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JONES DIAMETER AND CROSSING NUMBER OF KNOTS

EFSTRATIA KALFAGIANNI AND CHRISTINE RUEY SHAN LEE

ABSTRACT. It has long been known that the quadratic term in the degree of the colored
Jones polynomial of a knot is bounded above in terms of the crossing number of the knot.
We show that this bound is sharp if and only if the knot is adequate.

As an application of our result we determine the crossing numbers of broad families of
non-adequate prime satellite knots. More specifically, we exhibit minimal crossing number
diagrams for untwisted Whitehead doubles of zero-writhe adequate knots. This allows us
to determine the crossing number of untwisted Whitehead doubles of any amphicheiral
adequate knot, including, for instance, the Whitehead doubles of the connected sum of any
alternating knot with its mirror image.

We also determine the crossing number of the connected sum of any adequate knot with
an untwisted Whitehead double of a zero-writhe adequate knot.

1. INTRODUCTION

Given a knot K let Jx(n) denote its n-th colored Jones polynomial, which is a Laurent
polynomial in a variable t. Let d4[Jx(n)] and d_[Jk(n)] denote the maximal and minimal
degree of Ji(n) in ¢t and set

d[Jk (n)] = 4d1 [Tk (n)] — 4d_[Jx (n)].

The set of cluster points {n~?d[Jx (n)] };EN is known to be finite and the point with the largest
absolute value, denoted by jdg, is called the Jones diameter of K. For precise definitions of
the terms used here the reader is referred to Section 2.

Given a knot K we will use ¢(K') to denote the crossing number of K, the smallest number
of crossings over all diagrams that represent K. We prove the following.

Theorem 1.1. Let K be a knot with Jones diameter jdix and crossing number ¢(K). Then,
with equality jdx = 2¢(K) if and only if K is adequate.

Adequate knots form a broad class that contains in particular all alternating knots. The
works of Kauffman, Murasugi, and Thistlethwaite [16, 11, 20, 25] imply that for any knot K
we have jdg < 2¢(K), and that we have equality if K is adequate. Our contribution here is
to show that if jdx = 2¢(K), then K must be adequate.

Theorem 1.1 has significant applications to the study of knot crossing numbers. To state
our result, recall that the writhe of an adequate diagram D = D(K) is an invariant of the
knot K [16]. We will use wr(K) to denote this invariant.

Theorem 1.2. For a knot K with crossing number ¢(K), let Wy (K) denote its positive or
negative untwisted Whitehead double. Suppose that K is a non-trivial adequate knot with
wr(K) = 0. Then, Wi (K) is non-adequate and we have ¢c(W (K)) = 4¢(K) + 2.

Theorem 1.2 should be compared with classical results in the literature asserting that the
crossing numbers of several important classes of knots are realized by a “special type” of knot
1
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diagrams. These classes include alternating and more generally adequate knots, torus knots
and Montesinos knots [11, 20, 25]. The works of Murasugi, Kauffman and Thistlethwaite,
that settled the well known Tait conjectures on alternating knots, showed that adequate
diagrams realize the crossing numbers of knots they represent. Moreover they showed that
the crossing number is additive under connected sum of adequate knots. These results used
in an essential way properties of the degree of the Jones polynomial. The Jones polynomial
was also used to derive lower bounds on crossing numbers of Whitehead doubles of adequate
knots in an unpublished preprint of Pascual [21]. However, these bounds are not strong
enough to exactly determine the crossing numbers of any of these knots. For the proof of
Theorem 1.2 it is crucial that we have a sharper lower bound, that is also derived using the
colored Jones polynomial, and Theorem 1.1. See section 5 for details. To the best of our
knowledge, Theorem 1.2 and Corollary 1.3 below are the first instances of results that allow
the exact determination of the crossing numbers for broad families of prime satellite knots.

Theorem 1.2 applies to adequate knots that are equivalent to their mirror images (a.k.a.
amphicheiral) since such knots must have wr(K) = 0. One way to obtain an amphicheiral
adequate knot is to take the connected sum of an adequate knot with its mirror image. For
more discussion and examples of prime, amphicheiral, adequate knots see Section 5.

Corollary 1.3. For a knot K let K* denote the mirror image of K and, for every m > 0,
let Ky, := #™(K#K*) denote the connected sum of m-copies of K#K*. Suppose that K is
adequate with crossing number ¢(K). Then, the untwisted Whitehead doubles Wi (K,,) are
non-adequate, and we have c(Wi(K)) = 8mec(K) + 2.

The method we use for the proof of Theorem 1.2 also leads to the following application to
the open conjecture on the additivity of crossing numbers [13, Problem 1.68] under connected
sums of knots.

Theorem 1.4. Suppose that K is an adequate knot with wr(K) =0 and let K1 := Wi (K).
Then for any adequate knot Ko, the connected sum Ki1# Ko is non-adequate and we have

C(Kl#KQ) = C(Kl) + C(KQ).

Let us now briefly describe the contents of the paper and our approach to proving the main
theorems. It is known that the degree of the colored Jones polynomial of a knot K satisfies
d[Jk(n)] < 2¢(D)n? 4+ O(n), for all n € N and any diagram D = D(K) with ¢(D) crossings.
Theorem 1.1 will follow from a more general result, Theorem 2.4, stating that if the diagram
D is not adequate then in fact we have d[Jx(n)] < (2¢(D) — q(D))n? + O(n), where ¢(D) is
a positive constant depending on D. Several terms used in the statement of Theorem 2.4 as
well as in this introduction are also defined in Section 2, where we also show how Theorem
1.1 follows from Theorem 2.4.

Sections 3 and 4 are devoted to the proof of Theorem 2.4, which relies on skein theoretic
techniques and the fusion theory of the SU(2)-quantum invariants for knots and trivalent
graphs. In Section 3 we include some background and preliminaries from these theories that
we will use in the proof of Theorem 2.4. For an outline of the proof and the ideas involved,
the reader is referred to the beginning of Section 4.2.

Theorem 1.2, Corollary 1.3, and Theorem 1.4 are proved in Section 5. Corollary 5.1 of
Theorem 1.1 gives a criterion for determining the crossing number of a non-adequate knot
provided that it admits a diagram whose number of crossings is close enough to the Jones
diameter of the knot. The proof of Theorem 1.2 uses this criterion and a result of Baker,
Motegi and Takata [3] that allows us to calculate the Jones diameter of Whitehead doubles.
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We expect that Corollary 5.1 will have similar applications for determining the crossing
number of more classes of non-adequate knots.

We’ve made an effort to make the paper self-contained, by including some background and
definitions, and by restating results we will use in the form we need them.

Acknowledgement. Kalfagianni acknowledges partial research support NSF Grant, DMS-
2004155 and Lee acknowledges partial research support NSF Grant, DMS-1907010. We thank
Ken Baker and Kimihiko Motegi for their interest in this work and for helpful comments and
questions on an earlier version of the paper. We also thank the referee for their careful reading
of an earlier version of our manuscript and for their comments that helped to improve our
exposition and for noticing a slight oversight in the proof of Theorem 2.5.

2. DEGREE BOUNDS AND JONES SLOPE DIAMETER

2.1. Diagrammatic degree bounds. Given a knot diagram D, a Kauffman state [12] is
a choice of either the A-resolution or the B-resolution for each crossing of D as shown in
Figure 1. Applying a Kauffman state o to a diagram leads to a collection (D) of disjoint
simple closed curve called state circles. The all-A state on a knot diagram D, denoted by
04, is the state where the A-resolution is chosen at every crossing of D. Similarly, the all-B
state, denoted by op, is the state where the B-resolution is chosen at every crossing of D.

<
SN
T

A-resolution B-resolution

F1GURE 1. The A- and B-resolution at a crossing. The dashed segments
indicate the original location of the crossing.

Definition 2.1. For a knot diagram D, the Kauffman state graph G,(D) is the graph with

vertices the set of state circles from applying o to D and edges the dashed segments recording

the original location of the crossing. We will use v,(D) to denote the number of vertices of

Gy(D). We write G4 to denote the state graph of o4 and va(D) its number of vertices.

Similarly, we will denote by Gp the state graph for op and its number of vertices by vg(D).
We define the following combinatorial quantities:

e ¢(D) is the number of crossings of the knot diagram D.

e Given an orientation on D, ¢4 (D) and c_(D) are respectively the number of posi-
tive crossings and the number of negative crossings in the knot diagram D with the
conventions specified in Figure 2.

e c(0), respectively, cp(o) is the number of crossings on which the Kauffman state o
chooses the A-resolution, or respectively the B-resolution.

e sgn(o) = ca(o) — cp(o) for a Kauffman state o.

e The writhe of a knot diagram D, denoted by wr(D), is ¢4 (D) — c_(D).

e The Turaev genus gr(D) of D is defined by 2g7(D) := 2 — va(D) — vg(D) + ¢(D)
26, 6].
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FIGURE 2. A positive crossing and a negative crossing.

Definition 2.2. [17, 16] We say that a knot K is A-adequate if it admits a diagram D =
D(K) whose all-A state graph has no one-edged loops. Such a diagram is called A-adequate
Similarly, a knot K is B-adequate if it admits a diagram whose all-B state graph has no
one-edged loops. A knot is adequate if it admits a diagram D = D(K) that is both A- and
B-adequate.

Recall that given a knot K we use Jg(n) to denote its n-th colored Jones polynomial,
which is a Laurent polynomial in a variable t. Also dy[Jk(n)] and d_[Jx(n)] denotes the
maximal and minimal degree of Jx(n) in ¢, and d[Jx(n)] := 4d4[Jx(n)] — 4d_[Jx (n)].

We will need the following well known lemma [16, 9].

Lemma 2.3. Given a knot diagram D = D(K), for all n € N, we have the following.

(a) di]Jk(n)] < )n + O(n) and we have equality if D is B-adequate.

(b) d_[Jk(n)] > — (D) n? + O(n) and we have equality if D is A-adequate.

(c) d]Jk(n)] < 2c )n +(2—2g7(D) —2¢(D))n+2g7(D) — 2, and we have equality if D is
adequate.

The Turaev genus of a knot K, denoted by gr(K), is defined to be the minimum gp(D)
over all diagrams representing K. It is known [1] that if D is an adequate diagram of a knot
K then gp(K) = gr(D).

We have the following theorem which shows that the diagrammatic bounds on the degrees
of the colored Jones polynomials given in Lemma 2.3 are never achieved for non-adequate
knot diagrams.

Theorem 2.4. Given D = D(K) any diagram of a knot K C S* we have the following.

(a) If D is not B-adequate, then there is a constant p4(D) > 0 depending on D, such that
di[Jx(n)] < (C+(D) p(D))n? + O(n), for all n € N.

(b) If D is not A-adequate, then there is a constant p— (D) > 0 depending on D, such that
d_[Jx(n)] > (=52 4 p_(D))n® + O(n), for alln € N.

(¢) If D is not adequate, then there is a constant p(D) > 0 depending on D, such that
d[Jk(n)] < (2¢(D) — 4p(D))n? + O(n), for all n € N.

The proof of Theorem 2.4 occupies the next two sections and, as we discuss next, Theorem
1.1 follows from it.

2.2. Knots with maximal diameter. Garoufalidis [7] showed that for every knot K there
is a number nx > 0 such that for n > ng, the degrees di[Jk(n)] are quadratic quasi-
polynomials. That is, we have

4d [Jx(n)] = sa(n)n? + s1(n)n + so(n) and 4d_[Jx (n)] = si(n)n® + si(n)n + sj(n),

where for 0 <i <2, s;,57 : N = Q are periodic functions with integral period.
The elements of the sets

Jjsg :={s2(n) |n>ng} and jsi :={s5(n)|n>ng}
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are called Jones slopes of K. Define the Jones slope diameter of K by
jdi = max{|sa(n) — s5(n)| | n > ng }.

Let ¢4 (K) (resp. c—(K)) denote the minimum of ¢4 (D) (resp. c_(D)) over all knot
diagrams of K. Next we use Theorem 2.4 to derive the following result which in particular
gives Theorem 1.1 stated in the Introduction.

Theorem 2.5. Given a knot K we have the following.
(a) K is B-adequate if and only if 2¢4(K) € jsk.

(b) K is A-adequate if and only if —2c_(K) € js},.
(c) K is adequate if and only if jdx = 2¢(K).

Proof. One direction of all three statements above is given in Lemma 2.3. To deduce the
other direction, recall that for n > ng, 4dy[Jx(n)],4d_[Jx(n)] become quadratic quasi-
polynomials and let s2(n), s5(n) denote their quadratic coefficients respectively [7]. Recall
that sa(n), s5(n) : N — Q are periodic functions with integral period.

If 2¢4(K) € jsk, then there is an infinite sequence {n; > nx}; C N such that so(n;) =
2¢4 (K). Then Theorem 2.4 (a) implies that the diagram D = D(K) that satisfies ¢4 (K) =
c+(D) is B-adequate. Similarly, if —2c_(K) € jsj, then by Theorem 2.4 (b) the diagram
D' = D'(K) that satisfies c_(K) = ¢_(D') is A-adequate.

Suppose now that we have jdxg = 2¢(K). Then, there are Jones slopes s2 € jsg and
s5 € js}, sothat [so—s3| = 2¢(K). By the definitions, there is an infinite sequence {n; > ng };
so that s2(n;) = so and s3(n;) = sb for every n;. Now let D = D(K) be a diagram that
realizes ¢(K) and let c¢_(D), ¢+ (D) be the number of negative and positive crossings in D.
We have ¢(K) = c_(D) + ¢+ (D) and

4d [T ()] — 4d-[Jre (ni)] = (s2 = s3)nF + O(n;) = 2¢(K)nf + O(ny),
for the infinite sequence {n; > nx};. Now Theorem 2.4 (c) implies that D is adequate. [

Remark 2.6. The definition of Jones diameter used in [7] is slightly different than the one
used in this paper. In [7] the Jones diameter is defined to be the quantity
max{|s2 — s5| | s2 € jsk,s5 € jsk}

Currently there are no examples of knots known for which the functions s,s55 : N — Q
(n > ng) are not constant. Thus in all the cases where the Jones slopes have been computed
the two definitions agree.

3. FUSION THEORY PRELIMINARIES AND TOOLS

In this section, first, we recall some background from the skein and fusion theory of the
colored Jones polynomial, and restate some results from the literature that we will use in the
proof of Theorem 2.4.

3.1. Kauffman brackets and skein theory.

Definition 3.1. The Kauffman bracket skein module K(F) [22], [12] of a compact, oriented
surface F' with (possibly empty) boundary is the formal vector space over C(A) of properly
embedded tangle or knot diagrams in F' (including the empty knot), considered up to isotopy
fixing the boundary points, and modulo the Kauffman bracket skein relations:

o M =AT1TT+A4)(

° O UD=(-A"2-A%)D.
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An element of K(F') is called a skein element. Using the Kauffman bracket skein relations,
any skein element in K (S?) can be reduced to an empty diagram with coefficient a rational
function in C(A).

Definition 3.2. Define the Kauffman bracket of the empty knot to be 1. For a skein element
D € K(S?), the Kauffman bracket (D) is the rational function in C(A).

The Temperley-Lieb algebra T L, is a specialization of the Kauffman bracket skein module
of the 2-disk D? viewed as a rectangle with n marked points above and below. As a module,
TL, is the vector space over C(A) of properly-embedded tangle or knot diagrams in D? such
that the endpoints of a tangle are in 1-1 correspondence with the 2n marked points on 9(D?),
modulo the Kauffman bracket skein relations.

The module T'L,, forms an algebra with the multiplication operation induced by stacking
one disk on top of another, identifying the n marked points on the bottom of the first disk
with the n marked points on top of the second disk, forming a new disk. The identity of the
multiplication operation is the identity element 1,, of n parallel arcs. For two skein elements
U,y € TL,, we will denote the result of the multiplication operation by U - V. Every skein
element in T'L,, can be written as a sum of products of elementary generators e’,...,e}_;
by the Kauffman bracket skein relations.

A

T 141
FIGURE 3. An elementary generator e}’ where n =6 and ¢ = 4.

We will not explicitly mark the n points on the boundary of the disk for T'L,, from this
point on.

Definition 3.3. [27], [16, Lemma 13.2] The Jones- Wenzl projector in T L,,, denoted by |f|:|n,
is a unique element in 7T'L,, characterized by the following properties:

(a)h -ef =0=¢f -ca for1<i<n-—1
n n
(b) lfl:ln — 1 belongs to the algebra generated by {e},eh,..., e _}.
(© . b, =dh,
(d) Let C} be the skein element in K (S?) obtained by embedding the disk D? containing
n
|f,:|n in the standard way into S?, and then joining the top n points of D? to the bottom n
points by n parallel arcs in the projection plane. The Kauffman bracket of C} is given
n

by (G} = ()" A e
To simplify notation we will denote A,, := (C} ).

n

We will depict a skein element in T'L,, containing Jones-Wenzl projectors by drawing rect-
angular boxes and say that the skein element is decorated by a Jones-Wenzl projector if it
contains a Jones-Wenzl projector.

3.2. Fusion and untwisting formulas. For a skein element in K(S?), we shall take for
granted the fusion and untwisting formulas from [19], depicted in Figure 5. As in [19],
a trivalent graph colored with nonnegative integers represents a skein element containing
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Jones-Wenzl projectors by making the local replacement shown below in Figure 4 at a vertex
of the trivalent graph.

a b a b

FIGURE 4. A skein element (left) is recovered from a colored trivalent graph
(right) by replacing a vertex locally by the skein element in K (D?) with a +b
marked points above and ¢ points below.

a
: (a, b c)
adm1551ble (a, b C)
a

FIGURE 5. The fusion (left) and untwisting (right) formulas.

a~ b a b

and — (_1)a+376 A*(aerchrM)

We call a triple of nonnegative integers (a, b, c) admissible if a + b+ c is even, a < b+ ¢,
b<a+c,and ¢ < a+b. Given an admissible triple, the rational function 0(a, b, c) is defined
as the Kauffman bracket of a particular skein element as shown in Figure 6 below:

FIGURE 6. We have 7 = 2=y = bicza 5 — atboc

Lemma 3.4 ([16, Lemma 14.5]). Suppose the triple of nonnegative integers (a,b,c) is ad-
missible. Then, we have

Doy Dg1!Dy_ 110, 4!

)
Ay—l—z—l !Az-i-x—l !Ax—&-y—l!

where A\, = NN 10 p—9 - A1 and A_1 = Ao := 1.

(1) 0(a,b,c) =

3.3. A definition of the colored Jones polynomial. Given a knot diagram D C S? with
¢ components, let A = U‘_, A; be the collection of annuli in S? containing D with boundaries
the 2-blackboard cable of the diagram D. The natural inclusion map ¢ : A < S? induces a
map * : K(A) — K(5?).
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Define the skein element D™ as the image of the element (C} ,C} ,...,C} ) in
n n n
K(A;) x K(A2) x -+ x K(Ap) under the map ¢*. That is,

D" .= L*(On, C}n, . C}n)

For depiction of skein elements we follow the convention of [19, 16] where a label n next to
a strand indicates number of parallel strands. We use boldface for D™ to denote n-blackboard
cable D™ of D, decorated by Jones-Wenzl projectors as defined above.

9 WY

FIGURE 7. Left: An example of a knot diagram D and the resulting D™.

Definition 3.5. The (unreduced) n-th colored Jones polynomial of the knot K, with a
diagram D = D(K) is given by Ji(n)(t) = ((—1)"~tAn*~1)wr(D) (D" 1| 4_,~1/4, where for
the unknot U = O we have Jy(n)(t) = (—1)”_11;__?;27:1;?//22 for n > 2.

To simplify the notation we will omit the variable ¢ and write Jx (n) for Jg(n)(t).

3.4. Fusion calculus and degree bounds on Kauffman brackets of skein elements.
Let f(A) be a rational function % with P(A), Q(A) polynomials with complex coefficients
in the variable A. We define deg f(A) to be the maximum power of A in the formal Laurent
series expansion of f(A) whose A-power is bounded from above.

For example, to compute deg(ﬁ) we write _AQéA,Q = _AQ({:LA,AL) = —Ailﬁ.
Then, we expand 1/(1 + A7) =1 - A% + A=® — ... and multiply by —A~! to obtain
ﬁ = —A_l + A_5 — A_g + - , SO deg(ﬁ) = —1.

Note deg f(A) = deg P(A) — deg Q(A). With this example of f(A), if we factor the de-
nominator Q(A) in the other way: Q(A) = —A~2(A* 4 1), then we would obtain the Laurent
series expansion of f(A) whose minimum A-power is bounded from below which can be used
to find the minimum degree of f(A).

We are interested in using the degrees of rational function summands from the Kauffman
bracket definition of the n-th colored Jones polynomial to estimate the degree. To that end,
it will be useful to keep in mind the degrees of the following rational functions.

Lemma 3.6. We have the following.

(a) deg A, = 2¢.

(b) degf(a,b,c) =a+b+c.

(c) degﬁ =2c—(a+b+c)=c—a—b.

Proof. To compute the degree of a rational function P(A)/Q(A), we take the difference
deg P(A) — deg Q(A). This is shown in statement (c) of the lemma for the degree of ﬁ
after determining deg A, and deg6(a, b, c). So we compute deg A.. By Definition 3.3 (d),
CA2(0+1) o A—Q(c—i—l)

Ae=(-1) A2 _ A2
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Therefore deg A = 2(c+1)—2 = 2¢. Next from the explicit formula of 6(a, b, ¢) from Equation
(1), we get

deg0 = deg(Az+y+z!Ax71!Ayfl!Azfll) - deg(Ay#zfl!Az+xflle+y71!)a

with ¢ = &=t ¢ = bhesa p = Note deg(A.!) = ¢(c + 1) by summing over the

degrees in the factorial. Plugging this into the equation above and simplifying gives the
desired result. O

at+b—c
-

A twist region T is a (2, 2)-tangle of crossing(s) arranged end-to-end. If there is more than
one crossing, then we require that the crossings alternate. For example, Q and Q are both
twist regions with two crossings, and Q is not.

b
FIGURE 8. The skein element 7.

We will consider T' as a skein element in T'Ly. Let 7,, be the skein element in T'Lo,, that
is two Jones-Wenzl projectors |f,:|n placed side by side, see Figure 8. Let T™ € T Lo, be the
n-blackboard cable of T" and let T" = 7, - T™ - -

ELEEJ Z u > N 22nn

a : a n 'n,) (a n n) _ n—% 4(277»—(1‘1' n 2—a
N adm1551ble 9 \ = dm1551b1e Q(n,n,a)( 1) A

EF fusion
a untwisting I(a,rn)
n
T Z(a,r,n)

FIGURE 9. Fusion on a twist region.

Lemma 3.7. Given an admissible triple (a,n,n) and an integer r # 0 , let d(a,r,n) denote

2
the degree of the coefficient function I(a,r,n) := %(— )3 AT(n— atn?—4) resulting

from first applying the fusion and then the untwisting formula to evaluate (T™) from a twist
region T with v crossings. Then, we have

2

d(a,r,n) :=deg I(a,r,n) = 2(r — 1)n+ (1 — r)a +rn* — T‘%.

The case r = 4 1is illustrated in Figure 9.

Proof. Thisisa straightforward application of the fusion and untwisting formulas and Lemma
3.6 for the degree of ) O

nna)

Definition 3.8. We will denote the skein element in 7' Lo, in the sum resulting from applying
the fusion and untwisting formulas to T" by Z(a,r,n).

Let S be a skein element in T'L,, with crossings which may or may not contain a Jones-
Wenzl projector. The definition of Kauffman states on knot diagrams with crossings extends
naturally to skein elements in T'L,, with crossings. We denote by o(S) the skein element
resulting from applying a Kauffman state o to the crossings of S, and G,(S) will denote
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0(S) with the dashed segments of Figure 1, which will still be called “edges” even though
G4 (S) may no longer be a graph. For a skein element S that is a knot diagram in K (S?),
o(S) is the same as the set of state circles. The collection of arcs and circles in o(S) are
called the state arcs and state circles of o(S).

3.5. Some useful lemmas. Here we will restate some technical lemmas and definitions from
[15] and we will prove an auxiliary lemma that we will be using in the proof of Theorem 2.4.
The reader may choose to move directly to the proof of the theorem in the next section and
return to the statements as they are called in the course of the proof of Theorem 2.4.

Definition 3.9. Given a positive integer k, let P = {kj,...,ks} be a nonnegative integer
partition of k£ into s parts. We say that P is a minimal partition, denoted by P, if it
minimizes the quantity m(P) = maxj<;<s{k;} over all partitions P of k into s parts.

For example, P,, = {1,2,2} is a minimal partition of 5 = 1 4+ 2 + 2 into 3 parts, and
P ={3,2,0} is not a minimal partition of 5 into 3 parts.

A minimal partition exists by the following elementary lemma.

Lemma 3.10. Given k and s, one can find a minimal partition by writing k = us+b, where
w, b are positive integers and b < s using Fuclidean division. A minimal partition of k is
given by:

(2) {[k/s] =k/s+ (s—=b)/s,...,[k/s], |k/s] =k/s—b]s,...,|k/s]}.

b times s — b times

Next we recall the following lemma.

Lemma 3.11 ([15, Lemma 3.12)). Fiz k and s. The minimal partition Py, = {m,...,ms}
of k into s parts is unique up to rearrangement of indices. If P = {k1,...,ks} is another

partition of k into s parts, then
S S
BT
i=1 i=1

The next lemma provides conditions under which a skein element that arises in the eval-
uation of the Kauffman bracket of (D™), by applying the fusion and the untwisting formula
to the n-cable of a twist region in D", evaluates to zero.

n—=~k

FIGURE 10. The skein element S’ in K(D?).

Lemma 3.12 ([15, Lemma 3.2]). Let S € K(S?) be a skein element. Suppose that there is
a disk D? in S? so that the intersection of D with S is the skein element S’ € K(D?) shown
in Figure 10. If § —k > 0, then (S) = 0.

The final results in this section, that we will use for the proof of Theorem 4.2 to imply
Theorem 2.4, are Lemma 3.15 and Corollary 3.16 that provide upper bounds on the degree
of the Kauffman bracket of any skein element, in terms of the degree of the bracket of certain
“simpler” skein elements. Before we state the results we need to introduce some notation
and terminology.
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Definition 3.13. [23, Definition 2.3]' A crossingless matching on 2n points is an element in
TL, that is a collection of n disjoint arcs connecting the 2n points on the boundary of the
disk D? defining TL,,.

The set of crossingless matchings forms a basis for T'L,, as a vector space over C(A). Hence,
every U € T'L,, may be written in the form )  h(u)u where h(u) € C(A) and w runs over all
crossingless matchings. In particular, the Jones-Wenzl projector has such an expansion from
the following recursive formula [16, Figure 13.6]:

31 = C3| -5
n-+1 n

FiGURE 11. Recursive formula for the Jones-Wenzl projector.

We note that, in contrast with crossingless matchings, crossingless skein elements in 7L,
may be empty.

Definition 3.14. Given a crossingless skein element S € K (S?) (resp. T € K (D?)) decorated
with Jones-Wenzl projectors, we will use S (resp. T') to denote the skein element obtained
from S (resp. T € K(D?)) by replacing each projector with the identity element in the
corresponding Temperley-Lieb algebra.

Thus, S is a union of disjoint circles while T is a collection of disjoint arcs.

Next we prove the following lemma.

Lemma 3.15. Suppose that S € K(S?) is a crossingless skein element decorated by a number
of Jones-Wenzl projectors Ifl:ln € TLy, and, as above, let S denote the skein element resulting

from replacing each copy of |:'|:|n by 1, € TL,. Then, we have

deg(S) < deg(S).
Proof. Suppose that the number of projectors contained in S is s. The proof will be by
induction on n.

Suppose n+1 = 2. Let S be a skein element decorated by s copies of |:|':|27 and let S denote
the skein element resulting from replacing each copy of the projector with 15. Using (3) we
can expand each of the s copies of |:|':|2 in terms of the basis of crossingless matchings {12, 3},
to write (S) into a sum of 2° terms where each term is of the form

No\! — —
deg [ —— ) (S) < deg(S),
AN}
where 0 <[ < s and S is a skein element obtained from S by replacing [ copies of the identity
that were copies of ¢2 on the original S. We can realize this process by a length [ sequence
of skein elements

Sp=8—8 — - —8=38,

IThe version of the definition given in this paper has “points” rather than “nodes” and we specialize to
matching points on the boundary of a disk.
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such that at each step one identity 15 replacing the projector is changed to e?. Since S is

crossingless, for 0 < ¢ <[, §; is a collection of disjoint circles and in S;41 we merge or split
two curves of S;. Thus

A
deg <_AO> (Siv1) = deg(Si) —2£2 < deg(Sy),
1

and the conclusion follows in this case.

Assuming inductively that the conclusion holds for n > 1, let S be a crossingless element
decorated by s copies of ¢n e Using (3) we can expand each of the s copies in terms of the
skein elements {1{,77'} of Figure 11. Consider the function « from the set of s copies of
El:anrl to {13, 17'}. Using (3) we write a sum of 2° terns

<S> = Z fa<8a>a

o
where f, := (—%) and o is the number of times o chooses T7" for a copy of lf,]n

S is the skein element obtained from S by applying «. By the induction hypothesis, we have

1 and

(4) deg(Sy) < deg(Sq).

Note that each S, comes from S, by replacing each T{', T assigned by a by T7, TT}‘,
respectively. Also S comes from the function o that chooses T§ for each of the s copies of
the projector. For any S, we can take a sequence of a; skein elements that starts from S
and ends at S,, where each step switches a single copy of T¢* to T7'. The replacement of a
copy of TT? by TJ* can merge or split two circles in the previous skein element of sequence.
As earlier we conclude that for a # o, deg fo(S,) < (S). Combining this with (4) we get

deg fo(Sa) < deg fa(Sa) < deg(S).

Then since
deg<8> < max{deg fa <$a> }7

we have deg(S) < deg(S).

A consequence of Lemma 3.15 is the following.

Corollary 3.16. Suppose that S € K(S?) is a skein element with crossings which contains
a number of Jones-Wenzl projectors Ifl:ln € TL,. Let S5 be the skein element obtained from
S by first applying the all-A Kauffman state, then replacing each of the projectors in Sa by
the identity 1,. Then, we have

deg(S) < deg (Asgn("f‘)<$>> .

Proof. If S does not contain any Jones-Wenzl projectors, then S = S and we have a link
diagram in K (S?) for which it is well known [16] that

deg(S) < max{deg (A=)(S,))} < deg (A= ()(5)).

If S contains Jones-Wenzl projectors, then first we apply Kauffman states to all the cross-
ings of S to expand S = 3, A%"(?)(S,) and then apply Lemma 3.15 to each term to get

deg(S,) < deg(S,).

Hence we have
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deg(S) < max{deg <Asgn (S, ax{deg (Asgn(”) <870>> }.

Now for each state we have Sy = (S)s, where (3) comes from applying the Kauffman state
o to the link diagram §. Thus we can write

deg (A7) (S,)) < deg (A=O)((S),)) < deg (A=((S)4)) = deg (A=) (Sy)).

Now the conclusion follows by combining the last inequality with the preceding one. O

4. REFINED BOUNDS ON THE QUADRATIC GROWTH RATE OF THE DEGREE

In this section we will prove Theorem 2.4. It follows from Corollary 3.16 that there is an
upper bound H, (D) for deg(D"):

deg(D™) < H, (D) := ¢(D)n* + 2v4(D)n.

This is obtained by directly calculating the number of circles in the all-A state on D" and
the number of crossings on which the A-resolution is chosen.

Definition 4.1. For a diagram D = D(K) recall that wr(D) is the writhe of D and define

n2 —
(5) (D) = — HnlD) +wr(D)T1.

By Definition 3.5, hy, (D) is a lower bound of deg Jx (n).
Theorem 4.2. Suppose a knot diagram D is not A-adequate, then
d_[JK(M)] > ha(D) + p_(D)n? + O(n),
for a constant p_(D) > 0 which depends on the diagram D.
Before proving Theorem 4.2 we show it implies Theorem 2.4.
Proof of Theorem 2.4.

Proof. First, the statement of Theorem 4.2 directly gives Theorem 2.4 (a) since h,(D) =
w& + O(n). Secondly, if D is not B-adequate, then taking the mirror image of D
gives a diagram D* that is not A-adequate. Applying Theorem 4.2 to K* = D* and using the
fact that dy[Jx(n)] = —d_[Jk=(n)] gives Theorem 2.4 (b). Part (c) follows from combining

parts (a) and (b) to get s < 2¢4 (D) — 4p4 (D) and s5 > —2¢_(D) + 4p_(D). This implies
d[Jx(n)] < (2¢(D) — 4p(D))n” + O(n),
where p(D) := p4 (D) + p—(D). O

4.1. State graphs and through strands. It turns out that information about contribu-
tions of individual Kaufman states on D" to deg(D") is encoded in certain walks on the
all-A state graph G4 of D. In this subsection, we set up this correspondence and prove an
auxiliary lemma that will be used in the proof of Theorem 4.2.

Let u,v € T Lo, be two crossingless matchings embedded in two copies of the disk D? C S?
as shown in the left panel of Figure 12. The points of each of u,v on the boundary dD? of
the disk are separated into four groups that can be labeled as northwest (NW), northeast
(NE), southwest (SW) and southeast (SE). Generalize the notions of addition and numerator
closure of (2n, 2n)-tangles, we define N (u -+ v) to be the skein element in K (S?) obtained by
joining the NE (resp. SE) points of u on 9D? to the NW (resp. SW) points of v by parallel
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arcs (right panel of Figure 12). Similarly we join the NW (resp. SW) points of u on 9D? to
the NE (resp. SE) points of v.

(5 B (W)

\
1

o @

FIGURE 12. N(u+ v) for u,v € TLg

For two skein elements U = > h(u)u and V = ) g(v)v, where u and v are crossingless
matchings in T Lg,, we define an addition operation N (U + V) to be

NU+V) = h(u)g(v)N(u+wv).

Definition 4.3. Let S be a crossingless skein element in 7T'L,, which does not contain a
Jones-Wenzl projector. A through strand of S is an arc in S with one endpoint on the top of
the disk and the other endpoint on the bottom of the disk.

Given a skein element S € K (S?) with crossings and a Kauffman state o = o(S), there is
a sequence of states s := {01 =04 — ... = 0y = o} from the all-A state o4 to ¢ such that,
for 1 <¢ < f—1, g;41 is obtained from o; by replacing the A-resolution at a single crossing
with the B-resolution.

Given a single crossing y on S € K(S?), it will be convenient for us to view it as a skein
element in T'Ly. Then the n-cable of y is an element in T'Ly, which we will denote by y™. If
y" is part of a skein element S € K(S?) and o is a state on S we will use o|y" to denote the
restriction of o on y" and we will use o(y"™) to denote the element of T'Lg,, resulting from
aly™.

Lemma 4.4. [15, Lemma 3.7(b)] Let y be a single crossing X viewed as an element of T L.
If the skein element o(y™) has 2k through strands, then the sequence of states from o4|y™ to
oly" contains a subsequence of length k2.

Proof. Viewing the disk D? as [0, 1] x [0, 1], consider o4(y") in the disk and isotope y" so
that each set of dashed segments between the same pair of state arcs in o4(y™) are in the
same horizontal strip [0, 1] X [y;, y»] without any overlap, see Figure 13.

N7

/RN

FIGURE 13. The skein o4(y") with horizontal strips between state arcs.

~ middle

e
T

We consider o(y™) in the same disk. The intersection of any horizontal segment [0, 1] X yo
with o(y™) has to contain 2k points since o(y™) is assumed to have 2k through strands. For
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each horizontal strip that contains 0 < ¢ < n crossings, there are 2(n — {) state arcs providing
part of the requisite 2k intersections. We add up the remaining number of crossings necessary:
k,2(k—1),2(k —2),...,2 to get k% crossings in cg(c), where recall cg(o) is the number of
crossings on which o chooses the B-resolution. O

Remark 4.5. Let y be a single crossing X viewed as an element of T'Ly and let ¢ be a
Kauffman state on y™. Then a through strand of o(y™) runs in a direction parallel on the
projection plane to the dashed segment of Figure 1 on o4(y). If y is part of a skein element
S € K(S5?) then this dashed segment gives an edge e, of G4(S) of D. See Figure 14.

C L X X K

/ l
y A(Y) o(y?)

FIGURE 14. The through strands in o(y?) come from changing the A-
resolution to the B-resolution on the leftmost crossing in y2.

More generally, a (2,2)-tangle T that is part of a skein element S € K(S?), where T is
with crossings and without Jones-Wenzl projectors, is viewed as an element in T'Ls. On the
n-blackboard cable of S™, we have the n-blackboard cable 7", which is an element in T Lo,,.
A Kauffman state o on 8" restricted to 7™ produces a crossingless skein element o(7™)
without projectors, and it makes sense to talk about its through strands.

Definition 4.6. With the notation and setting as above, we will say that a through strand
of o(T™) passes through a crossing y of S, if it contains some state arcs of o|y™.

Now recall that for a graph with edge set E and vertex set V', where vg(e),vi(e) denote
the vertices of an edge e € FE, a walk is a sequence of edges ey,...,e, € FE such that
vi(e;) = vo(ei+1). A walk is closed if vo(er) = vi(em).

If the skein element S is a knot diagram D = D(K), then for every through strand, say
a, of o(T™) in D™ we obtain a walk of edges on the all-A state graph G4 of D. Namely, the
walk consists of edges {e,} corresponding to all crossings y € S that a passes through.

The observation that we can view through strands of skein elements resulting from applying
Kauffman states to tangles as walks on G4 will be used in the proof of Theorem 4.2.

4.2. Proof of Theorem 4.2. Before we embark on the formal proof of the theorem we give
a brief outline of it. Starting with a knot diagram D = D(K) that is not A-adequate, we fix
a crossing = that corresponds to a one-edged loop e of the state graph G4 = G4(D). For
fixed n we view D™ as a sum of two (2, 2)-tangles, one consisting of x and the complimentary
tangle 7. Using fusion rules (Lemma 3.7) on the fixed crossing z, we write D" as a sum of
skein elements S,(a) parametrized by pairs consisting of the fusion parameter, a of x, and
Kauffman states o. We write Sy(a) = N(Z(a,—1,n) + T,), where Z(a,—1,n) are the skein
elements of Definition 3.8 and 7T, € T Lo, are skein elements resulting from applying o|T.
Using Lemmas 3.12, 3.15 we are able to isolate the states o that contribute to the maximum
degree deg(D™). To estimate the degree contributions of such a state o, we view the through
strands of the skein elements 7, as closed walks on G4 starting and ending at the vertex
containing the one-edged loop e. This allows us to relate the number of through strands of
T> to the number of crossings on which ¢ chooses the B-resolution. This, in turn, combined
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with Lemma 4.4, allows us to estimate that the drop of the degree deg(D") from the potential
maximum H, (D), grows quadratically in n. See (6) below for the precise statement.

Proof. Given a knot diagram D of K, it suffices to show that if D is not A-adequate, then
(6) deg(D") < H, (D) — pn? + O(n),

for a constant p > 0 depending on the diagram. The statement of the theorem then follows
from (6) passing to h,(D) using Equation (5) with p_(D) = 1p.

n n
( ) N a (2 +2n27a2) a
—a: (ann n _1\n—5 A—(2n—a
admissible 9(n,n,a)( 1) A
v
n n

FiGURE 15. The crossing corresponding to e framed with Jones-Wenzl pro-
jectors and fused along a direction transverse to e.

Since D is not A-adequate, G 4 has one-edged loops. Fix a crossing x whose A-resolution
gives a one-edged loop e with vertex v in G 4. Take the n-blackboard cable of D and decorate
with a Jones-Wenzl projector as in Definition 3.5. Double and slide the projectors along the
n-cable of the knot using its defining properties from Definition 3.3, so that there are four
projectors framing z™. Let D" be the resulting diagram.

To compute (D") first apply Lemma 3.7 (with 7 = —1) for the twist region T' consisting
of the crossing x. See Figure 15 for the illustration, where since e is a one-edged loop, its
endpoints are on a single vertex v. Note that we are choosing a direction transverse to e for
the fusion. We have

(7) (D") = >
a:(a,n,n) admissible,
0<a<2n

An n—% 4 —(2n—atn2— 9
By (L EATE RS ),

where S(a) denotes the skein element corresponding to the parameter a in the sum of Figure
15. Next, we expand the sum of (7) over all Kauffman states o on the crossings of each S(a)
to get

(8) (D") = > I(a, =1,n) A")(S,(a)),

o Kauffman state on S(a),
a:(a,n,n) admissible,
0<a<2n

where S, (a) denotes the skein element resulting from applying a Kauffman state o to the

crossings of S(a). Finally, as in Lemma 3.7, I(a, —1,n) := %(—1)"7%147(2”7‘“r

n,n,a

2n2;a2 ) .

See [16, Proposition 5.1]%. As defined earlier in Definition 2.1, sgn(o) denotes the number of
crossings of D™ for which ¢ assigns the A-resolution minus the number of crossings for which
o assigns the B-resolution.

2Proposition 5.1 in [16] extends to the case of a skein element with crossings and decorated with projectors
with identical proof.
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Note that S(a) = N(Z(a,—1,n) + T) where Z(a, —1,n) is the skein element of Definition
3.8 for r = —1, and T is the diagram D™ with T™ removed. Similarly,

Sy(a) = N(Z(a,—1,n) + Ty),

where T, € T'Loa,, denotes the complement of Z(a, —1,n) in S,(a).

The through strands of 7, are the strands that run in a direction parallel, on the projection
plane, to the edge of Z(a, —1,n) labeled by a. Since T, € T Lo, its number of through strands
is even. Let k, denote half of this number.

FIGURE 16. The skein element J,(a).

Since the component, say J,(a), of Sy(a) decorated with Jones-Wenzl projectors contains
Z(a,—1,n), Lemma 3.12 applies to conclude that (J,(a)) and therefore (Sy(a)) is 0 unless
5 < ko. See Figure 16 for an illustration, where the dashed circle indicates the skein element
of a disk where Lemma 3.12 applies.

Thus, we can rewrite the sum in Equation (8) as

9) (D) = > I(a, —1,n)A¥")(S, (a)).
o Kauffman state on S(a),
a:(a,n,n) admissible,
0§a§2n,%§kg

Now we consider the degree of each term in Equation (9). We have
deg (1(a, ~1,m) A%)(S, (a)) ) = d(a, ~1,n) + sen(o) + des(S, (a),

_ _ 2 2
where, by Lemma 3.7, d(a, —1,n) = degI(a,—1,n) = —4n + 2a — n* + %.

1
Lemma 3.15, which says that deg(Sy(a)) < deg(S,(a)), gives us

deg (I(a, —1,n)A%"()(S (a))) < d(a,—1,n) + sgn(o) + deg(S,(a)),
where, as defined in Definition 3.14, S,(a) is the skein element obtained from S,(a) by
replacing every Jones-Wenzl projector by the identity element.

For fixed n, clearly d(a,—1,n) increases monotonically in a. Similarly for fixed n and
o, the function deg(S,(a)) increases monotonically in a, since S,(a) is just a collection of
disjoint circles whose number is determined by J,(a), and the number of circles increases
with a. See Figure 17.
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n—k‘k_a
ko ko

-,

n—=k

FIGURE 17. The crossingless skein J,(a).

Thus, since we work with § < k,, we can isolate the terms that contribute to the highest
degree of the sum (9), to rewrite

(10) (D") = Z Z I(a = 2ky,—1,n)A%®")(S, (a = 2k,)) + lower degree order terms.
o a<2ks
We will distinguish two cases:

Case 1. Suppose we have k, = 0, for all o of Equation (10). Then the only nonzero term
in the highest degree terms of the sum of (10) is when a = 2k, = 0. In this case, applying
Corollary 3.16 we have

deg (I(o, —1,n) A% <W>) < deg (I(O, -1, n)ASg“("A)(m>> .
Now we compute
deg (I(O, 1, n)ASg“("A)(SUA(O») = deg(1(0,—1,n)) + sgn(o4) + deg(Sy, (0)) =
=d(0,—1,n) + (¢(D) — 1)n% + 2v4(D)n + 2n =
= —4n —n® + (¢(D) — 1)n® + 2us(D)n + 2n.
With H,(D) = d(2n, —1,n) + sgn(c4) + deg(Sa(2n)) we have
Hy(D) — deg(D™) > 2n* + 2n.

The statement of the theorem follows from setting p = 2.

Case 2. Suppose now that there exists some o for which k, # 0. Discarding the lower
degree terms and replacing the parameter a by 2k, in (10), we have

(11) deg(D") < mgx{d(2kg, —1,n) +sgn(o) + deg(S,(2k,)) }-

Let v € G4 denote the vertex to the one edge loop e corresponding to the crossing x we
fixed at the start of the proof. This vertex corresponds to a state circle in o4(D") where,
using the notation of Definition 3.14, we have D™ = D". Since any Sa(a) is obtained by
applying the all-A Kauffman state outside the fused edge, the number of through strands
ko, is zero. Thus we can only have a non-zero number of through strands in S,(a), where
o # o4. In other words, through strands come from state arcs of o(D"), created from the
choice of the B-resolution on a crossing by . By Remark 4.5, to every though strand we
can associate a finite closed walk in G4 starting and ending at v: The sequence of edges in
the walk are the edges {e,},, correspond to crossings {y} that the strand passes through, in
the sense of Definition 4.6. Moreover, an edge in a walk coming from a through strand can
repeat at most 2n times, since the maximal number of through strands possible for any state
o on y" is 2n.

To facilitate exposition we will use X2 to denote the set of states that contribute to the
right hand side of (11). For 0 € ¥, and a crossing y of D, let k, denote half the number
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of through strands of the skein o(y™) obtained by restricting o|y™. Also let 04|y™ denote the
restriction of the all-A state on y™.

By Lemma 4.4, since o(y") has 2k, through strands, a sequence of states from o4|y" to
oly™ contains a subsequence of length k:Z This means that the number of crossings on which
o chooses the B-resolution in y" is at least k;, and therefore,

(12) sen(oaly™) — sen(oly") > 2K2.

Recall H,, (D) :=sgn(ca) + d(2n,—1,n) + deg(Sa(2n)). For 0 € ¥nax, by (11), we have

(13) H, (D) — deg(D") > d(2n,—1,n) — d(2k,, —1,n)+
+ (senlo) — sen(0)) + (deg(Sa(2n) — deg(S, (20))).
Consider the set W = {wi, -+ ,ws} of closed walks on G4 from v to v, such that the

number of times that each edge of G4 appears in a walk in W is at most 2n, and the walk
consisting only of e is not in W. Let s denote the cardinality of W.

Given o € Yax, for i =1 < --- < s, let k; denote half the number of through strands of
7T, corresponding to the walk w;. Here k; is not necessarily an integer. The set {2k1,...,2ks}
gives a nonnegative integer partition of 2k, into s parts. For i =1 < --- < s, pick an edge
on the walk w;. This gives a set of crossings {yi,...,ys} on the knot diagram D. Since we
assume k, # 0, we have s > 0. Now remove any repeated edges y; and renumber, to get a
set of s’ distinct edges {y1,...,ys}.

For j=1<...- <4, set k;; = ky, and recall that a sequence of states from o4 to o must
contain a subsequence of length at least (l{:é)2 Note that by our choice of the set {y1,...,ys}
the s’ subsequences we get this way are distinct. Moreover, every through strand of 7, is
contained in y; for some j, so &' = >k} > k.

Now using (12) we get

sgn(oa) —sgn(o) > 2> (k))*.
j=1

Furthermore, since for each j = 1 < --- < s’ the corresponding subsequence can create at
most 2k new state circles, we obtain deg(Sa(2n)) — deg(Sy(2k)) > —2 Zjlzl k. Finally, by
Lemma 3.7, we have d(2k,, —1,n) = —4n + 4k, —n? +2k2. With these observations at hand,
(13) leads to

(14) H, (D) — (d(2ks, —1,n) + sgn(o) + deg(S,(2ks))) >

8/

>2(n = k2) +4(n — ko) + > 2((k))* — k).
j=1

Now {kf,... k. } is a nonnegative integer partition of k' := Zjlzl K’. Applying Lemma
3.10 to k¥’ and s’ we get a minimal partition of k¥’ into s’ part as in (2). Then, applying

Lemma 3.11 to compare the resulting minimal partition and to {k} ...k. }, we have

S/

b(k'/s' +1—b/s")2 + (s —b)(K' /s —b/s')? > (K')?/s = Z(k'/s’)Q.

j=1
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Now from (14) we obtain

H, (D) — (d(2ks, —1,n) 4 sgn(o) + deg(Sy,(2ky))) >

K\? &
>2(n” — k2) +4(n— ko) +2) <S,> —2) K=
j=1 j=1

22 (K)? "~
=2(n? —K2) +4(n — ky) +2 —2) K.

7 J
s st
Recall k¥’ > k, by construction of the set {y1,...,ys}. Also, s > s’ and ns’ > k' since
K’ < n. Hence we get

H, (D) — (d(2ks, —1,n) + sgn(o) + deg(Sy,(2ky))) >
>2(712—14:2)4—4(n—kc,)—i—2]:;g —2ns =

2—2s
= (

Denote the quantity on the right hand side of the last inequality by g(k), where k := k.

By assumption s > 1. Since s is the cardinality of a set of walks on G4 it is independent
from o. Thus for fixed n, g(k) is a function of k, where 0 < k < n.

If s =1, then g(k) is a linear function in k with negative derivative -4, hence on [0,n] it
achieves its absolute minimum 2n? + 2n on n.

Otherwise assume s > 2. Since the critical point of g(k) is 25 < 0, the absolute minimum

VkZ — dko + (2n* + 4n — 2ns).

in [0, n] is achieved at k = 0 or k = n. Hence g(k) > min{2n? — 2ns, % —2ns}. Thus setting
p=2 >0 we have that g(k) > pn® + O(n) and the conclusion follows. O

5. APPLICATIONS TO CROSSING NUMBERS

Determining the crossing number of an arbitrary knot K is a hard task as there are no
general methods for it other than a brute-force search that would attempt to classify knots
that admit diagrams with crossings less than or equal these of a diagram for K. Such
methods have been used successfully to compile tables of knots with low crossing numbers
[8] but become hopeless for arbitrary knots. Although there has been some progress in
understanding the behavior of the crossing number under the operations of taking connected
sums or forming satellites of knots [14], fundamental questions in this direction still remain
out of reach [13, Problems 1.67, 1.68].

On the other hand the crossing numbers for broad families of knots that admit particular
types of diagrams are well understood. In particular, it is known that adequate diagrams
realize the crossing number of the knots they represent, and that the crossing number of
adequate knots is additive under connected sums [20, 24, 11]. In addition, it is known that
the “standard” diagrams of Montesinos knots and torus knots minimize their crossing number
[17, 16, 2]. As a Corollary of Theorem 1.1 we obtain the following criterion that allows to
determine the crossing number of non-adequate knots that admit diagrams with the number
of crossings “close enough” to their Jones diameter.

Corollary 5.1. Suppose K is a non-adequate knot admitting a diagram D = D(K) such that
jdg =2(c(D) — 1). Then we have ¢(D) = ¢(K).



JONES DIAMETER AND CROSSING NUMBER OF KNOTS 21

Proof. Since K is non-adequate, Theorem 1.1 gives
Jdr
2
and the result follows. g

c(D) > ¢(K) > =c¢(D) -1,

Next we will discuss lower bounds for the crossing number of Whitehead doubles of ade-
quate and torus knots. Using Corollary 5.1 we will determine the crossing numbers of infinite
families of Whitehead doubles.

5.1. Doubles of adequate knots. Let V be a standard solid torus in S2, with preferred
meridian-longitude pair (uy, Ay) and with Uy a copy of a £-clasped unknot as shown in
Figure 18. Given K C S% with a torus neighborhood Vi and preferred meridian-longitude
pair (uk, Ak ), take an embedding f : V — S3 with f(V) = Vi, f(uy) = ux and f(Ay) =
Ak Then Wi (K) := f(Uy) is the untwisted (positive/negative) Whitehead double of K.

We recall that if D = D(K) is an adequate diagram, and with the notation of Definition
2.1, the quantities ¢(D), ct(D) as well as the Turaev genus gp(D) are minimal over all
diagrams representing K [16, 11, 20, 25, 1]. We denote them by ¢(K), c+(K), and gp(K),
respectively. Furthermore, the writhe number of D is known to be an invariant of K and is
denoted by wr(K).

In this section we prove the following result which, as we will explain later on, implies in
particular Theorem 1.2 stated in the Introduction.

F1GURE 18. The positive Whitehead double of the figure-8 knot. By Theorem
5.2 the diagram shown is a minimal crossing diagram.

Theorem 5.2. Suppose that K is an adequate knot with crossing number ¢(K) and writhe
wr(K). Suppose moreover that cy(K),c—(K) # 0 and let W_(K) (resp. W, (K)) denote
the negative (resp. positive) untwisted Whitehead double of K. Then, the crossing number
c(Wi(K)) satisfies the following inequalities.

4e(K) +1 < c(Wi(K)) <4e(K) + 2 + 2|wr(K)|.

(
Furthermore, if wr(K) = 0 we have ¢((Wx(K)) = 4¢(K) + 2 and the diagram Wi (D),
formed by doubling an adequate diagram D = D(K) using the blackboard framing of D, is a
minimum crossing diagram for Wi (K).

Note that the lower bound of Theorem 5.2 is sharper than the general prediction stated in
[13, Problem 1.68] and the one announced in the unpublished preprint [21]. For the proof of
Theorem 1.2 it is crucial that we have the sharper lower bound of Theorem 5.2 and Theorem
1.1.
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For the proof of Theorem 5.2 we will use the following result of Baker, Motegi and Takata
which is a special case of [3, Proposition 2.4]3.

Proposition 5.3. Suppose that K is a knot such that dy[Jx(n)] = asn?® + ain + ag is a
quadratic polynomial for all n > 0. Suppose that a1 < 0 and that if a1 = 0 then as # 0. Then
we have the following.

(a) If ay > 0 then, for n sufficiently large,
1 1
dy[Jw_(k)(n)] = 4asn® + (—4as + 2a; — i)n + (a2 — a1 +ap + 5)
(b) If ag > % then, for n sufficiently large,

1 1
d+[JW+(K)(n)] = (4ag + 5)722 + (—4ag 4+ 2a1)n + (a2 — a1 + ap — 5)
Proof. Following the conventions and notation of [3, Proposition 2.4] we take 7 = 0, w = 1,
for dy[Jw_(ky(n)] and 7 =0, w = —1, for dy[Jw, (k)(n)]- O

A key part in the proof of Theorem 5.2 is to show that if wr(K) = 0, then the Whitehead
double W4 (K) is non-adequate. This task is accomplished in the next two lemmas, using
Proposition 5.3 and properties of adequate knots and of their colored Jones polynomials.
Then, Theorem 5.2 will follow easily from Corollary 5.1. Note that our first lemma doesn’t
require the hypotheses wr(K) = 0.

Lemma 5.4. Let K be an adequate knot with crossing number c¢(K) and writhe wr(K).
Suppose moreover that c4(K),c_(K) # 0. If Wi (K) is adequate, then

c(Wi(K))=4c(K)+1 and gr(Wi(K)) =c(K)+2g97(K) — 1,
where g7 (W4 (K)) denotes the Turaev genus of Wi (K).

Proof. Since K is adequate, by Lemma 2.3,

c(K c(K
(15) k)] - d_lx ()] = 02 (1 gra) - Uyt gy -1,
for every n > 0. Furthermore, dy[Jk(n)] satisfies the hypothesis of Proposition 5.3 with
day = 2c4(K) > 0 and d_[Jkg(n)] = —dy[Jk-(n)| satisfies that hypothesis with 4ay =

2¢4(K*) = 2c_(K). The requirement that a; < 0 is satisfied since for adequate knots the
linear terms of the degree of Jj;(n) are multiples of Euler characteristics of spanning surfaces
of K. See [10, Lemmas 3.6, 3.7]. Finally we have as # 0 since the statement of Theorem 5.2
assumes that ¢y (K),c_(K) # 0. Now Proposition 5.3 implies that for sufficiently large n we
have that d. [Jy, (k)(n)] — d-[Jw, (k) (n)] is actually a quadratic polynomial. That is, there
is some ng, depending on W, (K), so that for all n > ng, we have

di [ w10y ()] = d— [Ty (1) (n)] = dan® + dyn + do,

with d; € Q. Using Proposition 5.3, the fact that d[Jy (x+)(n)] = —d_[Jw_(k)(n)], and
Equation (15), we will compute the constant d; +ds in terms of the coefficients of d [Jx (n)]—

3Their result more generally assumes that d [Jx (n)] is a quadratic quasi-polynomial a(n)n?+b(n)n + c(n)
for all n > 1 of period < 2, with a1 := a(1), b1 := b(1), and ¢1 := ¢(1). In our notation, these assumptions are
satisfied for the adequate knots we work with in this paper for whom d[Jk (n)] is a quadratic polynomial in
n for all n > 1.
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To that end, write d [Jx (n)] = agn® + a1n + ap and —d_[Jx(n)] = ain® + ain + af . By
Equation (15) we have ag + a3 = C(é() and af +a; =1 —gr(K) — < 5( :

We have dy = 4ag + 4a} + 3 = 2c4 (K) 4+ 2c_(K) + 1 = 2¢(K) + 3, and
c(K)

2

Now if W4 (K) is adequate, then, again by Lemma 2.3, we also have dy = M and
di +d2 =1 — gr(Wi(K)). Now comparing the right hand sides of the two expressions we
have for ds and for d; + do we get the desired results. O

L~
—"

di +ds = 2a1 +2a] = 2(1 — gr(K) — ) =2—2g97p(K) — ¢(K).

Next we show that, under the additional hypothesis that wr(/) = 0 the knots W (K) are
non-adequate.

Lemma 5.5. Let K be a nontrivial adequate knot with wr(K) = 0. Then, the untwisted
Whitehead doubles W (K) are non-adequate.

Proof. We will work with the negative Whitehead doubles W_(K) first.
Recall that if K has an adequate diagram D = D(K) with ¢(D) = ¢4 (D)+c_(D) crossings,
and the all-A (rep. all-B) resolution has vq = vs(D) (resp. vp = vg(D)) state circles, then

(16) 4d_[Jg(n)] = —2¢_(D)n? + 2(c(D) — va(D))n + 2v4(D) — 2¢ (D),

(17) 4dy [Tk (n)] = 2c4 (D)n? + 2(vp(D) — ¢(D))n + 2¢(D) — 2vp(D).

Equation (16) holds for A-adequate diagrams D = D(K). Thus in particular the quantities
c_(D),v4(D) are invariants of K (independent of the particular A-adequate diagram). Sim-
ilarly, Equation (17) holds for B-adequate diagrams D = D(K) and hence cy(D),vp(D) are
invariants of K. Recall also that ¢(D) = ¢(K) since D is adequate.

Now we start with a knot K that has an adequate diagram D with wr(D) = wr(K) = 0.
Hence we have ci (D) = c_(D). Since D is B-adequate, the double W_(D) is a B-adequate
diagram of W_(K) with vg(W_(D)) = 2vp(D) + 1 and ¢y (W_(D)) = 4cy(D). These
statements are proved, for instance, in [3, Proposition 7.1]. Furthermore, since as said above
these quantities are invariants of W_(K), they remain the same for all B-adequate diagrams
of W_(K).

Now assume, for a contradiction, that W_(D) is adequate: Then, it has a diagram D that
is both A and B-adequate. By above observation we must have vg(D) = vg(W_(D)) =
2vp(D) + 1 and ¢4 (D) = ¢y (W_(D)) = 4dcy (D).

By Lemma 5.4, ¢(D) = ¢(W_(K)) = 4¢(K) + 1 and, since gr(D) = gr(W_(K)) [1], we
also obtain

(18) 91(D) = gr(W_(K)) = o(K) + 2g7(K) — 1.

Now we compare the two expressions of g7 (W_(K)) in Equation (18) in order to get a relation
between v4(D) and va(D).

On one hand, 2g7(D) = 2—vp(D) —va(D)+c¢(D) = 2—2vp(D)—1—va(D)+4c(D)+1 =
2 — 2vg(D) — va(D) + 4¢(D).

On the other hand, 297 (W_(K)) = 2(c(K)+2g7(K)—1) = 2¢(D)+2(2—va(D)—vp(D)+
¢(D)) =2 =2—2vp(D) — 2va(D) + 4¢(D).

Comparing the right-hand sides of the last two equations we find v4(D) = 2v4(D).

Write

—4d,[JW7(K)(n)} = 4d+[JW+(K*)(7’L)] = .117712 +yn + z,
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for some x,y, z € Q.

For sufficiently large n, we have two different expressions for x,y, z.

On the one hand, because D is A-adequate, we can use Equation (16) to determine z,y, 2
through —4d_[Jyw_(x)(n)].

On the other hand, using 4 dy[Jw, (x+)(n)], *,y, 2 can be determined using Proposition
5.3(b) with as and a; coming from Equation (16) applied to the diagram D*, that is the
mirror image of D.

We will use these two ways to find the quantity y. Applying Equation (16) to D we obtain

(19) y=2(c(D) —va(D)) =2(4e(D) + 1)) — 2(2va(D)) = 8¢(D) — 4va(D) + 2.

On the other hand, using Proposition 5.3(b) with a2 and a; coming from Equation (16)
applied to the diagram D*, we have: 4ay = —2¢_(D*) = —c4(D) — c_(D) = —¢(D). Also
we have 2a; = ¢(D*) —va(D*) = ¢(D) — vp(D), since we have v4(D*) = vp(D).

We obtain

(20) y =4(—4az + 2a1) = 4¢(D) + 4(e(D) —va(D*)) = 8¢(D) — 4vp(D).

Since v4(D),vp(D) are positive integers we have —2v4(D)+1 # —2vp(D). It follows that
the two expressions derived for y from Equations (19) and (20) do not agree and we arrived
at a contradiction. We conclude that W_(K) is non-adequate.

To deduce the result for W, (K), let K* denote the mirror image of K. Note that W, (K)
is the mirror image of W_(K™*). If W (K) were adequate, then the mirror image W_(K™*)
would also be adequate. But K* is a non-trivial adequate knot with wr(K*) = wr(K) = 0,
and our argument above shows that W_(K™) is non-adequate. 0

We now finish the proof of Theorem 5.2.

Proof. Let D be an adequate diagram of K with writhe wr(D). If needed, first adjust D by
Reidemeister I moves so that it has zero writhe number. Then, let W_(D) (resp. W4 (D)) be
the diagram of W_(K) (resp. W, (K)) obtained by taking a parallel copy of D and connecting
the two copies by a negative (resp. positive) clasp. Clearly W4 (D) has 4¢(K) + 2|wr(K)| + 2
crossings. Thus the upper inequality follows.

As discussed in the proof of Lemma 5.4, we have

Jdwy (k)

5 = 2(2¢(D) + %) = (4e(K)+1) > c(Wx(D)) — 1 —2wr(K),

jd
and hence, if wr(K) = 0, we get jw% = ¢(Wx(D)) — 1. On the other hand, by Lemma
5.5, if wr(K) = 0 then W4 (K) is non-adequate. Thus, if wr(K) = 0, Corollary 5.1 applies to
give ¢c(Wi(K)) = c¢(Wx(D)) = 4c(K) + 2. O

5.2. Doubles of amphicheiral knots. Note that amphicheiral (a.k.a. equivalent to their
mirror image) adequate knots must have wr(K) = 0. This means that amphicheiral adequate
knots admit adequate diagrams of zero writhe number. By Theorem 5.2 we have the following.

Corollary 5.6. Suppose that K is an amphicheiral adequate knot with crossing number c¢(K).
Then ¢c(W_(K)) = 4¢(K) + 2.

The figure-8 knot is the fist example on the knot table to which Corollary 5.6 applies.
For m > 0, letting K,,, denote the connected sum of m-copies of the figure-8 knot we have
c(Wx(Ky,)) = 16m + 2. This should be compared with the discussion in [5].
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For completeness, in Table 1 we give the list of all the prime knots up to 12 crossings
to which Corollary 5.6 applies. The information is taken from Knotinfo [18], where the
terminology used for knots that are equivalent to their mirror images is fully amphicheiral.

41 | 818 | 1043 | 12a435 | 12a506 | 12a1105 | 12a1275
63 | 1017 | 1045 | 12a471 | 12a510 | 12a1127 | 12a1281
83 | 1033 | 1099 | 12a477 | 12a1019 | 12a1202 | 12a1287
89 | 1037 | 10123 | 12a499 | 12a1039 | 12a1273 | 12a108s

TABLE 1. Prime, adequate, amphicheiral knots up to 12 crossings

A way to produce amphicheiral knots is to take connected sums of knots with their mirror
images as in Corollary 1.3 which we prove next.

Corollary 1.3. For a knot K let K* denote the mirror image of K. For every m > 0, let
Ky, := #™(K#K™) denote the connected sum of m-copies of K#K*. Suppose that K is
adequate with crossing number ¢(K). Then, the untwisted Whitehead doubles Wi (K,,) are
non-adequate, and we have c(Wy(K)) = 8mc(K) + 2.

Proof. Given an adequate diagram D = D(K), the mirror image of D, denoted by D* is an
adequate diagram for K*. The connected sum of adequate diagrams D# D* is an adequate
diagram of K#K* with wr(K#K*) = 0. Note, that the choice of orientations of K and K*
may affect the (oriented) knot type K#K™*. Nevertheless, with any choice of orientations,
the knot represented by the connected sum is adequate.

Similarly an adequate diagram of writhe zero for K, is obtained by taking the connected
sum of n-copies of D# D*. Since the crossing number is known to be additive under connected
sum of adequate knots, we have ¢(K,,) = 2mc(K) and the result follows from Corollary 5.6.
In fact, we get that Wi (D,,) is a minimum crossing diagram for K,,. O

Remark 5.7. Out of the 2977 prime knots with up to 12 crossings, 1851 are listed as adequate
on Knotinfo [18]. Hence, Corollary 1.3 applies to them.

5.3. Doubles of torus knots. For co-prime integers p,q with 1 < p,q, let T}, ;, denote the
(p, q) torus knot. It is known that ¢(T)4) = min{p(¢ — 1), ¢(p — 1)}. On the other hand, as
it can be found for example in [7], we have that jdx = pq < 2¢(T}q), for ¢ > 2. Thus T), 4 is
not adequate for ¢ > 2.

Proposition 5.8. We have c(Wx(Tpq)) > 2¢(Tpq)-

Proof. The Jones diameter jdy for W = W4(T},,) has been calculated in [3, Lemma 7.3]
where it was also shown that W is non-adequate. We have jdw = 4pq + 2. Now Theorem
4.2 implies that ¢(Wy(Tp4) > ]dTW =2pq + 1 = 2¢(T}p4) + 2min{p, q} + 1 > 2¢(T} 4). O

5.4. Crossing number of connected sums. Here we give applications of Corollary 5.1 to
the question on additivity of crossing numbers under connected sum of knots [13, Problems
1.67]. As already mentioned, for adequate knots the crossing number is additive under
connected sum. The next result proves additivity for families of knots where one summand
is adequate while the other is not.

Theorem 1.4. Suppose that K is an adequate knot with wr(K) =0, and let K1 := Wi (K).
Then for any adequate knot Ko, the connected sum Ki1# Ko is non-adequate and we have

C(Kl#KQ) = C(Kl) + C(KQ).
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Before we proceed with the proof of the theorem we need some preparation. Given a
knot K, such that for n large enough the degrees of the colored Jones polynomials of K are
quadratic polynomials with rational coefficients, we will write

—4d_[Jg(n)] = z(K)n? + y(K)n + 2(K) and 4d,[Jx(n)] = *(K)n? + y*(K)n + 2*(K).
We also write
dy [T (n)] — dy[Jx(n)] = da(K)n? + di(K)n + do(K).
Now let K7, K5 be as in the statement of Theorem 1.4. By assumption and Proposition

5.3, for n large enough the degrees of the colored Jones polynomials of both K; and Ko are
quadratic polynomials. For the proof we need the following elementary lemma.

Lemma 5.9. For large enough n, the degrees d+[Jk, #K,(n)] are polynomials, and we have
the following.

(a) $(K1#K2) = ZL‘(Kl) + l‘(KQ) and :E*(Kl#Kg) = {L‘*(Kl) + :L‘*(KQ)

(b) y(K1#K2) = y(K1) + y(K2) — 2 and y* (K1#K3) = y* (K1) + y* (K2) — 2.

(C) dQ(Kl#KQ) = dg(Kl) + dg(Kg) and dl(Kl#Kg) = dl(Kl) + dl(Kg) — 1.

Proof. The reduced colored Jones polynomial of a knot K is defined by Jx (n) := ?5 ((Z)) , Where

Jrx(n) == Jg(n)(t) and Jy(n) := Jy(n)(t) are given in Definition 3.5. Since the reduced
polynomial is known to be multiplicative under connected sum [16], we get Jg, 4k,(n) =

Ji,(n) - Ji,(n). The desired results follow easily since —4d_[Jy(n)] = 2n—2 = 4d4[Jy(n)].
O

The second ingredient we need for the proof of Theorem 1.4 is the following lemma.

Lemma 5.10. Suppose that K is a non-trivial adequate knot with wr(K) = 0, and let
Ky :=Wy(K). Then for any adequate knot Ky, the connected sum Ki#Ks is non-adequate.

Proof. The claim is proved by applying the arguments applied to K1 = W4 (K) in the proofs
of Lemmas 5.4 and 5.5 to the knot K1# K5 and using the fact that the degrees of the colored
Jones polynomial are additive under connected sum. For the convenience of the reader we
outline the argument.

First we claim that if Kq# K5 were adequate then we would have

(21) c(K1#K3) = 4c¢(K) + 1 + ¢(K2),
gT(Kl#Kg) = C(K) + QQT(K) + gT(KQ) — 1.
To see this first write

Ay [T, 10, ()] — d— [Tk, 16, (n)] = do (K1 #Ko)n? + dy (Ki#Ka)n + do (K1 #K>),

then as in the proof of Lemma 5.5, we compute the coefficients d;(K;#Ks), for i = 1,2 in
two ways.

One way to compute these coefficients is using Lemma 5.9 and Proposition 5.3. By Lemma
5.9, dQ(Kl#KQ) = dg(Kl) + dg(Kg) while dl(Kl#KQ) = d1(K1) + d1(K2) - 1, where by
the calculations in the proof of Lemma 5.4, do(K;) = 2¢(K) + % and di (K1) + do(Ky) =
2 — 2g7(K) — ¢(K). The corresponding quantities for K are computed via Equation (15).

The second way to compute these coefficients, is to use Equation (15) to obtain a second
expression for dy(K #Ky) = P2 anq dy (K #Ky) + di (K #K2) = 1 — gr(K 1#K>).
Finally, compare these two expressions to obtain the claim.

Next apply the argument of the proof of Lemma 5.5 to show that K;# K> is non-adequate.
By passing to mirror images as in the end of the proof of Lemma 5.5, it is enough to prove
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that K1#Ks with K3 = W_(K) is non-adequate. To that end, start with D = D(K) an
adequate diagram of zero writhe and let Dy := W_(D). Also let Dy be an adequate diagram
of KQ.

As in the proof of Lemma 5.5 conclude that Ds# D1 is a B-adequate diagram for Ki# Ko
and that the quantities vg(D1#D2) = (2vp(D) + 1) + vp(D2) — 1 = 2vp(D) + vp(D2) and
c+(D1#D3) = 4c4 (D) + ¢4+ (D3) are invariants of Kj#Ko.

Next suppose, for a contradiction, that Ki#K, is adequate and let D be an adequate
diagram. We have

vp(D) = vg(D1#D2) = 2vg(D) + vg(Ds) and c4 (D) = 4cy (D) + cy(D2).
By [1] and Equations (21) we have

(22) gr(D) = gr(K1#K3) = ¢(K) + 297(D) + gr(D2) — 1.
By (21), and the fact that adequate diagrams realize the knot crossing number, ¢(D) =
4¢(D) 4+ 1+ ¢(D2) and ¢(K) = ¢(D).

Now using the definition of the Turaev genus of knot diagrams to expand the leftmost and
the rightmost sides of Equation (22) we get v4(D) = 2v4(D) 4+ va(D3) — 1.

Next we will calculate the quantity y(K;#K2) of Lemma 5.9 in two ways:

Firstly, since we assumed that D is an adequate diagram for Ki# Ko, applying Equation
(16), we get y(K1#K2) = 2(c(D) —va(D)) = 8¢(D) + 2¢(D2) — 4va(D) — 2va(D2) + 4.

Secondly, by Lemma 5.9, we get y(K1#K2) = y(K7) + y(K2) — 1, which combined with
Equations (20) and (16) gives y(K1#K2) = 8¢(D) — 4vp(D) + 2¢(D3) — 2v4(D2) — 1. We
note that in order for the two resulting expressions for y(K1#K3) to be equal we must have
dva(D) 4+ 4 = —4vg(D) — 1 or —1 =0 mod 4, which is absurd. We conclude that K1#K,

is non-adequate. O
Now we give the proof of Theorem 1.4.

Proof. Note that if K is the unknot then so is W (K) and the result follows trivially. Suppose
that K is a non-trivial knot. Then by Lemma 5.10 we obtain that K1# K> is non-adequate.

As discussed above jdi, = 2(4¢(K) + 1) = 2(¢(W4 (D)) — 1). On the other hand, jdg, =
2¢(D3) = 2¢(K') where Dy is an adequate diagram for K. Hence, by Lemma 5.9, jdi, 4k, =
Jdi, + jdi, = 2(c(W+(D)) + c(D2) — 1), and setting Dy = Wi(D) we obtain jdi,4x, =
2(e(D1#D2) —1). Thus by Corollary 5.1, we obtain that ¢(K1#K2) = ¢(D1#D32) = ¢(D1) +
c(D2) = ¢(K1) + ¢(K2), where the last equality follows since, by Theorem 5.2, we have
(K1) =c(Dy) = c(Wi(D)). O

Remark 5.11. In [4] Baker, Motegi and Takata computed the Jones slopes of Mazur doubles
of adequate knots. Then they use the methods of this section to show that if K is an adequate
knot with crossing number ¢(K) and writhe wr(K), then the crossing number of the Mazur
double of K is either 9¢(K') + 2 or 9¢(K) + 3.
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