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Efficient photon upconversion enabled by 
strong coupling between silicon quantum 
dots and anthracene

Kefu Wang    1,2,6, R. Peyton Cline3,6, Joseph Schwan4,6, Jacob M. Strain    5, 
Sean T. Roberts    5  , Lorenzo Mangolini    4  , Joel D. Eaves    3    
& Ming Lee Tang1,2 

Hybrid structures formed between organic molecules and inorganic 
quantum dots can accomplish unique photophysical transformations by 
taking advantage of their disparate properties. The electronic coupling 
between these materials is typically weak, leading photoexcited charge 
carriers to spatially localize to the dot or to a molecule at its surface. 
However, we show that by converting a chemical linker that covalently binds 
anthracene molecules to silicon quantum dots from a carbon–carbon single 
bond to a double bond, we access a strong coupling regime where excited 
carriers spatially delocalize across both anthracene and silicon. By pushing 
the system to delocalize, we design a photon upconversion system with a 
higher efficiency (17.2%) and lower threshold intensity (0.5 W cm–2) than that 
of a corresponding weakly coupled system. Our results show that strong 
coupling between molecules and nanostructures achieved through targeted 
linking chemistry provides a complementary route for tailoring properties 
in materials for light-driven applications.

In recent years, researchers have functionalized quantum dots (QDs) 
with molecules to generate new hybrid materials1–5 for applications 
in solar energy harvesting6–9, catalysis10–14 and light emission15–17. 
These structures combine advantageous electronic properties of 
QDs, which possess high absorption cross-sections and size-tunable 
optical gaps, with those of molecules, which can exhibit high energy 
transfer efficiencies and specific chemical reactivities. In hybrid 
structures, charge and energy transfer between QDs and molecules 
at their surfaces is critical to their function. Typically, molecules are 
adhered to QDs via non-covalent van der Waals or ionic interactions. 
Such weak bonding implies weak electronic coupling between them. 
In the weak coupling regime, the wavefunctions of excited charge 
carriers are spatially localized to either the QD or surface-anchored 
molecules. Because electronic coherences are short-lived in the weak 

coupling limit, energy or charge moves between QDs and molecules 
via discrete, incoherent hops, as described in theories developed by 
Marcus18, Förster19 and Dexter20.

However, if the electronic coupling between a QD and a molecule 
can be amplified, fundamentally different electronic states can emerge. 
Due to hybridization of their electronic wavefunctions, charge carriers 
are simultaneously shared between the molecule and QD. In this strong 
coupling regime, a QD and surface-anchored molecules do not behave 
as separate entities, but rather as a single material whose electronic 
properties are distinct from those of its individual components. In 
the solid state, this scenario is analogous to the formation of an alloy, 
where strong electronic coupling between distinct atoms yields a new 
material with a unique functionality. Although strong coupling has 
been reported between the valence band states of CdSe QDs and the 
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Figure 1 shows absorption spectra of Si:dodecane, Si:9EA and 
Si:9VA in toluene. The absorption spectrum of Si:dodecane is relatively 
featureless (Fig. 1, grey dashed line), reflecting the indirect bandgap of 
silicon. In the spectrum of Si:9EA (Fig. 1, blue), a series of resonances 
appear at 396, 375 and 356 nm that correspond to the vibrational fine 
structure of the S0 → S1 transition of 9-ethylanthracene (9EA) molecules 
bound to silicon. As noted in prior work28, these resonances are slightly 
redshifted relative to corresponding features in the absorption spec-
trum of 9-methylanthracene (9MA; Fig. 1, inset), but otherwise do 
not differ in their linewidth or oscillator strength, indicating that the 
electronic coupling between 9EA molecules and the silicon QDs to 
which they are bound is weak.

In contrast to 9EA, 9-vinylanthracene (9VA) molecules display 
distinctly different behaviour. Upon binding to silicon, each of the 
absorption peaks that form the vibrational substructure of 9VA’s S0 → S1 
transition shows substantial broadening (Fig. 1, red). The extended 
π-conjugation of Si:9VA’s sp2 linkage is expected to facilitate spatial 
overlap of states involving 9VA’s π-electrons and those of silicon, 
improving their electronic coupling. If sufficiently strong, this cou-
pling can induce partial hybridization of the valence states of 9VA 
with several silicon states, leading each isolated 9VA absorption reso-
nance to broaden into a band of states with mixed silicon:anthracene 
character. Thus, the spectral broadening we observe is suggestive of 
improved silicon:anthracene coupling in Si:9VA with respect to Si:9EA 
(Fig. 1, inset).

We hypothesized that the stronger coupling present in Si:9VA 
would improve its ability to shuttle energy between its silicon QD core 
and anthracene molecules at its surface, which in turn should lead to 
its superior performance in triplet-fusion-based photon upconversion 
systems (Fig. 2a). In these systems, photons absorbed by Si:9VA are 
used to produce excitons with spin-triplet character. For silicon QDs 
of the size we employ (3.1 nm diameter), prior computational work 
has predicted the exchange splitting between their optically bright 
exciton states and dark spin-triplet states is small, ~10 meV (ref. 33). 
Once formed, triplet excitons can be passed from Si:9VA to emitter 
molecules diffusing in solution. Diffusive encounters between pairs of 
excited emitters can allow them to undergo triplet fusion, producing 
a high-energy, luminescent spin-singlet state.

Figure 2b plots emission spectra obtained from toluene 
solutions containing Si:9VA and one of two known emitters, 
9,10-diphenylanthacene (DPA) or 2,5,8,11-tetra-tert-butylperylene 
(tBu4P). Previously, we showed Si:9EA can efficiently drive triplet exci-
ton transfer to DPA, fuelling production of upconverted light with 7% 
efficiency28. We note the in-flight functionalized Si QDs we employ for 
this work have allowed us to improve that yield to 15.8%. By contrast, we 
find Si:9VA particles achieve a paltry upconversion quantum efficiency 
of only 0.03% when paired with DPA (Fig. 2b, blue). This result appears 
to go against our expectation that stronger coupling between anthra-
cene and silicon in Si:9VA should lead to improved energy transfer.

As photon upconversion involves multiple energy transfer steps, 
to identify which step was responsible for the reduced performance of 
Si:9VA, we replaced DPA in our upconversion system with tBu4P. Doing 
so produces an upconversion yield, 2.7%, that is over two orders of 
magnitude larger than that observed when pairing Si:9VA with DPA. 
This result suggests it is not energy transfer from silicon to 9VA that 
limits the DPA upconversion system, but rather energy transfer from 
Si:9VA to DPA. Importantly, DPA and tBu4P possess different triplet 
energies of 1.77 eV (ref. 34) and 1.53 eV (refs. 34–38), respectively. 
While anthracene has a triplet energy of 1.8 eV (refs. 34,39), which is 
just high enough in energy to sensitize triplet energy transfer to DPA, if 
this energy is lowered in Si:9VA due to coupling to silicon, the lowered 
energy will hinder the Si:9VA’s ability to transfer energy to DPA while 
having a smaller impact on energy transfer to tBu4P.

To evaluate if the sp2 bridge of Si:9VA lowers its triplet exciton 
energy below that of Si:9EA, we examined the electronic structure 

valence orbitals of phenyldithiocarbamate and carbene ligands21,22, 
these reports have demonstrated an impact only on charge transfer 
rather than energy transfer23. While efforts to increase the electronic 
coupling between QDs and molecules have yielded improved energy 
transfer rates24,25, none have surpassed the weak coupling regime as 
evidenced by the appearance of spatially localized and distinct QD and 
molecular states in transient absorption experiments.

In this article, we demonstrate that by controlling the struc-
ture of carbon bridges that anchor anthracene molecules to silicon 
QDs, we produce strongly coupled triplet excitons—spin-1 electron–
hole bound states—that spatially delocalize across both materials. 
Triplet states in QD:molecule hybrid systems hold strong interest 
due to their utility in photon upconversion systems that convert 
red-to-near-infrared light into ultraviolet-to-visible emission2,3,11,16,17,26,27. 
In these systems, QD:molecule hybrids function as sensitizers that 
absorb long-wavelength photons and pass their energy in the form of 
triplet excitons to emitter molecules in solution. Pairs of these excited 
emitters subsequently pool their energy to produce short-wavelength 
emission via triplet fusion.

By using a π-conjugated carbon bridge to link anthracene mol-
ecules to silicon QDs, we create a strongly coupled hybrid. This 
enhanced coupling impacts both the energy and spatial distribution 
of spin-triplet excitons formed by this system, as evidenced by measur-
able effects in steady-state and time-resolved optical experiments, as 
well as in electronic structure calculations that all differ qualitatively 
from those of systems lacking strong coupling. By varying the energy of 
strongly coupled triplet excitons via altering the number of anthracene 
molecules that couple to silicon QDs, we design a photon upconver-
sion system that converts green light to blue, achieving an efficiency 
(17.2%) and threshold power (0.5 W cm–2) that surpass values obtained 
for prior silicon-QD-based systems28. This system’s efficiency also com-
pares favourably with the best values achieved to date for QD-based 
upconversion systems1.

Our results represent an example of a QD:molecule system that 
exhibits strongly coupled excitonic states with well-defined triplet 
character. For hybrid QD:molecule systems, strong coupling can be 
advantageous both because it allows for tunability over their electronic 
properties and because, through coherence, it can bypass metasta-
ble intermediates in energy or charge transfer that lead to loss path-
ways. We anticipate that the silicon-QD:anthracene system we report, 
which employs extended π-conjugation between silicon and carbon 
to achieve exciton delocalization, can be used to produce strongly 
coupled nanoscale objects with designer electronic properties for 
applications in energy conversion, optoelectronics and catalysis.

Results
Silicon QDs were selected for this work as we hypothesized their ability 
to form strong, covalent bonds with carbon where electrons are equally 
shared29,30 would allow for increased electronic coupling between them 
and molecules anchored to their surface. This ability sets silicon apart 
from other common QD materials, such as CdSe and PbS, which coor-
dinate molecules to their surface via ionic interactions wherein elec-
trons are localized on one side of the QD:molecule bridge3. Silicon QDs 
with an average diameter of 3.1 nm were prepared via a non-thermal 
plasma synthesis and functionalized in-flight with 1-dodecene to 
yield dodecane-capped silicon QDs (Si:dodecane) that were soluble 
in hydrophobic solvents31,32. Si:dodecane was subsequently hydrosi-
lylated with 9-ethynylanthracene, yielding silicon QDs functional-
ized with a mixture of aliphatic dodecane and 9-vinylanthracene 
ligands. We refer to these surface-functionalized QDs as Si:9VA (Fig. 1).  
As a control, a second set of silicon QDs was prepared by replacing 
9-ethynylanthracene with 9-vinylanthracene, which yielded silicon 
QDs with anthracene ligands attached by a two-carbon chain whose 
carbon atoms were sp3 hybridized rather than sp2. We refer to this 
control sample as Si:9EA (Fig. 1).
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of both materials using density functional theory (DFT). We chose a 
balance between computational burden and faithful reproduction 
of experimental systems by creating a two-dimensional periodic slab 
that was quantum confined in one direction—parallel to the surface 
normal vector—to mimic the QD diameter. The silicon atoms along 
the surface normal vector span roughly 2 nm in length, which is com-
parable to the experimental QD diameter. Each side of the silicon slab 
is terminated by a Si(111) surface to which a single 9VA or 9EA molecule 
is attached (Fig. 3). We chose to employ this surface as it corresponds 
to silicon’s lowest-energy surface facet40–43. To mimic a silicon QD, we 
use a slab composed of six crystalline layers, periodically replicated 
in two dimensions. As we are interested in triplet exciton states, we 
compute the solutions of the Kohn–Sham equations for the triplets in 
each Si(111):molecule system using spin-polarized DFT and compute 
the approximate exciton density of states (DOS) from the conduction 
and valence bands44–46.

Figure 3a displays the DOS of triplet excitons computed for both 
Si(111):9EA and Si(111):9VA. To identify states involving surface-bound 
anthracene molecules, we projected out contributions to each com-
puted state from the p orbitals of the carbon atoms of 9EA and 9VA. In 
the absence of electronic coupling between silicon and anthracene, the 
DOS involving these orbitals will be sparse and sharply peaked, just as 
they are in individual anthracene molecules where large energy gaps 
separate each of their triplet states. However, if anthracene couples to 
silicon, the localized states of the molecule will hybridize with several 
states of the silicon, spreading spatially and energetically, creating 

a new band of states with mixed silicon:anthracene character. The 
greater the shifting and broadening of the molecular peaks is, the 
greater the strength of the coupling between the molecule and silicon 
will be.

By calculating the projected DOS from the carbon p orbitals, we 
find for Si:9EA (Fig. 3a, blue) that the states fall within a narrow range 
in energy, indicating that 9EA only weakly couples to silicon. By com-
parison, the projected DOS broadens substantially for Si:9VA, indicat-
ing stronger coupling between anthracene and silicon in this system  
(Fig. 3a, red). As expected, this coupling shifts the energy of the triplet 
states involving anthracene in Si:9VA, lowering it below the energy of 
these states in Si:9EA. This is in accordance with our photon upconver-
sion results, which suggest the triplet exciton energy of Si:9VA is lower 
than that of Si:9EA (Fig. 2b).

To further explore how silicon:anthracene electronic coupling in 
Si:9VA and Si:9EA impacts the spatial distribution of their excitonic 
states, we computed the band-decomposed ‘partial’ charge densities 
for triplet states containing carbon p-orbital character. In Fig. 3b,c, 
we plot the contribution of holes to these states for Si:9EA and Si:9VA 
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Fig. 1 | Structure and absorption spectra of Si QDs. Structures of Si:9EA and 
Si:9VA (top). Absorption spectra of Si:dodecane (grey dashed line), Si:9EA 
(blue, 〈N9EA〉 = 3.0) and Si:9VA (red, 〈N9VA〉 = 5.3) in toluene (bottom). The inset 
shows the absorption spectra of 9MA and 9VA after subtracting the Si:dodecane 
background. 9MA and 9VA serve as molecular references for surface-anchored 
anthracene molecules in Si:9EA and Si:9VA, respectively. The broadening of the 
resonances in Si:9VA is one indication of strong coupling.
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using the XCrySDen software package47 (Supplementary Section 4 
for computational details). While holes remain well localized to 9EA  
(Fig. 3b), we see substantial extension of charge density across the 
Si:9VA interface (Fig. 3c). This indicates the electronic coupling in 
Si:9VA is sufficiently large to push the system into the strong coupling 
limit, giving rise to triplet exciton states of mixed silicon:anthracene 
character that spatially delocalize across these two materials.

Experimental results from transient absorption (TA) spectroscopy 
in Si:9VA are consistent with the qualitative assignments of strong cou-
pling from DFT. Previously, we showed that photoexcitation of silicon 
QDs functionalized with 9EA produces a QD-centred triplet exciton 
state that transfers from silicon to 9EA on a 15.2 ns timescale28. This 
transfer occurs in the weak coupling limit as evidenced by the appear-
ance of an induced absorption band that agrees well with the triplet 
exciton absorption spectrum of 9MA (Fig. 4a, left and Fig. 4b, blue).

By contrast, we observe fundamentally different behaviour for 
Si:9VA (Fig. 4a, right). Photoexciting Si:9VA at 532 nm generates charge 
carriers within the silicon QD, producing a broad induced absorption 
peak near 950 nm that stems from interband transitions of these carri-
ers. Over a 3 ns timescale, this band decays and a new induced absorp-
tion feature centred near 480 nm appears along with a photobleach 
at wavelengths shorter than 420 nm (Fig. 4b, red). This bleach agrees 
well with the ground state absorption onset of 9VA molecules that are 
bonded to silicon (Fig. 1, inset), indicating that the induced absorption 
band at 480 nm arises from an excited state in which these molecules 
participate. Notably, this band’s spectral lineshape is distinct from 
that of a triplet excitation localized on 9VA (Supplementary Fig. 5a) 
and from a charge transfer state wherein an electron or hole has been 
donated from silicon to 9VA48,49. This suggests the generated excited 
state differs from one wherein charge carriers have been fully trans-
ferred from silicon to 9VA. Rather, this band is reminiscent of Fano-type 
lineshapes that result when the energetically sparse electronic states 
of a molecule mix with the dense manifold of electronic states of a 
semiconductor or metal50,51, signifying strong coupling between 9VA 
and silicon. This indicates the 3 ns timescale we observe for formation 
of this state arises not from energy transfer from silicon to 9VA but 
rather represents the timescale for intersystem crossing that converts 

a spin-singlet state localized on the silicon QD to a spin-triplet state 
that spatially extends across the silicon QD:9VA interface (Fig. 4d).

Discussion
Together, our electronic structure calculations and time-resolved meas-
urements indicate that Si:9VA’s sp2 linkage engenders strong coupling 
between silicon QDs and anthracene and that this coupling acts to lower 
the triplet exciton energy of this system. With this knowledge in hand, 
we can fine tune this system’s electronic structure to optimize it for 
photon upconversion. As each 9VA molecule that binds to a silicon QD 
couples to it strongly, the band of strongly coupled triplet states will 
widen and shift to lower energy as the number of surface-bound 9VA 
molecules is increased. Hence, by varying the number of bound 9VA 
molecules, we expect we can control the energetic position of Si:9VA’s 
lowest-energy triplet exciton state (T1) and hence set the energetic 
driving force for triplet exciton transfer from Si:9VA to an upconver-
sion emitter (Fig. 5a).

To test this concept, we measured TA spectra of silicon QDs func-
tionalized with different surface concentrations of 9VA (Fig. 5b). 
As the average number of surface-bound 9VA molecules, 〈N9VA〉, is 
increased from 5.3 to 7.3, we observe a progressive redshift of the 
photoinduced absorption stemming from Si:9VA’s strongly coupled 
triplet exciton state, from 470 nm to 508 nm. Such a shift is unexpected 
if the 9VA surface concentration has no impact on Si:9VA’s electronic 
structure. Indeed, for Si:9EA particles wherein anthracene molecules 
only weakly couple to silicon, we find there is no dependence of the 
spectral position of the 9EA triplet exciton absorption on the average 
number of surface-bound 9EA molecules, 〈N9EA〉 (Supplementary  
Fig. 6). By contrast, the spectral shift observed in Si:9VA can be 
explained if increased 9VA surface concentration alters Si:9VA’s tri-
plet exciton band structure (Fig. 5b).

Spurred on by our TA results, we optimized the performance of 
Si:9VA-based photon upconversion systems by varying the energy 
of Si:9VA’s T1 state by controlling 〈N9VA〉. Figure 5c,d highlights the 
performance of upconversion systems that employ DPA and tBu4P 
emitters, respectively. Whereas Si:9VA particles that bind on average 
seven 9VA molecules exhibited a miniscule upconversion efficiency of 
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0.03% when paired with DPA (Fig. 2b), we find that reducing 〈N9VA〉 to 1.8 
raises the upconversion efficiency by over two orders of magnitude, to 
3.6% (Fig. 5c). We attribute this gain to a reduction in the broadening 
of Si:9VA’s triplet exciton band structure, which raises the energy of 
Si:9VA’s T1 state and allows it to better donate energy to DPA.

In contrast to behaviour seen for DPA, we find increasing 〈N9VA〉 
from 0.9 to 2.9 enhances photon upconversion by tBu4P (Fig. 5d), which 
achieves a yield of 17.2% after accounting for inner filter effects (Sup-
plementary Fig. 3). We note that this yield surpasses that of the most 
efficient silicon-QD-based upconversion system known prior to this 
work, Si:9EA particles paired with DPA28. The performance of Si:9VA 
paired with tBu4P is even more impressive given that DPA has a higher 
fluorescence quantum yield than tBu4P (95% versus 70%)28,52, which 
means that all things being equal, we would expect DPA-based systems 
to be roughly a third more efficient at producing upconverted emission 
than tBu4P-based systems. As Si:9VA and Si:9EA possess similar triplet 
exciton lifetimes on the order of several tens of microseconds (Sup-
plementary Fig. 8), this performance difference cannot be explained 
by faster relaxation of excitons within Si:9EA.

Interestingly, increasing 〈N9EA〉 beyond 2.9 leads to a moderate 
drop in the upconversion produced by tBu4P. This decrease may stem 
from a widening of Si:9VA’s triplet exciton band structure to a point 
wherein triplet energy transfer to tBu4P becomes thermally activated 
or could also result from the formation of low-energy aggregate states 

between 9VA molecules that directly interact with one another on the 
particle’s surface. Aggregate formation has been reported on the sur-
faces of SiO2 particles53 and implicated in playing a role in both triplet 
transfer54 and electron transfer55,56 between molecules and semicon-
ductors, but assessing the involvement of such states in the photo-
excited dynamics of Si:9VA extends beyond the scope of this report.

In summary, by controlling the nature of the chemical bond that 
affixes anthracene molecules to silicon QDs, we have achieved strong 
electronic coupling between these materials. Strong coupling enables 
the formation of triplet exciton states that spatially extend across the 
silicon:anthracene interface. The energy of these spatially delocalized 
triplet exciton states can be altered by varying the number of strongly 
coupled anthracene molecules that bind to silicon. By controlling 
their energy, we optimize the ability of these states to fuel photon 
upconversion, achieving an efficiency yield of 17.2% that not only is a 
record efficiency for silicon-QD-based upconversion systems but ranks 
among the highest reported for QD-based upconversion systems1. 
More broadly, strong coupling between QDs and molecules provides 
a complementary handle for tuning the electronic structure of nano-
materials, in addition to changing their size and shape. By delocalizing 
charge carriers across all molecules bound to a QD, strong coupling can 
provide unique opportunities for creating systems with an enhanced 
ability to donate and accept charge, drive chemical transformations 
and reshape the energy content of light.
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Si:9VA (red). These spectra highlight the nature of the triplet exciton state 
formed by each system. In Si:9EA, a vibronic progression associated with 9EA’s 
triplet state appears at 438 and 418 nm and signals weak coupling between 
silicon and 9EA. In Si:9VA, a vibronic progression is not observed. Rather, a 

broad featureless peak indicates strong electronic coupling between silicon 
and 9VA. ΔAbs, absorbance change. c,d, Energy level diagrams illustrating the 
behaviour of Si:9EA (c) and Si:9VA (d) following photoexcitation. In Si:9EA, 
coupling between anthracene and silicon is weak. Photoexcitation of silicon 
leads to population of a triplet state localized on 9EA on a 15 ns timescale. In 
Si:9VA, strong coupling between anthracene and silicon gives rise to a band of 
triplet states with mixed silicon:anthracene character. Photoexcitation of silicon 
populates the lowest energy state of this band on a 3 ns timescale via intersystem 
crossing. kTT, triplet exciton transfer rate. kISC, intersystem crossing rate.
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