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Abstract

Social virtual reality (VR) has the potential to gradually replace tra-
ditional online social media, thanks to recent advances in consumer-
grade VR devices and VR technology itself. As the vital foundation
for building the Metaverse, social VR has been extensively exam-
ined by the computer graphics and HCI communities. However,
there has been little systematic study dissecting the network per-
formance of social VR, other than hype in the industry. To fill this
critical gap, we conduct an in-depth measurement study of five
popular social VR platforms: AltspaceVR, Horizon Worlds, Mozilla
Hubs, Rec Room, and VRChat. Our experimental results reveal that
all these platforms are still in their early stage and face fundamen-
tal technical challenges to realize the grand vision of Metaverse.
For example, their throughput, end-to-end latency, and on-device
computation resource utilization increase almost linearly with the
number of users, leading to potential scalability issues. We identify
the platform servers’ direct forwarding of avatar data for embody-
ing users without further processing as the main reason for the poor
scalability and discuss potential solutions to address this problem.
Moreover, while the visual quality of the current avatar embod-
iment is low and fails to provide a truly immersive experience,
improving the avatar embodiment will consume more network
bandwidth and further increase computation overhead and latency,
making the scalability issues even more pressing.

CCS Concepts

•Networks→Networkmeasurement; • Computingmethod-

ologies → Virtual reality; • Human-centered computing →

Mobile computing.
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1 Introduction
Social virtual reality (VR) enables users around the world to interact
and socialize with each other in a shared, interoperable, and virtual
environment. In a virtual social world, users are embodied by digital
avatars (i.e., a first-person rendition via 3D models). The Metaverse,
deemed as a hypothetical next-generation Internet [15], aims to
be a utopian convergence of various virtual environments and
eventually blend the physical and digital world [46]. While there
is still no consensus on the definition of Metaverse, among its
rudimentary prototypes, social VR is the closest to the original
vision described in the science-fiction novel Snow Crash, where the
term Metaverse was first coined in 1992.

Although the concept of the Metaverse has been around for
about half a century (ğ2), the outbreak of the COVID-19 pandemic
accelerated the digitization of our daily lives [6], leading to the
renaissance of the Metaverse and the prosperity of social VR plat-
forms [83]. Social VR has been deeply studied by the computer
graphics and human-computer interaction (HCI) communities in
recent years [34, 42, 44, 45, 53, 54, 76, 89, 90, 103]. Nonetheless,
there has been limited thorough and systematic investigation on
characterizing and quantifying its (network) performance.

Motivated by this crucial gap, we conduct, to the best of our
knowledge, the first detailed measurement study of five popular
social VR platforms: AltspaceVR [64], Horizon Worlds (hereinafter
referred to as Worlds) [63], Mozilla Hubs (referred to as Hubs) [67],
Rec Room [79], and VRChat [99]. Our study aims to answer the
following research questions.

• What are the network protocols and infrastructure (e.g., server
locations) employed by social VR platforms?
•What content is being delivered for social VR, and can the current
network sustain its bandwidth demand?
• How will the network throughput and on-device computation
resource utilization change with the number of users?
• What is the end-to-end latency that existing social VR platforms
can offer?
•How will these platforms respond to dynamic network conditions
such as fluctuating available bandwidth?

Our measurement study reveals that, as early prototypes of the
Metaverse, all five social VR platforms confront intrinsic technical
challenges, although some of them have been available for more
than 7 years1. For example, their digital avatars are still under-
developed, and they can support only a small number of concurrent

1AltspaceVR was first released in 2015 and acquired by Microsoft in 2017.
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users (e.g., <20 in a social event of Worlds [73]). We summarize our
key findings, as the main contribution of this paper, as follows.

1 Social VR platforms employ different network protocols
for control and data channels. Not all platforms use servers from
the same provider for the two types of channels. Some platforms
allocate servers farther away from end-users with >70ms round-trip
time (RTT) (ğ4).

2 With two users socializing in a private event, the throughput
of continuous data exchange on all platforms is lower than 100
Kbps, except Worlds whose throughput is ∼750 Kbps for uplink and
∼410 Kbps for downlink. The throughput is independent of content
resolution and is mainly contributed by avatar embodiment and
motion. The platform servers directly forward avatar data among
users without further processing (ğ5).

3 All platforms have latent scalability issues with the through-
put increasing almost linearly when more users join a social event.
Moreover, as the number of users grows, the on-device resource
utilization climbs and the FPS (frames per second) of each platform
degrades. This is due to the simple forwarding of all avatar data
from one user to others without optimization. Only AltspaceVR
benefits from the viewport-adaptive optimization that delivers data
for only avatars visible to a user. We identify remote rendering that
offloads the processing of visual content to cloud/edge servers as a
promising solution to address the scalability issues (ğ6).

4 Hubs has the highest end-to-end latency among these plat-
forms, because it is Web-based and cannot always allocate servers
close to users. AltspaceVR has the highest server-processing latency,
which is likely caused by the viewport-adaptive optimization. The
receiver-side processing latency of all platforms, except AltspaceVR,
is higher than the latency on the servers. Finally, the end-to-end
latency also exhibits questionable scalability issues (ğ7).

5 There is an interplay between the downlink bandwidth of
Worlds and its uplink data transfer and CPU/GPU utilization on
VR headsets. The TCP uplink traffic of Worlds has a higher priority
than its UDP uplink, which is blocked until TCP packets have been
successfully delivered (ğ8).

Our findings have broad implications for the future development
of the Metaverse. To serve billions of users all over the world, the
network infrastructure and system architecture of the Metaverse
should be designed with scalability in mind, differently from the
current practice. Furthermore, the avatar embodiment should be
drastically enhanced to offer a satisfactory and truly immersive user
experience. Nevertheless, this improvement will essentially demand
more network bandwidth, prolong the end-to-end latency, and
stretch the computation resources on VR headsets.We have released
the source code used in this paper at https://github.com/felixshing/
Metaverse_IMC2022. This work does not raise any ethical issues.

2 Background

2.1 Social VR and Metaverse

The design patterns of existing social VR platforms are similar. After
users launch the application, they will first stay on the welcome
page for system initialization. They can then choose the social

interaction to experience next, which could be, for example, either
a public event such as a concert or a private event such as an online
meeting. Social VR platforms offer numerous features that can be
divided into two categories. As basic features, these platforms all
enable users to walk and chat in a virtual space (e.g., a conference
room). In terms of advanced features, users can interact more with
each other and the platforms, such as playing games, creating user-
generated content (UGC), and shopping/trading with non-fungible
tokens (NFTs) [102].

TheMetaverse strives to create a shared virtual world by bridging
all virtual environments through the Internet. The development of
the Metaverse started with text-based interactive games (e.g.,MUD,
multi-user dungeon) in the late 1970s, followed by another wave
around 2000 represented by Second Life, an online virtual world.
Besides social VR, other recent developments of the Metaverse
include massively multiplayer online games, such as Roblox [82],
Fortnite [24], and Minecraft [65], and the emerging blockchain
or NFT-based online games, such as Axie Infinity [56], Decentra-
land [21], and Upland [95]. However, as they are designed mainly
for PC users with 2D content, these games currently cannot afford
an immersive experience for their users, one of the most important
goals of the Metaverse. Thus, we focus on the investigation of social
VR in this paper.

2.2 Mobile VR

Mobile VR aims to present computer-generated virtual content, in
real-time, to users of untethered headsets. A key challenge of mobile
VR is to render high-quality content at a fast pace (i.e., a high frame
rate), which is computation-intensive. This can be achieved by
either local or remote rendering, which we detail in the following.

Local Rendering. VR headsets can solely rely on their own com-
putation resources (e.g., CPU and GPU) for supporting the entire
rendering pipeline. This requires powerful CPUs and GPUs that un-
tethered headsets such as Oculus Quest 2 are usually not equipped
with, mainly caused by their small form factor. A heavier VR head-
set may lead to motion sickness due to pulling the user’s head
forward and down [41, 94], especially when wearing it for a long
time [16, 109]. As a result, local rendering on untethered VR head-
sets can offer onlymedium content resolution (e.g.,∼2K) and refresh
rate (e.g., 60ś70). In contrast, tethered VR headsets such as HTC
VIVE can achieve a higher refresh rate (e.g., 90ś120) by attaching
to a PC with high-end GPUs for rendering.

Remote Rendering. With recent advances in cloud/edge comput-
ing, modern VR systems switch from rendering all virtual content
locally on headsets to offloading the processing of at least part of
the content to a server [43, 50, 61, 107]. After rendering the content,
the server transfers back encoded frames to VR headsets as a video
stream for display. This approach, known as remote rendering, is
promising for VR because it can potentially make the headset a thin
client by reducing its weight, which may alleviate motion sickness.
Remote rendering has also been widely embraced in cloud gaming
platforms [12, 22, 37] and immersive video streaming [86, 111]. The
key requirements for remote rendering are that the available band-
width between server and VR device should be high (e.g., >25 Mbps
for cloud gaming [37]), and the network latency should be low, as a
prolonged end-to-end latency may deteriorate the user experience.
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Platforms Company Locomotion Facial Expression Personal Space Game Share Screen Shopping NFT
AltspaceVR (’15) Microsoft Walk, Teleport ✗ ✓ ✓ ✓ ✗ ✗

Rec Room (’16) Rec Room Walk, Jump, Teleport ✓ ✓ ✓ ✗ ✓ ✓

VRChat (’17) VRChat Walk, Jump, Teleport ✓ ✓ ✓ ✗ ✗ ✗

Hubs (’18) Mozilla Walk, Fly, Teleport ✗ ✗ ✗ ✓ ✗ ✗

Worlds (’21) Meta Walk, Teleport ✓ ✓ ✓ ✗ ✗ ✗

Table 1: Comparison of several important features offered by five social VR platforms (NFT ś non-fungible token). Teleport

means instantaneous transport from one location to another without moving step by step.

WiFi 
AP
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U2
Oculus Quest 2 
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Oculus Quest 2 
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PC 
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U1

Figure 1: Measurement setup with two users U1 and U2.

3 Measurement Setup

In this section, we describe the social VR platforms under investi-
gation, the setup of our testbed, and the performance metrics used
in our measurement study.

3.1 Social VR Platforms

We study five prevalent social VR platforms: AltspaceVR [64], Hori-
zonWorlds [63],Mozilla Hubs [67], Rec Room [79], andVRChat [99].
We choose these platforms because of their popularity [83], and
because they have been extensively studied by the computer graph-
ics and HCI research communities, for example, from the visual
content and social interaction perspectives [29, 39, 42, 53, 58, 59].
In Table 1, we summarize and compare some of the unique features
offered by these platforms. Hubs is a Web-based application, while
the others are standalone applications for VR headsets and PCs.
Given that Hubs open-sources its code [69], besides measuring the
public Hubs service from Mozilla, we deploy a private Hubs server
on an Amazon AWS [4] EC2 instance (t3.medium) for controlled
experiments (ğ7).

3.2 Testbed & Data Collection

Figure 1 shows our measurement setup. All our experiments, except
for measuring the network infrastructure of these platforms (ğ4.2),
were conducted in the eastern U.S. from 02/2022 to 05/2022. Most
experiments involve two users, U1 and U2. U1 is always equipped
with a Quest 2 VR headset, whereas U2 uses either Quest 2, HTC
VIVE Cosmos, or a PC with i7-7700K CPU (4.2 GHz) and GTX 1070
GPU. Note that VIVE is a tethered headset and needs to be con-
nected to the PC for rendering VR content. We conduct most of our
experiments with both U1 and U2 using Oculus Quest 2 because it
is the most popular VR headset [91] and is representative of how
users typically access social VR platforms nowadays. Moreover,
Worlds is currently available on only Oculus VR headsets. U1 and
U2 are connected to two different WiFi access points (APs) that are
attached to a university campus network. We use Wireshark [105]
on each AP to capture and analyze network traffic. Meanwhile, we
run the OVR Metrics Tool [72], an official performance monitor-
ing tool from Oculus, to measure the performance and resource
utilization of client-side social VR applications on Quest 2. There is

no other background process on Quest 2 during our experiments.
Unless otherwise mentioned, we report the averaged measurement

results from more than 20 experiments.

In the following, we describe the performance metrics we collect
and analyze in this paper:
• Throughput:We measure the throughput of both the initialization
(i.e., welcome page) and social interaction stages.
• End-to-end Latency: The end-to-end delay of a social VR platform
is the time difference between when one user performs an action
and when that action is perceived by others.
• Average FPS: Ideally, FPS should be equal to the refresh rate,
which, by default, is 72 on Quest 2. VR headsets also keep track
of the number of stale frames per second (i.e., how many times
the frames are not delivered on time and are substituted with the
previous one).
• Resolution: The resolution of content rendered by applications.
The higher it is, the higher the rendering overhead is, and the better
the user experience would be. This resolution is determined by
applications. The default display resolution for Quest 2 is 1832×1920
per eye (W×H).
• Resource Utilization: These metrics indicate how heavy the com-
putation of an application is, with respect to CPU and GPU usage,
memory footprint, and energy consumption.

4 Platform Analysis

In this section, we explore the network protocols and infrastructure
(e.g., server locations) of social VR platforms.

4.1 Network Protocols

Our measurement reveals that different network protocols have
been employed by these platforms, as summarized in Table 2. Fur-
ther analysis shows that they can be separated as control-channel
(e.g., menu operations and clock synchronization in games) and
data-channel (e.g., avatar embodiment and voice data) protocols. We
determine that these two channels are distinct based on two find-
ings: 1) Except for Hubs, these two channels are used under different
scenarios. As shown in Figure 2, the control channel transmits data
when users interact with the platform (mainly on the welcome
page), while the data channel transmits data when users interact
with each other (e.g., during social events). Both control channel and
data channel transmit data in social events of Hubs. 2) As shown in
Table 2, the servers that manage these two channels have different
owners (e.g., Rec Room and VRChat) or different geolocations and
thus RTTs (e.g., AltspaceVR). Moreover, the servers of Worlds have
different hostnames (e.g., łedge-star-shvś01-iad3.facebook.comž for
the control channel and łoculus-verts-shv-01-iad3.facebook.comž
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Figure 2: Throughput of control and data channels for U1 on VRChat, Hubs, and AltspaceVR during experiments with two

users (U1 and U2). Users enter a social event at 90s. Rec Room has a similar pattern as VRChat. Worlds has a similar pattern

as AltspaceVR. We omit the throughput of initial data downloading of Hubs (ğ5.2), which is higher than 100 Mbps.

Platform
Control Channel Data Channel

Protocol Server Loc. / Owner Anycast? RTT (ms) Protocol Server Loc. / Owner Anycast? RTT (ms)
AltspaceVR HTTPS - / Microsoft ✓ 3.08/0.1 UDP Western U.S. / Microsoft ✗ 72.1/0.2

Hubs HTTPS Western U.S. / AWS ✗ 74.1/0.3
RTP/RTCP
HTTPS

Western U.S. / AWS ✗
73.5/0.2
74.1/0.3

Rec Room HTTPS - / ANS ✓ 2.21/0.1 UDP - / Cloudflare ✓ 2.97/0.1
VRChat HTTPS Eastern U.S. / AWS ✗ 2.32/0.3 UDP - / Cloudflare ✓ 3.24/0.3
Worlds HTTPS Eastern U.S. / Meta ✗ 2.23/0.2 UDP Eastern U.S. / Meta ✗ 2.71/0.1

Table 2: Network protocols and infrastructure of five social VR platforms (experiments are conducted on the U.S. east coast).

The server location is marked as ś when anycast is used. The two numbers for RTT are the average and standard deviation.

for the data channel). The official documentation of Hubs shows
that its HTTPS server (control channel) is a set of load-balanced
nodes, and its WebRTC server (data channel) acts as a central rout-
ing machine [68].

Control Channel.All five social VR platforms use HTTPS to trans-
fer data that is related to the control plane, for example, when
users select an option from the menu. The HTTPS connections
of AltspaceVR and Worlds have periodic spikes every ∼10s. The
throughput of these spikes is low, 50/17 Kbps (downlink/uplink) for
AltspaceVR and 300 Kbps (uplink) for Worlds. There is no downlink
spike for Worlds. We infer that these periodic data transfers are
reports of client-side information. Our subsequent experiments
discover that one role of the periodic HTTPS spike of Worlds is to
synchronize the clock between users when they play games (ğ8.1).

Data Channel. All platforms, except Hubs, use UDP to deliver
information that belongs to the data plane, for example, audio
content and avatar motion. Based on the official documentation
and source code of Hubs [68, 69], we find that it uses WebRTC [35]
to deliver voice data, while other information, such as the avatar’s
location, is still transmitted via HTTPS. Note that when remote
rendering is used in commercial cloud gaming platforms, WebRTC
is widely adopted to deliver the resulting video streams [12, 22, 37].
However, we do not observe any WebRTC-based video data on all
five social VR platforms when users interact with each other (e.g.,
wandering and chatting), which indicates that remote rendering
may not be exploited yet by these platforms.

4.2 Network Infrastructure

Next, we analyze the five platforms’ server locations and network
latency. We use ICMP and TCP (when ICMP is blocked) pings to

estimate the RTT between ourWiFi APs and platform servers. How-
ever, they both fail for the data-channel server of Hubs. Since Hubs
uses WebRTC, we can get RTT statistics from Chrome’s debugging
console [30] via the RTCIceCandidatePairStats method.

We use MaxMind [57] and ipinfo.io [36] to geolocate the IP
address of each server identified in our experiments. With a com-
bination of ping and traceroute, we infer whether these servers
rely on anycast [49, 60], a network addressing approach where
the same IP address is used by multiple servers at different phys-
ical locations. The goal of anycast is to bring the service closer
to end-users, without abusing DNS [98]. We use traceroute to
the identified platform servers from three locations (the northern
U.S., eastern U.S., and the Middle East) and analyze the IP address
of each hop and the RTT between our test machines at the three
locations and the platform servers. Since our machines are located
in different places, if the RTT between them and the platform server
is comparable and/or there is a significant difference in the IP ad-
dresses of the hops right before reaching the platform server, it
implies that this server relies on anycast.

Control Channel. As shown in Table 2, VRChat and Worlds con-
sistently assign us HTTPS servers (<3ms RTT) close to our WiFi
APs. On the other hand, Hubs always assigns servers with >70ms
RTT from ourWiFi APs; geolocation via traceroute andMaxMind
suggests that those servers are likely located on the U.S. west coast.
With the method presented above, we find that AltspaceVR and
Rec Room rely on anycast for addressing their servers.

Data Channel. To deliver data related to avatars (e.g., motion
and facial expressions), all platforms switch to a new server (i.e.,
different from the one used for control channels). While the HTTPS
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server for Hubs does not change, the RTP/RTCP server for WebRTC
is different. AltspaceVR and Hubs always assign servers in the
western U.S. to serve users, resulting in >70ms RTT. Conversely,
Worlds consistently assign nearby servers with <3ms RTT. VRChat
and Rec Room’s servers rely on anycast, providing <4ms RTT.

We next leverage WHOIS data to comment on the usage of third-
party cloud services for deploying social VR platforms. AltspaceVR
(acquired by Microsoft) and Worlds (developed by Meta) deploy the
platforms on their own servers, whereas Hubs relies on Amazon
AWS [4]. Rec Room and VRChat rent servers for data channels from
Cloudflare [17], and control-channel servers from AWS (VRChat)
and Advanced Network and Services [2] (Rec Room).

Most platforms allocate our two test users, even when they are
physically co-located and use the same access network, to two differ-
ent servers, possibly for load balancing purposes. Only AltspaceVR
and Hubs (for RTP/RTCP) consistently assign the same server to
both users.

To further explore the network infrastructure of the five social
VR platforms, we conduct more experiments in the western U.S.
(Los Angeles) and Europe (United Kingdom). Note that we cannot
experiment with Worlds in Europe as it is currently available in
only the U.S. and Canada [71]. Our findings are as follows.
• AltspaceVR’s servers for control channels still rely on anycast
with <5ms RTT from the testing locations. However, the servers for
data channels are always located in the western U.S. with ∼150ms
RTT from the testing site in Europe.
• Hubs has HTTPS servers in the western U.S. and Europe with
<5ms RTT from the testing locations. However, its WebRTC server
always resides in the western U.S., with ∼140ms RTT from the
testing site in Europe.
• Rec Room, VRChat, and Worlds still assign us nearby servers or
anycast servers with <5ms RTT from the testing sites.

Implications to the Metaverse 1 : The future Metaverse is en-
visioned to connect users all around the world, like the current
online social media. However, our measurement study reveals that
some of the social VR platforms are not well-provisioned yet and
could not allocate servers close to end-users. While we believe the
separation of control and data channels and their corresponding
servers is a proper design principle, it may give rise to the synchro-
nization problem among different types of servers, especially when
serving a large number of geo-distributed users.

5 Throughput Analysis

In this section, we measure the network throughput of social VR
platforms with two test users. We will investigate the impact of a
larger user base in ğ6.

5.1 Measurement Results

We first measure the throughput of control channels over HTTPS
connections. It is 30ś200 Kbps for the uplink and 100ś4,500 Kbps
for the downlink of these platforms. Note that the data transfers
are bursty, and the amount of exchanged data is small, 5ś20 KB for
uplink and 15ś600 KB for downlink.

Table 3 summarizes the throughput of data channels when two
users walk around and chat with each other (basic features) on

Platform
Tput (Kbps)

Resolution
Avatar
(Kbps)Up Down

VRChat 31.4/2.6 31.3/3.3 1440×1584 24.7/1.5
AltspaceVR 41.3/2.1 40.4/3.2 2016×2224 11.1/1.2
Rec Room 41.7/3.8 41.5/3.0 1224×1346 35.2/4.1
Hubs 83.3/5.6 83.1/6.4 1216×1344 77.4/7.7
Worlds 752/12 413/8.3 1440×1584 332/7.5

Table 3: Overall throughput, content resolution, and

throughput of data related to avatar embodiment of five

platforms (two users with Quest 2). The two numbers for

throughput are the average result and standard deviation.

Figure 3: U1’s uplink andU2’s downlink throughput in Kbps

for Rec Room (left) and Worlds (right).

these social VR platforms via Quest 22. Our measurement results
lead to the following key observations.
• The throughput of data channels for most platforms is low, less
than 100 Kbps in both uplink and downlink. Worlds has the highest
throughput, ∼750 Kbps for uplink and ∼410 Kbps for downlink,
more than 10× higher than AltspaceVR, Rec Room, and VRChat,
which require merely ∼30ś40 Kbps network bandwidth. In contrast,
even after various optimizations, the throughput of gaming-based
networked VR systems such as Furion [43], which leverage remote
rendering, could still be higher than 120 Mbps.
• The uplink throughput is almost identical to that of the downlink
for all platforms, except for Worlds. As shown in Figure 3, we
further find the instantaneous uplink throughput or its trend (only
for Worlds) of U1 largely matches the downlink throughput or its
trend of U2, and vice versa. This suggests that the servers of these
platforms may just simply forward (part of) the data uploaded
by one user to others without much processing, implying that
these platforms do not employ remote rendering, which will be
further verified by our subsequent scalability experiments (ğ6).
Furthermore, U2’s downlink bandwidth is noticeably lower than
U1’s uplink bandwidth on Worlds, which may indicate its servers
perform some processing (e.g., data compression) on uploaded data
before forwarding it. However, there might be other reasons, for
example, only part of the data uploaded by the user needs to be
forwarded to others, while the servers ofWorlds keep the remainder
(e.g., status reports from clients). Since all the data is encrypted, we
do not know exactly what operations the servers perform.
•We observe that a social VR platform’s throughput is independent
of its content resolution (listed in Table 3). For example, the through-
put of AltspaceVR, which owns the highest resolution (2016×2224),
is comparable to that of Rec Room, whose resolution is much lower

2We do not observe significant throughput differences when using other devices such
as HTC VIVE headsets and PCs to access these platforms, except for Worlds, which
currently supports only Oculus VR headsets.
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(1224×1346). This also indicates that all platforms adopt local render-
ing. The reason is that with remote rendering, the rendered frames
will be encoded and delivered as video streams, whose throughput
should depend on the resolution of the frames (i.e., displayed con-
tent) and should be much higher than what we have observed (e.g.,
>10 Mbps for a 1080p video at 60 FPS [37]).
• The throughput of these platforms does not rely on the location of
the displayed avatars in the virtual environment and their distance
to the user. A common optimization in computer graphics is to
reduce the level of details of a 3D model when it is farther away
from viewers or when the content is not in the focal area of their
eyes [62]. While the current low throughput does not justify such
optimizations, the full-fledged Metaverse in the future will likely
require these optimizations to reduce the rendering overhead.

5.2 What is Being Delivered and Why is the

Throughput Low?

Next, we explore why the throughput of these social VR platforms
is low by dissecting the content that they deliver. In our analysis, we
distinguish between virtual background and data related to avatar
embodiment and motion.

Virtual Background. All five platforms offer only static virtual
backgrounds. As such, in theory, the background needs to be down-
loaded only once, either during the installation of the application
or in the initialization stage. On the other hand, when users inter-
act with each other, the locations and behaviors of their embod-
ied avatars are dynamic and thus should be updated in real-time.
While the static background reduces the rendering burden and com-
munication overhead, it limits users’ interaction with the virtual
environment, which would be required in the Metaverse [47, 75].

These platforms have different ways of downloading the virtual
background. AltspaceVR and VRChat download 10ś30 MB of data
in the initialization stage. For Rec Room, we do not observe any
large data transfer when users launch the application, even for the
first time. The reason may be that Rec Room pre-downloads the
virtual background during the installation of the application, which
is indicated by the large size of its app in the Oculus store (1.41 GB),
much larger than that of AltspaceVR (541 MB) and VRChat (793
MB). Worlds downloads only ∼5 MB of data during the łPreparing
for Visitorsž phase, which is shown on the screen, every time users
launch the application. Since the rendering tasks of other previous
phases are performed without significant data traffic, we infer that
Worlds also downloads at least some of the virtual background in
advance, which is validated by the large size of its app in the Oculus
store (1.13 GB).

Users have to download ∼20 MB of data each time they join the
Hubs platform. Since Hubs is browser-based and does not have an
application installed on the device, this means that it does not cache
the virtual background. We verify this by checking its cached files
on Quest 2. It is likely a bug in the implementation of Hubs, and
we have communicated this issue with Mozilla.

Avatar Embodiment andMotion.We next examine the through-
put of data related to the avatar’s appearance. Given that all plat-
forms render the static virtual background which does not lead to a
high bandwidth requirement, most of the continuously exchanged
data should be contributed by avatars.

Figure 4: Avatars on five platforms. From left to right:

Worlds, VRChat, Rec Room, AltspaceVR, and Hubs.

Figure 5: Facial expressions of avatars on Worlds when the

user performs thumbs-up and thumbs-down.

We separate the throughput for delivering the dynamics of em-
bodied avatars from the total throughput. Our approach is to first
let U1 join a platform mutely (to exclude voice data) and measure
the downlink throughput 𝑇 . We then let U2 join the same platform
mutely and measure the downlink throughput 𝑇 ′ of U1 again. The
difference between 𝑇 and 𝑇 ′ should be roughly the throughput for
delivering U2’s avatar embodiment and motion to U1. As shown
in the last column of Table 3, the throughput of avatar data does
account for a large portion of the total throughput for all platforms.
The throughput for exchanging avatar data on Worlds is still much
higher than other platforms (>300 Kbps vs. <100 Kbps).

To further demonstrate that the throughput difference of these
social VR platforms is indeed largely caused by avatar data, we
compare the embodied avatars of these platforms. As shown in
Figure 4, the embodiment of avatars does vary across these plat-
forms. For example, the avatar of AltspaceVR has no arms and no
facial expressions, resulting in the lowest throughput (∼10 Kbps).
Although Rec Room’s avatar also does not have arms, it has some
simple facial expressions, such as laughing and sadness, which ex-
plains why its throughput (30ś40 Kbps) is higher than AltspaceVR.
The avatar of Hubs is similar to AltspaceVR in that it has no arms
and lacks facial expressions. One possible reason that Hubs has a
higher throughput for its avatars is that it uses HTTPS, instead of
UDP, to transmit avatar data (ğ4.1), which introduces both protocol
and encryption overhead.

The avatar of Worlds looks quite different from those of other
platforms and presents some unique features. First, only the avatar
of Worlds is human-like, while all other platforms’ avatars are
cartoon-shaped 3D models. Second, only Worlds updates avatars’
facial expressions via hand gesture recognition by tracking users’
hand motions through the headset’s controllers. For example, Fig-
ure 5 shows the reactions of avatars on Worlds when the user
performs thumbs-up and thumbs-down gestures. This explains
why the avatar of Worlds leads to higher throughput than others
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(e) AltspaceVR (Exp. 1)
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(f) AltspaceVR (Exp. 2)

Figure 6: Throughput for U1 on five platforms. U2, U3, U4, and U5 join the same platform at 50, 100, 150, and 200s, respectively.

because when the avatar moves, the 3D coordinates of these tracked
body parts should be delivered to others for updating their display.

Note that the avatars of most platforms, except VRChat, have
only the upper torso, due to the lack of capture devices for modeling
the lower limbs [3]. Moreover, the avatar’s motion is not driven by
the user’s actual movement. It is solely determined by how users
operate the hand-held controllers of the VR headset. Thus, high-
quality full-body avatars may lead to much higher throughput than
what we have observed on these social VR platforms. For example,
existing work such as Holoportation [74] demonstrates that the
bandwidth consumption for creating a photo-realistic 3D model of
the human body and capturing its movement in real-time would be
higher than 1 Gbps for even a single person.

Implications to the Metaverse 2 : Previous work has pointed
out that avatar appearance on social VR platforms can affect the
immersive experience of users, including their sense of identity,
presence, co-presence, and interaction with others [28, 34, 42, 45].
In short, the more the avatar resembles a real human, the better
the user experience would be. Overall, the visual quality of embod-
ied avatars on present social VR platforms is far from satisfactory.
We envision that the full-fledged Metaverse should offer a much
better avatar embodiment, for example, by recreating the full-body
motion via kinematics [20, 101], to provide a truly immersive experi-
ence. However, doing this will significantly increase the bandwidth
requirement (e.g., 10× throughput of Worlds with better avatar
embodiment vs. others in the current practice).

Takeaways 1 :We summarize our key findings of the measure-
ment of network throughput as follows.
• The throughput of all investigated social VR platforms (with two
users) is lower than 1Mbps, and it does not depend on the resolution
of displayed content, device type, and the location of avatars (which
determines their distance to viewers).

• All platforms support only static virtual background that has
limited contribution to their throughput, and they download the
virtual background in different ways.
• Avatar embodiment and motion account for a major portion of
the throughput of these platforms, with the complexity of embodied
avatars as the dominating factor. The avatar of Worlds is the most
refined, requiring much higher bandwidth than other platforms.

6 Scalability Analysis

After investigating the throughput for two users on social VR plat-
forms, we study the scalability by measuring the throughput and
resource utilization when serving more users.

6.1 Controlled Experiments

We first conduct experiments in a controlled laboratory environ-
ment with five headset users (U1śU5). After U1 joins a social VR
platform, we let four other users (U2śU5) join at 50, 100, 150, and
200s, respectively. U1 stands at the center of the virtual space and
can see the avatars of all other users once they join for the first
250s. After that, U1 turns around for 180°, which makes the avatars
of other users disappear in the viewport. We measure how the
throughput of downlink and uplink changes as more users join and
eventually leave U1’s viewport. To avoid the interference of voice
data on the experimental results, we ensure all users join mutely.

Throughput Scalability Issue. Figure 6 shows the instantaneous
throughput of the five social VR platforms during the 300-second
experiments. With the addition of new users, all platforms’ down-
link throughput increases almost linearly. This suggests a potential
scalability issue: as more users join these social VR platforms, the
servers simply forward the avatar data of each user to others, with-
out further processing or optimizations such as aggregation. As
expected, the uplink throughput of each user is unaffected by the
presence of more avatars.
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Viewport-adaptive Optimization. In the context of social VR,
this optimization consists of sending updates for only the avatars
contained within a user’s viewport. This technique has been ex-
tensively explored in immersive video streaming [32, 33, 78] for
reducing communication and rendering overhead. Figure 6 shows
that when U2śU5 fall out of U1’s viewport at 250s, the throughput
of only AltspaceVR (Figure 6(e)) is reduced as a consequence of
some form of viewport-adaptive optimization.

We conduct more experiments to better understand the adop-
tion of viewport-adaptive optimization. In these experiments, U1
faces the corner of the virtual space during the first 250s and turns
towards the center after that. When other avatars join one by one
(again with a 50-second interval), they gather at the center of the
virtual space and are thus not visible to U1 for the first 250s. We
find that the downlink throughput of only AltspaceVR is dynamic,
confirming the usage of viewport-adaptive optimization. Figure 6(f)
demonstrates that, for the first 250s, the AltspaceVR server does
not forward avatar data of U2śU5 to U1, as they are not visible to
U1, leading to a significant throughput reduction.

To investigate the viewport-adaptive optimization of AltspaceVR,
we conduct the following experiment with two users (U1 and U2).
We first let U1’s avatar turn its back to U2’s avatar, and then grad-
ually change the viewing direction of U1’s avatar. In AltspaceVR,
users can turn around their avatars with the controller of VR head-
sets. Avatars will turn 360° after users operate the controller 16
times in the same direction (i.e., each operation will change the
viewing direction by 360/16 = 22.5°). Thus, it is feasible to detect
the range of U1’s łviewportž that is used by the server to determine
whether U2’s avatar is visible or not based on the change in U1’s
downlink throughput. Note that this viewport is usually larger than
the actual field of view (FoV) of the VR headset to compensate for
the prediction error of users’ future viewport. Our experimental
results show that the width of AltspaceVR’s viewport to determine
which avatar is visible and thus what content should be delivered is
∼150°. As a result, it can, in theory, save up to ∼58% (i.e., 1−150/360)
of data consumption.

A key requirement of viewport-adaptive optimization is that
the server should predict the future viewport of users when deter-
mining the data of which avatars should be forwarded, as the data
delivery may take time. Suppose the data transmission takes 𝑡 sec-
onds. At time𝑇 , the server needs to predict users’ viewport at𝑇 + 𝑡 .
When the prediction is not accurate, this optimization may lead to
missing content, negatively affecting the user experience [33, 78].

6.2 Measurement in the Wild

Besides the controlled experiments, we conduct measurement stud-
ies in the wild through various public events that are available to
users all over the world. Social VR platforms currently set an upper
limit on the number of concurrent users per event, possibly due to
the scalability issue. Among them, Worlds supports the smallest
number of users, recommending 8ś12 users in an event [73]. When
attending public events, we find its actual cap is 16 users. Therefore,
we use Quest 2 to attend public events with 7 to 15 users on these
platforms. Since we have no control over other users’ access, we do
not know what devices they use to join the events. However, this
does not affect our measurement results because the throughput
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Figure 7: Average downlink throughput (top) and FPS (bot-

tom) of five platforms with different numbers of users. The

bands represent 95% confidence intervals.

is almost the same when using different types of devices to access
these platforms (ğ5.1).

Throughput and FPS. Figure 7 illustrates the average downlink
throughput and FPS on the five platforms as the number of users
increases. We add the results for 1ś5 users from our controlled
experiments in ğ6.1 (i.e., private events) for comparison. As in
private events, these platforms’ throughput in public events grows
linearly with the number of users. Since the avatar of Worlds is the
most complicated (ğ5.2), its downlink throughput exceeds 4.5 Mbps
when there are 15 users in the same event. Thus, to host a public
event with 100 users, the resulting downlink throughput would be
∼30 Mbps, already higher than the 25 Mbps downlink throughput
defined by the U.S. Federal Communications Commission (FCC) for
the standard broadband service [52].

When the number of users climbs, FPS starts to decrease for
all platforms. Among them, Worlds performs the best with the
smallest FPS drop (e.g., 25% from 1 to 15 users), although its avatar
is far more complex than others. In contrast, the FPS of Hubs drops
from 72 to 60 (∼17% decrease) when there are 5 users, and to only
33 (∼54% drop) when the number of users increases to 15. This
significant decrease in FPS will drastically affect the quality of user
experience during social interactions, as the full-fledged Metaverse
will be expected to host much more users.

Resource Utilization. Figure 8 shows how the average CPU and
GPU utilization on Quest 2 for the five platforms changes with
an increasing number of users. Among them, since Hubs runs
on the browser, its CPU utilization is the highest and is close to
100% when there are 15 users. We find that when the number of
users increases, AltspaceVR prefers to use the GPU to handle the
additional processing overhead, while other platforms tend to use
more of the CPU. For example, when the number of users grows
from 1 to 15, the CPU utilization of AltspaceVR grows by only 15%,
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while the GPU utilization increases by 25%. In contrast, the CPU
utilization of all other platforms grows by about 20%, and the GPU
utilization increases by only 10-15%.

Memory and Energy Consumption.We next measure the mem-
ory footprint and energy consumption on Quest 2 for these plat-
forms. The increase in the number of users has a limited effect on
bothmemory and energy consumption. Regardless of the number of
users (from 1 to 15), all platforms consume <10% of a fully charged
Quest 2’s battery after running the experiments for 10 minutes.
Although the memory footprint does grow as the number of users
increases, only <150 MB of extra memory is used when adding 14
more users, as shown in Figure 8. As a result, each avatar consumes
only a small portion of memory space (∼10 MB). Among them,
Worlds consumes the most memory, for example, ∼2 GB memory
when there are 15 users, which is about 33% of the total memory of
Quest 2 (∼6 GB).

A Large-scale Experiment on Hubs. Given that the number of
users is limited to 15 for the above public events, we also hosted a
large-scale event on our private Hubs server, with up to 28 users.
During this event, users were free to walk and talk with others. We
used a fully-charged Quest 2 to join the event in our controlled
laboratory environment. Figure 9 shows the average downlink
throughput and FPS measured on this device, with different num-
bers of users. We observe that as the number of users increases to
up to 28, the throughput of Hubs keeps increasing linearly, and its
FPS decreases ∼32% (from 15 to 28 users).

Implications to the Metaverse 3 : We have indicated the po-
tential scalability issues of social VR platforms when there are up to
28 concurrent users. The future Metaverse may host thousands of

millions of users simultaneously in the shared, interoperable virtual
world. Viewport-adaptive optimizations can alleviate the scalability
issue only to some extent. When there is a large number of avatars
visible in the viewport, the required network bandwidth to deliver
their data and the on-device computation resources for rendering
may still be extremely high. Utilizing peer-to-peer (P2P) communi-
cation may be a potential direction. Our measurements indicate that
currently none of these platforms’ clients directly communicate
with each other. Although Hubs employs WebRTC to deliver voice
data (ğ4.2), which can utilize P2P [51], based on our measurements
and the official documentation of Hubs [68], a central server is
still used to forward data between users. If social VR platforms
adopt P2P, user devices will aggregate the content received from
multiple peers and render the virtual scene accordingly, alleviating
the server workload. However, even with P2P, the scalability issues
of throughput and on-device computation will remain. One further
optimization is to reduce the frequency of updating data for avatars
that the user is not interacting with [8]. Next, we discuss another
potential solution, remote rendering.

6.3 Remote Rendering ś A Potential Solution

A promising scheme to address the scalability issues of social VR
platforms is to leverage remote rendering, for which the downlink
throughput and on-device computation overhead are determined by
the visual quality of encoded video streams, instead of the number
of concurrent users.

We first summarize the evidence we identify in this paper that in-
dicates these social VR platforms currently still use local rendering,
other than remote rendering.
• All five platforms do not deliver video streams (with WebRTC
technology), which is widely employed by remote rendering in
commercial cloud gaming platforms (ğ4.1).
• The downlink throughput (two users) is below 100 Kbps for
most platforms, which is much lower than the throughput of video
streaming. Moreover, the throughput is independent of the resolu-
tion of displayed content (ğ5.1).
•As the number of users grows, the downlink throughput increases
linearly for all platforms (ğ6).
•When delivering the action from one user to another, the receiver-
side processing latency is at least 10ms higher than that on the
sender-side, and it is higher than the server processing time for
most platforms (ğ7).

Based on the above evidence, we can conclude, with high confi-
dence, that all these social VR platforms have not benefited from
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remote rendering yet and utilized local rendering instead. This is
caused by the design decision that the platform servers directly
forward avatar data among all users for real-time updates (the main
reason for scalability issues). On the other hand, when the server is
responsible for rendering the content, even if there are a large num-
ber of concurrent users (especially when their avatars are clustered
together), the servers will render the entire scene in the viewport of
a user, including only visible avatars, into a 2D video frame. Hence,
the amount of resulting data is independent of the number of users,
mitigating the scalability issues.

We emphasize that remote rendering is not a silver bullet and
has its own technical challenges. For example, similar to viewport-
adaptive optimizations, the server should predict users’ future view-
port as the rendering of the content and the delivery over the net-
work to VR headsets take time. Moreover, the server needs to render
the same number of scenes as the number of users, since different
users may have different viewports. Fortunately, these issues have
been extensively investigated in cloud-based VR gaming and im-
mersive video streaming [11, 32, 43, 61, 78], which makes remote
rendering a promising solution for scaling the Metaverse.

Note that our prior work has identified the throughput scalability
issue of Horizon Workrooms, a social VR platform (from Meta) for
hosting online meetings [14]. This suggests that scalability is indeed
a common problem faced by today’s social VR platforms. Besides
finding more evidence on other platforms, in this paper we identify
its root cause, discover the viewport-adaptive optimization that
is adopted by AltspaceVR, measure the scalability of end-to-end
latency (ğ7) and on-device computation resource utilization, and
point out possible solutions to address this potential barrier of
building the Metaverse.

Takeaways 2 : We have the following key findings from our
scalability experiments in the controlled laboratory environment
and in the wild.
• All five social VR platforms face potential scalability issues, and
their throughput increases almost linearly with the number of users.
• Only AltspaceVR adopts the viewport-adaptive optimization,
while others blindly exchange avatar data, regardless of whether
or not the avatars are visible to other users.
• For all platforms, the on-device resource utilization increases
and the FPS degrades as the number of users grows. In this case,
AltspaceVR tends to prioritize the GPU to handle the increased
processing load, while other platforms tend to use more of the CPU.
• We suggest remote rendering as a promising solution to alleviate
the identified scalability issues.

7 End-to-end Latency

In this section, we measure the end-to-end latency when users
interact with each other on social VR platforms. It is defined as the
time that is taken from when one user performs an action to when
that action is displayed on others’ screens.

We design the following experiment to measure the end-to-end
latency between two users U1 and U2. We first let the index fingers
of U1 and U2 touch together. Then U1 quickly moves them away
from those of U2. During the experiment, we record the screens
of U1 and U2 at the running FPS with the following command,
“adb shell setprop debug.oculus.fullRateCapture 1”. We

Figure 10: The extracted video frames that reflect an ac-

tion on its sender U1’s screen (left) and receiver U2’s screen

(right) for calculating the end-to-end latency.

Platform E2E Sender Receiver Server
Rec Room 101.7/8.7 25.9/8.6 39.9/7.8 29.9/6.4
VRChat 104.3/9.3 27.3/6.2 37.4/6.4 33.5/9.5
Worlds 128.5/11 26.2/4.5 49.1/9.1 40.2/11

AltspaceVR 209.2/13 24.5/5.2 36.1/9.9 68.6/12
Hubs 239.1/7.3 42.4/6.3 60.1/6.5 52.2/7.7
Hubs∗ 130.7/6.3 40.3/5.2 61.5/5.7 16.2/2.4

Table 4: The end-to-end (E2E) latency in ms and the latency

for the sender, receiver, and server processing. The two num-

bers in each cell are the average result and standard devia-

tion. Hubs∗ refers to our private Hubs server.

use ffmpeg [25] to extract the frames from the recorded videos and
get their timestamps to calculate the end-to-end latency. We show
the last frame before displaying this action on U1’s screen and the
first frame to reflect it on U2’s screen in Figure 10.

Although similar methods have been utilized to measure the
end-to-end latency of cloud gaming platforms [37], a key challenge
here is to synchronize Quest 2 VR headsets. Widely used time
synchronization protocols such as NTP [55] are not supported on
Quest 2 without root access. While Quest 2 runs the Android OS,
the method to root it has not been well developed yet. Therefore,
we resort to an alternative and more generic approach. We first
connect to Quest 2 from the WiFi AP via the Android Debug Bridge
(ADB) tool. Then we use the “adb shell echo $EPOCHREALTIME”

command on the WiFi AP to get the system time of Quest 2, and
the system call to get the clock of WiFi AP at the same time. Fur-
thermore, we measure the RTT between the WiFi AP and Quest 2.
With these results, we can know the time difference between Quest
2 and the WiFi AP and synchronize them at the millisecond level.
By synchronizing both Quest 2 headsets with the WiFi AP, we can
calculate the end-to-end latency based on the timestamps of the
two extracted video frames in Figure 10.

We report the measurement results in Table 4. Among the five
platforms, Hubs has the highest end-to-end latency (∼240ms), fol-
lowed by AltspaceVR (∼210ms), both higher than the 150ms target
threshold of an immersive collaborative environment [81]. The la-
tency of Rec Room and VRChat is around 100ms. Note that both
users are located on the U.S. east coast. The end-to-end latency will
be higher when they are at different farther-away places, as the
network delay will grow in this case.

To better understand the variance of the end-to-end latency
of these platforms, we break it down by measuring the latency
between the Quest 2 headsets, our WiFi AP, and platform servers.
We also retrieve the timestamps of data packets that deliver the
finger movement from the traces collected on our WiFi AP and
Quest 2 to facilitate the breakdown into the sender, receiver, and
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server processing latency, which is feasible due to the low data rate
and thus sparse data transfers of these platforms.

The high end-to-end latency of AltspaceVR and Hubs is partially
contributed by the high RTT (>70ms) between our WiFi AP and
the platform servers. Recall that while we conduct the experiments
on the U.S. east coast, both platforms assign servers on the U.S.
west coast to forward avatar data (ğ4.2). Another reason for the
high latency of Hubs is that it is a Web-based application, which
introduces extra computation overhead, as shown in Figure 8 (i.e.,
the highest CPU utilization). Thus, it has the highest sender and
receiver processing latency of these platforms.

Table 4 reveals that AltspaceVR has the highest server processing
latency among all platforms. We infer that it may be induced by
the viewport-adaptive optimization adopted by AltspaceVR (ğ6),
as viewport prediction may involve complicated machine learn-
ing algorithms [108]. Hubs has the highest server processing la-
tency among the platforms that do not have the viewport-adaptive
optimization (>50ms vs. ≤40ms). Since it open-sources its code,
we have the opportunity to set up our own Hubs server on an
AWS t3.medium instance to measure the end-to-end latency again.
With this server, the latency drops to only ∼16ms (∼70% reduction),
which indicates that the Hubs server may not be well provisioned
to handle the workload.

In general, the processing latency on the receiver is much higher
than that on the sender and is even higher than the server-processing
latency (except for AltspaceVR that leverages viewport-adaptive
optimizations), which is another indication of local rendering. In
contrast, the server-processing latency of commercial cloud gam-
ing platforms that utilize remote rendering ranges from 43 to
140ms [37]. We also find thatWorlds has higher receiver-processing
latency than other non-Web-based platforms (close to 50ms vs.
<40ms), which is likely due to its more realistic avatar embodiment
and thus higher rendering overhead.

After examining the end-to-end latency of two users, we study
whether it will change with an increasing number of users (i.e.,
the scalability). With the above method, we measure the latency
between U1 and U2 when up to five more users join the same
social VR platform. Figure 11 demonstrates that the end-to-end
latency also faces potential scalability issues. For example, with
seven users in an event, the latency grows from 239.1 (two users)
to 295.4ms for Hubs, from 128.5 to 181.4ms for Worlds, and from
101.7 to 140.3ms for Rec Room, respectively. Figure 11 also indicates
that the difference in latency when adding one more user grows.
For example, when increasing the number of users from 2 to 3, the

delta of latency for Hubs is 7ms. It grows to 9, 11, 13, and 16ms for
4ś7 users. One possible reason is that the server-side queuing delay
increases when serving more users.

It becomes difficult to break down the end-to-end latency when
there are more users. The reason is that the increase of data packets
reduces the packet interval, making it challenging to determine
which packet carries a specific action performed by users. However,
given the increase in computation resource utilization on VR head-
sets shown in Figure 8, we can infer that the growth of end-to-end
latency is mainly caused by the receiver-side processing. Remote
rendering is still effective to handle the latency scalability issue, as
the decoding and display time of video frames mostly depends on
their visual quality, not the number of avatars in the scene.

8 Network Disruptions

In this section, we explore how social VR platforms respond to
dynamic network conditions for the two-user scenario (U1 and
U2), as in practice, network fluctuations are common. We use
tc-netem [40] to constrain the uplink and downlink of U1, in terms
of throughput, latency, and packet loss rate. Our selected parame-
ters are as follows:
• Uplink Bandwidth: 1.5, 1.2, 1, 0.7, 0.5, and 0.3 Mbps.
• Downlink Bandwidth: 1, 0.7, 0.5, 0.3, 0.2, and 0.1 Mbps.
• Uplink/Downlink Latency: 50, 100, 200, 300, 400, and 500ms.
• Uplink/Downlink Packet Loss: 1, 3, 5, 7, 10, and 20%.

Each restricted condition lasts for 40s. The network then goes
back to normal for another 60s, leading to a duration of 300s for
the entire experiment.

8.1 Throughput Disruption

Since the throughput of all platforms except Worlds is <100 Kbps
(ğ5.1), we conduct throughput disruption experiments on only
Worlds. We focus our study on the impact of throughput disruption
on social events, for example, when users play together a game,
which is more interactive and bandwidth-intensive. Also, it is con-
sidered one of the key use cases for social VR [31]. We select the
Arena Clash [100] shooting game on Worlds for our experiments.

We first conduct downlink throughput disruption experiments
for U1 onWorlds. Figure 12(a) shows the resulting uplink and down-
link throughput. For this shooting game, the throughput of Worlds
increases to ∼0.7/1.2 Mbps (downlink/uplink)3. When we limit the
downlink bandwidth to 0.5 Mbps, Worlds exhibits an łaggressivež
state, using all available bandwidth as much as possible. Moreover,
when the downlink capacity is insufficient, the unrestricted uplink
starts to fluctuate violently and consequently affects U2’s downlink
throughput (not shown for clarity)4. The reason may be that Worlds
prioritizes the process of missing critical information that it does
not receive when the downlink bandwidth is insufficient. At this
point, it does not have enough computation resources to handle the
to-be-uploaded data, resulting in a fluctuating uplink throughput.

This conjecture is supported by the increased CPU utilization
shown in Figure 12(b) and the decreased FPS shown in Figure 12(c).
For example, Figure 12(b) demonstrates that the CPU utilization

3The throughput of shooting games on Rec Room and VRChat is still lower than 100
Kbps (e.g., 75 Kbps for Laser Tag [80] on Rec Room and 40 Kbps for Voxel Shooting [106]
on VRChat).
4The majority of U2’s downlink is contributed by U1’s uplink (Figure 3).
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Figure 12: Downlink throughput disruption of U1 in a shooting game of Worlds. The numbers in red indicate the stages of

disruption (throughput in Mbps). łNž means no disruption.

does start to increase after 40s when the downlink is limited to 0.7
Mbps and sometimes reaches 100% when the downlink bandwidth
is even lower. The GPU utilization, on the other hand, slightly drops
when the downlink bandwidth is limited. One possible reason is that
some stale frames are re-used at this time (as shown in Figure 12(c)),
reducing the rendering overhead.

We next conduct uplink throughput disruption experiments for
U1 on Worlds. We plot the uplink throughput for both UDP and
TCP (for HTTPS connections) and the downlink UDP throughput
in Figure 13 (top). As with the experiments of downlink throughput,
U1 uses all available uplink bandwidth as much as possible when it
is limited. Moreover, we observe that the UDP downlink throughput
of U1 starts to decrease after the uplink is constrained. The reason
is that when U1 cannot upload enough data to U2, U2 needs to
prioritize the processing of missing information. As we discussed
above, this affects the uplink throughput of U2, and in turn, the
downlink throughput of U1.

We find in Figure 13 (top) that there are drastic fluctuations
in the uplink UDP throughput of U1 after 80s when the available
bandwidth is lower than 1.2 Mbps. Moreover, the drop in uplink
UDP throughput happens whenever there is a spike in uplink TCP
throughput. This is, nevertheless, counter-intuitive, as usually UDP
will win when competing with TCP due to TCP’s congestion control.
Therefore, we infer that the TCP data may carry some critical
information for control channels (ğ4) that Worlds prioritizes.

To further explore the interaction between TCP uplink and UDP
uplink, we conduct the following experiment. We control only the
TCP uplink by applying an increasing delay of 5, 10, and 15s and
a 100% packet loss rate, respectively. The experimental results in
Figure 13 (bottom) show that when we increase the delay of TCP
uplink, significant gaps appear in the data transfers of UDP uplink,
and the duration of the gaps is about the same as the introduced
delay on the TCP uplink. This implies thatWorlds will not send data
over UDP until the TCP packets have been successfully delivered.
Moreover, when the packet loss of TCP uplink is 100% (starting
from 180s), there are only tiny data exchanges over UDP for about
30s. During this period, U1’s avatar can still freely walk in the game
space, although U1 and U2 cannot see each other’s avatar anymore.
After that (at ∼210s), the UDP connection is broken, and U1’s screen
is frozen. Even when we remove the applied packet loss on TCP
uplink at 240s, the UDP connection is not restored (i.e., the screen
is still frozen), while the TCP connection can recover.
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Figure 13: Uplink throughput disruption of U1 in a shooting

game of Worlds. Top: Throttling the bandwidth for all up-

link traffic. Bottom: Controlling only uplink TCP traffic (0ś

180s: increased latency; 180-240s: 100% packet loss rate). The

numbers in red indicate the stages of disruption (through-

put in Mbps, latency in seconds, or packet loss rate). łNž

means no disruption.

The experimental results in Figure 13 indicate that there is indeed
an interplay between TCP uplink and UDP uplink, and TCP traffic

has a higher priority than UDP traffic (Implications 1 in ğ4).
Moreover, we observe that when we add delay to TCP uplink, the
countdown board in the game fails to update the remaining time
of the game in real-time. This suggests that one role of the TCP
connection is to synchronize the clock between users via the server.

8.2 Latency and Packet Loss Disruptions

We next investigate the impact of latency and packet loss disrup-
tions on social VR platforms. When users just walk around and chat
with each other, their experience will be affected only when the
end-to-end latency is higher than 300ms (e.g., adding ∼200ms extra
latency for Rec Room and VRChat, or ∼100ms for AltspaceVR (Ta-
ble 4)). However, higher latency significantly impacts the user expe-
rience for the gaming scenario. Table 1 shows that Hubs is currently
the only platform which does not support gaming. AltspaceVR has
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only Q&A games without much interactivity (i.e., questions are dis-
played on the screen for users to choose the answer). Thus, besides
the Arena Clash [100] game on Worlds, we select two other shoot-
ing games, Laser Tag [80] on Rec Room and Voxel Shooting [106]
on VRChat, to conduct latency disruption experiments. Recall that
the end-to-end latency of these three platforms is lower than 130ms
(Table 4). We find that 50ms of additional latency is sufficient to
deteriorate users’ gaming experience. All platforms are not sensi-
tive to packet losses. Even when the packet loss rate reaches 20%,
users do not perceive any disturbance. One of the reasons may be
that the embodied avatars of these platforms are relatively rough
(Figure 4 in ğ5.1). Even if some parts of the avatar are not updated
in time, users may not be able to perceive the difference. Moreover,
these platforms may compensate for the missing movement data
of avatars through methods such as motion prediction.

Takeaways 3 : Through the network disruption experiments,
we have two key findings. First, the drop of downlink bandwidth
affects uplink data transfer of Worlds and the CPU/GPU utiliza-
tion, indicating an interplay between networking and computation.
Second, Worlds gives TCP uplink traffic higher priority than UDP
uplink traffic, by blocking UDP until TCP packets have been prop-
erly delivered.

9 Discussion

While this is the first comprehensive study of social VR platforms,
there are a few limitations of our work that we plan to address in
the future.

Large-scale Crowd-sourced Experiments.We perform the mea-
surement study with a combination of manual and automated ex-
periments. Oculus officially provides a tool called AutoDriver [70]
that enables the test of VR applications by automatically playing
back pre-defined inputs. Nevertheless, we have conducted all exper-
iments by ourselves at limited locations. We are currently building
open-source tools on Oculus Quest 2 by further extending Au-
toDriver and OVR Metrics Tool in order to facilitate large-scale
crowd-sourced experiments and better examine the performance
of social VR platforms in the wild.

Security, Privacy, and Harassment. We have not yet explored
the security [38, 97] and privacy [54, 88] issues of social VR plat-
forms and how they handle online harassment [9, 27], which are
all crucial problems that need to be addressed when building the
Metaverse. Actually, there are an increasing number of reports re-
garding harassment on most of the platforms that we study in this
paper [18, 19, 92, 93, 96]. As we list in Table 1, all five platforms, ex-
cept for Hubs, have set up the personal boundary/bubble/space [10]
that aims to protect users from harassment. In future work, we will
investigate these mechanisms of social VR platforms and measure
their effectiveness.

Other Types of Metaverse Platforms. Our measurement study
focuses on social VR platforms, which can be viewed as a rudimen-
tary prototype of the Metaverse. There are other kinds of platforms
such as massively multiplayer online games (e.g., Roblox [82], Fort-
nite [24], and Minecraft [65]) and blockchain or NFT-based online
games (e.g., Axie Infinity [56], Decentraland [21], and Upland [95])
that are considered as part of the Metaverse ecosystem [23]. We

intend to conduct measurement studies on different types of plat-
forms to gain a more inclusive understanding of the Metaverse.

10 Related Work

Social VR, by combining social media and VR technologies [59, 87],
has attracted increasing attention from HCI and computer graphics
communities. HCI researchers have been investigating a wide range
of topics in social VR, including interaction with avatars [28, 34, 42],
interpersonal relationships [26, 53, 89, 90], privacy and security
concerns [54], etc.Moreover, the HCI community studied various
aspects of organizing different events on social VR platforms, such
as remote learning [29, 84], dancing [76], watching movies [48],
and hosting conferences [103]. The computer graphics community
focuses mainly on the appearance of avatars for social VR [44, 45].
In the network community, Zhang et al. [110] identified potential
bottlenecks of mobile social VR and proposed a tentative system
architecture. In our previous work, we conducted a preliminary
measurement study of Horizon Workrooms, a social VR platform
for online meetings [14].

Online Social Networks. There has been a wealth of measure-
ment studies of online social networks, such as user behavior [7],
information propagation [13], group structure [66], and user in-
teractions [85, 104]. In addition to measurement studies, previous
work investigated user privacy [5] and scalability [77] of online
social networks. Different from the above work, we conduct an
extensive measurement study of social VR, the next generation of
online social media towards the Metaverse.

Networked VR. There is plenty of work on improving networked
VR systems [1, 11, 43, 50, 61]. For example, Coterie splits the ren-
dering of the background environment between mobile devices and
servers to support high-quality multi-user VR [61]. Q-VR proposes
a collaborative rendering solution based on software-hardware co-
design for low-latency VR systems [107]. In contrast to the above
work, we measure various aspects of existing social VR platforms.

11 Concluding Remarks

In this paper, we presented a first-of-its-kind in-depth, and system-
atic measurement study of popular social VR platforms, one of the
key enablers of the Metaverse. Our work started with a detailed
analysis of network protocols and infrastructure of these platforms,
followed by thorough evaluations of their throughput. We then
discovered the potential scalability issues, in terms of throughput,
end-to-end latency, and on-device computation resource consump-
tion, and identified the servers’ direct forwarding of avatar data
as the root cause. Moreover, we investigated how these platforms
respond to dynamic network conditions such as throughput drops,
increased latency, and packet losses. We hope our findings can shed
light on the design practices to eventually realize the Metaverse.
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