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Abstract

We study a simplified Ericksen—Leslie system modeling the flow of nematic lig-
uid crystals with partially free boundary conditions. It is a coupled system between
the Navier—Stokes equation for the fluid velocity with a transported heat flow of
harmonic maps, and both of these parabolic equations are critical for analysis in two
dimensions. The boundary conditions are physically natural and they correspond
to the Navier slip boundary condition with zero friction for the velocity field and a
Plateau—Neumann type boundary condition for the map. In this paper we construct
smooth solutions of this coupled system that blow up in finite time at any finitely
many given points on the boundary or in the interior of the domain.

1. Introduction

The aim of the present work is to investigate liquid crystal flows with partially
free boundary conditions. Let 2 C R? (d < 3) be a smooth domain. We consider
the system

v +v-Vut+ VP =Av—gV - (Vu O Vi — %|Vu|21[d> in Qx (0, 7),
V.ov=0 in Qx©,71), (1.1)
8,u+v-Vu=Au+|Vu|2u in Qx (0,7),

with the partially free boundary conditions

v-v=20 on 02 x (0,7),
(Sv-v); =0 on 922 x (0, T), (1.2)
u(x,1) € X on 3Q x (0, T), '

Bux,t) L TyxnE  on 992 x (0, T),
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where v : Q x [0, T) — R is the fluid velocity field, P : © x [0, T) — R is the
fluid pressure function, # : Q x [0, T) — S? stands for the orientation unit vector
field of nematic liquid crystals, (Vu © Vu);;j := Viu - V;u, and I; is the identity
matrix on R?, &y > 0 (coupling constant) represents a competition between kinetic
energy and elastic energy, v is the unit outer normal of 9€2, S is the strain tensor

1 T
SU = E(vv + (VU) )s

and ¥ C S? is a simple, closed and smooth curve. Let us assume that X is the
equator for simplicity. The case that X is a circle in S? is physically relevant;
see for example [15,17]. The proofs here work equally well with some simple
modifications. Boundary conditions for (1.2);—(1.2), are the usual Navier boundary
conditions for the Navier—Stokes equation with a zero friction, and (1.2)3—(1.2)4
are referred as partially free boundary conditions for the harmonic map heat flow;
see for example [7,19,32,40] and the references therein.

This system (1.1), which was first introduced by the first author in [26] as
a simplified version of Ericksen—Leslie system established by Ericksen [16] and
Leslie [24], enjoys the same type energy law, coupling structure and dissipative
properties. The system under consideration is a nonlinearly coupled system between
the incompressible Navier—Stokes equations and the heat flow of harmonic maps
with a (partially) free boundary condition. The latter is a geometric flow with the
Plateau and Neumann type boundary conditions. Let us first describe briefly the
latter system in a more geometric set up.

Let (M, g) be an m-dimensional smooth Riemannian manifold with boundary
oM and N be another smooth Riemannian manifold without boundary. Suppose
that X is a k-dimensional submanifold of N without boundary. Any continuous
map ug : M — N satisfying ug(0M) C X defines a relative homotopy class in
maps from (M, M) to (N, X). Amapu : M — N with u(dM) C X is called
homotopic to ug if there exists a continuous homotopy /4 : [0,1] x M — N
satisfying £ ([0, 1] x dM) C X, h(0) = up and h(1) = u. An interesting problem
is whether or not each relative homotopy class of maps has a representation by
harmonic maps. The latter must be solutions to the following problem:

—Au =T (u)(Vu, Vu),

u(dM) C ¥, (1.3)
3
gy L TuX.

Here v is the unit normal vector of M along the boundary aM, A = Ay is

the Laplace-Beltrami operator of (M, g), I is the second fundamental form of N
(viewed as a submanifold in R* via Nash’s isometric embedding), T, N is the tangent
space in R of N at p and | means orthogonal to in RY. (1.3) is the Euler—Lagrange
equation for critical points of the Dirichlet energy functional

Eu) =/ |Vu|? du,
M
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defined over the space of maps
Hy(M,N)={ue H'(M,N) : u(x) C T a.e.x € IM}.

Here H' (M, N) = {u e H'M,RY :u(x) e Nae.x M}. Both the existence
and partial regularity of energy minimizing harmonic maps in H)I: (M, N)have been
established, for example, in [3, 18, 19] under special assumptions, and in [13, 14,20]
in general cases. Another standard approach to investigate (1.3) is to study the
following parabolic problem:

ou — Au =T (u)(Vu,Vu) on M x [0, c0),
ulx,t) e ¥ on dM x [0, 00),
1) L Ty = on M x [0, 00),
u(-,0) =ug on M.

(1.4)

This is the so-called harmonic map heat flow with a partially free boundary. (1.4) was
first studied in [19], Hamilton considered the case where X is totally geodesic and
the sectional curvature K < 0. He proved the existence of a unique global smooth
solution for (1.4). The global existence of weak solutions of (1.4) was established
by Struwe in [40] for m > 3; see also [7]. In [32], the case m = dimM = 2 was
considered, where a global existence and uniqueness result for finite energy weak
solutions was obtained under some suitable geometric hypotheses on N and X.
When N is an Euclidean space, the first equation in (1.4) becomes the standard
heat equation

u; — Au=0on M x [0, 00).

Even in this special case, as pointed out in [7] and [40], estimates near the boundary
for (1.4) are difficult due to this highly nonlinear boundary condition. As far as the
heat flow is concerned, Struwe in [40] studied the problem using the intrinsic version
of harmonic maps with a free boundary condition. In particular, he used a Ginzburg-
Landau approximation in the interior, hence keeping the same nonlinear boundary
condition. Another approach was considered in [22], where the approximation is
on the boundary.

The finite time singularity (as conjectured in [7]) for (1.4) was proven only
recently in [35] with N = R?, M = Ri and £ = S' ¢ R2. The analysis there
cannot be generalized directly to the current situation as the target is no longer flat
and the standard heat equation has to be replaced by the heat flow of maps into
the sphere. Despite the nonlinearity of the system and the nonlinear coupling, the
Navier slip boundary condition turns out to be consistent with the partially free
boundary condition of the map. The latter is important for our analysis.

In the aspect of the incompressible Navier—Stokes equations, we refer the read-
ers to, for example, the books [8,41] and the references therein for comprehensive
theories. Of particular interest here is the incompressible Navier—Stokes equation
with Navier boundary conditions since the system (1.1) turns out to be more com-
patible and physically natural with the Navier boundary conditions (1.2);—(1.2);
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compared to the no-slip boundary condition. In the setting of Navier boundary con-
ditions, without being exhaustive, we refer to [4] for Constantin-Fefferman type
regularity results in the case of R3 and in [5,25] for the case of general domains in
R3. See also [6,33] for the local ex1stence of strong solutions and [6] for the global
existence of weak solutions in dimension three. It is worth mentioning that in order
to treat boundaries, the authors in [5,25] used the Solonnikov’s theory developed
in [36,37] on Green’s matrices for elliptic systems of Petrovsky type, which is a
subclass of Agmon-Douglis—Nirenberg (ADN) elliptic systems (see the seminal
works [1,2]). Our case, especially for the dealing with the boundary bubbling, is
closely related to the aforementioned theories.

For the study of the nematic liquid crystal flows, there have been growing
interests concerning the global existence of weak solutions, partial regularity results,
singularity formation and others. We refer to [21,23,26-31] and the references
therein.

Main results

In what follows, we consider the nematic liquid crystal flow with partially free
boundary (1.1)—(1.2) in the half space case 2 = Rﬁ_. Our method of construction
could be adapted to the case of general domain, but it would involve more technical
computations and we refrain considering such a generality.

We first construct finite time blow-up solutions to the partially free boundary
system (1.1)—(1.2), where the singularities can actually take place both in the interior
and on the boundary, and as a direct consequence of the construction, we give an
example (different from the one constructed in [35]) of finite time singularities for
the harmonic map heat flow with partially free boundary (1.4) as conjectured in
[7].

Our first theorem is stated as follows:

Theorem 1.1. For T, ey > O sufficiently small and any given points {q(] ) }kB U

{q(J)}kI C ]Rz with q(]) € BRz and q(]) € ]R2 there exists initial data (ug, vy)
such that the soluttan (u V) toproblem (1.1) wzthpartiallyfree boundary conditions
(1.2) blows up at finite time t = T exactly at these given points. More precisely,

kp _q(])
u(x,t) — usp(x) — Z |:W1 (Mj—)(B)) - Wl(OO):|

j=1

_q(j)
_ZQ(”[ (A(J)(I)>_W2(00)j|_)0 as t - T

in ngc(Rz ; R3)0L"°(Rﬁ_; R3)f0rs0me Uy € Hll)C(R2 ; R3)HC(R2 ; RS),proﬁles

W1 and W are defined in (2.3) and (2.2), respectively, the rotation Qw< ) is defined
T
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in (3.5), and the blow-up rate and angles satisfy, for some K}‘ > 0 and a);k

: —t
AD@) ~ i —————— as t > T,
I log(T —1)|?
a)(Ij)—>a)>; ast — T.
In particular, it holds that
kn kz

IVu(-, 1))? dx — |Vuy|* dx + 47 Zaqg-) + 87 Z‘Sq;ﬂ ast —>T
j=1 j=1
as convergence of Radon measures. Furthermore, the velocity field satisfies

vi—1

k J
A ()
pa. ey —t— 0<t<T

i I

Jj=1 NI0)
forsomec >0and0 <v; <1,j=1,---,k Herek =k3—}—kzand{qj}];:l =

)k )k

{q(gj)}jil U{qg)}jzzl'

Remark 1.1. e Each bubble on the boundary might be viewed as a “half” bubble.
e The absence of the rotations for the boundary bubbles is in fact a consequence
of the partially free boundary conditions (1.2). See more detailed discussions

in next subsection.

For the harmonic map heat flow with free boundary, the question whether finite
time singularity exists or not was originally raised by Chen and Lin [7]. The first
example was constructed recently by Sire, Wei and Zheng [35] using a caloric
extension. We would like to point out that the proof of Theorem 1.1 actually gives
another different example of finite time singularity. In fact, as a consequence of the
construction of Theorem 1.1, we have

Corollary 1.1. Assume M = R2, N = S, and ¥ = {(x1, x2, x3) € S? : x3 = 0}
in (1.4). Given any finitely many distinct points q in Rﬁ_ or on BRi, forT >0
sufficiently small, there exists initial data uo such that the solution to (1.4) blows
up exactly at these prescribed points at time t = T. Moreover, the blow-up profile
takes the form of sharply scaled 1-corotational profile around each point gy with
type Il blow-up rate

t
A(t) ~ ————— t—>T.
KO Tiog —np @

In order to deal with the Navier—Stokes equation with Navier boundary condi-
tions, we consider the following Stokes system with Navier boundary conditions

Jv+VP=Av+F in R2 x (0, 00),

V-v=0 in RZ x (0, 00),

) 0 0 (1.5)
szl x2=0 - Y v2 xz:O — Y

U|t=0 = O’
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where F is solenoidal:

V-F=0, F|__,=0.

x2=0

For the system (1.5), we derive the Green’s tensor and its associated pressure tensor,
and further obtain the following pointwise upper bounds:

Theorem 1.2. The solution to (1.5) with solenoidal forcing can be expressed in the
form

v(x, z)_/ / GOx, y,t — T)F(y, t)dydr

/ / / G*(x,y, T —s)F(y, s)dsdydr
RZ

P(x,t) = / / Px,y,t —1)- F(y, 7)dydr
0 JRZ
with G = (G)))i j=12, G* = (G}))i j=12, P = (P)) j=12

Gl (x, 3,0 =8;;(D(x —y, 1) = T(x = y*,1)

G] ol (x — y*, 1) E(x1 — 21, x2) dT(z1 — y1. y2. 1)
G?‘j(x,y,t)z(lfS[j)E[fZ o 74/]R dz;

9x2 ay2

0 ol (x — y*, t dE(x] —z1,x2) T (21 — y1, 2. ¢
8| —2 (=) )_4/ (1 —z1,x2) AT (21 —y1, y2 )le’
dx2 ax2 R dxo 3>
9 Az =y, y2. 1)
Pi(x,y, 1) =4(1 —=3;2) — /E(xl—zl,xz)idzl .
ox; L Jr )

Moreover, the following pointwise upper bounds hold:

Ll o3

0; DEDY Py (e, Dl ST T F =y P T e

/ L‘V2
19, DEDIGE (e, v, D S 7 T F (= y Ry e

As far as we know, above explicit representation formulae and pointwise esti-
mates are not present anywhere and our construction requires rather precise point-
wise estimates of the velocity field, so we include those here for self-containedness.
The proof of Theorem 1.2 is in a similar spirit as the works by Solonnikov, see for
example [38]. In fact, another way to deal with the forced Navier—Stokes equation is
to use the symmetry encoded in the partially free boundary conditions, which sim-
plifies the analysis. More precisely, under certain reflections thanks to the partially
free boundary conditions (1.2), the structure of the full system (1.1) is preserved,
and thus the partially free boundary problem can be regarded as an “interior” prob-
lem across the boundary. Essentially, this reflection technique shares similarities
with the classical Agmon—Douglis—Nirenberg theory (see [1,2]).

The key strategy in the proof of Theorem 1.1 is in similar spirit as that of
[23], namely, one starts first from the harmonic map heat flow and regards the
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transported term v - Vu as a perturbation. Then the leading part of the solution
u to the harmonic map heat flow provides external forcing to the Navier—Stokes
equation. The velocity, which carries information of u, enters harmonic map heat
flow in the form of a transported term. Finally, this loop argument is closed once one
shows that the transported term is indeed a perturbation. The transported harmonic
map heat flow and the incompressible Navier-Stokes equation with forcing are in
fact strongly coupled as one can see from the natural scaling invariance, and the
smallness of the universal coupling constant g is to ensure that the full system s less
coupled and the loop argument can be implemented. One interesting feature is the
natural symmetry/reflection encoded in the partially free boundary conditions (1.2),
which has also been used in [7], and is crucial in our construction, especially for
the behaviors for both the orientation field and the velocity field near the boundary.
In fact, since the inner concentration zone of each boundary bubble touches the
boundary, the use of reflection greatly simplifies the analysis of the linearization,
and to be more precise, one can regard both the linearized harmonic map heat flow
and the Stokes system near boundary bubble as interior problems.

The construction is based on recently developed parabolic gluing method,
which has been successfully applied in the studies of singularity formation in
parabolic equations and systems, geometric flows, fluid equations and others. See
for example [9—12,34] and the references therein.

The rest of the paper is devoted to the proofs of the above mentioned theorems.
For simplicity, we construct the most representative case of one interior bubble
and one boundary bubble. The construction of any finitely linear combination of
bubbles either in the interior or on the boundary is similar. See Appendix B for
detailed discussions. Before carrying out the rigorous constructions, we first give
a brief roadmap and introduce the key ingredients in next subsection.

Roadmap to the construction

The starting point of the construction is the symmetry (see Sect.2 for details)
encoded in the partially free boundary conditions (1.2). The free boundary condi-
tions not only guarantee the energy dissipation but also suggest the correct ansatz
for the bubbling, which is crucial for the linearization around the boundary bubble.
We should first note that the linearization for the interior bubbling is completely
“localized” because of our inner—outer construction. In other words, the lineariza-
tion near interior bubbles does not touch the boundary. There are two crucial aspects
needed to be analyzed carefully in the construction:

e how the partially free boundary conditions (1.2) affect the boundary lineariza-
tion;
e how the interior bubble(s) interact with the boundary bubble(s).
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In the case of the half space R2, the partially free boundary conditions (1.2)
can be expressed as

3x2M1 = O,

dynur =0,

u3 =0, on dR7, (1.6)
dy,v; =0,

vy =0,

SO one expects certain symmetry across BR%F. See the discussions in Sect. 2 for the
preservation of the structure for the full system under the reflection class (2.1), and
this in turn suggests to take as a first approximation (for the map)

Ust, 1) = UD @, ) + UP (x, 1) — UP*(x, 1)

as in (4.1), where U) and U® are bubbles placed on the boundary and in the
interior, respectively. Here the purpose of the “reflected” bubble U ®* is to make
the error in the right symmetry class (2.1) across the boundary dR? ; which crucially
simplifies our analysis for the linearization around boundary bubble. Indeed, careful
analysis for the linearization in Fourier expansion suggests that the inner problem
touching boundary can in fact be regarded as an interior problem after proper
reflections across BRi, provided the right hand side in the linearization has no
projection onto certain direction on the tangent plane of boundary bubble (see
Sect. 6 for more details). One role that U®* plays is to enforce such symmetry.
In the gluing construction, another important role that the partially free boundary
conditions (1.6) play is to also ensure that the outer “noises” coupled into the
linearization on the boundary do not destroy the structure discussed above.

The next step is to find perturbation consisting of inner and outer profiles such
that a real solution with desired asymptotics can be found. We look for solution in
the form

u~U;+ ul) + u?

inner inner + Uouter;

: 1 )
where the inner parts u; Uiners

inmer? expanding on corresponding tangent plane, solve

the linearization around the interior bubble and boundary bubble, respectively, and
the outer part ugyeer, SOlving essentially a non-homogeneous heat equation, han-
dles the external noises. Above ansatz then leads to a inner—outer gluing system
© @

for (u; Ui ers

inner? Uouter)- Here ugyeer is relatively straightforward to solve, while

in order to find well-behaved (u!}) ui(i)ler

inner? ), careful adjustment of modulation pa-
rameters is required so that certain orthogonalities are satisfied. The adjustment
determines the right dynamics, in particular for the scaling parameters.

Dealing with the velocity field v requires the analysis of the Stokes operator with
Navier boundary conditions. A direct way is to use its associated Green’s tensor
derived in Appendix C to capture precise pointwise control. In a similar spirit as
the ADN theory as well as Solonnikov’s theory, the use of reflections thanks to the

partially free boundary (1.6) in fact reduces the problem into an interior one.
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With all the analysis for linearized harmonic map heat flow and Stokes system
set up, one can start the loop argument described in the picture below, and the
construction is done in appropriate weighted topologies by fixed point arguments.

In conclusion, the partially free boundary conditions (1.2) not only imply a
natural and physical model of hydrodynamics of nematic liquid crystals, but also
encode good structure that triggers the new boundary bubbling phenomenon. With
such structure, we then carry out the iterative scheme as in [23] and close the loop
by using 0 < g9 < 1 in the refined perturbation argument depicted as follows

Green’s tensor

(L.D)1: — &V - (Vu © Vu — $[Vu|?1,) s v in(1.1)3

Reflection

Strongly coupled T l

) 3 Same asymptotics as the RHS
Mode k in the inner problem of u: ¢y

v-Vuin (1.1)3
O<epkl

2. Reflection and symmetry of the full system

Recall that the partially free boundary conditions (1.2) in the case Q2 = Ri can
be written as

2
8x2u1 = 8x2u2 =u3z = 8x2v1 =V = 0 on 8R+.

Thus we perform even reflection for u1, uz, v; and odd reflection for u3, vo,

up(xy, —x2,1)
- - vy(x1, —xp,t
u(xy, xp, 1) = | wup(xy, —xp,1) |, v(xp,x2,1) = 10r1 2.1) , x2 <0,
—vp(xy, =x2,1)
—u3(xy, —xp,1)

such that the partially free boundary conditions are automatically satisfied. Note
that this reflection technique has already been used in the harmonic map heat flow
with partially free boundary (see [7] for example). By

V. (Vi Vi) = [231uk31114k + Oopupduy + 8211/lk32’4k:|

20purd2ou) + 0111 Opug + 012Uk 0114
and

V101Ul + V2021
v-Vu = | v1ojuz + v20u7 |,
V10143 + v202U3

it is directly apparent that

i +10-Via= A+ |Vi|i,
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and
. 1
30 4+0-Vi4+ VP =AD — gV - <v:z O Vi — §|Vﬁlzﬂz>

if P(x1,x2,1) = P(x1, —x2,1) for xo < 0, which means 3 = 0. In fact, this is
true with our partially free boundary conditions (1.2). Indeed, applying the outer
normal v to (1.1)1, we get
0rv2 + 010102 + 120202 + 2 P = Avy — e0(dauk 02U + 011Uk d2u).
By the divergence free condition and the Navier slip boundary condition, we have
02vr = —01(dv1) =0 on 3R3_.

Similarly, on BR%_, by the partially free boundary condition,

021 00Uk + 011U D21 = O2u302U3 + d11U302U3
= dhuszAus
= douz(duz + vidiu3z + v2dou3 — |[Vul*u3)
=0.

Therefore, we have %—f =0on BR%F.
In conclusion, with the reflections
uy(xy, —xz,1)
u(xy, x2,t) = | ua(xy, —x2,1) |,
_M3(-x11 —X2, l)
vi(x1, —x2,1)
—v2(x1, —Xx2,1)

6(x]5x27 t) = [ } ) ﬁ(xl’x27t) = P(xla —X2, t)’

the structure of the equation (1.1) is preserved, i.e.,

@+ -Vi+ VP =AD— eV (ViO Vi — 5|Vill),

V-v=0,

80l + 0 - Vii = Ali + |Vii|?i.
We shall look for a solution to (1.1) with partially free boundary condition (1.2) in
the symmetry class across the boundary 8Ri given by:

ui, up, vy, P areeveninxp and usz, vy are odd in x; 2.1
with u = (uy, uz, u3)’, v = (v1, v2)7.
Remark 2.1. It is worth mentioning that if one imposes the no-slip boundary con-
dition for the velocity
”iaRi =0

instead of the Navier boundary conditions (1.2);—(1.2),, the natural energy dissipa-
tion is also preserved. However, this artificial boundary may destroy the structure
of the coupled system in nature, as one can see in the reflections, i.e., there is no
reflection preserving the structure of the entire system.
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Next, we try to gain some information from the symmetry at the linearized level.
We consider the infinitesimal generator of rigid motions: dilation, translations and
rotations. More precisely, the invariance from scaling and rotation around z-axis
corresponds to mode 0, the invariance from translations corresponds to mode 1,
and the invariance from rotations around x and y axes corresponds to mode —1.

Let W, be the least energy (degree 1) harmonic map
_2x _
1+]x|2
lx[>~1
1+]x|?

Wa(x) = , x € R?, (2.2)

namely, fRZ |VW,|? = 8. Our first approximation of the boundary bubble will be
based on the degree 1 profile

Wi == Q. Wa. (2.3)
Here we introduce
100
Q.,=|(001], (2.4)
010

because of the reflection (2.1).

In fact, there is some “rigidity” produced by the partially free boundary con-
ditions, especially for the boundary bubble(s). To see this, we formally compute
below the first variations with respect to different parameters. For the rotations
around x and y axes (mode —1), we consider

_2x 7] . 2x1
10 0 x4l +1 cosB 0 sin B | xZ4xZ41
2.2 2.2
; x5 -1 +x5—1
Wiq:=|0cosa —sina % . Wipg= 0 1 0 x12+x%+1
' ; XpTx ’ Xi{+x
0 sina cosa 1 2x2 ) i 2x2
-2 —sinf O0cosp || =22
Xq +x2+l_ xl+X2+1
The first variations
T 2x)
0 x12+x§+1
2% 0
_ 7,2 _
80,W]’a =0 = )261+)262+1 s aﬁwl,ﬁ p=0 =
x‘zL%_l 2
AR Pl

are not in the symmetry class (2.1).
Similarly, for the scaling and rotation around z axis (mode 0)

2)x1 . 2
X 4xZA2 cosw —sinw 0 | | Z43+1
2 2 2 2 2
XE4x5—A . xt+x5—1
Win =3+ 3= Wi, :=|sinw cosw 0| | —+—3—
L= | e | Wie e |
2).x 0 0 1|22

X7 +x3 A2 xP4xs+1
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one has
2xy (x}+x3-1) s
It Xl
1772 24x3+1
4(X12+X%) W XIz 2
oW =| -5, = _2u_ |,
FLA = (f+xy+1)2 o helo=o Al
2xp (x2+x3—1) 0
(3 +x3+1)2
which are in the symmetry class.
For the translations (mode 1)
2(x1—&1) 2y
(x1—1)2+x3+1 X2+ —£2)2+1
Wie = (1= 4x7 -1 Wi e = X+ —6)" -1
A1 =&+ | b2 ) |
2x) 2(x2—&2)
(x1—€1)24x3+1 X +(n—8)2+1
we have
2032741 e
a2 +1)? G
_ 4x) [ [
3 Wi g §=0 " | T oI+ | 9, Wi g, &H=0 O +x3+1)?
_Axxy _26¢=x34D)
(3 +x3+1)2 (3 4x3+1)2

Only the first one is in the symmetry class. In other words, the symmetry only
allows us to translate the bubble along the boundary E)Ri.

Heuristically, the above argument suggests certain rigidity produced by the
partially free boundary conditions, which reflects in the presence of modulation
parameters.

3. Notations and preliminaries

In order to analyze the transported harmonic map heat flow
u; +v-Vu = Au + |Vu|2u inRi_

in the symmetry class (2.1) across dR% , we first regard the transported term v - Vu
as a perturbation and introduce our first approximation and its correction to the
harmonic map heat flow. Later, after the analysis of the forced incompressible
Navier—Stokes equation, we will show that the transported term is indeed a pertur-
bation. We first give some useful notations and formulae.

Recall that we will construct a bubbling solution which blows up at a given
boundary point and interior point. In the following, the superscripts “(1)”, “(2)”
refer to the bubble placed on the boundary and in the interior respectively; and
we will repeatedly adopt this notation to distinguish these two bubbles and their
associated tangent planes.
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Introduce polar coordinates near two concentration zones

x— £

Vi = S x =D 4 2Wpiel%, i =2Dp;, j=1,2.

In polar coordinates y; = p jeief, Jj =1, 2,the least energy harmonic maps W1 (y1),
W3 (y2), defined in (2.3) and (2.2) respectively, can be represented as

cos 01 sinw(py) cos 0y sinw(p2) i0
Wion=| cosw(p) |, Wa2) = | sinfysinw(py) | = [e COE‘S)E"(’;Z)]
sin 01 sinw(p1) cos w(pn) P2
with
w(p;) = m — 2arctan(p;),

and we have

2 nwen 2p; o pi—1
Wy, = — , SIMW(Pj) = —PjWp; = —5 -, COSW(Pj) = :
pj p/g+1 J W, PJ2'+1 J p/g+1

The linearization of the harmonic map operator around W; is the elliptic operator

LYWg]:= Ay, ¢+ VW0 P +2(VW; () - VOIW; (), (B.D)
whose kernel functions are given by
Z$h () = pjwe, (0NE ().
Z) (i) = pjwe, (0)ES ().
Z9)(v) = wy, (pplcos 6, (y) + sin 6, E5 (31,

) : ) () (3.2)
Zyy(yj) = wp;(pj)sin€; E;7(yj) —cos0; Ey ()],
Z9) () = pw,, (pj)leos 0, EY (y)) — sin0; ES ()],
Z9) () = pPwy, (o)) [sin 6 E{ (v)) + cos 6, EY ()1,
where the vectors
1 cos B cosw(py) 1 —sin 6
EPGy=| —sinw) |. E’on=| 0 [,
sin 61 cos w(p1) cos 01
) (3.3)
) cos B cos w(py) ) —sin 6y
EP () = | sinbacosw(p) |, ES(y2) = | cosés
—sinw(py) 0

form an orthonormal basis of the tangent space Ty e j)Sz, i.e., Frenet basis asso-
ciated to W;. We see that

LP1ZY1=0 forp==+1,0, j. g =12
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Because of the scaling, rotation and translation symmetries,

_gM e
UD(x, 1) =W, (%) UP(x,1) := 0, Wa (%) (3.4)

solve the harmonic map equation, where Q,, is the rotation of angle w matrix around
z-axis (viewing the target S* embedded into R?)

cosw —sinw 0
Oy, :=|sinw cosw 0]. 3.9
0 0 1

Notice that
1 — 1 2 — 2
L1001 = 06.D)2LPD16V], LP19®] = 0.@)720,L7 19?1, where
x— &)
oV =D, P = 0P (), ¥ ="

and L(Lf) stands for the linearization around U /), Jj =1, 2. In the sequel, it is of
significance to compute the action of Lg) on functions whose values are orthogonal
to U pointwise. Define

Ny :=¢—(p- UNHUY. (3.6)

We now give several useful formulae whose proof is similar to that of [11, Section
3]:

LMY o] =0y Ae + Ly [@],
where we denote
Ly'1e] = vu91PnyY) e —2v(e - u)yvu, 3.7)
with
2
V(@ - UNVUD =30, (- U)o, UY, x = (x1.x2).
k=1

We give several useful expressions of the operator Zg) acting on & in different
forms:

e In the polar coordinates
(D(X) = CD(}’J', Qj), X = é:(j) + r.jeigj,

the operator (3.7) can be expressed as

-~ 2 1 1 1
L 101 =~ 55w, (o1) [(an @ UMED gy @ UD)E] )] Cn=20p,

- 2 1
LYo = < W (P2) [(ar2<1> UD),EP — 5 (- U@))QwEf)] . =2y
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e For the operator I:S) acting on ®(x) = (¢1(x), @2(x), <p3(x))T, We can com-
pute

01 cos 01 sin w(py)
o @ - v = (cos 010y, +sinb610y,) | @2 . cosw(py)
03 sin 61 sin w(p1)

sinw(p1) .
= —F (Ox, @1 + Ox,03) + sin 201 (0x, @1 + Ox; @3)

+ €08 201 (3x, 01 — 8xZ<p3)} + cos w(p1)[cos 010y, @2 + sin O 0y, @21,

1 01 cos 01 sinw(p1)
—35,® - UD = | (cos018y, —sin01dy,) | 92 | | - cos w(pi)
"1 3 sin 6 sin w(p;)

sinw(p1) .
= T[(axzwl — Ox; 3) + sin 201 (3x, 3 — 0y, ¢1)

+ c0s 201 (3x, 1 + 8x1<p3)} + cos w(p1)[cos 010y, 2 — sin 019y, 2],
and thus
V@) = (L)@ + (Lo 1V 1@ + (L1 (] (38)
with
[Lyl§ 1] := D)~ prw?, (m)[(axlw] + 00, 03) E{” + (3,03 — axzwl)Eé”},
o101 = —200) " w,, (m)cosw(m)[(ax,wnosel + <axzwz>sin61}Ei”
+20.D)" w,, (o1) cos w(pl)|:(8x2¢72)(30561 — (34, 92) sin Gl}Eél), (3.9

Lol 1] := M) pjw?, (Pl)|:(axz§0l + 34,03) Sin 26) + (3,91 — axzw)cosze]}E{”

+ 0D pyw) (m)[(ax.wl — 05, 03) sin 20 — (I, 01 + ax.wg)coszel}EQ”,

where we have used sin w(p1) = —prwp, (o1).
e Another convenient form is the following: fora C I function ®(x) : R2 - CxR
written in the complex form

@1 (x) + iwz(x)}
@3(x) ’

O(0) = (1), g2(x). 3(0) T = [

if we write

=1 +tipy, ¢=¢ —ig,

. (3.10)
divp = 0y, 01 + 3x,02, curlp = 3,2 — 0y, 91,

then we can express

L21®] = L1191 + [Lo1 P19 + [Ly1$P (@] (.11)
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as

Lyl 10]:= 6.2~ ppwl (0)ldivie ) 0 E{Y + curl(e ™) 00 ES ],
L1211 := —20P)  wy, (02) cos w(p2)[(3x, 93) €08 6 + (2, 93) 5in 62100 E
—20) ") (p2) cos w(p2)[ (B, 93) sin 63 — (92, 93) c0s 6210w ES”,
(L1101 := 02) ™ pgw? ()Idiv(e @) cos 26, — curl (e 3) sin 26,10, E|
+0.®) " pyul (p)[div(e! ) sin 265 + curl(¢@) cos 26310 ES”.
(3.12)

The proof is similar to that of LS).
e If we assume

L x=EP 4 e rn=2%p,

D(x) = [¢(r2())ei92]

where ¢ (r) is complex-valued, then we have the following formula:

5 2 . 1 4
L1081 = ;00 [Rete 0,000 Q0B + (e 62 00 |

4. Approximation and improvement

We consider the case of two bubbles with one placed in the interior and the other
placed on the boundary. In this section, we introduce the approximate solution and
its improvement. We consider the approximation

U, 1) = UV, ) + UP(x, 1) —UP*(x,1), x e R, 4.1)
where UMD and U® are given in (3.4) and

2.2 -5
g0

UP*(x, 1) = 0, | _220te?) | 4.2)
[x—&@*24+(2@)2
Al e A
|x,é(2)*‘2+()\(2))2

Q, is the rotation matrix defined in (3.5), and we take

V@) =), 0) e IR, w3
Q0 =EP 0,621, Y0 =EP @), -2 1), EP@) >0,

The reason for taking the above approximation is twofold: the reflection term is to
preserve symmetry, and the leading profile should be approximately of length one.
Clearly U®* is a least energy harmonic map. Denoting the error operator by

S(u) .= —u; + Au + |Vu|2u,
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we then have
S(Uy) = —, U —3,U? — UP*) +|VU, U,
_ |VU(1)|2U(1) _ |VU(2)|2U(2) + |VU(2)*|2U(2)*
= — X“)BA(UU(” +él(1)3 A
————— S1

—————

—e
=& ::51(1)

_[Maamuﬂy_y®ﬁ+@%ﬂﬂn_U®ﬂ

e
=€}

+670,00? — U +EP00 U - U%}

—e®
2
+ ‘V(U(l) + U® _ U(Z)*) [U(l) + U® _ U(Z)*]

_ |VU(1)|2U(1) _ |VU(2)|2U(2) + |VU(2)*|2U(2)*
=N+ eV 1P +eP + €,

where
30UV @) = -0 Zgh o),
9,00V = M)z on,
B0 U ) =) ZH00).
3,00 ) = —?) 7' 0,2 (),
0UD () = —0uZH ().
3,0UP () = D)7 0uZi% ().
9,00 = ) 0uZ1500).
with
Z§1(vj) = pjwo; (0)NE (7).,

2 2
Z53(32) = prwe, (0 ESY (12,

Z7)(yj) = wp, (pj)leos 0;E (v)) + sin 0, ES” ()1,
Z{3(3) = wo, (plsin 0, E (v)) = cos 0, E5 (y))1,
for j = 1, 2. Here the definitions of Z;{;, Eij), Eéj) can be found in (3.2), (3.3).

‘We notice that the error S(U,) contains slow spatial decaying terms in Eéj ), in
other words, these terms are not in L2(R?), and 5(()] ) in fact corresponds to mode 0
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of each concentration. To improve the spatial decay, we add two global corrections
CD(()J ) solving at leading order

3tq)(()j) ~ AdDéj) _ 5(()j)_
More precisely, to improve &, (1), we take the corrections in the form

wé”(rl, 1) cos 6 .
<I>(()1) = 0 , x—&W =l
o (1. 1) sin

where
t

NGIDE —/T h()ri K (zi(r1), t — s)ds,

2
2(l —e %

ar) =07+ MHY2 K@z = %

The reason for the above correction is the following. The slow decaying error in

Sél) is

W90 u® =i0aM) 1z ()

0 ; cosf
: 2 oSt 20 !

~ )“(1)2;1(])2 ~— 0
ri+ U7 ging, "t | sing,

Then the scalar gp(()]) roughly solves
1 n, 1 p 1 oq 230
3[‘/?(())=3r1r1<ﬁ(())+—3r1§0(())——2€0(())— —
T r T

1

whose explicit form was derived in [11]. Similarly, for the slowing decaying error
o e(2)
in &

0

iP8,0U? + 0,0 = A202)710,78) + 60,75

oy ‘ cos 6 —sin 6,
No— 20, | AP | sinty | +2P6 | cost
ry + (@) 0 0
o _ 22 [h0)e™
r 0 '

we add a global correction of the form

() i6, .
cb(()z) _ |:(ﬂ0 (rzd t)e } L x—ED = el
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where
t

0P (. 1) = — f Pa()r K (22(r2). £ — 5)ds,
T
p2(t) = AP 0D, 7)) = (7 + (WP)HV2,

Here the complex notation
_|a+ib
a ¢

means the 3-vector v = (a, b, c)T. We then write
®g 1= ) + . (4.4)
By direct computations, the new error produced by ® is

2
8Py — Ao + &0 + 62 = Y RS + R,
j=1

- (1 - (1 - 2 - 2
=0 [f] w0 M) wp=[R] wR =R,

where Q. is defined in (2.4),

i i, 02 1
Ry = —rle’mT/Tk“)(s)(zlkzl — 2K, — 5)ds,
Zl —

. . . [ .
RV = —ei1Re (e_le“g‘(l)(t))/ D) K(z1(r), 1 = 5)ds
-T

. . . . ¢ .
+ 260 Wi () —Re (rele's“)(r)))/TA(”(s)lez,(zl(rl),z—s)ds,

4
o R : (4.5)
RO = —rpe'”? / , D2 (22Kz, — 25K 2,2,)(22(r2), t — ) ds,
Z2 -
. N t
R = —el®Re (¢712£D (1)) / O KGalr).1 =) ds
. . . . t
+ 269 05D (1) — Re (e @ (1)) / P2(5) 22Kz, (22(r2), 1 — ) ds.
Z2 =T

Observe that jo ) is of smaller order. Moreover, we can evaluate

)

S LP1eg1 - 8,Us + Adg — 8,00 = K + K — T [RY]
j=1

where for j = 1, 2, operators ig) and Hgﬁ are defined in (3.7) and (3.6), respec-
tively, and

K = K+ KF (4.6)
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with

2 > /’ (1) oy (D
=— —p1w MY S)E; K (z1,t —s)ds,
A 2y 1

1 1 t
Koo =5y 1y, [w / M”(s)nl@.(m,z—s)(zmlds]Ei”

=T
1 2 " 2 m

- P cosw(m)[/ A(s) (21K — 2 Kzz)(zlst—s)dS]E ,

40 P10 . 1 — 21Kz 1
1

ICEI) : )L(l)wpl [Sl( )cos(? E(l) +§l(l) sin 0 E(l)]
2 2 ! . —i 2 . —i 2
Koy = - T3P, f [Re (52()e7 D)0, EP +Im (pa(s)e ) Q,, ES )]-K(zz,t—s)ds,
-T

K = ,\<12> paw?, |:k(2) [ tT Re (p2(5)e N K, (22,1 — $)(22), ds} 0,E”
— P cosu() [ [ IT Re (52(9)e70) (22K, — 3Key) (22,1 = ) ds} 0uE”
- ﬁpzwﬁz [ ﬁ IT Im (po(s)e D) 22Kz, — 25K2y20) (22,1 — ) ds] 0,EY.
KD =L, [Re(G? - iE?)e®) 0, E? + (G2 — it®)e®) 0, EL)

n®)
A4.7)

5. Gluing system and derivation of the dynamics for parameters

In this section, we first formulate the inner-outer gluing system so that blow-up
solutions with desired asymptotics can be constructed. Then we derive at leading
order the dynamics that the parameter functions should satisfy.

Since the target manifold is S?, we expect that the real solution u to the harmonic
map heat flow takes the form of leading profile U, plus smaller order terms such
that |u(x, t)| = 1 for all x and ¢. To better evaluate the smaller order terms, we look
for a solution u of the form

u = (1 +a)Us + P — (P - Uy)Usy,

® = Znﬁ{)®(’)(yj,t)+<I>om(x,t)+<l>o G-h
with & defined in (4.4),
o) = ¢l 01 DE + 901, DES,
Y = ¢ (1. D QuE + s (32, QwES”. 52)
2D ) = <x -—E(j)(t))’ )(s) {1, fors < 1,
AD(OR(1) 0, fors>2,
where a is a scalar, gol(r{ )1, gofn 5» Pout are perturbations of smaller order, and R(r)
W )

will be chosen later. ¢; ", ¢;; 5 solve the inner problem near each bubble U 2
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while &, handles the region away from the concentration zones. From |u| = 1,
we see that the scalar |a| = O(|®|?) is of smaller order. Notice that we only need
to solve

S(u) = b(x, 1)Uy

for some scalar b. Indeed, since |u| = 1isenforcedforallz € (0, T)andu = U,+w
where the perturbation w is uniformly small, we have

b(x, ) Uy -u) = S(u) - u = 1d||2+1A| >=0
X, *u—uu—Zdtu zu—.

Thus b = 0 follows from U, - u > § > 0, which means u is a solution to the
harmonic map heat flow.
Now, we compute the error

Sw)= —arUsx — (1 +a)3s Uy — ;P + (P - Uy) 01 Uy + 0 (P - Uyx) Uy + AaUsx

+ (1 4+a)AUx +2Va - VU + AD — A[(D - Us)Ux]
2

+ ‘V((l +a)Us+ @ — (@ Un)Us)| [(1+0)Us +® — (@ Un)Us]

= -0 P+ADP+ SUs) + (P -Uy)ot Uy — (O - U ) AUy — 2V (D - Uy) - VU,
2
[(1+@)Us + ® — (@ Un)Us] — VU Us

+ ‘V((l +a)Us + @ — (P - Ux)Us)

+2Va - VU + a(AUx — 3 Ux) + [Aa — a; + 3(® - Uy) — AP - Uy)|Us,

and here

o Us =n @) (U — U@ 4 9Q 0l [UD — UP*] + (@ou + ) - s

To formulate the inner—outer gluing system, we start from S(u) = b(x, r)U, and
neglect terms in U, direction due to the discussions above. One expects that the
inner solution QDI(I{ ) solves the linearization around the bubble U, while @y
solves a non-homogenous heat equation dealing with all R%r including the regions
away from two concentration zones. This leads to the following sufficient condition
for S(u) = b(x, 1)U, to hold: {<I>-<j ) Dt} solve the inner—outer gluing system

mn °’

03,00 = A0 + VU PO 1+ 2vu ) . vol Yy
+ L ou + kg + K in BYY, L x (0. 7), .
1 D57 .
8 Pou = ADoy + (1 — 1}y — 1LY Gou

+ (=Y =K + V) + Cn + N in R x (0, T),
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)
where B B OR -

in (3.7), and

={x e Ri s |lx — &) < 20U) R}, the operator Zg) is defined

2
Cni= Y (q,mAnm L2V Vo) — oWg )
j=1

+0Q 0y, 0 WDy, +§(/))> +1P0J02 (5.4)
N = (®- U)o Uy — (O - Up) AU, —2V(® - U,) - VU,
+|VIA + @)Uy + ® = (@ - UDU[ 11 + @)U + & — (@ - Un)Us]

— VU U, + Y [RY] +2Va - VU, + a(AU, — 3,U,) + &
2
_ Z <|VU(j)|2<Di(I':) + Z(VU(j) . chi(é))U(j)
j=1

+IVUDPITY) oy — 2V ( Doy - U(f>)VU<f>>. (5.5)

Here

0-—1
Ji=110
00

(=R

For the inner problem, we are going to write, in the complex notation

) ) ()
cI;)m Cc — galn 1 + l(pm 20

and further decompose in Fourier modes

O E B N
keZ

in the corresponding polar coordinates. The inner problem will then be solved mode
by mode. For the outer problem, we write

Ol.lt w+Z*

with Z* = (Z%, 25, Z5)T : R x (0, 00) — R satisfying

0, Z* = AZ* in R% x (0, 00),
0oZi(, ) =0, 3,Z5¢,1)=0, Zi(,t)=0 ondR% x (0,00), (5.6)
Z*(,0) = Z§ in R?.

Here Z* will be needed in the reduced problems (especially for the scaling pa-
rameters). Then we will get a solution solving the harmonic map heat flow if
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(<I>-(1) o? Yr) solve the inner—outer gluing system

mn °’ mn °’
(20,00 = LYON T+ 0?2 [L [ @oud + K +K{"] in DL

M gD
O(,0) =0 in B, (5.7)
o). w; =0 in DJ}
2 2 2 (2 2 2 . 2
(@)23,00 = LP100 + ()2 [ LT [@oul + £ + K| in D
@ e
@37 (-,0) =0 in By, (5.8)
2 . 2
@Y. 0,W, =0 in D,

1 2 .
Wy = At + G0, pr, D €D gy, o 0] in R x (0, T),

mn °’

(5.9)
Iy Y1 = 0, Y2 = ¥3 =0 on IRY x (0, 7),

where
2 1 2\ 7 G
qu(n)] =(1- n;e) - ngg))Lg)q)out +Cn+ N
| 5 . .
+ (=) =K + K,

g[)"(l)v pZa 5(1)7 %.(2)7 q>0uta q>(1)

n °

the linearization Lg,{}) [¢] is defined in (3.1), and
DY = B x (0,7) = (y; € B2 : |y;| <2R) x (0.T)

with the radius
T —1t

j— = —Vx i = oo(T — 12
R = R(t) — )\.*(t) with )\*(f) - |10g(T _ t)|2

and y, € (0, 1/2)(5.10)
The reason for choosing such R(#) and X1.(#) will be made clear later on. The
boundary conditions in equation (5.9) actually follow from the fact

dv,Us 1 = dx,Usp = Us3 =0 on dRZ x (0, T),
1 1 1
05, @0} = 05, @5 = (s =0 on IRZ x (0,7)

thanks to the choices of UD and the reflection U ®*. Here
1 1 1 1
Us = Us1. Us 2. U 3)T. @) = (@], @), o))

Next we derive the dynamics for the parameters A7), p2(t), S(l) (1), 5(2) (¢) at
leading order as t — T . We assume for now that the function @ (x, ) is fixed and
sufficiently regular, and we regard 7" as a parameter that will always be taken smaller
if necessary. We recall that we need £ V) (T) = ¢, A)(T) = A®(T) = 0, where
g e E)Ri, q? e Ri are given.

In order to find solutions to the inner problems (5.7) and (5.8) with sufficiently
fast decay in space and time, one expects certain orthogonality conditions to hold
since even the stationary linearized operator (around degree one harmonic maps) has
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six-dimensional kernel in L°°(R?). In fact, the linear theory that will be discussed
in Sect. 6 requires the following orthogonality conditions

. HDZY) (vj)dy; =0 forallz € (0, T), 5.11)
2';(’
where
HO = 00 [LP 100 + K + K] (5.12)
H? = @) 07! [ig)[cbout] +K? 4+ K}z)] , (5.13)

and Z;,{ 21 is given in (3.2). Intuitively, if A/)(¢) has a relatively smooth vanishing
ast — T, then it is natural that the term (A())29, CDI(I{ ) is of smaller order, and the
inner problems are approximately of the form

1 1 1 . 1
LYoM1+HD =0, o). w; =0 inBY,

(5.14)
LP10214 0,H? =0, @ . 0,W, =0 in BY.

If there are solutions deI{) (yj, 1) to (5.14) with sufficiently fast decay, then neces-
sarily (5.11) hold for p =0, 1, j, ¢ = 1, 2. These orthogonality conditions in turn
require the correct choices of the parameter functions so that the solution (<I>i(lf ), v)
with appropriate asymptotics exists.

We first derive the dynamics for the parameters A1) (mode 0), £ (mode 1)
appearing in the boundary bubble. Write

Bo' v, £D100)
o)

= o | OO kRO O 2 G, = 1.2
BZR

Combining (4.6), (4.7) and (5.11), the following expression for B(()ll) is readily
obtained by similar computations as in [11, Section 5]

_ r—s t—s

‘ (1) /12
B(()]l)[)»(l),é(l)](t) :/ PO (M) d_s — 23D (1) + o(1),
T

where o(1) — Oast — T, and ' (7) is smooth function given by

[} 2
(1) = —f piw;, |:K(§)+2§K§(§)1 i —4cosw(p1)§2K;;(§)} dp1,
0 tA t=r(1+p})
where
~ 1 — 97%
K():=2 .
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Here the orthogonality with Z(()’l% does not contribute in the dynamics since
[0+ ] £ =0,
Using the expression of I'{(7), we get
ITi(r) =1 <Ct(1+|logt|) fort <1,
IT'i(0)] < % fort > 1.

Define

2D

1
a(g])[)»(l), W Dy = Ty

[, L0l 200 dn.
BZR
Then the orthogonality condition (5.11) with ¢, j = 1 and p = 0 is reduced to
1
BS) =al). (5.15)

We observe that

=) 5. (g .
B(()ll) :/ ; (S)ds + O0(I1AV]ls0) + 0(1) as t — T.
-T -

To get an approximation for a(()ll), we recall the operator Zg}l) defined in (3.8)-(3.9).

Write
Doue = (Pout, 1. Pout,2: Pour3)” -
We then get
as) AV, 6D Doyl = By, Pour,1 + 8x, Pou3) + o(1) as 1 — T.

Then the reduced problem (5.15) at mode 0 can be written in the form

=007 5 s) ) (1)
/ , ids = [9x; Pout, 1 + 9x, Pout, 316" (1), 1) + o(1) + O(IA* [loo)s
(5.16)

and thus neglecting lower order terms, A1 satisfies the following integro-differential
equation

ds = 8y, Pour,1(¢ ", 0) + 0, Dou3(¢", 0) =: o™
(5.17)

/x—w”)%) A (s)

-T t—s

At this point, we make the assumption that

Ay, Pour.1(qV, 0) + 85, Dour. 3¢V, 0) < 0, (5.18)
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which is achieved by choosing Z(’)‘ in (5.6). Then, equation (5.17) becomes

ds = —la§"™. (5.19)

/tu“))z(z) A ()

-T t—s
We claim that a good approximate solution to (5.19) as ¢t — T is given by

pe)

» (1) - -
PO = e =P

for some x> 0. Indeed, we have

/umzm A ()
ds

_T t—s

ft—(T—t) i (s)

ds + A0 [log(T —— 210g(k(1)(t))]
_T r—s

=020 5D gy — 5Dy
n / (s) Q) ds
t—(T—1) r—s

L5
~ / A7) 4y = i@ log(T — 1) = T(1)
T

ast — T. We see that

dY(t)
dt

log(T — 1) = j—tu log(T — 0?4 @) =0

from the explicit form of )l(l)(t). Thus Y'(¢) is a constant. As a consequence,
equation (5.19) is approximately satisfied if ¥(1) is such that

T 5

A (s

K(l)/ —( )ds == _|a(()1)*|7
-T T —s

which finally gives us the approximate expression

AV (@) = =185, Pour,1 (@, 0) + 82, Pour 3¢V, 0)] A1),

where

|log T

halt) = =
0= logT — 0P
Naturally, imposing A, (7T) = 0, we then have

j(y ~ —MOBTL 0 ) as o T 5.20)
* |log(T—t)|2 - + o( as t—> T. (5.

Similarly, for the mode 1 of the boundary bubble, we define
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BEBD., M)
5 (D

=5 ), [IC(()l)[)\(l)7g(l)]+K§1)[)\(1)’§(1)]]_Zgj(yl)dyl’ =12,

(1
2R

BURD W@y = B 1D, D10y +iB 1D, D).
Therefore, by (4.6), (4.7), (3.2) and the fact that fooo plwf)ldpl = 2, we obtain

BORD D) = 260 (1) +0(1) as t — T.

Write
Dy () £(1) A0 > (1) ,
a; (A, 80, Dol = - Ly[®out] - Zl’j(yl) dy;, j=12,

(1)
2R
a"® D o] = =@V, D, Doyl +ialY D, ED, o).
Therefore, the orthogonality (5.11) with j = p = g = 1 is reduced to
BBD D] = VD D oy, (5.21)

2

Similarly, since [ w?

,cosw(pr)prdpr = 0, we get

al VAW, D Doy ] = 20, Dou2 (6D, 1) /Ooo cosww?pdp + O(R™?)
=o0o(l) ast—>T
by using (3.8)—(3.9), and thus
50 =0R™).
This means we can have a solution
500 = g1 +0(T =)',

where Y, is given in (5.10). Note that the imaginary part of afl) vanishes because
of the partially free boundary 9,5 (¢ M) = 0 for given ql(l) eR.

For the parameters involved in the interior bubble, one can carry out a similar
analysis for 2@ (¢) at mode 0 and for £ @ (¢) at mode 1. In fact, we have

/ T o)

_T r—s

ds = (div®oy + icurl®ou) (€2, 1) + O ([ p2lloc) + o(1),
EPr)=0R™?) as t > T, (5.22)

where we have used the complex notation (3.10) writing

® — CIDout,l + iq)out,2
out q)out,3 ’
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For the expected asymptotics of the blow-up speed p2(f) = 1P el to exist, the
following sign condition near the interior bubble is needed

divdou(g@, 0) <0,

which determines the parameters

ds = —|div®ou(g®, 0)] 4 o(1),

=020 35
/_T t—s

curl® 5.23
® = wq := arctan M(q(z), 0), 629
1V @out

£@ =¢@ 1 o(T — 1),

for some given point ¢» € I@i.

In conclusion, orthogonality conditions, which are required to guarantee well-
behaved solutions to the inner problems (5.7) and (5.8), result in the following
asymptotics of the modulation parameters:

T —t
1 1 1 1 2
)L()(I)NK()llog(T—_t”z’ E()(I)Nq()€3R+
(5.24)
T —t : o
pa(t) ~ K(2)|10g(T——l‘)|2€le’ 5(2)0) ~ q(z) S R%_

for some k1, @ > 0,

6. Linear theories for linearized harmonic map heat flow and Stokes system

In this section, we give linear theories that are needed to solve the linearized
harmonic map heat flow, namely the inner and outer problems (5.7)—(5.9), and also
the Stokes system.

Linear theory for the inner problems. We first start from the model inner problem

(28,60 = LP[¢D1+hD(y;, 1) in DY,

¢(]:)('7 0)=0 in BEQ(O)’
¢V - W; =0 in DY)

for j = 1,2, where we write

D.— ) p —
oV =), n=HD,
— 2 —
¢@ = 010, 1@ = o IH®,

mn

6.1)

and we recall that
T —t

— — TV i = oo(T — 12
R=R() = 4™ with dulh) = oo

and y, € (0, 1/2).
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For notational simplicity, in the rest of this section, we drop the superscripts and
just write

228,¢ = Lwlpl+ h(y,1) in Dag,
$(,00=0 in Bag(0), (6.2)
¢-W=0 in Drg

since the linear theory applies to both inner problems. For example, if we apply
the linear theory of the model problem (6.2) to the inner problem of the boundary
bubble, then the spatial variable y in (6.2) stands for the rescaled variable y; around
the boundary concentration point.

Since the inner problem for the interior bubble does not touch the boundary
8R1, one may regard it as a problem in R? with compact support. In the inner
problem for the boundary bubble however, the partially free boundary conditions
play an important role. To be more precise, the partially free boundary conditions
(1.2) determine the symmetry of the inner problem across the boundary, and this
symmetry allows us to do the Fourier expansion in modes and regard the half space
problem as problem in the entire space R?, and thus the linear theory applies. Before
we explain the reflection of <I>i(;) , we first introduce the Fourier modes of problem
(6.2).

We regard h(y, 1) as a function defined in R? x (0, T') with compact support,
and assume that i (y, r) has the space-time decay of the type

AL(t
hoaol s 2w o,
I+ |yl
where v > 0 and a € (2, 3). Define the norm
IAllv.a == sup LA+ (YDA, D).

(y,1)eR2x(0,T)
In polar coordinates, A (y, t) can be written as
h(y, 1) =h'(p,0,DE1(y) + h*(p, 6, N Ea(y), y = pe’
since h - W = 0. We use the complex notation
h(p,0,1) :=h' +ih?
and expand in Fourier series

h(p.0.0= ) hi(p, e (6.3)

k=—o00

such that

h(y.t)= Y (1) :=ho(y.0) + hi(y.0) + hoy(y. 1) + hi(y.1) (6.4)

k=—o00
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with
he(y. 1) = Re(hi(p, e VE| + Im(hi (p, 1)e*)Ey, k€ Z.  (6.5)

We consider the kernel functions Z; ; (dropping superscripts) introduced in (3.2),
and define

X Zk i) / .
hi(y, t —§ h(z,t) - Zy j(z)dz, k=0,%1, j=1,2,
k(y, 1) f2X|Zk/|2 (z,1) - Zr,j(2) dz J

(6.6)
where

wl(lyl) if [yl <2R(@),
— P
x(y. 1) = {o if |y > 2R ().

Similarly, we decompose the inner solution
oo
>tk st =Re(pr(p. ™) Ey + Im(gi(p. 1)e™*) Ey.
In each mode k, the pair (¢, hy) satisfies

{ﬂat«m = Lwl¢x]+hi(y,1) in Dyg, 67

or(y,0) =0, in B4gr(0),

which is equivalent to the following problem:

Mok = Lilok] + he(p, 1) in Dy,
@(p,0) =0 in (0,4R(0))

Here Dag = {(p. 1) : 1 € (0,T), p € (0,4R(t))}, and

0o ¥k
Lilgr] = pppr + ——

— (k* 4+ 2k cos w + cos(Zw))(p—];.

P
It is directly apparent that the kernel functions for £y such that L;[Z;] = O at
modes k = 0, =1 are given by

202

1+ p2°

__r -t _
200 = 1o L) = 1 Zeae) = (6.8)

Now, let us go back to the Fourier expansion for the boundary inner problem.
In the general setting (without symmetry across JR2 1), we try to look for a solution
near the boundary concentration zone in the form
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Vo= o010

keZ
i 1 1 i 1 1
= Z [Re@”‘e] <p,£ (o1, t))Ef L Y w,(( (o1, t))Eé )} 6.9)
kel
= 3 [(or1 cosk01) — i 2 sinkONIES + (@i 2 cos(kon) + g 1 sink0)ES" ]
keZ

where

1 .
¢£)=¢%1+w¢kz

Recall from (1.6) that the partially free boundary conditions are automatically
satisfied by extending the first, second, third components of ¢! evenly, evenly,
oddly in x>, and we notice that the first, second and third components of E %1) are

even, even, odd in x», while the first, second, third components of Eél) are odd,
even/odd, even in xp, respectively (see (3.3)). Thus the terms

@r,1 cos(kf)E|" + gy 1 sin(ké)) ES”
have the right symmetry, but

k2 cos(k@l)Eél) — k2 sin(k@l)Efl)
violate the partially free boundary conditions. In other words, if

r2 =0,

then the Fourier expansion (6.9) already implies that ¢(!) satisfies the partially free
boundary conditions. In fact, the role of the reflected bubble is to ensure that the error
produced by U, is perpendicular to Eél) on aRi so that ¢ 2 = 0, and this in turn

rules out the possibility of rotations for the boundary bubble since Eél)-direction
corresponds exactly to the rotation around z-axis. This “rigidity” is consistent with
the intuition from (1.2)3 that the image of the boundary under map u is fixed on the
equator X.

Recalling the right hand side of the boundary inner problem " in (5.12), one
needs to check

HD . EP =0 on 9R2.

The most important term is in fact the coupling from the outer problem

- 2 | 1
L) (@aud = =350 iy Pouc- U EL — =Gy @ou - U ES),

)
and to avoid projection onto Eél) direction, we only need

3, Pou - UV =0,

x2=0
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ie.,
(x182 — x201) Poye - UL =0.
x2=0

This is true thanks to
02 Poyt,1 = 02 Pour2 = 0 on 8R2 ,

where we have used the explicit expression of U M in (3.4), and Dout, 1, Pout,2 are
the first and second components of @, respectively. Above analysis implies that
for HD, there is no projection onto Eéz) on the boundary, so we can regard the
boundary inner problem as a problem in the entire space R? (an interior problem).

We now state the linear theory for both inner problems.

Proposition 6.1. [23] Assume thata € (2,3),v > 0,8 € (0, 1) and ||h||y.a < +00.
Let us write

h=ho+h +h_1+h, with h, = Z hy.
k#£0,%1

Then there exists a solution ¢[h] of problem (6.2), which defines a linear operator
of h, and satisfies the following estimate in Dy g

90 D+ (14 13D [%@ 00| + (1 + 132 | V3 (0.0

S AL (r) min { Rf:ay)'f 3 " |1y|a_2 } lho = hollv.a + %nﬁonv,a
v v 4
T I =il + SO il
200 Mhoy = h_illv.a + 2@ log R(0) A1 ]lv.a
% Ll

Linear theory for the outer problem. We then introduce the linear theory for
the outer problem. For the outer problem, we will solve it componentwise since
each component satisfies a nonhomogeneous heat equation. Because of the sym-
metry imposed on the solution, we use the Duhamel’s formula for the model linear
problem

Y = Ay + ¢ (6.10)

with either Dirichlet or Neumann boundary condition. More precisely, for ¢ =
(1. ¥2, ¥3)" and g = (g1, g2. g3)", we have

t
x/n-(x,z)://2[r<x—y,r—s)+r<x—y*,r—sngi(y,s)dyds, i=1.2,
0 ©.11)
w3<x,r)=ff [F(x =yt =) = Tx — y*, 1 — $)ga(y. s)dyds,
0 JRZ
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where y* is the reflection of y. Clearly, for j = 1, 2, 3, one has

t
Iw,/(x,t)IS// Cx =y, 1 =9)[gi(y,s)|dyds :=‘F * IgI‘
0 Jr? @.0)

since [x — y*| > |x — y|fory € R%r. So the upper bound of implies a

o gl
(x,1)
weighted- L estimate of . We first define the weights
.90, R)! .
01" =A, (AR) X{xeR2 :|x—g()|<324R)"

1 1
= T_GOA.I_O—O . ,
@2 * <|x — g2 T x — q(2>|2> X[ ﬁzl{xemizu—qm\zx*m}
03 =T,

6.12)

where ¢ € 9R%, ¢ € Ri, ©® > 0 and ¢ > 0 is small. For a function g(x, r)
we define the L°°-weighted norm

lg(x, 1)l
l[gllss := sup ( D@ : (6.13)
RZx0,7) \1+0; +0;” +02+03

We define the L°°-weighted norm for v

Wiz, =40 ) ROV oo @2 0,1)

Tog T RO VL@ <o)

+ sup 297 MoRTN0) ARl

]Rix(O,T) |log(T —t (6 14)
+ sup A0V (D) = ey DI+ IVR oo g2 0.7
R2 x(0,T) R
2 x(0,

Ve (v, 1) = Ve (&, 1)
(Ix =X+ |t = 2"

+sup A ()0 (OR )Y
where ® > 0, y € (0, 1/2), and the last supremum is taken in the region
/ 2 / / / 1
x,x eRy, 1,17€(0,T), |x—x|=<2A0ORQ@), [t-1]< Z(T —1).
The solution ¥ to the model outer problem (6.10) will be measured in the norm

I - llz,0,y defined in (6.14) where y € (0, 1/2), and we require that ® and y
(recall that R = A,.”* in (5.10)) satisfy

v« € (0,1/2), © € (0, ys). (6.15)

By similar computations as in [11, Proposition A.1], we have the following:
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Proposition 6.2. Assume (6.15) holds. For T > 0 sufficiently small, there is a
linear operator that maps a function g : ]R?F x (0, T) — R with || g+« < o0 into
Y which solves problem (6.10). Moreover, the following estimate holds:

< Cligllsx-
1,0,y

r
iz
Here y € (0, 1/2).

Linear theory for the Stokes system. In order to deal with the forced Navier—
Stokes equation with Navier boundary conditions, we consider the Stokes system

v+ VP =Av+V-F in R% x (0,00),

V.v=0 in Rizx (0, 00), 6.16)
Opv1 =102 =0 on 9R7 x (0, 00),
v(-,0) =0 in R%,

where V - F is solenoidal (see (C.2)). Our aim is to obtain weighted L°° (in space-
time) control of v for given forcing in divergence form. The choice of the weighted
bound for the forcing V - F is based on the behavior of inner solution near each
concentration ¢ /. We have the following pointwise estimates

Proposition 6.3. Let v be the solution to the Stokes system (6.16). If F satisfies

AL (1)
a+1’

A3 (@)

[FOenDI'S 3 (6.17)

|VXF(x’ t)l S
x—q
A (1)

X—q

L+ 5o

1+

for any q € @ fixed, v > 0 and a > 1, then solution v satisfies the following
pointwise bound:

kv—l Av—2
v(x, 0| S —F—. Vv, 0| S —F——.
X—q

X—q
L+15o I+ 5o

The proof of above proposition can be done either by the natural reflection or
by the Green’s tensor derived in Appendix C. Indeed, similar to the discussions in
Sect. 2, there are natural reflections for v, P, and Fp :=V - F := (Fp 1, FD,Q)T
in (6.16)

- v1(x1, —x2, 1
U(xl’XZat):[ 1(x1 2 )],

—v2(x1, —x2,1)

- = Fp,1(x1, —x2,1)
P(x1,x2,t) = P(x1, —x2,t), Fp= ’ , x2<0

(x1, x2, 1) (x1,=x2,1), Fp [—FD,2(X1,—X2,I) 2
such that the half space problem can be regarded as an interior problem, and thus all
the precise pointwise estimates can be achieved by the Oseen tensor in R? (see [23,
Section 3]). The second method is by explicit Green’s tensor for Stokes operator

with Navier boundary conditions in the half space.
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7. Solving the partially free boundary system

In this section, we will solve the full system (1.1)—(1.2). First, we analyze the
effect of the couplings, i.e., the transported term v - Vu in the harmonic map heat
flow and the forcing —&oV - (Vu © Vu — 1{Vu|?I,) in the incompressible Navier—
Stokes equation. Next, we introduce the weighted topologies for (v, «) and then
solve the full system using fixed point argument.

7.1. Couplings in the full system

In previous sections, we neglect the transported term and carry out all the
elements for the harmonic map heat flow. Now we consider the full transported
harmonic map heat flow

ur+v-Vu = Au + |Vu|2u,

and analyze the effect of the transported term. Most importantly, we need to check
v - Vu does not violate the symmetry of the boundary inner problem. In fact, by
(3.3), one has
(v-Vu) - ES = (18,1 + v205,u) - ESV
= — (V105 U1 + V20x,u1)SIn O 4 (V10x, u3 + V20x,u3) COs 6]
2

=0 on IR,
where we have used the partially free boundary conditions (1.6). On the other hand,
it is direct to check that

vidiug + v20ug
v-Vu=|v01up + vo20un
v101u3 + v202u3
satisfies the partially free boundary conditions (1.6);—(1.6)3, meaning that the
trasported term is also compatible with the outer problem.

For the external forcing coming from the orientation field, we notice that the
orientation field u only gets coupled with velocity field v solved from the forcing
after Helmholtz projection since the curl-free term is part of the pressure. For the
Stokes system, we do Helmholtz projection first

dv+ VP =Av—P[V-(VuO Vu),

where P is the Helmholtz projection such that P[V - (Vi © Vu)] is solenoidal
V. (w ® Vu — %|Vu|2]12> =P[V-(Vu®OVu)|+Vdp, P =P + &p.
By our ansatz
u=Us+®— (P -U)Usx +als
~UO 4+ U+ i ni’ (Z & ;. r)) + Dour (. 1),

j=1 keZ
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we know that the forcing in the incompressible Navier—Stokes equation near g /)

1 . . , _
v. (w O Vu — §|Vu|2}12) ~Yv. (ZVU(/) ove! — (vu : v¢,§”)]12)
keZ

since the outer solution @, is smaller, and the leading term actually vanishes

V. (VU(j) ® VU(j) _ 1/2|VU(j)|2 L) = AU(j) . VU(j) — _|VU(j)|2(U(j) . VU(j)) —0.

Here, VU : V¢,Ej) => 8pU,§j)8p(¢,£j))q, where (¢>,Ej))q stands for the g-th

p.q
component of ¢,§j ) In the sequel, we shall call the term

V- (2vu o Ve — (VU eI, )

the forcing at mode k. Another useful fact observed in [23] is that the forcing at
mode 0, which is of largest size on the right hand side of the Stokes system, actually
enters into the pressure, so it is not involved in the loop.

7.2. Inner—outer gluing system and reduced problems

We will get a desired solution (v, u) to the partially free boundary system (1.1)—
(1.2) if (v, ¢V, 0P, y, Z* AW 1@ @, gD @) solves the following inner—
outer gluing system

Jv+ VP =Av—eV-Flv,o", 9@, v, 25, 2D, 1P 0, D @]
—-V-(v®v) in R% x (0, 7),

V.v=0in R} x (0,7), (7.1)
d,v1 =v2 =0 on IR% x (0,7),
v(-,0) =vg in RZ,
()»(j))za,qb(j) — L%>[¢(/)] + h(j)[v, ¢(l), ¢(2)’ v, Z*%, AD 2D 4, 3;'(1), ?;'(2)] in Déjle)’

j ()
¢Y (.00 =0 in BjR) (7.2)
¢V W; =0 in DY,
o = Ax +Glv, ¢ 9Py, 250002 0,5V EPT in RS x (0. 7),
Iy Y1 = Y2 = Y3 =0 on IR3 x (0, 7), (7.3)
¥(-,0)=0 in R,

where

1
Flv, ¢V, ¢@, @0y, AV, 2P 0, 6V D] = Vu 0 Vu — §|w|2ﬂz
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with
u= (1+a)lU,+ @ — (- U)Us,
® = 0oV, 0+ 0 Qud® (2,10 + ¥ + Z* + Dy,
h(l)[v, ¢(1)’ ¢(2)’ v, Z*, A(l), )L(Z)’ o, E(l)» %-(2)]
= 0L @0l + K5 + K7 = )L @ vy ],
h(z)[v, ¢(1)’ ¢(2)’ v, Z*, k(l), )»(2), o, g(l), 5(2)]
= GO20, L1l + £ + K7 - 6. ') - Vyw),

and

G, ¢(1), ¢(2)’ v, Z*, )\(1), )\(2)7 o, ;5-(1)’ 5(2)]
== =Ly Pou +Cin + N
+ [v Vu— Q0N - V) - PN - Vu)] .
Here the coupling Cj, and the nonlinear term A are defined in (5.4) and (5.5),
respectively.
As discussed in Sect. 6, suitable inner solution with space-time decay can be
obtained under orthogonalities by adjusting the modulation parameters A(1, 12,

w, €D £ at corresponding modes. To solve the inner problems (7.2) in Fourier
modes, we further decompose

B = b9 41 45

with

h(ll)[v, ¢(1)’ ¢(2)’ v, Z", AW )»(2), w, S(l)’ 5(2)]

= (07 (LLu1" 1®oud + L1 [@oud + K ) + 2O, - Violo ) xpy-
hgl)[v, ¢(1)’ ¢(2)’ v, Z%, 2D D s(l)’ 5(2)]

= (@2 (Lo (@0l + K1) +20 (INL - Vil + AL - Vile)) xpy-
hgl)[v, ¢(1)’ ¢(2)’ v, Z", AW )L(Z)’ w, g(l)’ 5(2)]

= ) (ILu1}"(Pou] = L0 1" [@0ul 0)) g
hgz)[v, ¢(1)’ ¢(2)’ A AW A@ o, g’_«(l)’ 5(2)]

= (027205" (ILu1§ 1®oul + L1 [@ou) + KF) + 22 Q5 IF) v+ Vilo) x -
hgz)[v, ¢, p@ g, 2% AD AP o gD £

= (205" (Lo 1P 1@aul© + K7 ) + 22 05 (1N (0 - Vil + [T} (0 Vil ) ) st
h;l)[v, ¢(1)‘ ¢(2)’ v, Z*", AW )L(Z)’ o, g(l)’ 5(2)]

= 0?05 (ILu1 [Poul = L0 1P [@0ud ©)) X
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where [Hiﬁ(v - Vu)lo, [Hgﬁ (v-Vu)]; and [Hgﬁ(v - Vu)], stand respectively
for the projection on modes 0, 1 and higher modes |k| > 2 defined in (6.3)—(6.5)
(notice that there is no projection on mode —1 since v - Vu is in the right symmetry
class), and

(L1} [10)
= —20.0) " wyy coswipp) [ By ¥2ED @), 1) cos b1 + (@ Y2V @), 1) singy | EYV
+20 D), coswpn) [ (B, Y2 D (). 1)) cos b — 3y, Y2 €D (1), 1) sin6y ] ES”,
[Ly1P[¥10)
= —20®) ", cosw(pa) [ (3, Y3EP (1), 1)) 0862 + (D, Y3 D (1), 1) 5in 6 ] QW E
—20P) " wy, coswipn) [ By Y3EP @), 1)) siny — By 3@ (1), 1)) cosbr ] 0w ES.
Then for j = 12, by decomposing o) = ¢>f‘j ) + ¢>§j ) + ¢§j ) in a similar manner

as hgj )’s, the inner problems (7.2) become

2097 = LP 161+ 8 10,60, 6@, dou, 1D 2D, 0,6, )
= 2 1.6, 6@, bou, a0 2 P, 0,6V s Pl ()

=12

_ () h(j) ) (2 ) k(l) X(Z) (1) £(2) 2 Z(j) : D(j)
Yo e 1,6, 6P, dgu, 2V 2P w0, e W gy 71/) in DY
{=1,2

¢ w;=0 nDY
91,00 =0 in By,
(7.4)

(D008 = LP 1671+ 1 1w, 6D, 6@, dou, sV, 2P, 0,6V, P
_ Z c%)[hg)[v,tb(”,¢(2),%m,k“),A@w,s“),E(Z)Jwa,jZ§-f§ ianR)
£=1,2 (7.5)

¢ w;=0 inD{)

95 (.0)=0 in By,
D808 = LP167 1+ 1 10, 6D 6P, @, sV, 2P, 0,61, 6P

- 2 il 1 10,60, 6@, Pou, 20,23, 0,60, s P} 2

=12
+ 3 o 10,00, 6@, @0, 2D 0@, 0, 6D, @2 7)) in DY)
(=12

¢ w; =0 inDY

95 (.0)=0 in B,

(7.6)
Dy =& =0 forall 1€©0,7), (,0={1,1,21),22) (7.7)
Dy =0 forall 10, 7), (.0 ={1,1,21,Q22). (7.8)
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7.3. Weighted topologies and fixed point argument

We now design the weighted topologies for inner solutions ¢, ¢, outer

solution @y and parameters (A(D, 1®) o, £ @),

According to the linear theories in Sect.6, we shall solve the outer problem

(7.3), inner problems (7.4)—(7.6) and forced Navier—Stokes equation (7.1) in the
norms below

We use the norm || - ||« defined in (6.13) to measure the right hand side G in
the outer problem (7.3).

We use the norm || - [|4,@,, defined in (6.14) to measure the solution ¥ solving
the outer problem (7.3), where ® > 0 and y € (0, 1/2).

‘We use the norm || - ||f;f?ai to measure the right hand side hlgj) withi =1,---,3,
where

vi,a; — p

R2 x(0,T) )“:i(t)(l +pj)%
withv; > 0,a; € (2,3) fori =1, 2,and a3 € (1, 3).

()
N h iyt

We use the norm || - ||i{]))] ;.5 0 measure the solution ¢ij) solving (7.4), where
D 61" (3, D1+ (4 oIV 617 (v, D1+ (L4 p)2IV2 01 (37, 1)
lléy H*,Ul,al,a = Sl:P) " ROG—ap) 1
Dk Ao (£) max { 07 (l+p‘,')“1’2}

with vy € (0, 1), a; e‘(2, 3), § > 0 fixed small.
We use the norm || - ”1(1{ )vz o
[2me))
||¢2 ”in,v2,a2—2

165" 0. O+ A+ oIy, 05 0 O+ (L + p 2 (V2 95 (3. 1))

J

_, to measure the solution ¢§j ) solving (7.5), where

= sup
pY) A1+ pj)e

with vy € (0, 1),a; € (_2, 3). '
We use the norm || - ||f,<{k), v; to measure the solution d)é] ) solving (7.6), where

D) 16 G D1+ (1 p7) [Vy,85” (0. 0] + (L4 9 195,85” (3. )]

»n = Su
193700 = 20 WEOR O+ pp)!
2R
with v3 > 0.
We will solve the incompressible Navier—Stokes equation (7.1) in the norms
RN IR N
Sv—1,1° S,v—2,a+1

for the velocity v and forcing F, respectively. Here

) "y x— g |
1N v—2,a41 = sup Ao 1T+ |F(x, 1)
o (x,1)eR% x(0,T) A (1)
o2 (7.10)
x —
+ sup )uiiv(t) 1+ el |V, F(x,1)],
(x,H)ERZ x(0,T) Ai(1)
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and we require v € (0, 1) and a € (1, 2).

The way to solve (7.1) is similar to that of the transported harmonic map flow. We
derive R%r into three parts (the regions near two concentrations ¢/ and the inter-
mediate region), and then analyze the behaviors of the forcing and corresponding
velocity field in each region.

We solve the inner problems in the weighted spaces

*,V1,d1,0

E(]) {¢(]) c LOO(D( ) Vy/d’(J) e LOO(D(])) ||¢(J)”1(r]1)uz w2 < OO},

and denote that

inner

||<1>1;3,er||E<,> = ||¢‘”||§!11 ot ||¢>(”||f;)v2 2+ ||¢(”| Sﬁ*’w

We define the closed ball

B(/) _ {@(]) c E(]) ”CD(]) ”E(]) < 1}

mner mner

For the outer problem, we introduce

Ey = {1/, € L3 x (0, 7)) : I¥llge, < OO]'

For the incompressible Navier—Stokes equation, we shall solve the velocity field v
in the space

E, = {v € L’(R%;R*):V-v=0, |[v]s.h_11 < Mso} , (7.11)

where 0 < g9 <« 1 is the universal number in (1.1), and M > 0 is some fixed
number.
For the parameters

AV@), pat) = 2P 0D, D) = €V (1), 00, €D 1) = P ), P (1)),

we set

X, =00 ec-r. 7:RYNC' (=7, T:R) 2D (1) =0, 20 =D, 5, < oo},

Xpy = 1{p2 € CU-T, T:CHNCL(~T, T;CY) po(T) =0, | p2 — kP e ®0i.(t)| < o0},

*,3—0

X = {s{” el 1B &)@ =016V lx, ) < oo} :

Xe0) = {s<2) € ClO. TR €D M) =0, 16D x5, < oo} ,
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where || - ||«,3—o is defined by

lglle3—o := sup |log(T — N> 7[g()l,
te[-T,T]

and

1€P1x,, = 1€V NLx0m + sup A7 OED @)
te(0,T)

for some o € (0, 1).
By similar computations as to those in [23, Section 4], under some restrictions
on the constants in the norms introduced above

. 1
0<®<m1n{y*,5—y*,v1—1+)/*(a1—1),v2—1+y*(a2—1),v_o,—1},

© < min{v] — 8y«(S —ar) — Vs, v2 — ¥4, V3 — 3V, } s (7.12)
1
1) 1, -,
< v > )
we have

Proposition 7.1. Assume (7.12) hold true. If T > 0 is sufficiently small, then there
exists a solution = ¥ (v, CIJi(Ii;er, CDi(fx)ler, A D2, é(l), 5(2)) to the outer problem
(7.3) with

1 2
W, ol 0@ M b gD @y g

inner’ ~inner’
2

STy (nvng{l_l,l + ||<I>§I{ger||Eg> + 12Ol ) + 1P2llx,, + 18D 11x, ;) + 1),
Jj=1

for some € > 0.

We define 7y by the operator which solves ¢ in Proposition 7.1. For the inner
problems (7.4)—(7.6), we then take oY) ¢ E(;/ ) and substitute

nner

1 2
Doyt (v, @V D2 3Dy gD )
= Z*+ W, o @ M ) gD £@)

nner’ mner’

into inner problems (7.2). We can then write equations (7.2) as the fixed point
problems

o) =A(j)(¢_<i) ), i=1,2 (7.13)

mner mner

where

i G N AD D) [C2FFN)) (OFFNE)]
'A('l)(q)inner) - ('Al (qunner)’ A2 (q)inner)’ ‘A3 (cpinner))’
AV 5’51) C E;f) — E;)])
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with

nner nner’ nner’

AP @) >=Tf”<h1[v,<1>om<v,<1>-“) N N R S )]

nner

j j j 1 2
AP @D 1) <h2[v’ Pour0, 00 G 5D py £ ) 51y L), §<2>]>,

nner mner’ mner’

AP @) ):7'3<f)<h3[v,<1>om(u,c1>?” 0@ A g @) 3 £ () @)

2
‘ 0o .
+ 3ot v, Pou (v, D) @l A“),pz,s<1),s<2>>,x<1>,pz,s“),s(z’]w,%jzg{z).
=1

nner’ mner’

Here 7’1(1 (), 'Tz(" (), 73(’ ) () stand for the operators that solve the inner problems
(7.4), (7.5), (7.6), respectively.

By the linear theories in Sect. 6, it is direct to check (similar to [23, Section 4])
that the inner problems can be solved provided that

v=yv =vy <min{l, 1 — yy(az — 2)},
1
min{l+® +2 ,V ) —-2)t,
V3 < { + 0O+ 2y.y 1-|r2 v«(ai )} (7.14)
l<a<?2,

0<e k1.

Here g9 « 1 is required to ensure the implementation of the loop. More precisely,
we have

Proposition 7.2. Assume (7.14) are satisfied. If T > 0 and g9 > 0 are sufficiently
small, then the system of equations (7.13) for <I>i(I{I)“:r = (¢fj ), qﬁé/ ), qbéj )) has a
solution ®) ¢ E(;])forj =1, 2.

mner

Above propositions together with the compactness from Holder regularity com-
plete the proof of Theorem 1.1 by Schauder fixed point theorem.
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Appendix A. Derivation of the partially free boundary system
We derive in this appendix the energy law and compatibility for the partially free
boundary system (1.1)—(1.2).

We first derive the energy law. Multiplying (1.1); by v and integrating over  C R?
(d < 3), we get

2dt[||+/(v Vv)v+/VP v=— /|Vv|2 /(Au Vu) - v,

where we have used
1
V. (w O Vu— §|Vu|2}1d> = Au - Vu.

By (1.1), and (1.2);,

/(v-Vv)-v:/VP~v:0,
Q Q

1d \Y Au -V A.l
EE" /|u|—/(u u) - v. (A.T)

so we have

Next we multiply (1.1)3 with Au 4 |Vu|?u and integrate over 2
) 12
———/ |Vu| +/(v Vu) - (Au+|Vu| u) = / ’Au+|Vu| u
Q
Since

2
/(U-Vu)~(|Vu|2u)=/ |Vu|2v~M=0,
Q Q 2

we obtain
—-—/ Vu|? —|—/(Au Vi) - v—f ‘Au+|Vu| u‘ . (A2

Combining (A.1) and (A.2), we get

2
/|v|2+|Vu|2 /IVv|2 /‘Au—i—quIzu‘ (A.3)
2dt o

which is called the basic energy law (see [27]). The energy law (A.3) reflects the
energy dissipation property of the flow of liquid crystals.
On the other hand, the physical compatibility condition should be satisfied

<<%(Vv + Vo = Pl —Vuo© Vu) v, r> =0 on 09, (A4)
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where
1
V. <§(W + (Vo) = Pl - Vu © w)
is the stress tensor. It is easy to see that < Pll;v, 7 >=0as < v, 7 >= 0. Also,
1 T
E(VU + (Vo) v, t)=0

is the Navier boundary condition (1.2),, and
0= {((Vu © Vu)v, t) = (Vyu, Viu)

implies the partially free boundary condition (1.2)4

ou

— 1 T, on 02 x (0, 7).

av
In conclusion, with the partially free boundary conditions (1.2), the system (1.1) is
physically meaningful.

Appendix B. Multiple bubbles: analysis of the interactions

In fact, we have three different cases for multiple bubbles, and we can take the
following ansatz for each case

e multiple bubbles all placed in the interior

— &) — (£Uy*
s = Z 0., [Wl (x mi ) + W) (%)] — 2k = Wi (0),

where ) = (¢, &) and €0y = 6. =;).
e multiple bubbles all placed on the boundary

— &) . .
Uy = Z Wi (x /\f) ) — (k — DHWi(c0) with 9 = (&, 0).

e mixed case: finite linear combination of interior and boundary bubbles

kB X*S(])
o=y W T’B ~ (kg — W} (00)
B

kz () ()
—-& 77
+ Z Qur {(Wl (x ,\(j)z ) - Wl(OO)) + (Wl ((1)) - Wl(Oo))} ,
j=1 T A

where &7 = (€], £7/)), &7 = &}, —&7), and £ = &), 0).
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Here Wj is defined in (2.3). The purpose of the reflection terms in the first and
third case is to enforce the symmetry (2.1) for the full system. Observe that the first
case is “localized” as the core inner region does not touch the boundary, while the
second case is automatically in the symmetry class (2.1). So the most interesting
case is the third case of mixed bubbles. Here we give some heuristic discussions
about the reason for placing the reflected bubble in the mix case.

Remark B.1. Notice that above general ansatz is slightly different from what we
take for the two-bubble case in Sect. 4, and the choices are of course not unique.

The key here is the interaction between the boundary bubble and the pair of the
interior bubble and its reflection. More precisely, we need to analyze the error
produced by the interior bubble and its associated reflection entering into the tangent
plane of the boundary bubble. Write

x —£@ x — (ED)*
OQuw |:W1 ( X&) > + Wi ( X&)

21@ (x; - 22 (x1—£)
cos@ —sinw 0 | | (=22 4@—&7)2402)2 (=224 (xa+£7)24(.2)2
—E 40— =0 | (=) 4 (e -2
=87 P =57 P+ =5 ) 0.9)?
0 0 1 22 (xy-4") 22 (i +87)
=24 @ —ET2 40202 =) 24 +E7)24+(02))2

= | sinw cosw O

= W1 + Wz,
where £ = (51(2), 52(2)) with 52(2) > (. Then the error

S(Wi + Wa) = =8, Wy — 8, W + |[VW 1> W + VW2 | W,
+2(VW - VW) (W + Wa).

In the proof of Theorem 1.1, a crucial observation is that the projection of the error
onto Q,, E»-direction of the tangent plane for the boundary linearization will in fact
destroy the symmetry of the boundary inner problem across the BRﬁ_. Recall

X2
lx—&M]
E> =
2 (1)
x1—§;
lx—gM]

Here for notational simplicity, we have dropped the superscrlpts and £ =
(51(1) 0) is the concentration point on 8R2 Since W1 and W2 are symmetric about
the boundary 9R2 | it is clear that

:0’

(=W, — 8 Wa) - QuEr
x2=0

(Wi + Wa) - QuE> =0,

x2=0
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and thus

QYW - VW) (W) + W2)) - QuEa oo =0

For the term |V Wl |2 Wg + |V Wz |2 Wl , straightforward computations imply that on
dR?
+

VWi > = VW22,
and thus

(VW1 W + (VWP W) - QuEs| = (VWi (Wi + Wa) - QuEa| _ =0,
2= 2=

Therefore, we obtain

=0

x2=0

S(Wi 4+ Wa) - O Er

as desired.

Certainly, one may deal with the inner problem touching the boundary without using
the reflection, but this will rely on careful analysis on the non-degeneracy results
and boundary linear theory, which might also be very interesting. Above formal
analysis implies that the presence of reflected bubble can simplify the analysis of
the inner problem near boundary concentration.

Appendix C. Analysis of the Stokes operator

As mentioned in Sect. 6, another straightforward way to capture the precise point-
wise estimates for the velocity field without using reflection is by explicit Green’s
tensor, which we now derive.

We consider the following Stokes system with Navier boundary conditions:

dv+VP=Av+F in R2 x (0, 00),

V.ov=0 in R x (0, 00),
dv1 =02 =0 on BR% x (0, 00), b
v|t=0 =0.
Here F = (F;, F»)T is solenoidal:
V-F=0 P, _,=0. (C2)

Our aim is to construct Green’s tensor and its associated pressure tensor to (C.1).
To this end, we first consider the homogeneous system with F = 0 and non-zero
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boundary condition on x, = 0

du+ VP = Au in R2 x (0, 00),

V-ou=0 in R x (0, 00),

axzul‘ =ai(xy,1), up =ax(xy,1), (C.3)
x2=0 x2=0

u|t=0 =0,

u— 0 as |x| > o0,

and then use Duhamel’s principle to get a solution for the non-homogeneous system
(C.1). We will use Fourier transform in x| and Laplace transform in ¢

0 .
g(f],Xz,S) :fxlﬁt[u] = / / eilxls'iﬂu(xl,xZ,t)dtdxl.
R! Jo

Then taking Fourier-Laplace transform on (C.3), we get

- - &~
sty + & — —21+l"§1P =0
dx;
SU Uy — —— + — =
! dx% dxs
o~ dip
Sl +—=0
dxo
duy - - ~
T =a(&1,s), uz =ax(&1,5)
X2 x2=0 x2=0
u— 0 as xp — oo.

‘We look for solution of the form
u=u + Vo,

where u’ is solenoidal which solves the heat equation and ¢ is harmonic. Since
W — 0asxy — 0o, we have

~ _Ia B B
u' =011, s)e \/Slsz, P = 0281, s)e” 15112,
Then

u=oE, S)e_\/@xz + (&, s)e 12

where

o= o 29Ny — e —aD e ).
,/&12+s
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The functions ¢; and ¢ are determined by the boundary condition:

¢1\/Slzi+ i&|&1]le = —ai,

i§1¢1

— &1l = as.
VEL +s

Then
(i&1ay —a1)\J&] + s
o1 = - ,
i+ E + 0@
s|&1l ’
and thus
jE1d) — d 2 2~ . ) ~
B s) = (i§1az al)\/ﬁe_ et gla) —i& (& +s)aze_m|x2’
§ s|é1l
il x2,8) = — §a+isid1 - g " @+ G+ 0D o (C4)
s s
. ~ 2 ~
P(&1,x2,5) = — spe” 5112 = _weﬂ%ﬂxz,

&1

where @ = (d}, a;). Then we look for solution of the non-homogeneous problem
(C.1) with zero Navier boundary condition

v=u-+w,

where

t
wy = / /2 [F(x—y.t—1) =T —y"t—10)]Fi(y r)dydr
O, R (C.5)
wy = / / [Fx—y.t—1)+T(x -yt —1)]F(y, v)dydr
0 JRZ

with y* = (y1, —y2) being the reflection of y = (y1, y2). Then it is direct to see
from the fact that F is solenoidal that

ohhw =Aw—+ F
Vow= (C.6)

3xzwl‘ L ==bix ), wy| = =ba(xg, 1),
x2=0 x2=0

where

t
bi(x1,t) = —/ /2 O [Tx =y, t —=1) =T (x —y*, 1 = )] Fi (y, 1)dydt ,
0 JRE x2=0

by(x1,1t) =0.
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Therefore, from (C.6), u solves the homogeneous problem (C.3) with a(xy, 1) =
b(xy,t), and

S ) ~
ai =f e glJrsyzFl(%'l,yz,S)dy2~
0

By (C.4), one has

~ a 9 _ [e2 a
Ml(é%l,xz,s):?l— <e \/slsz_e %‘1)@)7

0x7
~ a _ [e2 B
uy(&1,x2,8) = — l%']?] (e \/sz —e |§I|X2> ,
~ e laln
P(élv-XZ’ S) = _l-‘;'-lal
1§11

Taking inverse Fourier-Laplace transform, we obtain

[ / / / & =359 =0) b4 oydyde
3x2 RQ 9x)
[8E(x / /‘ / or(y —z,5s — )Fl(z,r)dzdr‘ :|’
R% k9 »2=0
ol (x — y* 7)

w=r-2 / /R , D G ey (%)
,4/ 3E(x / ds/ / My=25=0p r)dzdr‘ ]

R% 9z y2=0

d al(y —z,t —
P(x,1) :47[/ E(X*)’)dm/ df/ ()Aizt)ﬂ(z,r)dz‘ }
axy L JRl 0 R% 922 V=0

where we have used the following inverse Fourier-Laplace transforms

eI
(Fr, L) [e—lfll’@] = 25(1)85;;), (Fr, L) [e IE:I 2} = —28(t)E(x)

—JE+sx2
Ny or Vi
(Fu L)~ [e Vél“’”}—z a(x”), Ful™ | S | =2r (.0
X2 /%.12_’_3,

1
(Fe L)~ H =8(x1)
(C.8)

with

1 i
E(z) = — log|z], '(x,t) =14 4nt (C9)
2
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Then from (C.5), the representation formula for Navier slip boundary is the follow-
ing

t
vl(x,t):/ /z [F(x—y,t—1) =T —y* 1t —1)]Fi(y r)dydr

[ / / / M=y =0 b (4 o)dydr
a362 R2 9x2

_ / 8E(x y) / / /ﬂéz AN ZZ i )Fl(z T)dzdt’rz—o]’
vy (x, 1) = 8—[ —2/ ds/ / Mﬂ(y, 7)dydr

X R2 0xp

_4/ 8E(x y) / / /RZ AN ZZ i F1(z r)dzdt) 2_0],

9 or(y —z,1t —
P(x,t) =4— E(x — y)dy dr —F1 (z, r)dz‘ .
dx1 LJR o Jr2 322 y2=0

(C.10)

Therefore, the Green’s tensor and its associated pressure tensor for half space with
Navier boundary conditions have been constructed:

Proposition C.1. The solution to (C.1) with solenoidal forcing can be expressed in
the form

v(x, t)_/ / GOx, y,t — T)F (v, T)dydt
/ / / G*(x,y, T — $)F(y, s)dsdydr,
RZ
P(x,t):/f Px,y,t —1)- F(y, 1)dydt
0 JRL
with G° = (G{))i j=12, G* = (G})i,j=12, P = (P}) =12, and

G?j(x, y.1) =8;;(T(x —y,1) = T(x — y*, 1)),

d ol (x — y*, AE(x1 —z1, ol (z1 — y1, y2.t
GE vty =(— 8| —2 @ -y.0n _, (x1 —z1,x2) 3T (21 — y1, )2 )le
ij ) Y7 8x 9x) R

dxo A
a al(x — y*, ¢t AE(x1 —z1,x2) aT(z1 — y1, y2. 1
voy | 2 (x —y )_4/ (X1 — 21, x2) (1‘y1y2 )dzl,
9x7 %) R 0x ay2
al'(z1 —y1, 2,0
Pj(x,y,t)=4(1—3j2)f / E(x) —z1,x0) ———————dz1 |.
ax; L Jr ay2

To derive the pointwise estimates of the Green’s tensor and pressure tensor as in
(C.10), we have the following lemma in the general case R’} (n > 2), whose proof
is similar to [38] in the no-slip boundary case (see also [39, Proposition 2.3]).
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Lemma C.1. Let M (x, t) be a function defined for x € R’} (n > 2) and t > 0 with
the properties
MO, A2t =2 9M(x, 1) YA >0

2
q—lk|=2s | |x|
2 T

IDEDSM (x, 1) St e

Then the integral

Ji(x»)’n’t)zf layiE()’)M(x/_ylvxnat)dy/
Rn—

satisfies
Ji(Ax, Ay, A20) = A9 T (X, yu, 1), (C.11)
and
, gtn—1-25—kn Wil _exp
DYDY 5 i yu DI St 2 [P A Gty 1T T e o
(C.12)

where x' = (x1, ..., xp—1) and k' = (ky, ..., ko—1).

As a consequence of the above proposition, we have the following pointwise esti-
mates for the Green’s tensor and pressure tensor.

Proposition C.2. The pressure tensor and Green’s tensor in Proposition C.1 have
the following pointwise upper bounds

2
LK+ [m| 3

) DEDT P (x, y, O ST T T T (k= y P T e T,

2
g2 _2+lkl+Im |
0, DYDY G (x, y. O St T T (Ix =y P+ T e

Let us now consider
v+ VP =Av+F in R x (0, 7),
V.v=0 in R2 x (0,7), (C.13)
=0, U|t:0 = Yo,

axz U1 |x2:0 =0, »n x2=0

where the forcing is not solenoidal. By the Helmholtz decomposition
F =PF 4+ QF,
where PF is a potential V® p, and QF is divergence-free, one can write

Op(x,t) = —/ﬂ;{z VyN(x,y)  F(y, t)dy,

+

where

N(x,y)=E(x—y)+ E(x —y%)
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is the Green function of the Neumann problem for the Laplace operator in the
half-space with E defined as

1
E(z) = —log|zl,
2

and y* = (y;, —y2). Thus,

QF = F + V/Z VyN(x,y)- F(y, t)dy (C.14)
R

+

is solenoidal, i.e.,

div(QF) =0, QF| 0.

x2=0 =

Then, a solution to the model problem (C.13) is defined by the representation
formulae

t
v(x, 1) = /2 Qo(x,y,t)vo(y)dwa/ /2 G*(x,y.t — $)vo(y)dyds
B2 0 JrRZ

t t
+ / / GO, y.1 — $)YQF(y. s)dyds + / f /Tg*(x,y,r—s)@F(y,s)dsdydr,
0 JRZL 0 JRZ Jo
(C.15)

t
Px,t)y=[ Pl y. 1) -vo(dy + ®p(x, 1)+ P(x,y, t —s)-QF(y,s)dyds, (C.16)
RZ 0 JRL

where G°, G* and P are given in Proposition C.1.

References

1. AGMON, S., DOUGLIS, A., NIRENBERG, L.: Estimates near the boundary for solutions of
elliptic partial differential equations satisfying general boundary conditions. I. Commun.
Pure Appl. Math. 12, 623-727, 1959

2. AGMON, S., DOUGLIS, A., NIRENBERG, L.: Estimates near the boundary for solutions of
elliptic partial differential equations satisfying general boundary conditions. II. Com-
mun. Pure Appl. Math. 17, 35-92, 1964

3. BALDES, A.: Harmonic mappings with partially free boundary. Manuscr. Math. 40(2-3),
255-275, 1982

4. BEIRAO DA VEIGA, H.: Vorticity and regularity for flows under the Navier boundary
condition. Commun. Pure Appl. Anal. 5(4), 907-918, 2006

5. BEIRAO DA VEIGA, H., BERSELLI, L.C.: Navier-Stokes equations: Green’s matrices,
vorticity direction, and regularity up to the boundary. J. Differ. Equ. 246(2), 597-628,
2009

6. CHEN, G.-Q., QIAN, Z.: A study of the Navier—Stokes equations with the kinematic and
Navier boundary conditions. Indiana Univ. Math. J. 59(2), 721-760, 2010

7. CHEN, Y., LiN, FH.: Evolution equations with a free boundary condition. J. Geom. Anal.
8(2), 179-197, 1998

8. CoONSTANTIN, P., Foias, C.: Navier—Stokes Equations. Chicago Lectures in Mathematics.
University of Chicago Press, Chicago (1988)

9. CORTAZAR, C., DEL PINo, M., Musso, M.: Green’s function and infinite-time bubbling
in the critical nonlinear heat equation. J. Eur. Math. Soc. 22(1), 283-344, 2020



Arch. Rational Mech. Anal. (2023) 247:20 Page 53 of 54 20

10.

11.

12.

13.

14.

15.
16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

DaAviLa, J., DEL PINo, M., Musso, M., WEL, J.: Gluing methods for vortex dynamics in
Euler flows. Arch. Ration. Mech. Anal. 235(3), 1467-1530, 2020

DAVvILA, J., DEL PINO, M., WEL, J.: Singularity formation for the two-dimensional har-
monic map flow into S2. Invent. Math. 219(2), 345-466, 2020

DEL PINO, M., Musso, M., WEL J.: Infinite-time blow-up for the 3-dimensional energy-
critical heat equation. Anal. PDE 13(1), 215-274, 2020

DuzaAR, E,, STEFFEN, K.: An optimal estimate for the singular set of a harmonic map
in the free boundary. J. Reine Angew. Math. 401, 157-187, 1989

DuzaAaRr, F.,, STEFFEN, K.: A partial regularity theorem for harmonic maps at a free
boundary. Asymptot. Anal. 2(4), 299-343, 1989

DE GENNES, P.: The Physics of Liquid Crystals. Oxford Press, Oxford (1974)
ERICKSEN, J.L.: Hydrostatic theory of liquid crystals. Arch. Ration. Mech. Anal. 9,371—
378, 1962

ERICKSEN, J.L.: Equilibrium theory of liquid crystals. In: Advances in Liquid Crystals,
vol. 2, pp. 233-298. Elsevier (1976)

GULLIVER, R., JosT, J.: Harmonic maps which solve a free-boundary problem. J. Reine
Angew. Math. 381, 61-89, 1987

HamiLTon, R.S.: Harmonic maps of manifolds with boundary. In: Lecture Notes in
Mathematics, vol. 471. Springer, Berlin (1975)

Harpr, R., LN, F-H.: Partially constrained boundary conditions with energy minimiz-
ing mappings. Commun. Pure Appl. Math. 42(3), 309-334, 1989

Huang, T., LiN, E, Liu, C., WANG, C.: Finite time singularity of the nematic liquid
crystal flow in dimension three. Arch. Ration. Mech. Anal. 221(3), 1223-1254, 2016
HYDER, A., SEGATTI, A., SIRE, Y., WANG, C.: Partial regularity of the heat flow of
half-harmonic maps and applications to harmonic maps with free boundary. Commun.
Partial Differ. Equ. 47(9), 1845-1882, 2022

Lai, C.-C., LiN, F,, WaNG, C., WEL, J., ZHou, Y.: Finite time blowup for the nematic
liquid crystal flow in dimension two. Commun. Pure Appl. Math. 75(1), 128-196, 2022
LEsLIE, EM.: Some constitutive equations for liquid crystals. Arch. Ration. Mech. Anal.
28(4), 265-283, 1968

L1, S.: Geometric regularity criteria for incompressible Navier—Stokes equations with
Navier boundary conditions. Nonlinear Anal. 188, 202-235, 2019

LN, F.-H.: Nonlinear theory of defects in nematic liquid crystals; phase transition and
flow phenomena. Commun. Pure Appl. Math. 42(6), 789-814, 1989

LN, E-H., Liu, C.: Nonparabolic dissipative systems modeling the flow of liquid crys-
tals. Commun. Pure Appl. Math. 48(5), 501-537, 1995

LN, F.-H., Liu, C.: Partial regularity of the dynamic system modeling the flow of liquid
crystals. Discrete Contin. Dyn. Syst. 2(1), 1-22, 1996

LN, F, LiN, J., WANG, C.: Liquid crystal flows in two dimensions. Arch. Ration. Mech.
Anal. 197(1), 297-336, 2010

LiN, F., WANG, C.: Recent developments of analysis for hydrodynamic flow of nematic
liquid crystals. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 372(2029),
20130361, 18,2014

LN, F., WANG, C.: Global existence of weak solutions of the nematic liquid crystal flow
in dimension three. Commun. Pure Appl. Math. 69(8), 1532-1571, 2016

Ma, L.: Harmonic map heat flow with free boundary. Comment. Math. Helv. 66(2),
279-301, 1991

NEUSTUPA, J., PENEL, P.: Local in time strong solvability of the non-steady Navier—
Stokes equations with Navier’s boundary condition and the question of the inviscid
limit. C. R. Math. Acad. Sci. Paris 348(19-20), 1093-1097, 2010

SIRE, Y., WEL, J., ZHENG, Y.: Infinite time blow-up for half-harmonic map flow from R
into S'. Am. J. Math. 143(4), 1261-1335, 2021

SIRE, Y., WEL J., ZHENG, Y.: Singularity formation in the harmonic map flow with free
boundary. arXiv:1905.05937. Am. J. Math., to appear.


http://arxiv.org/abs/1905.05937

20

36.

37.

38.

39.

40.

41.

Page 54 of 54 Arch. Rational Mech. Anal. (2023) 247:20

SoLoNNIKOV, V.A.: The Green’s matrices for elliptic boundary value problems. 1. Trudy
Mat. Inst. Steklov. 110, 107-145, 1970

SoLONNIKOV, V.A.: The Green’s matrices for elliptic boundary value problems. II. Trudy
Mat. Inst. Steklov. 116, 181-216,237 (1971). Boundary value problems of mathematical
physics, 7

SoLonNIKOV, V.A.: Estimates of the solution of a certain initial-boundary value prob-
lem for a linear nonstationary system of Navier-Stokes equations. Zap. Naucn. Sem.
Leningrad. Otdel Mat. Inst. Steklov. (LOMI) 59, 178-254, 257 (1976). Boundary value
problems of mathematical physics and related questions in the theory of functions, 9.
SoLoNNIKOV, V.A.: On estimates of solutions of the non-stationary stokes problem in
anisotropic Sobolev spaces and on estimates for the resolvent of the stokes operator.
Russ. Math. Surv. 58(2), 331, 2003

STRUWE, M.: The evolution of harmonic mappings with free boundaries. Manuscr.
Math. 70(4), 373-384, 1991

TARTAR, L.: An introduction to Navier—Stokes equation and oceanography. In: Lecture
Notes of the Unione Matematica Italiana, vol. 1. Springer, Berlin; UMI, Bologna (2006)

FANGHUA LIN
Courant Institute of Mathematical Sciences,
New York University,
New York
NY
10012 USA.
e-mail: linf@cims.nyu.edu

and

YANNICK SIRE & YIFU ZHOU
Department of Mathematics,
Johns Hopkins University,

3400 N. Charles Street,
Baltimore
MD
21218 USA.
e-mail: ysirel @jhu.edu
YIFU ZHOU
e-mail: yzhoul73 @jhu.edu

and

JUNCHENG WEI
Department of Mathematics,
University of British Columbia,
Vancouver
BC
V6T 172 Canada.
e-mail: jewei@math.ubc.ca

(Received July 25, 2022 / Accepted February 20, 2023)
Published online March 5, 2023

© The Author(s), under exclusive licence to Springer-Verlag GmbH, DE, part of Springer

Nature (2023)



	Nematic Liquid Crystal Flow with Partially Free Boundary
	Abstract
	1 Introduction
	2 Reflection and symmetry of the full system
	3 Notations and preliminaries
	4 Approximation and improvement
	5 Gluing system and derivation of the dynamics for parameters
	6 Linear theories for linearized harmonic map heat flow and Stokes system
	7 Solving the partially free boundary system
	7.1 Couplings in the full system
	7.2 Inner–outer gluing system and reduced problems
	7.3 Weighted topologies and fixed point argument

	Acknowledgements.
	References




