i [F ()] @k (§). ®)

Proof
From (6), g can be expanded in the orthonormal basis

{01, 02,03, },
g = 2r=149, ©x) Pi ©)

By using this expansion, the compositional function g o F
can be written as

geoF = Qg o) pi) o F (10)
Distributing the compositional operator yields
g°F =Yg @) (P ° F) (11)

From the definition of inner product (4)

(9o F)(x) = X1 [y 9@©)Pr(§)dE (¢ © F)(x)

= Ji L1 @ilF 0] 9x(§)g()dé = [, Kk(x,§) g(§)d¢
(12)
Q.E.D.
Note that the kernel k(x,¢) encodes the state transition
function F(x) with the basis functions {¢,, @,, @3, :+ }. The
kernel does not depend on the function g € H, and it can be
applied to arbitrary functions in H:

(i F)(x) = [, 1k(x,§)g:(§)d, g €H,i€N (13)

Concatenating these in an infinite dimensional vector of
functions g; o F yields
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(g1 ° F)(x) 9:1(§)

(92 °F)(x) 92.(5()
These observables g, g,, ---collectively represent the state of

the system in a lifted space of infinite dimension. Denoting the

concatenated observables by

91 (x)

9 (x)

we aim to obtain a linear state transition equation. Under certain
conditions, such a linear state transition equation exists, as
discussed next.

dé¢ (14)

=Jy k(.9

x(x) £ , (15)

B. Linear State Transition

While the kernel representation given by eq.(7) manifests the
linear transformation of observables to their compositions with
the nonlinear state transition function F, it is not in the form of
linear state equation, which we need in engineering
applications. The following Proposition provides the conditions
for the existence of a linear state equation.

Proposition 2

Let {4, ¢,, @3, } be an orthonormal set of basis functions
in a Hilbert space H on X € R", and let F be a state transition
function F: X — X. If the compositional function ¢; o F is in the
Hilbert space,

p;oFEXH, ieEN (16)

then there exists a linear state transition matrix 4 of infinite

dimension that transfers a lifted state in the form of y(x) =
T

[9:(x)  g2(x) I', where {g1,9,, 95} forms an

orthonormal basis in #{, to the lifted state associated to the state

transition function F,
XIFG)] = A x(x)

where Y[F(x)] = [g:[F (x)]
transition matrix 4 is given by

(17)

g2[F(x)] 17, and the state

(91, 9))
A=2721(ga 0| K@i F 1) (@j°F,g2) -] (18)

Proof
From (11) in the proof of Proposition 1,
291, 9j) @joF
=|2i{g2 ;) @j°F

gi°F
gz F

(91, ®))

=571 (gu 0| 01 o F (19)

Because @; o F € H and {g4, g, g3, - } is an orthonormal
set of basis functions in H, function ¢; o F can be expanded in
the basis {g;, 92, g3 =" }

@joF =Xi=1{@; o F,gi) g
Substituting this into (19) yields

(20)

G1[F (x)]

X[F()] = [g,[F(x)]

(91, 0))
= ZTQ (g2, @)) 2i=1{@j o F, g1) g (x) =

(91, 9))
» (g2, 9)) [<9”j °F,g1), (‘Pj °F,g,), ]
Jj=1 .

g1(%)
92.(3‘)

=Ax(x)
(21)
Thus, the Proposition has been proven. Q.E.D.

A special case of Proposition 2 is to use {¢,, @,, @5, } for
the second set of orthonormal basis functions {g;, g2, gs,*** }.
In this case, the matrix A4 is simplified.

Corollary 1

In Proposition 2, if g;=¢; i=1,2,3,--, the state

transition matrix 4 is simplified to

(P1°F,01) (p1°F,03)

A= (9, °F'(P1> (¢, °F'(P2> (22)

This can be shown directly by replacing {g,, g, g3,** } by
{@1, 92,93, } in (18).

In Proposition 2, the observables {g,, g,, g3, -** } must be an
orthonormal set of basis functions. While this condition is
restrictive, it can be relaxed. Let {g;,9,, 93 *} be an
independent and complete set of observables spanning the
Hilbert space. Using the orthonormal basis functions, each
observable can be expanded to g; = >{9i @x)Pk, OF
collectively expressed as

g1 P1
o
where . ‘
(g1, 01> (91, 92) -
C= <92"§01> (92'.(P2> l (24)

Because both {g;,9,,95 -} and (@4, @, @3,+) are
independent and complete basis functions, the matrix C is non-

singular. Thus, the following corollary allows us to use merely
independent basis functions.
Corollary 2
In Proposition 2, if {g,, g,, g5, } are an independent and
complete set of basis functions, the state transition matrix 4 in
(17) is given by
A=CAC™? (25)

where A has been given by (22) and C by (24).

III. MAIN RESULTS

This section presents a new formulation of the Koopman
operator through the use of inner products. The linear
representation is globally valid and does not depend on data.



TMECH-08-2022-14068.R1

Its applicability to heterogenous dynamical systems will be
discussed.

A. The Direct-Encoding Method Using Inner-Products

Incorporating Proposition 2 and Corollaries 1 and 2 and
constructing inner products, now we obtain the following main
proposition.

Proposition 3

If observables {g,, g,, g3, -} form an independent and
complete set of basis functions, spanning a Hilbert space #,
and their compositions with a state transition function F: X —
X are involved in the Hilbert space:

gicFeEH, i=1,23- (20)
then the following state transition equation exists
X[F(0)] = Ax(x) 27

with a lifted state and a state transition matrix given,
respectively, by

g1
x= [g] A=QrR™ (28)

where the matrices R and Q consist of inner products given by
l and
(g1°F,g1) (g1°F,g2) -
(g2°F,91) (g2°F, g2)

(91,91) (91, 92)

R = (92'..91> (gz;.92>

Q= 29)

Proof

From (23),
[¢1(x)
P2 (x)

91(x)

=C1 gzgx) (30)

Substituting F(x) into x in (30)

[@1[F(x)] g1[F ()]

0:IF@]| =€ g, [F )]

(31)

From the assumption (26), g; o F € H, Vi. Therefore, ¢; o F €
H,Vi. From Proposition 2, it is confirmed that the linear state
transition equation (27) exists.

Post-multiplying a row vector function [g;, g5, g3, ***] to
(27) and integrate over X yields,

gi°F
J

g2 °F|[91, 92 1dx

' 91
=AJ, [92] (91, g2, -+ 1dx (32)
where the matrix A is fe‘lctored out. Each integral in the vector
outer product is the inner product of the corresponding two
functions. Therefore,

(g1°F,91) (G1°F,g2) -
(g2°F,91) (g2°F,g2) -~

<f91:91> (91, gz) )
=4 <92:.91> <92:.92> l (33)
or . .
Q = AR (34)

Since {g;,92, 93, -} are independent, matrix R is non-
singular. Therefore, (28) is obtained. Q.E.D.

Note that computation of A = QR™! does not require
{®1, @3, -+ }nor C and €~ involved in (25). Once we know the
existence of (27), matrix 4 can be computed directly by taking
inner products between g; and its composition with F. The
inner products (g;, g;) and (g; ° F, g;) exist and are well-
defined because both g;and g; o F belong to the Hilbert space.

Note that this formula for obtaining a linear system matrix A
is an alternative to the prevailing Koopman DMD method,
which assumes the existence of a linear system matrix 4 in data
and computes the matrix by Least Squares Estimate. The A
matrix based on the Direct Encoding is globally valid, while the
DMD and its variants are data dependent.

B. Weak Existence Conditions for Finite-Dimensional
Approximation

In Proposition 2, it is assumed that the compositional function
@; o F is in a Hilbert space for all 7, including co. As will be
detailed in the succeeding section, this condition is difficult to
satisfy when applying the compositional operator method to
heterogenous systems, specifically to hybrid systems with
discontinuous state transition. This section explores the
possibility to apply the compositional operator method to
hybrid systems by replacing the strong condition, ¢; o F € H,,
Vi€N, by its weaker condition, @;oF €H, Vi < oo.
Namely, the compositional function ¢; o F must be in a Hilbert
space only for an arbitrary, finite i. This implies truncation of
the infinite-dimensional lifted space, resulting in approximation
of the linear state transition. From Proposition 2 and Corollary
1, we obtain:

Proposition 4

Let {¢,, ¢,, @3, } be an orthonormal set of basis functions
in a Hilbert space H on X € R", and let F be a state transition
function F. If the first m compositional functions ¢; o F are in
the Hilbert space,

@;°oFEXH, 1S vism<o (35)

then there exists a linear state transition matrix A,,, that
transfers an infinite-dimensional lifted state in the form of

x() =[p1(x)  @,(x) ]T to its finite-dimensional state
consisting of composite functions.

proF 1
200 = 4, | %2 (36)
PmeF

where 4,,,., 1s a m by oo matrix given by
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(p1oF,01) (@1°F,p3)
Amoo = <§02 O‘F, 901) <(P2 ° :F' (p2> (37)

(@moF,01) (P oF,0;)
Proof Omitted.

Proposition 4 shows that, with a finite number of
compositional functions being in the Hilbert space, the one-step
time-evolution of the finite number of lifted state variables can
be predicted exactly. Since (36) predicts only the finite number
of state variables, the prediction of consecutive state transitions
may not be exact. Nonetheless, truncated state variables and
system matrix may yield reasonable accuracy for a large m.

When the orthonormal basis functions {¢,, @,, @3, } are
replaced by an independent and complete set of basis functions,
as in Proposition 3, additional approximation must be made in

relating {¢1, @5, ***, P } 10 {g1, G2, m }- Namely, in lieu of

Corollary 2, matrices 4, C, C! are truncated to 4,, € R™™,
Cpp € R™™ and C,;' € R™*™ respectively,
A, = Cp A, Ct. (38)

where 4,, yields only approximate state transition.

IV. AN ILLUSTRATIVE EXAMPLE

Consider a univariate nonlinear dynamical system on x €
X =[01].

Xey1 = F(xp), x: € [0,1] (39
where
cx —cx’; 0<x<x*
F(x)_{bx+a—bx*; x*<x<1 (40)

Figure 2-(a) shows this state transition function with
parameters, a, b, ¢, and x*. This system consists of two distinct
linear dynamics in two segmented regions or state locations.
Note that this piecewise linear system has a discontinuity at x =
x*. It is heterogeneous and a type of hybrid system.

From (8) the kernel x(x, §) that encodes this state transition
equation F(x) is obtained by using the following exponential
trigonometric functions, which form orthonormal basis
functions spanning a Hilbert space.

¢ = exp(2rmikx), k€Z (41)
where i is imaginary number, and the basis functions are
renumbered from k=1,2,3,-:- to k=--+,—-2,-1,0,1,2,--.

The kernel should be able to map an arbitrary observable in the
Hilbert space to its composition with F(x). Fig. 2-(b)~(e)
confirm this property. All of the observables, g, = x,g, =
x%, g5 = x3, 9, = cos 2mx, are perfectly transformed to their
compositional functions with the same kernel. Namely, the
right-hand side of (7) computed with the kernel agrees with the
true compositional function of the left-hand side.

Krg Krg o

—0.50 92 =X

075 -0.75

glFe™] J \/ gIF@] o
g1 =X

-1.00 -1.00

(=}
=3
W
(=}
=3
o)

glF(x)]
Krg

o ¥ (e)

Fig. 2 Example of univariate heterogenous dynamical system
(a) The state transition function is heterogenous, consisting of two
linear systems combined at x*, where a discontinuous jump occurs.
(b)~(e): These plots show that the Koopman operator can transform an
arbitrary observable in the Hilbert space to its composition with F(x).
The linear transformation shown with black circles can reproduce the
correct nonlinear function g[F(x)] shown in red. Four different
observables are tested; (b) g; = x, (¢) g, = x2, (d) g3 = x3, and (e)
g4 = COS2TX.

For this kernel to be transformed to the time-evolution, state
transition matrix A4, the conditions of Proposition 2 must be
satisfied. In particular,

proFEH, ke (42)
Using the exponential trigonometric function, we obtain:
(@x ° F)(x) = exp (2mikF (x)) (43)

This compositional function can be expanded in the
exponential trigonometric basis for an arbitrary finite k. Despite
the discontinuity due to the jump in F(x), function ¢ o F
satisfies the following four conditions required for the existence
of Fourier series [29]:

1) @y o F is absolutely integrable.
2) There are a finite number of discontinuities within a
finite interval.
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Fig. 3 Evaluation of the linear lifted model in terms of time-

evolution prediction accuracy
Black lines in (a)~(d) show the true time trajectory of the hybrid
dynamical system, compared to the ones predicted with the linear lifted
model shown in blue. (a) With 1,025 observables, almost perfect
prediction was achieved, while the prediction accuracy declines with
257 observables (b), 33 observables (c), and 17 observables (d). (e)
summarizes the prediction accuracy in terms of root mean square error
for different numbers of observables. The error converges to zero in
the mean.

3) All the discontinuities are finite.

4) @y o F is of bounded variation; there are no more
than a finite number of maxima and minima in any
finite interval.

With the existence of a Fourier series, ¢, ° F is in a Hilbert
space for any finite k. This allows us to construct the state-
transition matrix based on Proposition 4.

Suppose that the following real-valued observables are
selected as an independent set of basis functions, which are
complete,

g1 =1, g,, = cos2nnx, g,,4+1 = Sin 2nnx,

n €N (44)

Conversion of ¢ to g; is given by a nonsingular matrix C
and its inverse C ™1, too, can be computed easily. See Appendix
A. These matrices can be truncated to m X m matrices, and the
time-evolution state transition matrix A,, = C,,A4,,C;} is
obtained.

This A, matrix should be able to predict the time-evolution
of the lifted state y, = [g1, g2 ***» 9m] T mapped to ;.. Fig.3
shows the comparison of the state transition based on the linear
model, y;.; = Ay, to the true transition through the original
nonlinear function x,,; = F(x,). Due to the discontinuity in
F(x), the true time evolution of the system shows a series of
pronounced jumps, as shown by the solid lines in the figures.
Nonetheless, the linear model can track this response. For small
numbers of observables, truncated at m = 17 and 33, the
prediction errors are significant. However, as the number of the
observables increases, m = 1025, the linear model can almost
perfectly predict the complex response. Fig. 3-(e) shows mean
squared error vs. the number of observables. It is confirmed as
the number of observables increases the error approaches zero
in the mean. With finite m, this is still an approximation.
However, the accuracy is high enough for practical
applications. Note that the existence conditions hold for any
large m that is finite.

# of observables: 257
Unit Circle

Imaginary part

-100 -0.75 -0.50 025 000 025 050 075 100

Real part

Figure 4 Plot of poles of 4,5, on complex plane

This linear model is global; it is valid for the entire domain.
Unlike data-driven methods, where results depend on how data
are collected, this model is derived directly from the governing
model. This model is also uniform. Despite the discontinuous
switching of the two linear models involved in the system, the
linear model represents the heterogeneous system behavior with
a single system of linear dynamic equations uniformly in the
lifted space.

This linear model facilitates dynamic analysis of the hybrid
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system. Fig.4 shows the plot of poles obtained from the 4,5,
matrix. Note that all the poles are on or within the unit circle.
Clearly, the system is marginally stable. A group of poles are
on the unit circle, indicating that the system has undamped
oscillation modes. This agrees with the time trajectories in
Fig.3, where the system converges to a periodic orbit.

V. MULTI-CABLE DYNAMIC MANIPULATION

Now the method is applied to a robotics problem. Contact-
noncontact switching of dynamics is a challenging problem but
is a fundamentally important issue in broad fields of robotics.
In multi-cable manipulation, for example, an object suspended
with cables experiences discrete switching of governing
equations as each cable alters between slack and taut conditions
[30].

Slack + Slack Taut + Slack  Slack + Taut

YV

Fig. 5 Diverse states of a point mass suspended with two cables

Taut + Taut

As shown in Fig.5, a point mass m is connected to a pair of
cables. When the point mass is released from a certain height,
it drops like a projectile object, but it bounces back when the
cable(s) become taut, like a ball bouncing on a floor. Each cable
can bear only a unidirectional load; it goes slack when a
compressive load acts on the cable. The constraints due to this
unidirectional nature of cable suspension are therefore non-
holonomic. Depending on which cable is taut or slack, different
dynamic equations are switched.

Let x,,, and y,,, be coordinates of the point mass. Equations
of motion are segmented to 4 regions.

Xm) _ Xm
m (Ym) = —mg, ()’m) €D,
xm _ _ xm
m (Ym) =Tyny —mg, ()’m) €D,
Xm _ _ Xm
m (ym) = Tyny — mg, (ym) €D,  (45)

Xm\ _ _ Xm
m (Ym) =Tyny + Tgng — msg, (}’m) €D,

where T, and Ty are tensions of cables A and B, respectively,
ny and ng are unit vectors pointing in the direction of the two
cables, and D,, -, D, are regions of the point mass locations
corresponding to Di: both cables are slack, D»: cable A is taut
and cable B is slack, Ds: cable B is taut and cable A is slack,
and Da: both cables are taut. Both cables have a high extensile
stiffness but zero stiffness for a compressive load. The cables
are assumed to be massless and to have small damping. The

independent state variables are:
X = (xm' Ym, X }.’m)T EX cR* (46)

The dynamic range of the system is finite, given the length of

each cable.
Gaussian Radial Basis Functions (RBFs) are used as
observables:

gi(x) = P (llx = cll ),

where in each RBF g, ¢, is the center point. By construction,
RBFs are guaranteed to be independent [31]. The number of
RBFs, that is, the order of the lifted space, must be finite for
implementing the observables. In total, 1,500 RBFs are used for
covering the 4-dimensional state space within the bounded
dynamic range. They are placed at optimal locations by
clustering sample points using the k£ means ++ algorithm. More
details are described in Appendix B.

The independence of the RBFs can be confirmed by
examining whether the R matrix in (29) is non-singular. The Q
matrix is determined by computing the inner products between
individual RBFs and their composition with the state transition
function F(x):

(gk o F.g;) = [, Y(IF ) = cDW; (J|x = ¢ )dx. (48)

From these R and Q matrices, the 4 matrix is obtained: A =
QR™1.

kEeN (47)
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Fig. 6 Accuracy of time evolution prediction for the point mass
suspended with two cables. (a) Trajectories in the xy-plane. The black
solid line shows the trajectory generated with the original nonlinear,
heterogenous dynamic equations, while the red dash-and-dot line
shows the trajectory predicted with the linear lifted model. The two
trajectories overlap, indicating high accuracy of prediction. (b) ~(¢)
show the time profiles of position x and its velocity and position y and
its velocity, respectively.

Fig. 6 shows the comparison between the point mass
trajectory of the original nonlinear model — ground truth — and
the one predicted with the linear, lifted model — prediction. In
this comparison, the point mass is released from an initial
position where both cables are slack. The point mass bounces
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as one of the cables becomes taut and immediately goes slack.
With some damping at the cable, the mass converges to an
equilibrium position after a series of bounces, as shown with a
black solid line in Fig. 6-(a). This nonlinear dynamic response
is predicted almost perfectly with the linear model in the lifted
space shown in red. Figure 6-(b)-(e) show the trajectories of the
individual state variables. The predicted trajectories shown in
red agree with the ground truth black lines even after many
bounces. Comparing to the prior work on multi-cable
manipulation [30], where a data-driven method based on DMD
was used, the proposed method shows an order-of-magnitude
more accurate prediction, although the system structure is
different.

This linear model incorporates the four dynamic equations
into a single unified representation. Again, the results are
obtained directly from the governing equations, and the model
is valid globally.

VI. DISCUSSION: APPLICABILITY OF THE KOOPMAN OPERATOR
TO HETEROGENEOUS DYNAMICAL SYSTEMS

The current work addresses key conditions in applying the
composition operator method to those heterogenous dynamics
problems. To find such conditions, the current work took a
simple, straightforward approach to converting function
transformation equations to time-evolution dynamic equations
based on composition operator theory. The conversion hinges
on the conditions given by (16) in Proposition 2 and by (26) in
Proposition 3. These conditions are also the key to examining
the applicability of the Koopman Operator to a class of
challenging robotics problems. If one uses the Koopman
Operator for merely linearizing a nonlinear dynamical system,
where the state transition function F(x) is smooth and
continuous, these conditions, (16) and (26), are satisfied for
most observable functions, g, € H. However, this is not
automatically met for heterogeneous dynamical systems,
including hybrid and switched systems.

In the proof of Proposition 2, the compositional function ¢; o
F was expanded to @;oF =X (@;°F,gy)gy. Through
this expansion, observables g,, g, ... were pulled out. This is the
key mechanism for creating a new extended state space with
state variables y = [g;, g5, - ]7, leading to the formation of
matrix 4. In Proposition 2, it was assumed that {g,, g, ...} forms
an orthonormal basis, but this condition was relaxed in
Proposition 3, where g3, g, ... are an independent and complete
set of basis functions.

These existence conditions are dependent on the selection of
observables as well as on the properties of state transition
function F (x). The first example discussed above is a univariate
heterogenous dynamical system with discontinuities in state
transition. For this system, properties of the compositional
function, ¢; o F, can be examined analytically. Although
discontinuous transitions are involved, a Fourier series exists
for an arbitrary j that is finite. This allows us to expand ¢; o F
to Yr=1{ @; ° F, gi) g) and obtain the time-evolution dynamic
equation. This does not necessarily mean }Lrg g, oF eEH

because the compositional function may have an infinite

number of discontinuities in a finite interval, which is against
the conditions for the existence of Fourier series expansion.
Nonetheless, for any finite order i < oo, @; o F € H. This
property supports the high accuracy prediction that is achieved
with a large number of observables, as confirmed in Fig.3-E.

For practical implementation, the infinite-dimensional
observable vector y must be truncated. In doing so, the
condition:

p;oF EH, 1< Vi<o (35

is a useful property that underpins high-accuracy, high-
dimensional truncation. Relaxing the conditions for the
existence of a time-evolution 4 matrix to the above condition,
Vi < oo, allows us to apply the composition operator method to
broader systems, including hybrid and switched systems with
discontinuities. In fact, the prediction based on the 4,,, matrix
under the conditions (35) showed an extremely high accuracy
over a long period of time, as demonstrated in Fig.3.

In general, it is difficult to analytically examine ¢; o F € H
for more general, multivariate systems with complex
heterogeneous dynamics. However, there are a few methods for
numerically examining the conditions [27],[31].

e Compute Jy =3y [gioF, ¢l < llp; o Fll and
examine whether J, approaches ||¢; o F|| as N tends to
infinity.

e Compute Iy=YN_(p;oF, ¢,)¢p, and examine
whether Iy approaches ¢; o F as N tends to infinity.

Using these metrics, we can examine the conditions.

The second example, the multi-cable suspension problem, is
a multivariate, heterogenous dynamical system described with
4 sets of dynamic equations. This system does not have any
discontinuity in state transition; both position and velocity of
the mass are continuous, as long as the stiffness of the cables is
finite. The 4 dynamic equations have been combined and
transformed to a single linear dynamic equation, which has
been shown extremely accurate. The linear model can predict
the mass trajectory with high accuracy even after many
bounces. The high accuracy modeling was achieved through
direct encoding of the governing equations, rather than curve
fitting to numerical data.

As the extensile cable stiffness increases to infinite stiffness,
the velocity of the mass tends to change discontinuously when
bouncing. To deal with discontinuous state transitions, the
method based on Proposition 4 is required, as in the case of the
univariate example. This entails truncation of the lifted space
dimension, which leads to approximation. However, truncation
is necessary for practical implementation. Therefore, this does
not degrade the usefulness of the composition operator
approach and its applicability to heterogenous dynamical
system with discontinuous state transition.

Overall, the proposed composite operator method for global,
unified representation of heterogenous robot dynamics is
applicable to various robotics problems, including hybrid and
switched systems with discontinuities.

A few caveats must be stated, however. First, a large number
of observables are required for dealing with discontinuous state
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transitions. This can be alleviated by using observable functions
that are locally tunable. RBFs, for example, can be allocated
densely to a region near the discontinuity [31]. See Appendix
B. Second, the Direct Encoding method is difficult to apply to
a high-order nonlinear system due to the multivariate inner
product integration. As the number of independent state
variables, n, exceeds 6 or 7, it is difficult to perform the
computation of inner products. This necessitates an effective
computational algorithm.

VII. CONCLUSION

The current work demonstrates that complex robot dynamics
given by heterogenous governing equations can be represented
with a single, unified linear model in a lifted space. Although
the original dynamics are highly nonlinear, segmented, and
heterogeneous, the lifted linear model is valid globally.
Although the system experiences a multitude of jumps and
transitions to diverse dynamic behaviors, the prediction
accuracy remains high. In robotics, heterogeneous dynamics are
common, due to contact-noncontact transition, non-holonomic
constraints, and other discrete transitions among diverse
dynamics. The composition operator approach presented in the
current work can be a promising methodology in dealing with
those heterogeneous dynamics.

In the current work, only autonomous systems having no
exogenous input are considered. Extending the original
Koopman Operator theory to general control systems is a
critically important challenge that has been addressed by
several authors and is still an active research area in the field
[171, [19], [32], [33].

The theory established for autonomous systems, including the
current work, can be extended without any significant change
to some class of non-autonomous systems, if they meet the
following conditions.

e Control u; comes into a system as a linear term: x,,, =
F(x,) + Bu,. In this case the effect of the input term
Bu; can be separated, and the matrix B can be
determined by solving a least squares estimate problem
[8], [17], [33] ; or

e If'the control is a feedback regulator, u, = h(x;), then
the problem reduces to an autonomous system by
embedding the control law into the system [17], [19].

These are simple cases to which the existing methods for
autonomous systems can be applied. For other general cases,
the Koopman methods, including the current work, must be
modified substantially. An elegant solution to this problem is to
represent a control system as a bilinear system, where inputs are
multiplied with functions of state [34]. The resultant system is
not linear, but the Koopman operator can be applied more
rigorously. More research effort is needed to extend the current
work to those general control cases.

Although the general non-autonomous system’s problem has
not yet been solved, it has been reported that the Koopman-
based lifting linearization is effective for controlling a class of
nonlinear systems. The multi-cable system described in Fig.4
has been controlled with MPC [30]. The highly nonlinear,
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heterogenous dynamics are represented with a single linear
state equation, which allows for efficient real-time MPC
computation. Unlike nonlinear MPC, the linear MPC is a
convex-optimization computation with no local minima
problem. Reference [35] reported that the computation time
reduced approximately 100 times compared to nonlinear MPC.

Finding an effective set of observables remains a challenging
problem faced by the Koopman operator research community
[36]. In particular, the proposed method entails effective
observables that meet the critical condition ¢; o F € H', which
depends on both the properties of the observables and the
heterogenous dynamics of the system. Effective algorithms
must be developed for searching for observables that can
approximate the system with fewer variables and that can keep
the compositional function in a Hilbert space despite the
heterogenous nature of the dynamics.

Despite the limitations to the current method, the proposed
method is a promising approach to dealing with challenging
robotics problems delineated as heterogeneous dynamics. The
proposed method has the potential to provide the robotics
community with a powerful tool: global, unified representation
of otherwise complex heterogenous robot dynamics, which is
also amenable to analysis and synthesis.

APPENDIX

APPENDIX A: Computation of matrices € and C™1 in (25)
We use the exponential trigonometric functions: ¢, =
exp (2mikx). The observables are related to these as: g; =

1
1= @0, gon = €05 21X =~ (Pn + P_n); Gons1 =
sin2nnx = — % (9, — ¢_n), n € N. We can find the C matrix

as:
g7 1L 0 0 0 0 ®o
g2l |0 5 5 0 0 -|le
gs|_[o =50 50 0 0 |loo
0 0 0 5 .5 o2
0 0 0 —=.5i .5i "||9-2
Also, from ¢, = exp(2minx) = cos2nnx + isin2nnx =

Gon ¥ i92n+1, and  @_, = exp(—2minx) = cos 2wnx —
i sin2mnx = g,y — igon+1, €~ 1can be found.

10 0 0 0
01 i 0 0
. |01 -i 0o o
C_0001i
00 1

APPENDIX B: Tuning of Radial Basis Functions

The RBFs must be tuned properly so that a finite number of
RBFs can approximate the system effectively. The most critical
is the locations of center points c;. A clustering technique was
applied to find effective locations of the center points.
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The overall prediction accuracy of the linear model,

x(t + 1) = Ay(t), was evaluated by comparing the predicted
trajectories against the ones computed from the nonlinear

m

odel, x;,,; = F(x;). In doing so, several ground truth

trajectories were created. Using these as sample points, we can
find where RBFs should be placed densely or sparsely. We
applied the & means clustering algorithm with an improved

in

th

itial setting based on the £ mean ++ algorithm. Fig. 7 shows
e optimized locations of the center points. High-density center

points can be found in the vicinity of the locations where one of

th

e cables switches between taut and slack conditions. We

specified the number of clusters to be 1,500 for placing 1,500
RBFs.
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Fig. 7 Center points of RBFs are determined using k mean++
clustering algorithm applied to sample trajectories
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