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Figure 1: HybridTrak is a VR full-body tracking solution that augments inside-out upper body tracking with a single uncal-
ibrated webcam for lower body tracking. This approach provides accurate lower-body tracking, which normally requires a 
cumbersome outside-in VR setup, with similar convenience to inside-out tracking. We developed a novel full-neural solu-
tion that combines estimated 2D poses from the webcam and upper-body positions and orientations from the VR headset 
to produce 3D poses of the user in VR coordinates. By emulating virtual devices, HybridTrak is compatible with current VR 
applications that support full-body tracking on SteamVR. 

ABSTRACT 
Full-body tracking in virtual reality improves presence, allows in-
teraction via body postures, and facilitates better social expres-
sion among users. However, full-body tracking systems today re-
quire a complex setup �xed to the environment (e.g., multiple light-
houses/cameras) and a laborious calibration process, which goes 
against the desire to make VR systems more portable and inte-
grated. We present HybridTrak, which provides accurate, real-time 
full-body tracking by augmenting inside-out1upper-body VR track-
ing systems with a single external o�-the-shelf RGB web camera. 
HybridTrak uses a full-neural solution to convert and transform 
users’ 2D full-body poses from the webcam to 3D poses leveraging 
the inside-out upper-body tracking data. We showed HybridTrak 
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is more accurate than RGB or depth-based tracking methods on 
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tion using an RGBD camera. 

CCS CONCEPTS 
• Human-centered computing ! Virtual reality; • Comput-
ing methodologies ! Activity recognition and understanding. 

KEYWORDS 
full-body tracking, virtual reality, computer vision. 

ACM Reference Format: 
Jackie (Junrui) Yang, Tuochao Chen, Fang Qin, Monica S. Lam, and James 
A. Landay. 2022. HybridTrak: Adding Full-Body Tracking to VR Using an 
O�-the-Shelf Webcam. In CHI Conference on Human Factors in Computing 

1 Inside-out tracking or egocentric pose estimation means that the tracking camera is 
worn on the user’s head. The system locates itself by looking at the environment and 
locates other body parts according to the camera position. While outside-in tracking 
means that the cameras are grounded to the environment. 

https://orcid.org/0000-0002-2064-5231
https://orcid.org/0000-0003-1520-8894
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3491102.3502045
mailto:landay@stanford.edu
mailto:lam@cs.stanford.edu
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3491102.3502045&domain=pdf&date_stamp=2022-04-29


                        

             
      

  
         

        
           

            
           
           

       
          

           
       

        
           

            
           

        
         
          
          
         

          
        

       
         

        
         

           
           
          

          
           

        
         

           
       

       
         

        
            
          

           
           

          
           
         
          

           
       

      

             
               

        

            
          

    
         

           
         

           
        

         
            

        
        

   

   
          

          
        

      
           

           
           

           
           

          
           

            
              
           

          
   

           
             
          

         
          

              
             

           
           

            
          

            
           

           
          

          
            
         

        
          

      
        

          
           

CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA 

Systems (CHI ’22), April 29-May 5, 2022, New Orleans, LA, USA. ACM, New 
York, NY, USA, 13 pages. https://doi.org/10.1145/3491102.3502045 

1 INTRODUCTION 
Virtual reality (VR) has great potential in many applications includ-
ing social networks, gaming, and entertainment. However, current 
widely adopted VR systems can only track the user’s head and 
hands positions, and not the rest of the user’s body. Therefore, most 
VR apps today either only render the user’s upper body or pre-
dict the user’s lower body position according to their upper body 
movements. The resulting �oating avatars and unsynchronized 
leg movements may break the user’s illusion, hinder the user’s 
expression, and limit the types of apps that developers can build. 

However, current full-body tracking solutions have various limi-
tations. Sensor-based or outside-in tracking can produce accurate 
results, but users need to either wear bulky 3D positional trackers 
all over their body [10], or use RGBD cameras that require extensive 
calibration and are hard to acquire [9] (outside-in tracking). On the 
other hand, recent commercial VR upper-body tracking systems 
rely on egocentric tracking cameras (referred to as inside-out track-
ing), which require minimal setup, greatly reduce the barrier of 
entry to VR, and are generally preferred by users2. However, re-
search has shown that egocentric cameras cannot provide adequate 
tracking for the lower body due to intra-body occlusion [1]. 

Combining the advantages of inside-out and outside-in tracking, 
we present HybridTrak, which o�ers an economical, calibration-
free, and user-friendly solution for full-body tracking. The novel 
combination of a single uncalibrated camera and existing inside-
out upper-body tracking of HybridTrak is optimal for full-body 
tracking: the former can see the user’s feet without occlusion of 
the user’s upper body (more discussion in Section 5.1); the latter 
can see the user’s hands. HybridTrak �rst generates 2D full-body 
poses from the webcam and 3D upper-body poses from an o�-the-
shelf inside-out tracking system. These data are fed into a pose 
conversion neural network to produce the lower-body positions 
and orientations. Combined with the upper body positions from 
the egocentric cameras, our full-body tracking data can be used by 
any SteamVR app without requiring any modi�cations. 

We evaluated HybridTrak by objective performance comparison 
on existing datasets and subjective perception evaluation on pose 
naturalness and clarity. For objective performance comparison, we 
found our hybrid tracking setup to be better than using a calibrated 
RGBD camera with a naïve algorithm for lower-body tracking (on 
the Human3.6m dataset [14]). We also found our algorithm to be 
better than a baseline algorithm built with VNect [26] (on the MPI-
INF-3DHP [24] dataset). For pose naturalness and clarity, we found 
that users (N = 12) can di�erentiate �ve di�erent poses with com-
plex lower-body motion with a higher accuracy using HybridTrak 
than the other two solutions (RGBD camera and upper-body only 
tracking). We also found that users rated the poses generated by 
our system more natural than the baselines. 

The contributions of this project include: 

2Users show clear preference for inside-out tracking systems as the adoption of these 
systems increased from 6.4% to 67% in just a year (according to the Steam hardware sur-
vey between August 2020 and August 2021 https://store.steampowered.com/hwsurvey) 

Jackie (Junrui) Yang, Tuochao Chen, Fang Qin, Monica S. Lam, and James A. Landay 

(1) A novel system design that can provide a robust and accurate 
full-body tracking capability for VR with the addition of a 
single uncalibrated RGB camera. 

(2) We introduce a full-neural full-body tracking solution for 
VR that is more accurate than a baseline that requires an 
RGBD camera. Whereas the baseline RGBD algorithm gets a 
Mean Per Joint Position Error (MPJPE) of 0.136m and a Mean 
Per Joint Rotation Error (MPJRE) of 0.609rad, HybridTrak 
achieves a better result of 0.098m and 0.282rad, respectively. 

(3) A user study using a popular VR chat room application shows 
that body postures presented by HybridTrak are more distin-
guishable and more natural compared to an RGBD camera-
based tracking system. 

2 RELATED WORK 
The related work to HybridTrak can be categorized as: 1) Vision-
based 3D body pose tracking 2) Non-vision-based 3D body pose 
tracking, and 3) Other hybrid pose tracking methods. 

2.1 Vision-based 3D body pose tracking 
Similar to HybridTrak, prior work has tried to use computer vision 
to detect 3D body poses for a variety of applications. Traditionally, 
vision-based 3D pose tracking is done with an RGBD camera [9, 
19, 43]. However, RGBD cameras usually have a limited range, are 
error-prone in sunlight, and are not accessible to every VR user. 
RGB cameras are cheaper and have fewer of those restrictions. 
Recently, many have researched the area of 2D human body pose 
estimation using a single RGB camera [3, 5, 8, 40]. However, when 
it comes to 3D pose estimation with a single RGB camera, it is hard 
to estimate the size and global position of the skeleton because 
these systems lack information on the distance between the user 
and the camera. 

Most of the prior work uses either visual cues [2, 25–27], tem-
poral geometry cues [18, 29], or both [6] to deduce a 3D skeleton 
from one or more 2D images. These algorithms are usually compu-
tationally intensive, preventing them from being used in a latency-
sensitive scenario such as VR. Also, these algorithms usually predict 
the body pose in a coordinate system that is relative to one of the 
joints of the user’s body, usually the pelvis, which makes it hard to 
project the tracking result onto the VR tracking space. Some prior 
work tries to estimate the global position in real-time by data-�tting 
the estimated 3D pose with the 2D pose[25, 26], but this requires 
accurate knowledge of the intrinsic and extrinsic parameters of the 
camera and is prone to noise in the predicted skeleton sizes, which 
would result in awkward o�sets in the camera direction. In VR, 
as the user’s viewport information is estimated by a much faster 
and more accurate system (VR tracking), any drift between the 
full-body tracking and the user’s viewport may dislocate the user’s 
body from their head, which is very disturbing for the user. In con-
trast, HybridTrak processes the image data with the conventional 
(faster and more accurate) VR upper-body tracking information, 
which does not require calibration and produces a more accurate 
and coherent full-body 3D pose estimation. 

Besides single-camera 3D pose estimation, researchers have also 
tried to use multiple cameras for full-body tracking. They usually 
leverage multiple neural networks to detect 2D poses in each camera 

https://doi.org/10.1145/3491102.3502045
https://web.archive.org/web/20210917170819/https://store.steampowered.com/hwsurvey
https://Human3.6m


           

             
          

           
            

           
            

         

      
           

        
          

          
           

         
          

          
         

           
          

          
         

          
          

       

      
        

         
         

            
          

        
          

            
         

         
    

   
           

            
         

   

   
        

         
        

              
            
              

        
      

          
    

       
         

      
          

        
           

       
          
         

          
       

     
          
             

             
          

              
          

         
            
             

            
           

             
          

           
        

           
          

       
          

         
        

           
           
          

          
          

          
            

           

  

HybridTrak 

and fuse the partial results to yield more accurate 3D poses [15, 32]. 
However, this requires the user to have a calibrated multi-camera 
setup, which is expensive and hard to con�gure. Other prior work 
leverages single or multiple cameras on the user’s body [1, 12, 34, 
36, 41]. However, due to lens distortion and body obstruction, the 
accuracy of these systems is still pretty low, especially in the leg 
area, which is problematic for current VR tracking systems. 

2.2 Non-vision-based 3D body pose tracking 
Other body pose estimations have been proposed that are not based 
on computer vision. Commercial motion capture systems, such 
as Vicon [38] and OptiTrack [28] use multiple cameras and retro-
re�ective dots positioned on the user’s body to accurately track 
multiple positions on the user’s body. While being used as ground 
truth in many pose tracking datasets, their expensive and compli-
cated setup prevents them from being widely adopted by average 
VR users. Others have proposed using wearable trackers that are 
coupled with an external �xed tracking reference, such as solu-
tions presented by Islam et al. [16], Pintaric and Kaufmann [30], 
and SteamVR tracking [39]. These systems usually o�er a limited 
number of tracking points and require a �xed reference hardware 
setup and calibration before usage. Other alternative methods have 
also been proposed, such as using a pressure-sensitive �oor [4], 
radio signals [42], or multiple IMUs [35]. However, the accuracy 
obtained by these solutions is usually limited. 

2.3 Other hybrid pose tracking methods 
Researchers have also explored di�erent pose tracking methods 
by processing input from multiple sources. These approaches are 
mostly focused on fusing IMU and vision-based pose estimation. 
Pons-Moll et al. [31] �rst proposed the idea of combining IMU data 
with RGB images to produce better tracking results. More recently, 
researchers proposed using neural networks and information from 
multiple RGB cameras [11, 23, 37]. Such work improved accuracy 
by adding inputs in more modalities, but at the cost of more com-
plicated setups. In contrast, HybridTrak improves the accuracy of 
vision-based tracking by using existing VR tracking systems to 
minimize the setup cost. 

3 SYSTEM DESIGN 
We present the system design of HybridTrak in this section with 
an overview of how the HybridTrak system works, as well as our 
design rationale, the neural networks used by HybridTrak, and 
other implementation details. 

3.1 Design considerations 
HybridTrak aims to provide regular consumers accurate full-body 
tracking with minimal setup overhead. HybridTrak uses a single 
uncalibrated webcam and a common inside-out upper body track-
ing system. The user only has to place a camera in a place where 
the user’s body can be seen without occlusion, put on the VR head-
set and controllers, and enter the VR as usual. To give the user a 
seamless and responsive experience with HybridTrak, we designed 
the system with the following goals: 

(1) Calibration free (no need for the extrinsic and intrinsic ma-
trix of the camera), 
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Figure 2: System architecture of HybridTrak: HybridTrak 
�rst processes the webcam footage to extract normalized 2D 
poses. HybridTrak’s pose-conversion neural network then 
processes the 2D poses from the webcam and the upper-body 
tracking coordinates from an existing VR tracking system 
and converts the 2D poses to lower-body 3D poses in VR co-
ordinates. Finally, HybridTrak can emulate virtual tracking 
devices with the user’s lower body tracking points and pass 
through the data from inside-out tracking devices for the up-
per body. In this way, VR applications that support full-body 
tracking on SteamVR can work without modi�cation. 

(2) Accurate global positions, and 
(3) Provide input that is compatible with existing VR systems. 
To render the body pose in VR properly, we need the user’s pose 

in global coordinates in the real world space (z-axis is up). Also, we 
wish to minimize the calibration process. While most prior work 
can only predict the body pose relative to a body joint with an RGB 
camera, some prior work [24] demonstrated methods to get the 
global coordinates from 2D images. However, their method relies 
on the accurate intrinsic and extrinsic matrix of the camera as well 
as an estimation of the body skeleton of the user from the 2D im-
age, which is not always reliable. The resulting 3D poses may have 
accuracy and latency that is acceptable for 2D games like those 
built for the Kinect, but they do not meet the standard of keeping 
people immersed and preventing them from getting dizzy in VR. 
If these poses are used directly with existing VR headset tracking, 
without calibration and without reliable skeleton size estimation, 
the projected pose positions in world coordinates are likely to have 
an o�set from the user’s headset position, which is very disori-
enting. Since inside-out/egocentric tracking for the upper-body 
is common and e�ective in commercial systems, we leverage the 
upper-body tracking data to provide a calibration-free and accurate 
lower-body pose estimation. In upper-body tracking systems, the 
controllers held by the users contain markers and a motion sensor. 
thus they can track the hand positions more accurately and reliably 
than image-based pose estimation. We use those tracking points to 
project the detected 3D pose back to the VR space. 

HybridTrak is designed to work with existing VR systems to 
provide the full-body 3D poses to VR applications. Currently, most 
of the VR applications with full-body support use what is called a 
six-point format3. It consists of the position and orientation of the 
3see https://docs.vrchat.com/docs/full-body-tracking 

https://docs.vrchat.com/docs/full-body-tracking
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Original COCO dataset Augmented COCO
dataset with headsets

Original model output Improved model output

Figure 3: We augmented the COCO dataset with images of 
people wearing VR headsets and re-trained an improved 
pose_resnet model with four more key points in the output. 
The augmented dataset solves the problem that the origi-
nal model may treat part of the user’s body as �ipped when 
the user’s face is blocked by the VR headset. The added key 
points allow HybridTrak to accurately estimate feet orienta-
tion. 

user’s head, waist, two hands, and two feet. However, most pose-
tracking algorithms today predict only the position, and not the 
orientation, of many more joints in the user’s body, while existing 
VR games want the position and orientation of a smaller number 
of joints. HybridTrak is fully compatible with existing VR applica-
tions as it directly generates the waist and feet tracking points that 
include both the position and the orientation. HybridTrak can also 
be con�gured to output more position points to provide a more 
accurate estimation of the user’s full skeleton. 

3.2 System architecture 
With these design considerations, the overall architecture of 
HybridTrak is shown in Figure 2. HybridTrak accepts input from 
two sources: 2D poses from an RGB camera and 3D upper-body 
inside-out tracking data. To generate the 2D poses input, we use a 
modi�ed version of pose_resnet [40] that works well with users’ 
images (even when the VR headset is blocking their face) and can 
output extra key points to provide the necessary foot orientation 
for VR full-body tracking. For 3D poses, we use the internal headset 
and controller tracking provided by the Oculus Quest. We use a 
pose-conversion neural network that accepts the 2D poses and the 
3D upper body VR tracking data to produce 3D poses. By leverag-
ing the temporal information from 2D poses and 3D upper-body 
tracking data, HybridTrak can generate accurate 3D poses in VR 
space without requiring prior calibration. Finally, we present the 
generated 3D poses as virtual trackers to SteamVR, which allows 
unmodi�ed applications to read lower body tracking data from vir-
tual trackers generated by HybridTrak and get upper-body tracking 
data from existing headsets and controllers. 

3.3 HybridTrak algorithm 
The HybridTrak algorithm consists of two steps: 

(1) Generate 2D poses from the webcam. 
(2) Map the coordinates of the 2D poses to those of the 3D poses. 

Jackie (Junrui) Yang, Tuochao Chen, Fang Qin, Monica S. Lam, and James A. Landay 

3.3.1 Generating 2D Poses. Common 2D pose detectors usually 
output 2D poses in the 17-key point COCO format [17, 22]. Al-
though these points are su�cient for representing positions of the 
user’s body parts, they lack information about the orientation of the 
user’s limbs. For HybridTrak, we especially care about the user’s 
feet orientation, as they represent 6 out of the 18 degrees of freedom 
in the user’s lower body. Another problem regular pose detectors 
have is that their accuracy sometimes relies on the fact that the 
user’s face is uncovered. In practice, we observed that a vanilla pose 
estimation model tends to predict that the user is facing backwards 
when the VR headset is blocking their face. 

To address this problem, we trained our improved version of 
the pose_resnet model [40]. Pose_resnet is a 2D pose estimation 
neural network that uses a ResNet as the backbone for feature 
extractions and adds a few deconvolutional layers over the last 
convolution stage in the ResNet. It can provide great accuracy even 
when the user has overlapping body parts and is standing in front 
of a complex background. We added to pose_resnet extra feet key 
points from the COCO-Wholebody [17] dataset. We also augment 
the training data by generating images with an overlaid headset 
from the original COCO dataset. To do so, we �tted a VR headset 
onto a human head model and measured the 3D positions of the 
key points on the head (nose, eyes, and ears from the COCO key 
points, eye corners, ear corners, and chin from COCO-Wholebody 
key points). We computed the 3D pose estimation for the headset 
from these key points and overlaid the projected headset model 
back onto the images in the COCO dataset. The results of the model 
before and after our modi�cation are shown in Figure 3. 

On a side note, pose_resnet is chosen because it strikes a good 
balance between accuracy and speed. For comparison, we tried 
other top-down 2D body pose trackers like HRNet or OpenPose 
for 2D pose tracking; however, they are noticeably slower than 
pose_resnet and o�er limited accuracy improvement for our use 
cases (average precision from 73.7 to 77.0 on COCO test set for 
HRNet). Notably, HRNet is less computationally intensive in theory, 
but it runs slower on current hardware (acknowledged by the au-
thors on GitHub4). Other bottom-up pose trackers perform better 
when there are multiple people, but that is rarely the case for VR 
pose tracking. In our early experiments, we also found top-down 
pose trackers to be more robust against self-occlusion, which is 
common for VR. 

We evaluated the accuracy of the model based on accuracy on the 
COCO evaluation dataset with our headset augmentation. We found 
that the model trained on our augmented dataset yields an average 
precision (see COCO human pose benchmark [22] for de�nition) of 
72.2, while a baseline model trained on the original COCO dataset 
had an average precision of 65.4. 

3.3.2 2D pose to 3D pose with coordinate mapping. The key chal-
lenge in HybridTrak is the mapping of the 2D pose coordinates to 
lower-body 3D poses that are consistent with the 3D upper-body 
tracking points (VR coordinates). We train a pose conversion neu-
ral network to directly process 2D poses from the webcam and 3D 
tracking data from the inside-out upper-body tracking system and 
use those to output the 3D poses in VR coordinates. 

4see https://github.com/leoxiaobin/deep-high-resolution-net.pytorch/issues/26 

https://github.com/leoxiaobin/deep-high-resolution-net.pytorch/issues/26


           

        
       
         

           

         
           

            
             

          
             
           

          
          

          
         

           
            

            
             

            
 

            
        

            
          

              
              

              
           

            
            
            

           
        
             
    

          
             

        
           
            

       
           

            

        
          

               
          

           
            

            

         
          
           

         
       

           
            

            
         

         
          
         
           

           
            

          
             

 

  
          
          

           
   

    
 

         
        

            
          

               
        

       
           

        
         

          
            

       
           

           
            

          
           

            
          

       

HybridTrak 

Figure 4: Converting VR tracking points from the Hu-
man3.6m dataset. The black skeleton represents the Hu-
man3.6m dataset, and the RGB axes represent VR tracking 
points. Red is front, blue is right, and green is up. 

We used an existing 3D pose estimation dataset Human3.6m 
to train this model. Although this dataset does not have tracking 
data in the VR coordinate space, we compute the position and the 
orientation of the tracking points used in VR from the position of the 
existing annotated key points. For VR, the tracking points include 
the head, two hands, waist, and two feet. For the head, we compute 
the position by projecting the face5 point to the line segment 
between head_top and neck. For hands, we compute the positions 
by getting the middle points between index_finger and wrist. For 
waist, we computed the positions by getting the weighted average 
point between neck_center (weight 1) and hip_center (weight 3). 
For feet, we compute the midpoint between ankle and toe. Finally, 
we use joints close to these points to compute the orientation of 
those points. The �nal result is shown in Figure 4. The generated 
head and hand points are used as input to the network and the 
generated waist and feet points are used as reference output to the 
network. 

To train the network, we also generate the 2D pose from videos 
captured in Human3.6m with the modi�ed pose_resnet estimator 
with feet key points (as described in Section 3.3.1). To ensure that 
our model can generalize to an arbitrary camera con�guration that 
a user may have, we also normalize the 2D pose points to make the 
result in the longer axis in x-y between [0, 1], and keep the aspect 
ratio the same while scaling the other axis. In this way, even if the 
user’s camera has a di�erent focal point or pixel density (camera 
intrinsic matrix), it should not a�ect the scale of the 2D pose. 

We also apply a random rotation along the z-axis and a random 
o�set on the x�-plane on the generated data as a data augmentation 
method to make sure that the model can handle arbitrary o�sets 
and rotations between the camera’s viewpoint (extrinsic matrix) 
and VR coordinates. This allows our model to work out of the box 
with no prior calibration. 

We adopt an architecture that is similar to VideoPose3D [29], 
as shown in Figure 5. The network accepts 2D poses p from our 
modi�ed pose_resnet, along with three of the upper-body inside-
out tracking points (head and hands) u, and produces three outputs 
(feet and waist) l with position and orientation. It uses a fully 
convolutional architecture with residual connections. In training, 
we compute 2D poses p from images using the same modi�ed 

5All the “equal width font” words denote joints in the Human3.6m dataset. 
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pose_resnet while calculating the upper-body u and the lower-
body l tracking points from tracking points of the Human3.6m 
dataset. We use the 3D u and 2D tracking points p as input for the 
pose conversion neural network. We then compare the output VR 
tracking points l 0 with the generated lower-body tracking points l 
with a Mean Per Joint Position Error (MPJPE) as loss for positions 
and a Mean Per Joint Rotation Error (MPJRE) as loss for orientations. 

3.3.3 Implementation. For pose_resnet, we use YOLOv3 [33] as 
the person detector for detecting the bounding box for pose_resnet, 
and we use a modi�ed 384x384 Resnet152 variant of the pose_resnet 
model trained on our augmented COCO dataset with the COCO-
WholeBody annotations. We trained the HybridTrak’s pose conver-
sion neural network with 160 epochs, learning rate at 0.001, and 
decay of 0.95 on every epoch. The training takes around 10 hours 
on a machine with NVIDIA Tesla V100. For VR input and device 
emulation, we communicate with OpenVR through its API. We 
emulate three virtual trackers from our three predicted tracking 
points, which make this system compatible with almost all VR pro-
grams supporting full-body tracking on the SteamVR store. We 
tested the system on a computer equipped with an Intel i7-8700k 
processor and an Nvidia RTX 2080Ti graphics card and we observe 
that we can stably process the camera image from a Logitech C930e 
webcam in 30fps. The frame processing latency of HybridTrak from 
RGB image to 3D pose in VR averages 0.0827s, and the jitter is 
0.0063s. 

4 EVALUATION 
We evaluate the e�ectiveness of HybridTrak in two ways: 1) objec-
tive performance comparison based on an existing dataset and 2) 
subjective perception of pose naturalness and clarity by users in a 
VR social network. 

4.1 Comparison with RGBD-camera-based 
algorithms 

In this section, we discuss the performance comparision with RGBD-
camera-based algorithms. To evaluate the overall performance of 
our system, we test the accuracy of the system in predicting the 
waist and feet positions and orientations in the Human3.6m data 
set. We use P9 and P11 in Human3.6m as the test set and the other 
nine participants as a training set for HybridTrak. 

RGBD-camera-based solutions are common among VR users. 
These solutions also use cameras on the headset to track their 
upper-body poses while using calibrated external RGBD camera 
to track their full-body poses. However, unlike HybridTrak, these 
systems ignore the upper body tracking points from the RGBD 
cameras and only use the lower body tracking points with a �xed 
transformation provided by an extra calibration step. 

We set up a Virtual RGBD baseline by aligning the time-of-�ight 
camera image in Human3.6m with the RGB camera image to form 
a virtual RGBD camera, and use the body skeleton detected by the 
same modi�ed pose_resnet model (as described in Section 3.3.1) to 
generate 2D poses. Using a naive lifting method, similar to prior 
work [43], we can extract 3D poses from the depth image. Then 
we compute the positions and orientations for the lower-body VR 
tracking points as described in Section 3.3.2. 

https://Human3.6m
https://Human3.6m
https://Human3.6m
https://Human3.6m
https://Human3.6m
https://Human3.6m
https://Human3.6m
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Figure 5: HybridTrak’s pose conversion neural network: The model accepts VR tracking points for the head and hands and 
2D pose estimation as input, processes it using a temporal CNN, and outputs full-body tracking results for the waist and feet. 
conv(ndm): 1D convolution layer with a kernel size of n and a dilation of m; Slice and add: we slice the output of one layer 
symmetrically and add the residue to the output of another layer; Boxes represent the feature vectors (numbers in the box 
are the feature size; numbers under the box are the number of channels.); All unmarked arrows are fully-connected linear 
layers. We use ReLu for activation across all layers. Batch normalizations are added between convolutional layers. 

We also created an alternative method HybridTrak-transform 
(see the detailed implementation in Appendix A) to test against the 
full-neural solution of HybridTrak. In this method, we �rst convert 
2D poses to 3D poses in camera space using a neural network 
that is similar to VideoPose3D [29]. We then use “least-squares 
�tting” to match the head and hands tracking points to the data 
from inside-out tracking and produce a transformation between 
the camera space and the real-world space. Finally, we apply that 
transformation to the predicted waist and feet poses to produce 
data for VR full-body tracking. 

The results are shown in Table 1. HybridTrak shows the best 
result for both position and orientation, and HybridTrak-transform 
is second best, while the Virtual RGBD baseline gives the worst 
result. The RGBD baseline results are comparable to prior work [43]. 
The rotation error is especially large for the RGBD baseline. Having 
the feet and the waist pointing in the wrong direction can be very 
disturbing for the VR user. We think that the large rotation error is 
due to two reasons: 1) Both HybridTrak algorithms have a temporal 
CNN to correct for temporal inconsistency, while the RGBD baseline 
does not. 2) RGBD cameras may give a wrong estimation of the 
position of the body parts that have been occluded. Note that due 
to the labeling di�erences in the training data of pose_resnet and 
our test set from Human3.6m, there may be a small systemic o�set 
between pose_resnet annotation and the ground truth, causing a 
higher error in the evaluation result. Nevertheless, both HybridTrak 
methods perform well given that all the coordinates are in global 
coordinates and our HybridTrak methods do not need to know 
the ground-truth transform between the camera space and the 
real-world space. 

When comparing within the two implementation of HybridTrak, 
we noticed that HybridTrak’s full-neural solution is more robust 
to pose tracking noise and requires less compute power, so we 

used the full-neural solution in our user study. On the other hand, 
HybridTrak-transform computes the transform matrix between the 
camera space and the world space, which is useful on its own. We 
can reverse the transform matrix to project the 3D positions of the 
user’s head and hands to the camera space and reduce the workload 
or improve the result of person bounding-box detection, which is a 
crucial step in 2D pose detection. Since an RGB camera can also be 
used to track objects of given sizes, with the help of this deduced 
camera to VR transform, we can use it to project other objects in 
the real world back to VR. These applications are harder to achieve 
with a full-neural solution. 

One limitation of the Human3.6m dataset is all the camera po-
sitions are at the same height (camera pitch). To test the perfor-
mance of our system with a wider range of camera pitch, we also 
trained and tested the HybridTrak model on the MPI-INF-3DHP [24] 
dataset, which has more variety of camera heights. One thing no-
table is that in the MPI-INF-3DHP dataset, the user is sometimes out 
of the camera frame, in that case, we still feed the 2D key point de-
tection results with low con�dence scores to the HybridTrak model. 
Our model shows a comparable result on the MPI-INF-3DHP dataset 
with the result on the Human3.6m dataset despite the constraints 
of the dataset, which means that the model can perform relatively 
well when the camera pitch changes. 

4.2 Comparison with other RGB-camera-based 
algorithms 

One major feature of HybridTrak is that we aggregrate the upper-
body inside-out 3D tracking data with the full-body webcam 2D 
tracking data over a period of time and fully integrate them in 
the system’s neural network. To evaluate whether this system de-
sign is bene�cial, we compared our system with a baseline that 
directly produces 3D relative tracking points from the RGB camera, 

https://Human3.6m
https://Human3.6m
https://Human3.6m
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Table 1: Overall performance comparison: We compared HybridTrak and HybridTrak-transform with a baseline based on 
data from a virtual RGBD camera. Both of our algorithms performed better than the baseline. Among our two algorithms, 
HybridTrak has a slightly better result on both position and orientation prediction. The best result on this metric is underlined. 

Model name Dataset GT transform Position Error MPJPE(m) Rotation Error MPJRE(rad) 

Virtual RGBD Human3.6m YES 0.136 0.609 
HybridTrak-transform 
HybridTrak 
HybridTrak 

Human3.6m 
Human3.6m 
MPI-INF-3DHP 

NO 
NO 
NO 

0.104 
0.098 
0.123 

0.306 
0.282 
0.350 

Table 2: Global coordinates performance comparison: We 
compared the results of a variant of the HybridTrak algo-
rithm that predicts 17-joint global positions similar to prior 
work. We found that our algorithm performed better in 
terms of position error on the MPI-INF-3DHP dataset com-
pared with VNect [26]. 

Model name Dataset Position Error MPJPE(m) 

VNect MPI-INF-3DHP 0.455 
HybridTrak (17 joints) MPI-INF-3DHP 0.138 

and then simply uses head position to compute the absolute posi-
tions of these tracking points. The baseline solution is built with 
VNect [26] on MPI-INF-3DHP. Although the original VNect papers 
presented methods of estimating the global positions of joints, we 
found that although the output global coordinates are consistent 
with themselves over time, they are not always aligned with the 
ground truth. So the baseline solution �rst estimates the relative 
3D positions with VNect, then computes the global coordinates by 
aligning relative positions with the ground-truth head positions. 
For HybridTrak, we retrained our model to accept 2D positions 
from the camera footage in the MPI dataset as well as the 3D head 
and hands tracking data to produce all of the 14-joint positions in 
MPI-INF-3DHP. The head and hands tracking points we provided 
to HybridTrak are head (7th), left_hand (13th), right_hand (18th) 
points in the MPI-INF-3DHP, respectively. 

The results are shown in Table 2. HybridTrak has much better 
performance in terms of position error than the baseline system 
based on VNect. Note that the VNect paper reported an MPJPE 
of 142mm, but the result listed in their paper is computed using 
the ground-truth bounding boxes and waist (pelvis) 3D positions. 
Since this information is not available in real-world live-inferencing, 
we used the same bounding boxes generated by the YOLOv3 for 3D 
pose estimation in VNect (the same bounding boxes for 2D pose 
estimation in HybridTrak). For global position estimation, we used 
head position to convert relative coordinates to global coordinates. 
Although not available in real-world usage, we also conducted the 
evaluation when ground-truth pelvis position is used for global 
position estimation. The MPJPE in this case is 0.325m; it is slightly 
better than using head positions, but still worse than HybridTrak. 

These results show that the architecture of HybridTrak can ef-
fectively leverage the power of inside-out upper-body tracking and 
data from the external camera to generate more accurate global 
positions for full-body tracking in VR. 

4.3 User Study 
One important use case of full-body tracking is to provide better 
social interaction between users in VR. We conducted a user study 
in VRChat6, a VR social network that supports full-body tracking, 
to see if our 3D pose in VR is natural and distinguishable from 
another chat user’s perspective. VRChat, like many other programs 
supporting full-body tracking on SteamVR, expects three additional 
tracking points with position and orientation from the SteamVR 
driver, one for the waist and two for the legs. HybridTrak can 
emulate these tracking points using a custom-made SteamVR driver 
(as described in Figure 2). 

We compared HybridTrak both with another popular trackerless 
full-body tracking system called KinectToVR7 and with upper-body 
only tracking, which is similar to most commercial VR products. In 
the upper-body only tracking condition, we do not feed any lower 
body tracking points to SteamVR, and VRChat has an internal 
mechanism to generate a lower body posture that �ts the position 
and orientation constraints of the user’s head and hands. 

4.3.1 Task. The experimenter invites the participants into a special 
VRChat room built for this study, After the consent forms are �lled 
out, the experimenter gathers basic demographic information from 
the participants. We then ask the participant to evaluate three full-
body tracking systems: 1) HybridTrak, 2) KinectToVR, and 3) upper-
body only tracking. The three systems are presented to users in a 
counter-balanced order. In each case, the experimenter performs 
15 poses (�ve di�erent poses, each pose performed three times) 
in random order while using the tracking system currently being 
evaluated. We selected �ve representative poses from an existing 3D 
pose tracking dataset [14, 24] with distinct leg postures and similar 
upper-body positions (see Figure 6), so as to highlight di�erences 
in lower-body tracking. 

In VR, the participants can see an image with the �ve reference 
poses (top row in Figure 6). After each pose is presented using the 
experimenter’s VR avatar, the experimenter asks the participant 
to identify which pose it is. Usually, camera-based pose tracking 
methods show a better result at the same angle as the capture 
camera. We asked the participants to observe the experimenter at 
any position that they felt comfortable in. This allows participants 
to evaluate the pose generated by HybridTrak at an arbitrary angle 
in 3D space instead of viewing it from the same angle as the webcam 
(in HybridTrak)/Kinect being used for tracking to demonstrate the 
true performance of the tracking system in VR. 

6https://www.vrchat.com 
7KinectToVR Kinect Full-Body Tracking: https://k2vr.tech 

https://www.vrchat.com
https://k2vr.tech
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Figure 6: Poses used in the user study: The experimenter performed 15 poses in random order (each of the �ve poses is pre-
sented three times) and asked participants which pose they thought the experimenter was presenting. The user can view the 
experimenter’s posture at any angle that they feel comfortable with. In the end, we asked them about their overall perception 
of the presented full-body tracking systems. 

After the participants see how each system performs, the experi-
menter asks the user about whether they agree or disagree with the 
following statements (7-point Likert scale, from “Strongly disagree” 
to “Strongly agree”): 1) “The presented body postures are natural.” 2) 
“The transitions between body postures are natural.” At the end of 
each condition, we also ask the participants for subjective feedback 
on the current system. At the end of the user study, we ask the 
participants which system they would rate the best and why. 

4.3.2 Participants. We recruited 12 participants (six female) in our 
study, aged between 18-52 (median 25.5). Most of our participants 
were frequent VR users, with four of them using VR weekly, three 
of them using VR daily, and two of them using VR monthly. The 
other three participants only use VR a few times a year. Most users 
have little experience using full-body tracking systems. Eight of our 
participants have never used full-body tracking systems, two use 
these systems a few times a year, and two use full-body tracking 
systems monthly. 

4.3.3 Results. The results of all the pose identi�cation responses 
across users are shown in Figure 7. Participants identi�ed 99% of 
the poses correctly in the HybridTrak condition, while there were 
more misidenti�cations made in the KinectToVR and no full-body 
tracking conditions. We also computed the recognition accuracy 
for each user in each of the three systems (Figure 8) and ran paired 
t-tests between HybridTrak and the other two baseline systems. We 

Figure 7: Confusion matrix of the perceived experimenter 
poses for the three tracking solutions. 1-5 corresponding to 
the poses in Figure 6. Only one out of 180 responses for the 
HybridTrak solution was incorrect. 

found that participants can identify poses signi�cantly better in the 
HybridTrak condition than in the KinectToVR condition (t = 3.84, 
p = 0.0028) and in the upper-body only tracking condition (t = 9.31, 
p = 1.5e � 6). 

The results of the user’s perceived naturalness of the poses 
and the naturalness of the transitions between poses is shown 
in Figure 9. We computed paired t-tests and found statistically 
signi�cant di�erences between HybridTrak and the baseline con-
ditions in terms of posture naturalness (t = 8.62, p = 3.2e � 6 
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Figure 8: Accuracy of perceived poses for the three track-
ing solutions: We found the pose perception accuracy in 
the HybridTrak condition is signi�cantly higher than in the 
KinectToVR and in the upper-body only tracking systems. 
**: p < 0.005 

HybridTrak

Figure 9: Naturalness of the presented postures and transi-
tions between them for the three tracking solutions: Partici-
pants rated poses presented by HybridTrak to be more natu-
ral than the other solutions. They also found the transitions 
in the HybridTrak system to be more natural than those in 
the KinectToVR system. **: p < 0.005 

and t = 6.14, p = 7.3e � 5). We also found a statistically signi�-
cant di�erence between HybridTrak and KinectToVR in terms of 
transition naturalness (t = 6.19, p = 6.7e � 5), but the di�erence 
between HybridTrak and upper-body only tracking was not sig-
ni�cant (t = 1.89, p = 0.085). We think the reason for the small 
di�erences in perceived transition naturalness between HybridTrak 
and upper-body only tracking is that when VRChat does not have 
lower body info, it generates smooth-looking transitions even if 
they do not represent the actual state of the experimenter’s lower 
body movements. 

We also collected subjective feedback from the participants. All 
twelve participants rated HybridTrak to be the best of the three 
systems. P1, P2, P8, P9, and P11 found the poses in the HybridTrak 
condition to be clear and natural. P2, P10, and P11 found the tran-
sitions between poses in this condition to be sometimes jerky, es-
pecially when transitioning between crawling and sitting on the 

Egocentric camera view External webcam view

Areas with 
less occlusion

Areas with 
more occlusion

Figure 10: Captured images from an egocentric camera and 
an external webcam. It shows that the user’s lower body is 
likely to be occluded with an egocentric camera and not with 
the external webcam, while the opposite is true for the user’s 
upper-body. 

ground (P2). For the KinectToVR condition, P5, P6, P7, P10, and P11 
found the leg orientations in the KinectToVR condition to be inac-
curate, which is a common complaint about Kinect body tracking. 
For the upper-body only tracking condition, P4-9 and P12 found 
the postures to be less distinguishable. P5 reported that they had to 
guess the lower body posture from the upper body posture. 

5 DISCUSSION 
In this section, we discuss how HybridTrak solves the occlusion 
problem, the comparison between HybridTrak and other 3D pose 
tracking algorithms, applications of our algorithm, avenues for 
future work, and the limitations of HybridTrak. 

5.1 Occlusions and bene�ts of a hybrid 
tracking setup 

Occlusions are a common source of errors for most pose-estimation 
algorithms [7]. HybridTrak is designed to avoid occlusions. There 
are two common types of occlusion in pose estimation: occlusion 
between body parts and occlusion due to external objects. The latter 
is not an issue for VR, since VR requires the tracking space to be 
clear of objects to keep the user safe. 

For occlusion between body parts, the hybrid tracking architec-
ture of HybridTrak cleverly avoids most of the problems with a 
minimal setup overhead. As shown in Figure 10, the user’s lower 
body is likely occluded in the egocentric camera (including mul-
tiple �sheye cameras) and not occluded in the external webcam, 
while the opposite is true for the user’s upper body. By combining 
egocentric upper-body pose detection with a lower-body pose from 
an external camera, HybridTrak achieves full-body tracking with a 
simple and portable setup. 

5.2 Comparison between HybridTrak and 
other 3D pose tracking algorithms 

We have demonstrated that: 1) HybridTrak can produce more accu-
rate 3D poses than a naïve algorithm using RGBD input (Section 4.1); 
and 2) HybridTrak’s generated poses are perceived by users to be 
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Figure 11: Generated pose comparison between HybridTrak and KinectToVR. Some poses work well in both systems, some 
work only in HybridTrak, and some work in neither system. The three rows are not captured at the same time, so there may 
be some di�erences in the exact position of the arms and legs. In the 7th pose, the user is facing backward while the legs in the 
KinectToVR solution are facing forward. In the 8th pose, the user’s right leg is bending forward while his left leg is bending 
towards the right. 

more accurate and more natural than those from an RGBD camera-
based solution, KinectToVR (Section 4.3). Since many VR users are 
already using KinectToVR for body tracking, this demonstrates that 
HybridTrak can reach a level of performance that is bene�cial to 
many current VR users using only a single webcam. However, this 
does not mean HybridTrak is incompatible with the RGBD camera. 
Future work can integrate the depth info from such a camera into 
the detected 2D poses and feed the combined information into a 
similar pose conversion neural network as that used by HybridTrak 
to potentially achieve even more accurate 3D poses in VR. 

Speci�cally, when comparing with KinectToVR, we found that 
HybridTrak can accurately reproduce more poses than KinectToVR, 
especially when the user’s feet are facing sideways (Figure 11). We 
think this is because the Kinect is mostly using depth to extract the 
user’s skeleton, but feet provide little contrast in terms of depth. In 
contrast, HybridTrak uses RGB information to extract the user’s 
feet positions and direction, which is more reliable for determining 
the position of the feet. 

As shown in Figure 11 even HybridTrak does not work well with 
some poses. However, as HybridTrak only needs 2D key points 
as input and 3D key points as output for training data, it is pos-
sible to build a synthetic dataset with these postures to enhance 
the accuracy of HybridTrak. Furthermore, as modern VR apps al-
ready contain many character animations, we imagine future VR 
apps can ship with specialized HybridTrak models. These models 
can be trained with the included application-speci�c animations, 
so that HybridTrak can accurately produce the postures that are 

common in these apps. This is a bene�t speci�c to HybridTrak’s 
current architecture. Compared to an alternative system that di-
rectly generates 3D poses from RGB images, we can harvest the 
larger annotated image datasets with 2D poses to accommodate dif-
ferent lighting conditions of the users and synthesize arbitrary 3D 
pose-only datasets to improve the recognition results for speci�c 
poses. 

5.3 Applications 
HybridTrak o�ers an easy-to-access solution for everyday users 
to achieve full-body tracking. With HybridTrak, users can have a 
better experience in social apps now that the full-body posture is 
accurately presented. It can also provide full immersion for sports 
such as soccer or dodge ball. HybridTrak can even be used to fa-
cilitate the fundamental interactions in VR, such as locomotion. 
Some locomotion methods, such as Seven League Boots [13], can 
provide users a better experience when the locomotion method can 
leverage accurate foot movements. 

5.4 Future work 
Like any other system using machine learning, HybridTrak would 
bene�t from more training data. A unique bene�t of HybridTrak 
is that the model’s input and output can be easily collected from 
an RGB camera and a commercial full-body tracking system such 
as HTC Vive Trackers [10]. So an interesting future project would 
be to crowdsource training data from people who already have a 
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webcam and a full-body tracking system, which is popular in online 
VR platforms (6 out of 8 of the participants in our user study have 
access to a full-body tracking system regularly). 

5.5 Limitations 
HybridTrak in its current state requires one dedicated graphics card 
for the tracking system. Note that an accurate 2D pose estimator, 
such as pose_resnet, requires most of the computing resources in 
the entire HybridTrak system; the pose conversion neural network 
we introduce in HybridTrak only requires minimal resources. We 
tested a variant of HybridTrak that runs the 2D pose detection on 
an iPhone and streams the result back to a VR-capable machine. 
This system runs the pose conversion network on the VR machine. 
While the pose conversion network can run at 30fps, the 2D pose de-
tector is limited to 11fps on an iPhone 11. With a mobile-optimized 
2D pose detector and more capable hardware, future all-in-one 
VR headsets like Oculus Quest would be able to achieve smooth 
full-body tracking with an extra smartphone on a stand running 
HybridTrak. 

We compared the performance of our system with VNect [26] in 
Section 4.2. We used VNect as a baseline because it is comparable 
with HybridTrak in terms of computing resources required and 
inference latency. Most other pose estimation models either cannot 
estimate 3D poses with a single camera (e.g., OpenPose [5]), or 
demonstrate live-inferencing capability (e.g., SPIN [21]). Notably, 
VIBE [20] can run at 30fps on a modern graphics card and has better 
MPJPE but worse PCK and AUC scores than VNect. We did not 
compare with VIBE in this paper, but it could be another alternative 
RGB pose tracking algorithm similar to VNect. 

The pose conversion neural network in HybridTrak is trained 
with the Human3.6m dataset, which has a limited set of body skele-
ton sizes. A person with a very large or small skeleton may experi-
ence a higher error rate than other people. A possible solution is to 
apply a random scaling factor to the body skeleton in the training 
data, and scale the 3D ground truth and the detected 2D pose from 
the RGB camera accordingly. 

6 CONCLUSION 
HybridTrak shows a promising future where every VR user can 
have their full-body represented in the virtual world, by adding 
just a single o�-the-shelf webcam. By making this technology more 
accurate and versatile, future VR systems will be able to provide a 
more immersive and interactive environment. 
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Figure 12: Transform between the camera and VR coordi-
0 nates: TCamera is the camera space, T is the modi-Camera 

�ed camera space, �nally, TVR is the VR space. HybridTrak-
transform uses a neural network to generate 3D coordinate 

0 poses in the TCamera modi�ed camera space, and then uses 
LSF to match the 3D poses to the TVR space. 
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Figure 13: HybridTrak-transform uses a least-squares �tting 
to compute a rotation and scaling transform to align esti-
mated 3D head and hand poses from the webcam with the 
head and hands positions from the VR tracking data. The 
original trace is on top, and the transformed trace is on the 
bottom. The transformed traces from the webcam are well 
aligned with the VR tracking traces. 

A HYBRIDTRAK-TRANSFORM 
IMPLEMENTATION 

We �rst use a neural network to process the 2D pose data from 
the webcam and generate six tracking points with positions and 
orientations. In the second step, we use “least-squares �tting”(LSF) 
to match the head and hands tracking points to the data from VR 
and produce a transformation between the camera space and the 
real-world space. In the end, we can apply that transformation to 
the predicted waist and feet poses to produce data for VR full-body 
tracking. 

For the �rst step, we adopt a temporal convolutional neural net-
work (CNN) similar to VideoPose3D [29]. We modify the network 
so that it outputs six tracking points with seven outputs, represent-
ing the position in three dimensions and the rotation in quaternion. 
Similar to regular HybridTrak, the network also accepts normalized 
2D poses as input. 

HybridTrak-transform does not require the camera extrinsic ma-
trix to be supplied to the system so as to ensure a calibration-free 
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experience. The extrinsic matrix includes the camera’s position (x, 
y, z) and orientation information (row, pitch, yaw). This informa-
tion is typically used to transform the estimated 3D pose in the 
regular camera space to the VR space. To handle the position o�set, 
we train the neural network to predict joint positions relative to 
the head. As we already know the head position, we can easily 
add the o�set to the model to handle the position o�set. To handle 
the camera rotation, we have to rely on both the neural network 
and our LSF algorithm. As the neural network is usually good at 
learning body geometry, and earth’s gravity ensures that the users’ 
center of gravity lies within their feet most of the time, we let the 
neural network directly produce the 3D body coordinates without 
pitch and yaw (see the modi�ed camera space in Figure 12). With 
those coordinates, we only have to worry about the yaw di�erences 
between the modi�ed camera space and the VR space. 

Both the neural network and the VR tracking provide us with 
the user’s hand position, so we can use this information to �gure 
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out the correct rotation between the two spaces. In other words, we 
need to generate a rotation to minimize the distance between the 
user’s hand positions predicted by the neural network and the hand 
positions from the VR tracking system. In practice, we also noticed 
that the neural network may have some errors in estimating the 
size of the skeleton of the user, causing the user’s leg positions to 
be further away or closer than where they should be. So we also 
take this chance to estimate a scale to re-scale the skeleton on the 
x-y plane. We generated this scaling and rotation transform using 
the least-squares �tting algorithm, an example result is shown in 
Figure 13. 

So, with the appropriate rotation and scale transform from LSF, 
we can apply the transform to the result of the neural network and 
add the head position to all relative joints positions to get accurate 
positions and orientations in VR space. 
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