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Abstract

We study a simplified Ericksen–Leslie systemmodeling the flow of nematic liq-
uid crystals with partially free boundary conditions. It is a coupled system between
the Navier–Stokes equation for the fluid velocity with a transported heat flow of
harmonicmaps, and both of these parabolic equations are critical for analysis in two
dimensions. The boundary conditions are physically natural and they correspond
to the Navier slip boundary condition with zero friction for the velocity field and a
Plateau–Neumann type boundary condition for the map. In this paper we construct
smooth solutions of this coupled system that blow up in finite time at any finitely
many given points on the boundary or in the interior of the domain.

1. Introduction

The aim of the present work is to investigate liquid crystal flows with partially
free boundary conditions. Let � ⊂ R

d (d ≤ 3) be a smooth domain. We consider
the system

⎧
⎪⎪⎨

⎪⎪⎩

∂tv + v · ∇v + ∇P = �v − ε0∇ ·
(
∇u � ∇u − 1

2 |∇u|2Id
)

in � × (0, T ),

∇ · v = 0 in � × (0, T ),

∂t u + v · ∇u = �u + |∇u|2u in � × (0, T ),

(1.1)

with the partially free boundary conditions

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

v · ν = 0 on ∂� × (0, T ),

(Sv · ν)τ = 0 on ∂� × (0, T ),

u(x, t) ∈ � on ∂� × (0, T ),
∂u
∂ν
(x, t) ⊥ Tu(x,t)� on ∂� × (0, T ),

(1.2)
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where v : � × [0, T ) → R
d is the fluid velocity field, P : � × [0, T ) → R is the

fluid pressure function, u : �× [0, T ) → S
2 stands for the orientation unit vector

field of nematic liquid crystals, (∇u � ∇u)i j := ∇i u · ∇ j u, and Id is the identity
matrix onRd , ε0 > 0 (coupling constant) represents a competition between kinetic
energy and elastic energy, ν is the unit outer normal of ∂�, S is the strain tensor

Sv = 1

2
(∇v + (∇v)T ),

and � ⊂ S
2 is a simple, closed and smooth curve. Let us assume that � is the

equator for simplicity. The case that � is a circle in S
2 is physically relevant;

see for example [15,17]. The proofs here work equally well with some simple
modifications. Boundary conditions for (1.2)1–(1.2)2 are the usualNavier boundary
conditions for the Navier–Stokes equation with a zero friction, and (1.2)3–(1.2)4
are referred as partially free boundary conditions for the harmonic map heat flow;
see for example [7,19,32,40] and the references therein.

This system (1.1), which was first introduced by the first author in [26] as
a simplified version of Ericksen–Leslie system established by Ericksen [16] and
Leslie [24], enjoys the same type energy law, coupling structure and dissipative
properties. The systemunder consideration is a nonlinearly coupled systembetween
the incompressible Navier–Stokes equations and the heat flow of harmonic maps
with a (partially) free boundary condition. The latter is a geometric flow with the
Plateau and Neumann type boundary conditions. Let us first describe briefly the
latter system in a more geometric set up.

Let (M, g) be an m-dimensional smooth Riemannian manifold with boundary
∂M and N be another smooth Riemannian manifold without boundary. Suppose
that � is a k-dimensional submanifold of N without boundary. Any continuous
map u0 : M → N satisfying u0(∂M) ⊂ � defines a relative homotopy class in
maps from (M, ∂M) to (N , �). A map u : M → N with u(∂M) ⊂ � is called
homotopic to u0 if there exists a continuous homotopy h : [0, 1] × M → N
satisfying h([0, 1] × ∂M) ⊂ �, h(0) = u0 and h(1) = u. An interesting problem
is whether or not each relative homotopy class of maps has a representation by
harmonic maps. The latter must be solutions to the following problem:

⎧
⎪⎨

⎪⎩

−�u = 	(u)(∇u,∇u),

u(∂M) ⊂ �,
∂u
∂ν

⊥ Tu�.

(1.3)

Here ν is the unit normal vector of M along the boundary ∂M , � ≡ �M is
the Laplace-Beltrami operator of (M, g), 	 is the second fundamental form of N
(viewed as a submanifold inR
 viaNash’s isometric embedding),TpN is the tangent
space inR
 of N at p and⊥means orthogonal to inR
. (1.3) is the Euler–Lagrange
equation for critical points of the Dirichlet energy functional

E(u) =
∫

M
|∇u|2 dvg
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defined over the space of maps

H1
�(M, N ) = {u ∈ H1(M, N ) : u(x) ⊂ � a.e. x ∈ ∂M}.

Here H1(M, N ) = {
u ∈ H1(M,R
) : u(x) ∈ N a.e. x ∈ M

}
. Both the existence

and partial regularity of energyminimizing harmonicmaps in H1
�(M, N ) have been

established, for example, in [3,18,19] under special assumptions, and in [13,14,20]
in general cases. Another standard approach to investigate (1.3) is to study the
following parabolic problem:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂t u − �u = 	(u)(∇u,∇u) on M × [0,∞),

u(x, t) ∈ � on ∂M × [0,∞),
∂u
∂ν
(x, t) ⊥ Tu(x,t)� on ∂M × [0,∞),

u(·, 0) = u0 on M.

(1.4)

This is the so-calledharmonicmapheat flowwith apartially free boundary. (1.4)was
first studied in [19], Hamilton considered the case where � is totally geodesic and
the sectional curvature KN ≤ 0. He proved the existence of a unique global smooth
solution for (1.4). The global existence of weak solutions of (1.4) was established
by Struwe in [40] for m ≥ 3; see also [7]. In [32], the case m = dimM = 2 was
considered, where a global existence and uniqueness result for finite energy weak
solutions was obtained under some suitable geometric hypotheses on N and �.
When N is an Euclidean space, the first equation in (1.4) becomes the standard
heat equation

ut − �u = 0 on M × [0,∞).

Even in this special case, as pointed out in [7] and [40], estimates near the boundary
for (1.4) are difficult due to this highly nonlinear boundary condition. As far as the
heat flow is concerned, Struwe in [40] studied the problemusing the intrinsic version
of harmonicmapswith a free boundary condition. In particular, he used aGinzburg-
Landau approximation in the interior, hence keeping the same nonlinear boundary
condition. Another approach was considered in [22], where the approximation is
on the boundary.

The finite time singularity (as conjectured in [7]) for (1.4) was proven only
recently in [35] with N = R

2, M = R
2+ and � = S

1 ⊂ R
2. The analysis there

cannot be generalized directly to the current situation as the target is no longer flat
and the standard heat equation has to be replaced by the heat flow of maps into
the sphere. Despite the nonlinearity of the system and the nonlinear coupling, the
Navier slip boundary condition turns out to be consistent with the partially free
boundary condition of the map. The latter is important for our analysis.

In the aspect of the incompressible Navier–Stokes equations, we refer the read-
ers to, for example, the books [8,41] and the references therein for comprehensive
theories. Of particular interest here is the incompressible Navier–Stokes equation
with Navier boundary conditions since the system (1.1) turns out to be more com-
patible and physically natural with the Navier boundary conditions (1.2)1–(1.2)2
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compared to the no-slip boundary condition. In the setting of Navier boundary con-
ditions, without being exhaustive, we refer to [4] for Constantin-Fefferman type
regularity results in the case of R3+ and in [5,25] for the case of general domains in
R
3. See also [6,33] for the local existence of strong solutions and [6] for the global

existence of weak solutions in dimension three. It is worth mentioning that in order
to treat boundaries, the authors in [5,25] used the Solonnikov’s theory developed
in [36,37] on Green’s matrices for elliptic systems of Petrovsky type, which is a
subclass of Agmon–Douglis–Nirenberg (ADN) elliptic systems (see the seminal
works [1,2]). Our case, especially for the dealing with the boundary bubbling, is
closely related to the aforementioned theories.

For the study of the nematic liquid crystal flows, there have been growing
interests concerning theglobal existenceofweak solutions, partial regularity results,
singularity formation and others. We refer to [21,23,26–31] and the references
therein.

Main results

In what follows, we consider the nematic liquid crystal flow with partially free
boundary (1.1)–(1.2) in the half space case � = R

2+. Our method of construction
could be adapted to the case of general domain, but it would involve more technical
computations and we refrain considering such a generality.

We first construct finite time blow-up solutions to the partially free boundary
system (1.1)–(1.2),where the singularities can actually take place both in the interior
and on the boundary, and as a direct consequence of the construction, we give an
example (different from the one constructed in [35]) of finite time singularities for
the harmonic map heat flow with partially free boundary (1.4) as conjectured in
[7].

Our first theorem is stated as follows:

Theorem 1.1. For T, ε0 > 0 sufficiently small and any given points {q( j)B }kBj=1 ∪
{q( j)I }kIj=1 ⊂ R

2+ with q( j)B ∈ ∂R2+ and q( j)I ∈ R̊
2+, there exists initial data (u0, v0)

such that the solution (u, v) to problem (1.1)with partially free boundary conditions
(1.2) blows up at finite time t = T exactly at these given points. More precisely,

u(x, t) − u∗(x) −
kB∑

j=1

[

W1

(
x − q( j)B
λ( j)(t)

)

− W1(∞)

]

−
kI∑

j=1

Q
ω
( j)
I

[

W2

(
x − q( j)I
λ( j)(t)

)

− W2(∞)

]

→ 0 as t → T

in H1
loc(R

2+;R3)∩L∞(R2+;R3) for some u∗ ∈ H1
loc(R

2+;R3)∩C(R̄2+;R3), profiles
W1 and W2 are defined in (2.3) and (2.2), respectively, the rotation Q

ω
( j)
I

is defined
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in (3.5), and the blow-up rate and angles satisfy, for some κ∗
j > 0 and ω∗

j ,

λ( j)(t) ∼ κ∗
j

T − t

| log(T − t)|2 as t → T,

ω
( j)
I → ω∗

j as t → T .

In particular, it holds that

|∇u(·, t)|2 dx ⇀ |∇u∗|2 dx + 4π
kB∑

j=1

δ
q( j)B

+ 8π
kI∑

j=1

δ
q( j)I

as t → T

as convergence of Radon measures. Furthermore, the velocity field satisfies

|v(x, t)| ≤ c
k∑

j=1

λ
ν j−1
j (t)

1 +
∣
∣
∣
x−q j
λ j (t)

∣
∣
∣
, 0 < t < T

for some c > 0 and 0 < ν j < 1, j = 1, · · · , k. Here k = kB + kI and {q j }kj=1 =
{q( j)B }kBj=1 ∪ {q( j)I }kIj=1.

Remark 1.1. • Each bubble on the boundary might be viewed as a “half” bubble.
• The absence of the rotations for the boundary bubbles is in fact a consequence
of the partially free boundary conditions (1.2). See more detailed discussions
in next subsection.

For the harmonic map heat flow with free boundary, the question whether finite
time singularity exists or not was originally raised by Chen and Lin [7]. The first
example was constructed recently by Sire, Wei and Zheng [35] using a caloric
extension. We would like to point out that the proof of Theorem 1.1 actually gives
another different example of finite time singularity. In fact, as a consequence of the
construction of Theorem 1.1, we have

Corollary 1.1. Assume M = R
2+, N = S

2, and � = {(x1, x2, x3) ∈ S
2 : x3 = 0}

in (1.4). Given any finitely many distinct points qk in R
2+ or on ∂R2+, for T > 0

sufficiently small, there exists initial data u0 such that the solution to (1.4) blows
up exactly at these prescribed points at time t = T . Moreover, the blow-up profile
takes the form of sharply scaled 1-corotational profile around each point qk with
type II blow-up rate

λk(t) ∼ T − t

| log(T − t)|2 as t → T .

In order to deal with the Navier–Stokes equation with Navier boundary condi-
tions, we consider the following Stokes system with Navier boundary conditions

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂tv + ∇P = �v + F in R
2+ × (0,∞),

∇ · v = 0 in R
2+ × (0,∞),

∂x2v1

∣
∣
∣
x2=0

= 0, v2

∣
∣
∣
x2=0

= 0,

v
∣
∣
t=0 = 0,

(1.5)
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where F is solenoidal:

∇ · F = 0, F2
∣
∣
x2=0 = 0.

For the system (1.5), we derive the Green’s tensor and its associated pressure tensor,
and further obtain the following pointwise upper bounds:

Theorem 1.2. The solution to (1.5) with solenoidal forcing can be expressed in the
form

v(x, t) =
∫ t

0

∫

R
2+
G0(x, y, t − τ)F(y, τ )dydτ

+
∫ t

0

∫

R
2+

∫ τ

0
G∗(x, y, τ − s)F(y, s)dsdydτ

P(x, t) =
∫ t

0

∫

R
2+
P(x, y, t − τ) · F(y, τ )dydτ

with G0 = (G0
i j )i, j=1,2, G∗ = (G∗

i j )i, j=1,2, P = (Pj ) j=1,2

G0
i j (x, y, t) = δi j (	(x − y, t) − 	(x − y∗, t))

G∗
i j (x, y, t) = (1 − δi j )

∂

∂x1

[

− 2
∂	(x − y∗, t)

∂x2
− 4

∫

R

∂E(x1 − z1, x2)

∂x2

∂	(z1 − y1, y2, t)

∂y2
dz1

]

+ δi j
∂

∂x2

[

− 2
∂	(x − y∗, t)

∂x2
− 4

∫

R

∂E(x1 − z1, x2)

∂x2

∂	(z1 − y1, y2, t)

∂y2
dz1

]

,

Pj (x, y, t) = 4(1 − δ j2)
∂

∂x j

[ ∫

R

E(x1 − z1, x2)
∂	(z1 − y1, y2, t)

∂y2
dz1

]

.

Moreover, the following pointwise upper bounds hold:

|∂st Dk
x D

m
y Pj (x, y, t)| � t−1−s−m2

2 (|x − y∗|2 + t)−
1+|k|+|m′|

2 e− cy22
t ,

|∂st Dk
x D

m
y G

∗
i j (x, y, t)| � t−1−s−m2

2 (|x − y∗|2 + t)−
2+|k|+|m′|

2 e− cy22
t .

As far as we know, above explicit representation formulae and pointwise esti-
mates are not present anywhere and our construction requires rather precise point-
wise estimates of the velocity field, so we include those here for self-containedness.
The proof of Theorem 1.2 is in a similar spirit as the works by Solonnikov, see for
example [38]. In fact, another way to deal with the forcedNavier–Stokes equation is
to use the symmetry encoded in the partially free boundary conditions, which sim-
plifies the analysis. More precisely, under certain reflections thanks to the partially
free boundary conditions (1.2), the structure of the full system (1.1) is preserved,
and thus the partially free boundary problem can be regarded as an “interior” prob-
lem across the boundary. Essentially, this reflection technique shares similarities
with the classical Agmon–Douglis–Nirenberg theory (see [1,2]).

The key strategy in the proof of Theorem 1.1 is in similar spirit as that of
[23], namely, one starts first from the harmonic map heat flow and regards the
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transported term v · ∇u as a perturbation. Then the leading part of the solution
u to the harmonic map heat flow provides external forcing to the Navier–Stokes
equation. The velocity, which carries information of u, enters harmonic map heat
flow in the form of a transported term. Finally, this loop argument is closed once one
shows that the transported term is indeed a perturbation. The transported harmonic
map heat flow and the incompressible Navier-Stokes equation with forcing are in
fact strongly coupled as one can see from the natural scaling invariance, and the
smallness of the universal coupling constant ε0 is to ensure that the full system is less
coupled and the loop argument can be implemented. One interesting feature is the
natural symmetry/reflection encoded in the partially free boundary conditions (1.2),
which has also been used in [7], and is crucial in our construction, especially for
the behaviors for both the orientation field and the velocity field near the boundary.
In fact, since the inner concentration zone of each boundary bubble touches the
boundary, the use of reflection greatly simplifies the analysis of the linearization,
and to be more precise, one can regard both the linearized harmonic map heat flow
and the Stokes system near boundary bubble as interior problems.

The construction is based on recently developed parabolic gluing method,
which has been successfully applied in the studies of singularity formation in
parabolic equations and systems, geometric flows, fluid equations and others. See
for example [9–12,34] and the references therein.

The rest of the paper is devoted to the proofs of the above mentioned theorems.
For simplicity, we construct the most representative case of one interior bubble
and one boundary bubble. The construction of any finitely linear combination of
bubbles either in the interior or on the boundary is similar. See Appendix B for
detailed discussions. Before carrying out the rigorous constructions, we first give
a brief roadmap and introduce the key ingredients in next subsection.

Roadmap to the construction

The starting point of the construction is the symmetry (see Sect. 2 for details)
encoded in the partially free boundary conditions (1.2). The free boundary condi-
tions not only guarantee the energy dissipation but also suggest the correct ansatz
for the bubbling, which is crucial for the linearization around the boundary bubble.
We should first note that the linearization for the interior bubbling is completely
“localized” because of our inner–outer construction. In other words, the lineariza-
tion near interior bubbles does not touch the boundary. There are two crucial aspects
needed to be analyzed carefully in the construction:

• how the partially free boundary conditions (1.2) affect the boundary lineariza-
tion;

• how the interior bubble(s) interact with the boundary bubble(s).
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In the case of the half space R
2+, the partially free boundary conditions (1.2)

can be expressed as
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∂x2u1 = 0,

∂x2u2 = 0,

u3 = 0, on ∂R2+,
∂x2v1 = 0,

v2 = 0,

(1.6)

so one expects certain symmetry across ∂R2+. See the discussions in Sect. 2 for the
preservation of the structure for the full system under the reflection class (2.1), and
this in turn suggests to take as a first approximation (for the map)

U∗(x, t) = U (1)(x, t) +U (2)(x, t) −U (2)∗(x, t)

as in (4.1), where U (1) and U (2) are bubbles placed on the boundary and in the
interior, respectively. Here the purpose of the “reflected” bubble U (2)∗ is to make
the error in the right symmetry class (2.1) across the boundary ∂R2+; which crucially
simplifies our analysis for the linearization around boundary bubble. Indeed, careful
analysis for the linearization in Fourier expansion suggests that the inner problem
touching boundary can in fact be regarded as an interior problem after proper
reflections across ∂R2+, provided the right hand side in the linearization has no
projection onto certain direction on the tangent plane of boundary bubble (see
Sect. 6 for more details). One role that U (2)∗ plays is to enforce such symmetry.
In the gluing construction, another important role that the partially free boundary
conditions (1.6) play is to also ensure that the outer “noises” coupled into the
linearization on the boundary do not destroy the structure discussed above.

The next step is to find perturbation consisting of inner and outer profiles such
that a real solution with desired asymptotics can be found. We look for solution in
the form

u ∼ U∗ + u(1)inner + u(2)inner + uouter,

where the inner parts u(1)inner, u
(2)
inner, expanding on corresponding tangent plane, solve

the linearization around the interior bubble and boundary bubble, respectively, and
the outer part uouter, solving essentially a non-homogeneous heat equation, han-
dles the external noises. Above ansatz then leads to a inner–outer gluing system
for (u(1)inner, u

(2)
inner, uouter). Here uouter is relatively straightforward to solve, while

in order to find well-behaved (u(1)inner, u
(2)
inner), careful adjustment of modulation pa-

rameters is required so that certain orthogonalities are satisfied. The adjustment
determines the right dynamics, in particular for the scaling parameters.

Dealingwith the velocity field v requires the analysis of the Stokes operatorwith
Navier boundary conditions. A direct way is to use its associated Green’s tensor
derived in Appendix C to capture precise pointwise control. In a similar spirit as
the ADN theory as well as Solonnikov’s theory, the use of reflections thanks to the
partially free boundary (1.6) in fact reduces the problem into an interior one.
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With all the analysis for linearized harmonic map heat flow and Stokes system
set up, one can start the loop argument described in the picture below, and the
construction is done in appropriate weighted topologies by fixed point arguments.

In conclusion, the partially free boundary conditions (1.2) not only imply a
natural and physical model of hydrodynamics of nematic liquid crystals, but also
encode good structure that triggers the new boundary bubbling phenomenon. With
such structure, we then carry out the iterative scheme as in [23] and close the loop
by using 0 < ε0 � 1 in the refined perturbation argument depicted as follows

(1.1)1: − ε0∇ · (∇u � ∇u − 1
2 |∇u|2I2

) Green’s tensor−−−−−−→
Reflection

v in (1.1)3

Strongly coupled

�
⏐
⏐

⏐
⏐
�

Mode k in the inner problem of u: φk
Same asymptotics as the RHS←−−−−−−−−−−−−−−−

0<ε0�1
v · ∇u in (1.1)3

2. Reflection and symmetry of the full system

Recall that the partially free boundary conditions (1.2) in the case� = R
2+ can

be written as

∂x2u1 = ∂x2u2 = u3 = ∂x2v1 = v2 = 0 on ∂R2+.

Thus we perform even reflection for u1, u2, v1 and odd reflection for u3, v2,

ũ(x1, x2, t) =
⎡

⎣
u1(x1,−x2, t)
u2(x1,−x2, t)

−u3(x1,−x2, t)

⎤

⎦ , ṽ(x1, x2, t) =
[
v1(x1,−x2, t)

−v2(x1,−x2, t)

]

, x2 < 0,

such that the partially free boundary conditions are automatically satisfied. Note
that this reflection technique has already been used in the harmonic map heat flow
with partially free boundary (see [7] for example). By

∇ · (∇u � ∇u) =
[
2∂1uk∂11uk + ∂22uk∂1uk + ∂21uk∂2uk
2∂2uk∂22uk + ∂11uk∂2uk + ∂12uk∂1uk

]

and

v · ∇u =
⎡

⎣
v1∂1u1 + v2∂2u1
v1∂1u2 + v2∂2u2
v1∂1u3 + v2∂2u3

⎤

⎦ ,

it is directly apparent that

∂t ũ + ṽ · ∇ũ = �ũ + |∇ũ|2ũ,
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and

∂t ṽ + ṽ · ∇ṽ + ∇ P̃ = �ṽ − ε0∇ ·
(

∇ũ � ∇ũ − 1

2
|∇ũ|2I2

)

if P̃(x1, x2, t) = P(x1,−x2, t) for x2 < 0, which means ∂P
∂ν

= 0. In fact, this is
true with our partially free boundary conditions (1.2). Indeed, applying the outer
normal ν to (1.1)1, we get

∂tv2 + v1∂1v2 + v2∂2v2 + ∂2P = �v2 − ε0(∂2uk∂22uk + ∂11uk∂2uk).

By the divergence free condition and the Navier slip boundary condition, we have

∂22v2 = −∂1(∂2v1) = 0 on ∂R2+.

Similarly, on ∂R2+, by the partially free boundary condition,

∂2uk∂22uk + ∂11uk∂2uk = ∂2u3∂22u3 + ∂11u3∂2u3
= ∂2u3�u3

= ∂2u3(∂t u3 + v1∂1u3 + v2∂2u3 − |∇u|2u3)
= 0.

Therefore, we have ∂P
∂ν

= 0 on ∂R2+.
In conclusion, with the reflections

ũ(x1, x2, t) =
⎡

⎣
u1(x1,−x2, t)
u2(x1,−x2, t)

−u3(x1,−x2, t)

⎤

⎦ ,

ṽ(x1, x2, t) =
[
v1(x1,−x2, t)

−v2(x1,−x2, t)

]

, P̃(x1, x2, t) = P(x1,−x2, t),

the structure of the equation (1.1) is preserved, i.e.,
⎧
⎪⎨

⎪⎩

∂t ṽ + ṽ · ∇ṽ + ∇ P̃ = �ṽ − ε0∇ · (∇ũ � ∇ũ − 1
2 |∇ũ|2I2

)
,

∇ · ṽ = 0,

∂t ũ + ṽ · ∇ũ = �ũ + |∇ũ|2ũ.
We shall look for a solution to (1.1) with partially free boundary condition (1.2) in
the symmetry class across the boundary ∂R2+ given by:

u1, u2, v1, P are even in x2 and u3, v2 are odd in x2 (2.1)

with u = (u1, u2, u3)T , v = (v1, v2)
T .

Remark 2.1. It is worth mentioning that if one imposes the no-slip boundary con-
dition for the velocity

v
∣
∣
∂R2+

= 0

instead of the Navier boundary conditions (1.2)1–(1.2)2, the natural energy dissipa-
tion is also preserved. However, this artificial boundary may destroy the structure
of the coupled system in nature, as one can see in the reflections, i.e., there is no
reflection preserving the structure of the entire system.
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Next, we try to gain some information from the symmetry at the linearized level.
We consider the infinitesimal generator of rigid motions: dilation, translations and
rotations. More precisely, the invariance from scaling and rotation around z-axis
corresponds to mode 0, the invariance from translations corresponds to mode 1,
and the invariance from rotations around x and y axes corresponds to mode −1.

Let W2 be the least energy (degree 1) harmonic map

W2(x) =
⎡

⎣

2x
1+|x |2
|x |2−1
1+|x |2

⎤

⎦ , x ∈ R
2, (2.2)

namely,
∫

R2 |∇W2|2 = 8π . Our first approximation of the boundary bubble will be
based on the degree 1 profile

W1 := Q∗W2. (2.3)

Here we introduce

Q∗ =

⎡

⎢
⎢
⎣

1 0 0

0 0 1

0 1 0

⎤

⎥
⎥
⎦ , (2.4)

because of the reflection (2.1).
In fact, there is some “rigidity” produced by the partially free boundary con-

ditions, especially for the boundary bubble(s). To see this, we formally compute
below the first variations with respect to different parameters. For the rotations
around x and y axes (mode −1), we consider

W1,α :=
⎡

⎣
1 0 0
0 cosα − sin α
0 sin α cosα

⎤

⎦

⎡

⎢
⎢
⎢
⎢
⎣

2x1
x21+x22+1

x21+x22−1
x21+x22+1

2x2
x21+x22+1

⎤

⎥
⎥
⎥
⎥
⎦
, W1,β :=

⎡

⎢
⎢
⎣

cosβ 0 sin β

0 1 0

− sin β 0 cosβ

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎣

2x1
x21+x22+1

x21+x22−1
x21+x22+1

2x2
x21+x22+1

⎤

⎥
⎥
⎥
⎥
⎦
.

The first variations

∂αW1,α
∣
∣
α=0 =

⎡

⎢
⎢
⎣

0
− 2x2

x21+x22+1
x21+x22−1

x21+x22+1

⎤

⎥
⎥
⎦ , ∂βW1,β

∣
∣
β=0 =

⎡

⎢
⎢
⎢
⎣

2x2
x21+x22+1

0

− 2x1
x21+x22+1

⎤

⎥
⎥
⎥
⎦

are not in the symmetry class (2.1).
Similarly, for the scaling and rotation around z axis (mode 0)

W1,λ :=

⎡

⎢
⎢
⎢
⎣

2λx1
x21+x22+λ2

x21+x22−λ2

x21+x22+λ2

2λx2
x21+x22+λ2

⎤

⎥
⎥
⎥
⎦
, W1,ω :=

⎡

⎢
⎢
⎣

cosω − sinω 0

sinω cosω 0

0 0 1

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎣

2x1
x21+x22+1

x21+x22−1

x21+x22+1
2x2

x21+x22+1

⎤

⎥
⎥
⎥
⎦
,
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one has

∂λW1,λ
∣
∣
λ=1 =

⎡

⎢
⎢
⎢
⎢
⎣

2x1(x21+x22−1)

(x21+x22+1)2

− 4(x21+x22 )

(x21+x22+1)2

2x2(x21+x22−1)

(x21+x22+1)2

⎤

⎥
⎥
⎥
⎥
⎦
, ∂ωW1,ω

∣
∣
ω=0 =

⎡

⎢
⎢
⎣

− x21+x22−1

x21+x22+1
2x1

x21+x22+1

0

⎤

⎥
⎥
⎦ ,

which are in the symmetry class.
For the translations (mode 1)

W1,ξ1 :=

⎡

⎢
⎢
⎢
⎣

2(x1−ξ1)

(x1−ξ1)2+x22+1

(x1−ξ1)
2+x22−1

(x1−ξ1)2+x22+1
2x2

(x1−ξ1)2+x22+1

⎤

⎥
⎥
⎥
⎦
, W1,ξ2 :=

⎡

⎢
⎢
⎢
⎣

2x1
x21+(x2−ξ2)2+1

x21+(x2−ξ2)
2−1

x21+(x2−ξ2)2+1
2(x2−ξ2)

x21+(x2−ξ2)2+1

⎤

⎥
⎥
⎥
⎦
,

we have

∂ξ1W1,ξ1

∣
∣
ξ1=0 =

⎡

⎢
⎢
⎢
⎣

− 2(x22−x21+1)

(x21+x22+1)2

− 4x1
(x21+x22+1)2

4x1x2
(x21+x22+1)2

⎤

⎥
⎥
⎥
⎦
, ∂ξ2W1,ξ2

∣
∣
ξ2=0 =

⎡

⎢
⎢
⎢
⎣

4x1x2
(x21+x22+1)2

− 4x2
(x21+x22+1)2

− 2(x21−x22+1)

(x21+x22+1)2

⎤

⎥
⎥
⎥
⎦
.

Only the first one is in the symmetry class. In other words, the symmetry only
allows us to translate the bubble along the boundary ∂R2+.

Heuristically, the above argument suggests certain rigidity produced by the
partially free boundary conditions, which reflects in the presence of modulation
parameters.

3. Notations and preliminaries

In order to analyze the transported harmonic map heat flow

ut + v · ∇u = �u + |∇u|2u in R2+

in the symmetry class (2.1) across ∂R2+, we first regard the transported term v · ∇u
as a perturbation and introduce our first approximation and its correction to the
harmonic map heat flow. Later, after the analysis of the forced incompressible
Navier–Stokes equation, we will show that the transported term is indeed a pertur-
bation. We first give some useful notations and formulae.

Recall that we will construct a bubbling solution which blows up at a given
boundary point and interior point. In the following, the superscripts “(1)”, “(2)”
refer to the bubble placed on the boundary and in the interior respectively; and
we will repeatedly adopt this notation to distinguish these two bubbles and their
associated tangent planes.
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Introduce polar coordinates near two concentration zones

y j = x − ξ ( j)

λ( j)
, x = ξ ( j) + λ( j)ρ j e

iθ j , r j = λ( j)ρ j , j = 1, 2.

In polar coordinates y j = ρ j eiθ j , j = 1, 2, the least energy harmonicmapsW1(y1),
W2(y2), defined in (2.3) and (2.2) respectively, can be represented as

W1(y1) =
⎡

⎣
cos θ1 sinw(ρ1)

cosw(ρ1)
sin θ1 sinw(ρ1)

⎤

⎦ , W2(y2) =
⎡

⎣
cos θ2 sinw(ρ2)
sin θ2 sinw(ρ2)

cosw(ρ2)

⎤

⎦ :=
[
eiθ2 sinw(ρ2)
cosw(ρ2)

]

with

w(ρ j ) = π − 2 arctan(ρ j ),

and we have

wρ j = − 2

ρ2j + 1
, sinw(ρ j ) = −ρ jwρ j = 2ρ j

ρ2j + 1
, cosw(ρ j ) = ρ2j − 1

ρ2j + 1
.

The linearization of the harmonic map operator around Wj is the elliptic operator

L( j)W [φ] := �y jφ + |∇Wj (y j )|2φ + 2(∇Wj (y j ) · ∇φ)Wj (y j ), (3.1)

whose kernel functions are given by
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Z ( j)
0,1(y j ) = ρ jwρ j (ρ j )E

( j)
1 (y j ),

Z ( j)
0,2(y j ) = ρ jwρ j (ρ j )E

( j)
2 (y j ),

Z ( j)
1,1(y j ) = wρ j (ρ j )[cos θ j E ( j)

1 (y j ) + sin θ j E
( j)
2 (y j )],

Z ( j)
1,2(y j ) = wρ j (ρ j )[sin θ j E ( j)

1 (y j ) − cos θ j E
( j)
2 (y j )],

Z ( j)
−1,1(y j ) = ρ2jwρ j (ρ j )[cos θ j E ( j)

1 (y j ) − sin θ j E
( j)
2 (y j )],

Z ( j)
−1,2(y j ) = ρ2jwρ j (ρ j )[sin θ j E ( j)

1 (y j ) + cos θ j E
( j)
2 (y j )],

(3.2)

where the vectors

E (1)
1 (y1) =

⎡

⎣
cos θ1 cosw(ρ1)

− sinw(ρ1)
sin θ1 cosw(ρ1)

⎤

⎦ , E (1)
2 (y1) =

⎡

⎣
− sin θ1

0
cos θ1

⎤

⎦ ,

E (2)
1 (y2) =

⎡

⎣
cos θ2 cosw(ρ2)
sin θ2 cosw(ρ2)

− sinw(ρ2)

⎤

⎦ , E (2)
2 (y2) =

⎡

⎣
− sin θ2
cos θ2
0

⎤

⎦

(3.3)

form an orthonormal basis of the tangent space TWj (y j )S
2, i.e., Frenet basis asso-

ciated to Wj . We see that

L( j)W [Z ( j)
p,q ] = 0 for p = ±1, 0, j, q = 1, 2.
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Because of the scaling, rotation and translation symmetries,

U (1)(x, t) := W1

(
x − ξ (1)

λ(1)

)

, U (2)(x, t) := QωW2

(
x − ξ (2)

λ(2)

)

(3.4)

solve the harmonicmap equation, where Qω is the rotation of angleωmatrix around
z-axis (viewing the target S2 embedded into R3)

Qω :=
⎡

⎣
cosω − sinω 0
sinω cosω 0
0 0 1

⎤

⎦ . (3.5)

Notice that

L(1)U [ϕ(1)] = (λ(1))−2L(1)W [φ(1)], L(2)U [ϕ(2)] = (λ(2))−2QωL
(2)
W [φ(2)], where

ϕ(1)(x) = φ(1)(y1), ϕ(2)(x) = Qωφ
(2)(y2), y j = x − ξ ( j)

λ( j)
,

and L( j)U stands for the linearization around U ( j), j = 1, 2. In the sequel, it is of

significance to compute the action of L( j)U on functions whose values are orthogonal
to U ( j) pointwise. Define

�
( j)
U⊥ϕ := ϕ − (ϕ ·U ( j))U ( j). (3.6)

We now give several useful formulae whose proof is similar to that of [11, Section
3]:

L( j)U [�( j)
U⊥�] = �

( j)
U⊥�� + L̃( j)U [�],

where we denote

L̃( j)U [�] := |∇U ( j)|2�( j)
U⊥� − 2∇(� ·U ( j))∇U ( j), (3.7)

with

∇(� ·U ( j))∇U ( j) =
2∑

k=1

∂xk (� ·U ( j))∂xkU
( j), x = (x1, x2).

We give several useful expressions of the operator L̃( j)U acting on� in different
forms:

• In the polar coordinates

�(x) = �(r j , θ j ), x = ξ ( j) + r j e
iθ j ,

the operator (3.7) can be expressed as

L̃(1)U [�] = − 2

λ(1)
wρ1 (ρ1)

[

(∂r1� ·U (1))E(1)1 − 1

r1
(∂θ1� ·U (1))E(1)2

]

, r1 = λ(1)ρ1,

L̃(2)U [�] = − 2

λ(2)
wρ2 (ρ2)

[

(∂r2� ·U (2))QωE
(2)
1 − 1

r2
(∂θ2� ·U (2))QωE

(2)
2

]

, r2 = λ(2)ρ2.
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• For the operator L̃(1)U acting on �(x) = (ϕ1(x), ϕ2(x), ϕ3(x))T , we can com-
pute

∂r1� ·U (1) =
⎛

⎝(cos θ1∂x1 + sin θ1∂x2)

⎡

⎣
ϕ1
ϕ2
ϕ3

⎤

⎦

⎞

⎠ ·
⎡

⎣
cos θ1 sinw(ρ1)

cosw(ρ1)
sin θ1 sinw(ρ1)

⎤

⎦

= sinw(ρ1)

2

[

(∂x1ϕ1 + ∂x2ϕ3) + sin 2θ1(∂x2ϕ1 + ∂x1ϕ3)

+ cos 2θ1(∂x1ϕ1 − ∂x2ϕ3)

]

+ cosw(ρ1)[cos θ1∂x1ϕ2 + sin θ1∂x2ϕ2],

1

r1
∂θ1� ·U (1) =

⎛

⎝(cos θ1∂x2 − sin θ1∂x1)

⎡

⎣
ϕ1
ϕ2
ϕ3

⎤

⎦

⎞

⎠ ·
⎡

⎣
cos θ1 sinw(ρ1)

cosw(ρ1)
sin θ1 sinw(ρ1)

⎤

⎦

= sinw(ρ1)

2

[

(∂x2ϕ1 − ∂x1ϕ3) + sin 2θ1(∂x2ϕ3 − ∂x1ϕ1)

+ cos 2θ1(∂x2ϕ1 + ∂x1ϕ3)

]

+ cosw(ρ1)[cos θ1∂x2ϕ2 − sin θ1∂x1ϕ2],

and thus

L̃(1)U [�] := [L̃U ](1)0 [�] + [L̃U ](1)1 [�] + [L̃U ](1)2 [�] (3.8)

with

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[L̃U ](1)0 [�] := (λ(1))−1ρ1w
2
ρ1
(ρ1)

[

(∂x1ϕ1 + ∂x2ϕ3)E
(1)
1 + (∂x1ϕ3 − ∂x2ϕ1)E

(1)
2

]

,

[L̃U ](1)1 [�] := − 2(λ(1))−1wρ1 (ρ1) cosw(ρ1)

[

(∂x1ϕ2) cos θ1 + (∂x2ϕ2) sin θ1

]

E (1)
1

+ 2(λ(1))−1wρ1 (ρ1) cosw(ρ1)

[

(∂x2ϕ2) cos θ1 − (∂x1ϕ2) sin θ1

]

E (1)
2 ,

[L̃U ](1)2 [�] := (λ(1))−1ρ1w
2
ρ1
(ρ1)

[

(∂x2ϕ1 + ∂x1ϕ3) sin 2θ1 + (∂x1ϕ1 − ∂x2ϕ3) cos 2θ1

]

E (1)
1

+ (λ(1))−1ρ1w
2
ρ1
(ρ1)

[

(∂x1ϕ1 − ∂x2ϕ3) sin 2θ1 − (∂x2ϕ1 + ∂x1ϕ3) cos 2θ1

]

E (1)
2 ,

(3.9)

where we have used sinw(ρ1) = −ρ1wρ1(ρ1).
• Another convenient form is the following: for aC1 function�(x) : R2 → C×R

written in the complex form

�(x) = (ϕ1(x), ϕ2(x), ϕ3(x))
T :=

[
ϕ1(x) + iϕ2(x)

ϕ3(x)

]

,

if we write

ϕ = ϕ1 + iϕ2, ϕ̄ = ϕ1 − iϕ2,

divϕ = ∂x1ϕ1 + ∂x2ϕ2, curlϕ = ∂x1ϕ2 − ∂x2ϕ1,
(3.10)

then we can express

L̃(2)U [�] := [L̃U ](2)0 [�] + [L̃U ](2)1 [�] + [L̃U ](2)2 [�] (3.11)
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as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[L̃U ](2)0 [�] := (λ(2))−1ρ2w
2
ρ2
(ρ2)[div(e−iωϕ)QωE

(2)
1 + curl(e−iωϕ)QωE

(2)
2 ],

[L̃U ](2)1 [�] := − 2(λ(2))−1wρ2 (ρ2) cosw(ρ2)[(∂x1ϕ3) cos θ2 + (∂x2ϕ3) sin θ2]QωE
(2)
1

− 2(λ(2))−1wρ2 (ρ2) cosw(ρ2)[(∂x1ϕ3) sin θ2 − (∂x2ϕ3) cos θ2]QωE
(2)
2 ,

[L̃U ](2)2 [�] := (λ(2))−1ρ2w
2
ρ2
(ρ2)[div(eiωϕ̄) cos 2θ2 − curl(eiωϕ̄) sin 2θ2]QωE

(2)
1

+ (λ(2))−1ρ2w
2
ρ2
(ρ2)[div(eiωϕ̄) sin 2θ2 + curl(eiωϕ̄) cos 2θ2]QωE

(2)
2 .

(3.12)

The proof is similar to that of L̃(1)U .
• If we assume

�(x) =
[
φ(r2)eiθ2

0

]

, x = ξ (2) + r2e
iθ2 , r2 = λ(2)ρ2,

where φ(r) is complex-valued, then we have the following formula:

L̃(2)U [�] = 2

λ(2)
w2
ρ2
(ρ2)

[

Re(e−iω∂r2φ(r2))QωE
(2)
1 + 1

r2
Im(e−iωφ(r2))QωE

(2)
2

]

.

4. Approximation and improvement

We consider the case of two bubbles with one placed in the interior and the other
placed on the boundary. In this section, we introduce the approximate solution and
its improvement. We consider the approximation

U∗(x, t) := U (1)(x, t) +U (2)(x, t) −U (2)∗(x, t), x ∈ R
2+, (4.1)

where U (1) and U (2) are given in (3.4) and

U (2)∗(x, t) := Qω

⎡

⎢
⎢
⎢
⎣

− 2λ(2)(x1−ξ
(2)
1 )

|x−ξ (2)∗|2+(λ(2))2

2λ(2)(x2+ξ
(2)
2 )

|x−ξ (2)∗|2+(λ(2))2

|x−ξ (2)∗|2−(λ(2))2

|x−ξ (2)∗|2+(λ(2))2

⎤

⎥
⎥
⎥
⎦
, (4.2)

Qω is the rotation matrix defined in (3.5), and we take

ξ (1)(t) = (ξ
(1)
1 (t), 0) ∈ ∂R2+,

ξ (2)(t) = (ξ
(2)
1 (t), ξ (2)2 (t)), ξ (2)∗(t) = (ξ

(2)
1 (t),−ξ

(2)
2 (t)), ξ

(2)
2 (t) > 0.

(4.3)

The reason for taking the above approximation is twofold: the reflection term is to
preserve symmetry, and the leading profile should be approximately of length one.
Clearly U (2)∗ is a least energy harmonic map. Denoting the error operator by

S(u) := −ut + �u + |∇u|2u,
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we then have

S(U∗) = − ∂tU
(1) − ∂t (U

(2) −U (2)∗) + |∇U∗|2U∗
− |∇U (1)|2U (1) − |∇U (2)|2U (2) + |∇U (2)∗|2U (2)∗

= −
[

λ̇(1)∂λ(1)U
(1)

︸ ︷︷ ︸

:=E (1)
0

+ ξ̇
(1)
1 ∂

ξ
(1)
1
U (1)

︸ ︷︷ ︸

:=E (1)
1

]

−
[

λ̇(2)∂λ(2) (U
(2) −U (2)∗) + ω̇∂ω(U

(2) −U (2)∗)
︸ ︷︷ ︸

:=E (2)
0

+ ξ̇
(2)
1 ∂

ξ
(2)
1
(U (2) −U (2)∗) + ξ̇

(2)
2 ∂

ξ
(2)
2
(U (2) −U (2)∗)

︸ ︷︷ ︸

:=E (2)
1

]

+
∣
∣
∣
∣∇(U (1) +U (2) −U (2)∗)

∣
∣
∣
∣

2[
U (1) +U (2) −U (2)∗]

− |∇U (1)|2U (1) − |∇U (2)|2U (2) + |∇U (2)∗|2U (2)∗

:= E (1)0 + E (1)1 + E (2)0 + E (2)1 + Ẽ,

where
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂λ(1)U
(1)(x) = −(λ(1))−1Z (1)

0,1(y1),

∂
ξ
(1)
1
U (1)(x) = (λ(1))−1Z (1)

1,1(y1),

∂
ξ
(1)
2
U (1)(x) = (λ(1))−1Z (1)

1,2(y1),

∂λ(2)U
(2)(x) = −(λ(2))−1QωZ

(2)
0,1(y2),

∂ωU
(2)(x) = −QωZ

(2)
0,2(y2),

∂
ξ
(2)
1
U (2)(x) = (λ(2))−1QωZ

(2)
1,1(y2),

∂
ξ
(2)
2
U (2)(x) = (λ(2))−1QωZ

(2)
1,2(y2),

with
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Z ( j)
0,1(y j ) = ρ jwρ j (ρ j )E

( j)
1 (y j ),

Z (2)
0,2(y2) = ρ2wρ2(ρ2)E

(2)
2 (y2),

Z ( j)
1,1(y j ) = wρ j (ρ j )[cos θ j E ( j)

1 (y j ) + sin θ j E
( j)
2 (y j )],

Z ( j)
1,2(y j ) = wρ j (ρ j )[sin θ j E ( j)

1 (y j ) − cos θ j E
( j)
2 (y j )],

for j = 1, 2. Here the definitions of Z ( j)
p,q , E

( j)
1 , E ( j)

2 can be found in (3.2), (3.3).

We notice that the error S(U∗) contains slow spatial decaying terms in E ( j)0 , in

other words, these terms are not in L2(R2), and E ( j)0 in fact corresponds to mode 0
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of each concentration. To improve the spatial decay, we add two global corrections
�
( j)
0 solving at leading order

∂t�
( j)
0 ≈ ��

( j)
0 − E ( j)0 .

More precisely, to improve E (1)0 , we take the corrections in the form

�
(1)
0 =

⎡

⎣
ϕ
(1)
0 (r1, t) cos θ1

0
ϕ
(1)
0 (r1, t) sin θ1

⎤

⎦ , x − ξ (1) = r1e
iθ1 ,

where

ϕ
(1)
0 (r1, t) = −

∫ t

T
λ̇1(s)r1K (z1(r1), t − s)ds,

z1(r1) = (r21 + (λ(1))2)1/2, K (z, t) = 2(1 − e− z2
4t )

z2
.

The reason for the above correction is the following. The slow decaying error in
E (1)0 is

λ̇(1)∂λ(1)U
(1) = λ̇(1)(λ(1))−1Z (1)

0,1(y1)

≈ − λ̇(1)
2r1

r21 + (λ(1))2

⎡

⎣
cos θ1
0

sin θ1

⎤

⎦ ≈ −2λ̇(1)

r1

⎡

⎣
cos θ1
0

sin θ1

⎤

⎦ .

Then the scalar ϕ(1)0 roughly solves

∂tϕ
(1)
0 = ∂r1r1ϕ

(1)
0 + 1

r1
∂r1ϕ

(1)
0 − 1

r21
ϕ
(1)
0 − 2λ̇(1)

r1
,

whose explicit form was derived in [11]. Similarly, for the slowing decaying error
in E (2)0

λ̇(2)∂λ(2)U
(2) + ω̇∂ωU

(2) = λ̇(2)(λ(2))−1QωZ
(2)
0,1 + ω̇QωZ

(2)
0,2

≈ − 2r2
r22 + (λ(2))2

Qω

⎛

⎝λ̇(2)

⎡

⎣
cos θ2
sin θ2
0

⎤

⎦+ λ(2)ω̇

⎡

⎣
− sin θ2
cos θ2
0

⎤

⎦

⎞

⎠

≈ − 2λ̇(2)

r2

[
ṗ(t)eiθ2

0

]

,

we add a global correction of the form

�
(2)
0 =

[
ϕ
(2)
0 (r2, t)eiθ2

0

]

, x − ξ (2) = r2e
iθ2 ,
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where

ϕ
(2)
0 (r2, t) = −

∫ t

T
ṗ2(s)r2K (z2(r2), t − s)ds,

p2(t) = λ(2)(t)eiω(t), z2(r2) = (r22 + (λ(2))2)1/2.

Here the complex notation

v =
[
a + ib

c

]

means the 3-vector v = (a, b, c)T . We then write

�0 := �
(1)
0 + �

(2)
0 . (4.4)

By direct computations, the new error produced by �0 is

∂t�0 − �x�0 + E (1)0 + E (2)0 =
2∑

j=1

(R̃( j)
0 + R̃( j)

1 ),

R̃(1)
0 = Q∗

[
R(1)

0
0

]

, R̃(1)
1 = Q∗

[
R(1)

1
0

]

, R̃(2)
0 =

[
R(2)

0
0

]

, R̃(2)
1 =

[
R(2)

1
0

]

,

where Q∗ is defined in (2.4),

R(1)
0 := −r1e

iθ1 (λ
(1))2

z41

∫ t

−T
λ̇(1)(s)(z1Kz1 − z21Kz1z1)(z1(r1), t − s) ds,

R(1)
1 := −eiθ1Re (e−iθ1 ξ̇ (1)(t))

∫ t

−T
λ̇(1)(s) K (z1(r1), t − s) ds

+ r1
z21

eiθ1 (λ(1)λ̇(1)(t) − Re (reiθ1 ξ̇ (1)(t)))
∫ t

−T
λ̇(1)(s) z1Kz1(z1(r1), t − s) ds,

R(2)
0 := −r2e

iθ2 (λ
(2))2

z42

∫ t

−T
ṗ2(s)(z2Kz2 − z22Kz2z2 )(z2(r2), t − s) ds,

R(2)
1 := −eiθ2Re (e−iθ2 ξ̇ (2)(t))

∫ t

−T
ṗ2(s) K (z2(r2), t − s) ds

+ r2
z22

eiθ2 (λ(2)λ̇(2)(t) − Re (r2e
iθ2 ξ̇ (2)(t)))

∫ t

−T
ṗ2(s) z2Kz2 (z2(r2), t − s) ds.

(4.5)

Observe thatR( j)
1 is of smaller order. Moreover, we can evaluate

2∑

j=1

L̃( j)U [�( j)
0 ] − ∂tU∗ + ��0 − ∂t�0 = K( j)

0 + K( j)
1 − �

( j)
U⊥[R̃( j)

1 ]

where for j = 1, 2, operators L̃( j)U and�( j)
U⊥ are defined in (3.7) and (3.6), respec-

tively, and

K( j)
0 := K( j)

01 + K( j)
02 (4.6)
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with

K(1)
01 := − 2

λ(1)
ρ1w

2
ρ1

∫ t

−T
λ̇(1)(s)E (1)

1 K (z1, t − s) ds,

K(1)
02 := 1

λ(1)
ρ1w

2
ρ1

[

λ̇(1) −
∫ t

−T
λ̇(1)(s)r1Kz1 (z1, t − s)(z1)r1 ds

]

E (1)
1

− 1

4λ(1)
ρ1w

2
ρ1

cosw(ρ1)

[∫ t

−T
λ̇(1)(s) (z1Kz1 − z21Kz1z1 )(z1, t − s) ds

]

E (1)
1 ,

K(1)
1 := 1

λ(1)
wρ1

[
ξ̇
(1)
1 cos θ1E

(1)
1 + ξ̇

(1)
1 sin θ1E

(1)
2

]
,

K(2)
01 := − 2

λ(2)
ρ2w

2
ρ2

∫ t

−T

[
Re ( ṗ2(s)e

−iω(t))QωE
(2)
1 + Im ( ṗ2(s)e

−iω(t))QωE
(2)
2

]
· K (z2, t − s) ds,

K(2)
02 := 1

λ(2)
ρ2w

2
ρ2

[

λ̇(2) −
∫ t

−T
Re ( ṗ2(s)e

−iω(t))r2Kz2 (z2, t − s)(z2)r2 ds

]

QωE
(2)
1

− 1

4λ(2)
ρ2w

2
ρ2

cosw(ρ2)

[∫ t

−T
Re ( ṗ2(s)e

−iω(t)) (z2Kz2 − z22Kz2z2 )(z2, t − s) ds

]

QωE
(2)
1

− 1

4λ(2)
ρ2w

2
ρ2

[∫ t

−T
Im ( ṗ2(s)e

−iω(t)) (z2Kz2 − z22Kz2z2 )(z2, t − s) ds

]

QωE
(2)
2 ,

K(2)
1 := 1

λ(2)
wρ2

[
Re
(
(ξ̇

(2)
1 − i ξ̇ (2)2 )eiθ2

)
QωE

(2)
1 + Im

(
(ξ̇

(2)
1 − i ξ̇ (2)2 )eiθ2

)
QωE

(2)
2

]
.

(4.7)

5. Gluing system and derivation of the dynamics for parameters

In this section, we first formulate the inner-outer gluing system so that blow-up
solutions with desired asymptotics can be constructed. Then we derive at leading
order the dynamics that the parameter functions should satisfy.

Since the targetmanifold isS2, we expect that the real solution u to the harmonic
map heat flow takes the form of leading profile U∗ plus smaller order terms such
that |u(x, t)| = 1 for all x and t . To better evaluate the smaller order terms, we look
for a solution u of the form

u = (1 + a)U∗ + � − (� ·U∗)U∗,

� =
2∑

j=1

η
( j)
R �

( j)
in (y j , t) + �out(x, t) + �0

(5.1)

with �0 defined in (4.4),

�
(1)
in = ϕ

(1)
in,1(y1, t)E

(1)
1 + ϕ

(1)
in,2(y1, t)E

(1)
2 ,

�
(2)
in = ϕ

(2)
in,1(y2, t)QωE

(2)
1 + ϕ

(2)
in,2(y2, t)QωE

(2)
2 ,

η
( j)
R (x, t) = η

(
x − ξ ( j)(t)

λ( j)(t)R(t)

)

, η(s) =
{
1, for s < 1,

0, for s > 2,

(5.2)

where a is a scalar, ϕ( j)in,1, ϕ
( j)
in,2, �out are perturbations of smaller order, and R(t)

will be chosen later. ϕ( j)in,1, ϕ
( j)
in,2 solve the inner problem near each bubble U ( j),
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while �out handles the region away from the concentration zones. From |u| = 1,
we see that the scalar |a| = O(|�|2) is of smaller order. Notice that we only need
to solve

S(u) = b(x, t)U∗

for some scalarb. Indeed, since |u| = 1 is enforced for all t ∈ (0, T ) andu = U∗+w̃

where the perturbation w̃ is uniformly small, we have

b(x, t)(U∗ · u) = S(u) · u = −1

2

d

dt
|u|2 + 1

2
�|u|2 = 0.

Thus b ≡ 0 follows from U∗ · u ≥ δ > 0, which means u is a solution to the
harmonic map heat flow.

Now, we compute the error

S(u) = − atU∗ − (1 + a)∂tU∗ − ∂t� + (� ·U∗)∂tU∗ + ∂t (� ·U∗)U∗ + �aU∗
+ (1 + a)�U∗ + 2∇a · ∇U∗ + �� − �[(� ·U∗)U∗]

+
∣
∣
∣
∣∇
(
(1 + a)U∗ + � − (� ·U∗)U∗

)
∣
∣
∣
∣

2[
(1 + a)U∗ + � − (� ·U∗)U∗

]

= − ∂t� + �� + S(U∗) + (� ·U∗)∂tU∗ − (� ·U∗)�U∗ − 2∇(� ·U∗) · ∇U∗

+
∣
∣
∣
∣∇
(
(1 + a)U∗ + � − (� ·U∗)U∗

)
∣
∣
∣
∣

2[
(1 + a)U∗ + � − (� ·U∗)U∗

]− |∇U∗|2U∗

+ 2∇a · ∇U∗ + a(�U∗ − ∂tU∗) + [
�a − at + ∂t (� ·U∗) − �(� ·U∗)

]
U∗,

and here

� ·U∗ = η
(1)
R �

(1)
in · [U (2) −U (2)∗] + η

(2)
R �

(2)
in · [U (1) −U (2)∗] + (�out + �0) ·U∗.

To formulate the inner–outer gluing system, we start from S(u) = b(x, t)U∗ and
neglect terms in U∗ direction due to the discussions above. One expects that the
inner solution �

( j)
in solves the linearization around the bubble U ( j), while �out

solves a non-homogenous heat equation dealing with all R2+ including the regions
away from two concentration zones. This leads to the following sufficient condition
for S(u) = b(x, t)U∗ to hold: {�( j)

in , �out} solve the inner–outer gluing system

∂t�
( j)
in = ��

( j)
in + |∇U ( j)|2�( j)

in + 2(∇U ( j) · ∇�
( j)
in )U ( j)

+ L̃( j)U �out + K( j)
0 + K( j)

1 in B( j)
2λ( j)R

× (0, T ),

∂t�out = ��out + (1 − η
(1)
R − η

(2)
R )L̃( j)U �out

+ (1 − η
(1)
R − η

(2)
R )(K( j)

0 + K( j)
1 ) + Cin + N in R2+ × (0, T ),

(5.3)
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where B( j)
x,2λ( j)R

:= {x ∈ R
2+ : |x − ξ ( j)| ≤ 2λ( j)R}, the operator L̃( j)U is defined

in (3.7), and

Cin :=
2∑

j=1

(

�
( j)
in �η

( j)
R + 2∇η

( j)
R · ∇�

( j)
in − �

( j)
in ∂tη

( j)
R

+ η
( j)
R (λ( j))−1∇y j�

( j)
in · (λ̇( j)y j + ξ̇ ( j))

)

+ η
(2)
R ω̇J�(2)

in , (5.4)

N := (� ·U∗)∂tU∗ − (� ·U∗)�U∗ − 2∇(� ·U∗) · ∇U∗
+ ∣
∣∇[(1 + a)U∗ + � − (� ·U∗)U∗]

∣
∣2[(1 + a)U∗ + � − (� ·U∗)U∗]

− |∇U∗|2U∗ + �
( j)
U⊥[R̃( j)

1 ] + 2∇a · ∇U∗ + a(�U∗ − ∂tU∗) + Ẽ

−
2∑

j=1

(

|∇U ( j)|2�( j)
in + 2(∇U ( j) · ∇�

( j)
in )U ( j)

+ |∇U ( j)|2�( j)
U⊥�out − 2∇(�out ·U ( j))∇U ( j)

)

. (5.5)

Here

J :=
⎡

⎣
0 −1 0
1 0 0
0 0 0

⎤

⎦ .

For the inner problem, we are going to write, in the complex notation

�
( j)
in,C = ϕ

( j)
in,1 + iϕ( j)in,2,

and further decompose in Fourier modes

�
( j)
in,C(y, t) =

∑

k∈Z
eikθ jϕ( j)k (ρ j , t)

in the corresponding polar coordinates. The inner problemwill then be solvedmode
by mode. For the outer problem, we write

�out = ψ + Z∗

with Z∗ = (Z∗
1 , Z

∗
2 , Z

∗
3)

T : R2+ × (0,∞) → R
3 satisfying

⎧
⎪⎨

⎪⎩

∂t Z∗ = �Z∗ in R2+ × (0,∞),

∂x2 Z
∗
1(·, t) = 0, ∂x2 Z

∗
2(·, t) = 0, Z∗

3(·, t) = 0 on ∂R2+ × (0,∞),

Z∗(·, 0) = Z∗
0 in R2+.

(5.6)

Here Z∗ will be needed in the reduced problems (especially for the scaling pa-
rameters). Then we will get a solution solving the harmonic map heat flow if
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(�
(1)
in ,�

(2)
in , ψ) solve the inner–outer gluing system

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(λ(1))2∂t�
(1)
in = L(1)W [�(1)

in ] + (λ(1))2
[
L̃(1)U [�out] + K(1)

0 + K(1)
1

]
in D(1)

2R

�
(1)
in (·, 0) = 0 in B(1)

2R(0)

�
(1)
in · W1 = 0 in D(1)

2R

(5.7)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(λ(2))2∂t�
(2)
in = L(2)W [�(2)

in ] + (λ(2))2
[
L̃(2)U [�out] + K(2)

0 + K(2)
1

]
in D(2)

2R

�
(2)
in (·, 0) = 0 in B(2)

2R(0)

�
(2)
in · QωW2 = 0 in D(2)

2R

(5.8)

{
∂tψ = �xψ + G[λ(1), p2, ξ (1), ξ (2), �out,�

(1)
in ,�

(2)
in ] in R

2+ × (0, T ),

∂x2ψ1 = ∂x2ψ2 = ψ3 = 0 on ∂R2+ × (0, T ),
(5.9)

where

G[λ(1), p2, ξ (1), ξ (2), �out,�
(1)
in ,�

(2)
in ] := (1 − η

(1)
R − η

(2)
R )L̃( j)U �out + Cin + N

+ (1 − η
(1)
R − η

(2)
R )(K( j)

0 + K( j)
1 ),

the linearization L( j)W [φ] is defined in (3.1), and

D( j)
2R := B( j)

2R × (0, T ) = {y j ∈ R
2+ : |y j | ≤ 2R} × (0, T )

with the radius

R = R(t) = λ∗(t)−γ∗ with λ∗(t) = T − t

| log(T − t)|2 and γ∗ ∈ (0, 1/2).(5.10)

The reason for choosing such R(t) and λ∗(t) will be made clear later on. The
boundary conditions in equation (5.9) actually follow from the fact

∂x2U∗,1 = ∂x2U∗,2 = U∗,3 = 0 on ∂R2+ × (0, T ),

∂x2�
(1)
0,1 = ∂x2�

(1)
0,2 = �

(1)
0,3 = 0 on ∂R2+ × (0, T )

thanks to the choices of U (1) and the reflection U (2)∗. Here

U∗ = (U∗,1,U∗,2,U∗,3)T , �
(1)
0 = (�

(1)
0,1,�

(1)
0,2,�

(1)
0,3)

T .

Next we derive the dynamics for the parameters λ(1)(t), p2(t), ξ (1)(t), ξ (2)(t) at
leading order as t → T . We assume for now that the function�out(x, t) is fixed and
sufficiently regular, andwe regard T as a parameter thatwill always be taken smaller
if necessary. We recall that we need ξ ( j)(T ) = q( j), λ(1)(T ) = λ(2)(T ) = 0, where
q(1) ∈ ∂R2+, q(2) ∈ R̊

2+ are given.
In order to find solutions to the inner problems (5.7) and (5.8) with sufficiently

fast decay in space and time, one expects certain orthogonality conditions to hold
since even the stationary linearized operator (arounddegree one harmonicmaps) has
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six-dimensional kernel in L∞(R2). In fact, the linear theory that will be discussed
in Sect. 6 requires the following orthogonality conditions

∫

B( j)
2R

H( j)Z ( j)
p,q(y j )dy j = 0 for all t ∈ (0, T ), (5.11)

where

H(1) := (λ(1))2
[
L̃(1)U [�out] + K(1)

0 + K(1)
1

]
, (5.12)

H(2) := (λ(2))2Q−1
ω

[
L̃(2)U [�out] + K(2)

0 + K(2)
1

]
, (5.13)

and Z ( j)
p,q is given in (3.2). Intuitively, if λ( j)(t) has a relatively smooth vanishing

as t → T , then it is natural that the term (λ( j))2∂t�
( j)
in is of smaller order, and the

inner problems are approximately of the form

L(1)W [�(1)
in ] + H(1) = 0, �

(1)
in · W1 = 0 in B(1)

2R ,

L(2)W [�(2)
in ] + QωH(2) = 0, �

(2)
in · QωW2 = 0 in B(2)

2R .
(5.14)

If there are solutions �( j)
in (y j , t) to (5.14) with sufficiently fast decay, then neces-

sarily (5.11) hold for p = 0, 1, j, q = 1, 2. These orthogonality conditions in turn
require the correct choices of the parameter functions so that the solution (�( j)

in , ψ)

with appropriate asymptotics exists.
We first derive the dynamics for the parameters λ(1) (mode 0), ξ (1) (mode 1)

appearing in the boundary bubble. Write

B(1)
01 [λ(1), ξ (1)](t)

:= λ(1)

2π

∫

B(1)
2R

[K(1)
0 [λ(1), ξ (1)] + K(1)

1 [λ(1), ξ (1)]] · Z (1)
0,1(y1) dy1, j = 1, 2.

Combining (4.6), (4.7) and (5.11), the following expression for B(1)
01 is readily

obtained by similar computations as in [11, Section 5]

B(1)
01 [λ(1), ξ (1)](t) =

∫ t

−T
λ̇(1)(s) 	1

(
(λ(1)(t))2

t − s

)
ds

t − s
− 2λ̇(1)(t) + o(1),

where o(1) → 0 as t → T , and 	1(τ ) is smooth function given by

	1(τ ) := −
∫ ∞

0
ρ31w

3
ρ1

[

K̃ (ζ ) + 2ζ K̃ζ (ζ )
ρ21

1 + ρ21
− 4 cosw(ρ1)ζ

2 K̃ζ ζ (ζ )

]

ζ=τ(1+ρ21 )

dρ1,

where

K̃ (ζ ) := 2
1 − e− ζ

4

ζ
.
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Here the orthogonality with Z (1)
0,2 does not contribute in the dynamics since

[
K(1)

0 + K(1)
1

]
· E (1)

2 = 0.

Using the expression of 	1(τ ), we get
⎧
⎨

⎩

|	1(τ ) − 1| ≤ Cτ(1 + | log τ |) for τ < 1,

|	1(τ )| ≤ C

τ
for τ > 1.

Define

a(1)01 [λ(1), ξ (1), �out] := −λ(1)

2π

∫

B(1)
2R

L̃(1)U [�out] · Z (1)
0,1(y1) dy1.

Then the orthogonality condition (5.11) with q, j = 1 and p = 0 is reduced to

B(1)
01 = a(1)01 . (5.15)

We observe that

B(1)
01 =

∫ t−(λ(1))2

−T

λ̇(1)(s)

t − s
ds + O

(‖λ̇(1)‖∞
)+ o(1) as t → T .

To get an approximation for a(1)01 , we recall the operator L̃
(1)
U defined in (3.8)-(3.9).

Write

�out = (�out,1,�out,2,�out,3)
T .

We then get

a(1)01 [λ(1), ξ (1), �out] = (∂x1�out,1 + ∂x2�out,3) + o(1) as t → T .

Then the reduced problem (5.15) at mode 0 can be written in the form

∫ t−(λ(1))2

−T

λ̇(1)(s)

t − s
ds = [∂x1�out,1 + ∂x2�out,3](ξ (1)(t), t) + o(1) + O(‖λ̇(1)‖∞),

(5.16)

and thus neglecting lower order terms,λ(1) satisfies the following integro-differential
equation

∫ t−(λ(1))2(t)

−T

λ̇(1)(s)

t − s
ds = ∂x1�out,1(q

(1), 0) + ∂x2�out,3(q
(1), 0) =: a(1)∗0 .

(5.17)

At this point, we make the assumption that

∂x1�out,1(q
(1), 0) + ∂x2�out,3(q

(1), 0) < 0, (5.18)
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which is achieved by choosing Z∗
0 in (5.6). Then, equation (5.17) becomes

∫ t−(λ(1))2(t)

−T

λ̇(1)(s)

t − s
ds = −|a(1)∗0 |. (5.19)

We claim that a good approximate solution to (5.19) as t → T is given by

λ̇(1)(t) = − κ(1)

| log(T − t)|2

for some κ(1) > 0. Indeed, we have

∫ t−(λ(1))2(t)

−T

λ̇(1)(s)

t − s
ds

=
∫ t−(T−t)

−T

λ̇(1)(s)

t − s
ds + λ̇(1)(t)

[
log(T − t) − 2 log(λ(1)(t))

]

+
∫ t−(λ(1))2(t)

t−(T−t)

λ̇(1)(s) − λ̇(1)(t)

t − s
ds

≈
∫ t

−T

λ̇(1)(s)

T − s
ds − λ̇(1)(t) log(T − t) := ϒ(t)

as t → T . We see that

log(T − t)
dϒ(t)

dt
= d

dt
(| log(T − t)|2 λ̇(1)(t)) = 0

from the explicit form of λ̇(1)(t). Thus ϒ(t) is a constant. As a consequence,
equation (5.19) is approximately satisfied if κ(1) is such that

κ(1)
∫ T

−T

λ̇(1)(s)

T − s
ds = −|a(1)∗0 |,

which finally gives us the approximate expression

λ̇(1)(t) = −|∂x1�out,1(q
(1), 0) + ∂x2�out,3(q

(1), 0)| λ̇∗(t),

where

λ̇∗(t) = − | log T |
| log(T − t)|2 .

Naturally, imposing λ∗(T ) = 0, we then have

λ∗(t) ∼ | log T |
| log(T − t)|2 (T − t) (1 + o(1)) as t → T . (5.20)

Similarly, for the mode 1 of the boundary bubble, we define
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B(1)
1 j [λ(1), ξ (1)](t)

:= λ(1)

2π

∫

B(1)
2R

[K(1)
0 [λ(1), ξ (1)] + K(1)

1 [λ(1), ξ (1)]] · Z (1)1, j (y1) dy1, j = 1, 2,

B(1)
1 [λ(1), ξ (1)](t) := B(1)

11 [λ(1), ξ (1)](t) + iB(1)
12 [λ(1), ξ (1)](t).

Therefore, by (4.6), (4.7), (3.2) and the fact that
∫∞
0 ρ1w

2
ρ1
dρ1 = 2, we obtain

B(1)
1 [λ(1), ξ (1)](t) = 2ξ̇ (1)1 (t)eiθ1 + o(1) as t → T .

Write

a(1)1 j [λ(1), ξ (1), �out] := λ(1)

2π

∫

B(1)
2R

L̃U [�out] · Z (1)
1, j (y1) dy1, j = 1, 2,

a(1)1 [λ(1), ξ (1), �out] := −(a(1)11 [λ(1), ξ (1), �out] + ia(1)12 [λ(1), ξ (1), �out]).
Therefore, the orthogonality (5.11) with j = p = q = 1 is reduced to

B(1)
1 [λ(1), ξ (1)] = a(1)1 [λ(1), ξ (1), �out]. (5.21)

Similarly, since
∫∞
0 w2

ρ1
cosw(ρ1)ρ1 dρ1 = 0, we get

a(1)11 [λ(1), ξ (1), �out] = 2∂x1�out,2(ξ
(1), t)

∫ ∞

0
cosww2

ρρ dρ + O(R−2)

= o(1) as t → T

by using (3.8)–(3.9), and thus

ξ̇
(1)
1 (t) = O(R−2).

This means we can have a solution

ξ
(1)
1 (t) = q(1)1 + O((T − t)1+2γ∗),

where γ∗ is given in (5.10). Note that the imaginary part of a(1)1 vanishes because

of the partially free boundary ∂x2ψ
∗
2 (ξ

(1), t) = 0 for given q(1)1 ∈ R.
For the parameters involved in the interior bubble, one can carry out a similar

analysis for λ(2)(t) at mode 0 and for ξ (2)(t) at mode 1. In fact, we have

∫ t−(λ(2))2(t)

−T

ṗ2(s)

t − s
ds = (div�out + icurl�out)(ξ

(2), t) + O(‖ ṗ2‖∞) + o(1),

ξ̇ (2)(t) = O(R−2) as t → T, (5.22)

where we have used the complex notation (3.10) writing

�out =
[
�out,1 + i�out,2

�out,3

]

.
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For the expected asymptotics of the blow-up speed p2(t) = λ(2)eiω to exist, the
following sign condition near the interior bubble is needed

div�out(q
(2), 0) < 0,

which determines the parameters

∫ t−(λ(2))2(t)

−T

λ̇(2)(s)

t − s
ds = −|div�out(q

(2), 0)| + o(1),

ω = ω0 := arctan
curl�out

div�out
(q(2), 0),

ξ (2) = q(2) + O((T − t)1+2γ∗),

(5.23)

for some given point q(2) ∈ R̊
2+.

In conclusion, orthogonality conditions, which are required to guarantee well-
behaved solutions to the inner problems (5.7) and (5.8), result in the following
asymptotics of the modulation parameters:

λ(1)(t) ∼ κ(1)
T − t

| log(T − t)|2 , ξ (1)(t) ∼ q(1) ∈ ∂R2+

p2(t) ∼ κ(2)
T − t

| log(T − t)|2 e
iω0 , ξ (2)(t) ∼ q(2) ∈ R̊

2+
(5.24)

for some κ(1), κ(2) > 0.

6. Linear theories for linearized harmonic map heat flow and Stokes system

In this section, we give linear theories that are needed to solve the linearized
harmonic map heat flow, namely the inner and outer problems (5.7)–(5.9), and also
the Stokes system.
Linear theory for the inner problems.Wefirst start from themodel inner problem

⎧
⎪⎨

⎪⎩

(λ( j))2∂tφ
( j) = L( j)W [φ( j)] + h( j)(y j , t) in D( j)

2R ,

φ( j)(·, 0) = 0 in B( j)
2R(0),

φ( j) · Wj = 0 in D( j)
2R

for j = 1, 2, where we write

φ(1) := �
(1)
in , h(1) = H(1),

φ(2) := Q−1
ω �

(2)
in , h(2) = Q−1

ω H(2),
(6.1)

and we recall that

R = R(t) = λ∗(t)−γ∗ with λ∗(t) = T − t

| log(T − t)|2 and γ∗ ∈ (0, 1/2).



Arch. Rational Mech. Anal. (2023) 247:20 Page 29 of 54 20

For notational simplicity, in the rest of this section, we drop the superscripts and
just write

⎧
⎪⎨

⎪⎩

λ2∂tφ = LW [φ] + h(y, t) in D2R,

φ(·, 0) = 0 in B2R(0),

φ · W = 0 in D2R

(6.2)

since the linear theory applies to both inner problems. For example, if we apply
the linear theory of the model problem (6.2) to the inner problem of the boundary
bubble, then the spatial variable y in (6.2) stands for the rescaled variable y1 around
the boundary concentration point.

Since the inner problem for the interior bubble does not touch the boundary
∂R2+, one may regard it as a problem in R

2 with compact support. In the inner
problem for the boundary bubble however, the partially free boundary conditions
play an important role. To be more precise, the partially free boundary conditions
(1.2) determine the symmetry of the inner problem across the boundary, and this
symmetry allows us to do the Fourier expansion in modes and regard the half space
problem as problem in the entire spaceR2, and thus the linear theory applies. Before
we explain the reflection of �(1)

in , we first introduce the Fourier modes of problem
(6.2).

We regard h(y, t) as a function defined in R
2 × (0, T ) with compact support,

and assume that h(y, t) has the space-time decay of the type

|h(y, t)| � λν∗(t)
1 + |y|a , h · W = 0,

where ν > 0 and a ∈ (2, 3). Define the norm

‖h‖ν,a := sup
(y,t)∈R2×(0,T )

λ−ν∗ (t)(1 + |y|a)|h(y, t)|.

In polar coordinates, h(y, t) can be written as

h(y, t) = h1(ρ, θ, t)E1(y) + h2(ρ, θ, t)E2(y), y = ρeiθ

since h · W = 0. We use the complex notation

h̃(ρ, θ, t) := h1 + ih2

and expand in Fourier series

h̃(ρ, θ, t) =
∞∑

k=−∞
h̃k(ρ, t)e

ikθ (6.3)

such that

h(y, t) =
∞∑

k=−∞
hk(y, t) := h0(y, t) + h1(y, t) + h−1(y, t) + h⊥(y, t) (6.4)
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with

hk(y, t) = Re(h̃k(ρ, t)e
ikθ )E1 + Im(h̃k(ρ, t)e

ikθ )E2, k ∈ Z. (6.5)

We consider the kernel functions Zk, j (dropping superscripts) introduced in (3.2),
and define

h̄k(y, t) :=
2∑

j=1

χ Zk, j (y)
∫

R2 χ |Zk, j |2
∫

R2
h(z, t) · Zk, j (z) dz, k = 0,±1, j = 1, 2,

(6.6)

where

χ(y, t) =
{
w2
ρ(|y|) if |y| < 2R(t),

0 if |y| ≥ 2R(t).

Similarly, we decompose the inner solution

φ =
∞∑

k=−∞
φk, φk(y, t) = Re(ϕk(ρ, t)e

ikθ )E1 + Im(ϕk(ρ, t)e
ikθ )E2.

In each mode k, the pair (φk, hk) satisfies

{
λ2∂tφk = LW [φk] + hk(y, t) in D4R,

φk(y, 0) = 0, in B4R(0),
(6.7)

which is equivalent to the following problem:

{
λ2∂tϕk = Lk[ϕk] + h̃k(ρ, t) in D̃4R,

ϕk(ρ, 0) = 0 in (0, 4R(0))

Here D̃4R = {(ρ, t) : t ∈ (0, T ), ρ ∈ (0, 4R(t))}, and

Lk[ϕk] := ∂ρρϕk + ∂ρϕk

ρ
− (k2 + 2k cosw + cos(2w))

ϕk

ρ2
.

It is directly apparent that the kernel functions for Lk such that Lk[Zk] = 0 at
modes k = 0,±1 are given by

Z0(ρ) = ρ

1 + ρ2
, Z1(ρ) = 1

1 + ρ2
, Z−1(ρ) = 2ρ2

1 + ρ2
. (6.8)

Now, let us go back to the Fourier expansion for the boundary inner problem.
In the general setting (without symmetry across ∂R2+), we try to look for a solution
near the boundary concentration zone in the form
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φ(1)(y1, t) :=
∑

k∈Z
φ
(1)
k (y1, t)

=
∑

k∈Z

[
Re(eikθ1ϕ(1)k (ρ1, t))E

(1)
1 + Im(eikθ1ϕ(1)k (ρ1, t))E

(1)
2

]

=
∑

k∈Z

[
(ϕk,1 cos(kθ1) − ϕk,2 sin(kθ1))E

(1)
1 + (ϕk,2 cos(kθ1) + ϕk,1 sin(kθ1))E

(1)
2

]
,

(6.9)

where

ϕ
(1)
k = ϕk,1 + iϕk,2.

Recall from (1.6) that the partially free boundary conditions are automatically
satisfied by extending the first, second, third components of φ(1) evenly, evenly,
oddly in x2, and we notice that the first, second and third components of E (1)

1 are

even, even, odd in x2, while the first, second, third components of E (1)
2 are odd,

even/odd, even in x2, respectively (see (3.3)). Thus the terms

ϕk,1 cos(kθ1)E
(1)
1 + ϕk,1 sin(kθ1)E

(1)
2

have the right symmetry, but

ϕk,2 cos(kθ1)E
(1)
2 − ϕk,2 sin(kθ1)E

(1)
1

violate the partially free boundary conditions. In other words, if

ϕk,2 ≡ 0,

then the Fourier expansion (6.9) already implies that φ(1) satisfies the partially free
boundary conditions. In fact, the role of the reflected bubble is to ensure that the error
produced by U∗ is perpendicular to E (1)

2 on ∂R2+ so that ϕk,2 ≡ 0, and this in turn

rules out the possibility of rotations for the boundary bubble since E (1)
2 -direction

corresponds exactly to the rotation around z-axis. This “rigidity” is consistent with
the intuition from (1.2)3 that the image of the boundary under map u is fixed on the
equator �.

Recalling the right hand side of the boundary inner problemH(1) in (5.12), one
needs to check

H(1) · E (2)
2 = 0 on ∂R2+.

The most important term is in fact the coupling from the outer problem

L̃(1)U [�out] = − 2

λ(1)
wρ1[(∂r1�out ·U (1))E (1)

1 − 1

r1
(∂θ1�out ·U (1))E (1)

2 ],

and to avoid projection onto E (1)
2 direction, we only need

∂θ1�out ·U (1)
∣
∣
∣
x2=0

= 0,
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i.e.,

(x1∂2 − x2∂1)�out ·U (1)
∣
∣
∣
x2=0

= 0.

This is true thanks to

∂2�out,1 = ∂2�out,2 = 0 on ∂R2+,

where we have used the explicit expression of U (1) in (3.4), and �out,1, �out,2 are
the first and second components of �out, respectively. Above analysis implies that
for H(1), there is no projection onto E (2)

2 on the boundary, so we can regard the
boundary inner problem as a problem in the entire space R2 (an interior problem).

We now state the linear theory for both inner problems.

Proposition 6.1. [23]Assume that a ∈ (2, 3), ν > 0, δ ∈ (0, 1) and ‖h‖ν,a < +∞.
Let us write

h = h0 + h1 + h−1 + h⊥ with h⊥ =
∑

k �=0,±1

hk .

Then there exists a solution φ[h] of problem (6.2), which defines a linear operator
of h, and satisfies the following estimate in D2R

|φ(y, t)| + (1 + |y|) ∣∣∇yφ(y, t)
∣
∣+ (1 + |y|)2

∣
∣
∣∇2

yφ(y, t)
∣
∣
∣

� λν∗(t) min

{
Rδ(5−a)(t)

1 + |y|3 ,
1

1 + |y|a−2

}

‖h0 − h̄0‖ν,a + λν∗(t)R2(t)

1 + |y| ‖h̄0‖ν,a

+ λν∗(t)
1 + |y|a−2

∥
∥h1 − h̄1

∥
∥
ν,a + λν∗(t)R4(t)

1 + |y|2
∥
∥h̄1

∥
∥
ν,a

+ λν∗(t) ‖h−1 − h̄−1‖ν,a + λν∗(t) log R(t) ‖h̄−1‖ν,a
+ λν∗(t)

1 + |y|a−2 ‖h⊥‖ν,a .

Linear theory for the outer problem. We then introduce the linear theory for
the outer problem. For the outer problem, we will solve it componentwise since
each component satisfies a nonhomogeneous heat equation. Because of the sym-
metry imposed on the solution, we use the Duhamel’s formula for the model linear
problem

ψt = �R2ψ + g (6.10)

with either Dirichlet or Neumann boundary condition. More precisely, for ψ =
(ψ1, ψ2, ψ3)

T and g = (g1, g2, g3)T , we have

ψi (x, t) =
∫ t

0

∫

R
2+
[	(x − y, t − s) + 	(x − y∗, t − s)]gi (y, s)dyds, i = 1, 2,

ψ3(x, t) =
∫ t

0

∫

R
2+
[	(x − y, t − s) − 	(x − y∗, t − s)]g3(y, s)dyds,

(6.11)
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where y∗ is the reflection of y. Clearly, for j = 1, 2, 3, one has

|ψ j (x, t)| �
∫ t

0

∫

R2
	(x − y, t − s)|gi (y, s)|dyds :=

∣
∣
∣
∣	 ∗

(x,t)
|g|
∣
∣
∣
∣

since |x − y∗| ≥ |x − y| for y ∈ R
2+. So the upper bound of

∣
∣
∣
∣	 ∗

(x,t)
|g|
∣
∣
∣
∣ implies a

weighted-L∞ estimate of ψ . We first define the weights

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

 
( j)
1 := λ!∗ (λ∗R)−1χ{x∈R2+:|x−q( j)|≤3λ∗R},

 2 := T−σ0λ1−σ0∗
(

1

|x − q(1)|2 + 1

|x − q(2)|2
)

χ{⋂2
j=1{x∈R2+:|x−q( j)|≥λ∗R}

},

 3 := T−σ0 ,

(6.12)

where q(1) ∈ ∂R2+, q(2) ∈ R̊
2+, ! > 0 and σ0 > 0 is small. For a function g(x, t)

we define the L∞-weighted norm

‖g‖∗∗ := sup
R
2+×(0,T )

(
|g(x, t)|

1 +  
(1)
1 +  

(2)
1 +  2 +  3

)

. (6.13)

We define the L∞-weighted norm for ψ

‖ψ‖#,!,γ := λ−!∗ (0)
1

| log T |λ∗(0)R(0)
‖ψ‖L∞(R2+×(0,T )) + λ−!∗ (0)‖∇xψ‖L∞(R2+×(0,T ))

+ sup
R
2+×(0,T )

λ−!−1∗ (t)R−1(t)
1

| log(T − t)| |ψ(x, t) − ψ(x, T )|

+ sup
R
2+×(0,T )

λ−!∗ (t)|∇xψ(x, t) − ∇xψ(x, T )| + ‖∇2
xψ‖L∞(R2+×(0,T ))

+ sup λ−!∗ (t)(λ∗(t)R(t))2γ
|∇xψ(x, t) − ∇xψ(x ′, t ′)|
(|x − x ′|2 + |t − t ′|)γ ,

(6.14)

where ! > 0, γ ∈ (0, 1/2), and the last supremum is taken in the region

x, x ′ ∈ R
2+, t, t ′ ∈ (0, T ), |x − x ′| ≤ 2λ∗(t)R(t), |t − t ′| < 1

4
(T − t).

The solutionψ to the model outer problem (6.10) will be measured in the norm
‖ · ‖#,!,γ defined in (6.14) where γ ∈ (0, 1/2), and we require that ! and γ∗
(recall that R = λ

−γ∗∗ in (5.10)) satisfy

γ∗ ∈ (0, 1/2), ! ∈ (0, γ∗). (6.15)

By similar computations as in [11, Proposition A.1], we have the following:
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Proposition 6.2. Assume (6.15) holds. For T > 0 sufficiently small, there is a
linear operator that maps a function g : R2+ × (0, T ) → R

3 with ‖g‖∗∗ < ∞ into
ψ which solves problem (6.10). Moreover, the following estimate holds:

∥
∥
∥
∥

∣
∣	 ∗

(x,t)
|g|∣∣
∥
∥
∥
∥
#,!,γ

≤ C‖g‖∗∗.

Here γ ∈ (0, 1/2).

Linear theory for the Stokes system. In order to deal with the forced Navier–
Stokes equation with Navier boundary conditions, we consider the Stokes system

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂tv + ∇P = �v + ∇ · F in R
2+ × (0,∞),

∇ · v = 0 in R
2+ × (0,∞),

∂x2v1 = v2 = 0 on ∂R2+ × (0,∞),

v(·, 0) = 0 in R
2+,

(6.16)

where ∇ · F is solenoidal (see (C.2)). Our aim is to obtain weighted L∞ (in space-
time) control of v for given forcing in divergence form. The choice of the weighted
bound for the forcing ∇ · F is based on the behavior of inner solution near each
concentration q( j). We have the following pointwise estimates

Proposition 6.3. Let v be the solution to the Stokes system (6.16). If F satisfies

|F(x, t)| � λν−2∗ (t)

1 +
∣
∣
∣
x−q
λ∗(t)

∣
∣
∣
a+1 , |∇x F(x, t)| � λν−3∗ (t)

1 +
∣
∣
∣
x−q
λ∗(t)

∣
∣
∣
a+2 (6.17)

for any q ∈ R
2+ fixed, ν > 0 and a > 1, then solution v satisfies the following

pointwise bound:

|v(x, t)| � λν−1∗
1 +

∣
∣
∣
x−q
λ∗(t)

∣
∣
∣
, |∇v(x, t)| � λν−2∗

1 +
∣
∣
∣
x−q
λ∗(t)

∣
∣
∣
.

The proof of above proposition can be done either by the natural reflection or
by the Green’s tensor derived in Appendix C. Indeed, similar to the discussions in
Sect. 2, there are natural reflections for v, P , and FD := ∇ · F := (FD,1, FD,2)

T

in (6.16)

ṽ(x1, x2, t) =
[
v1(x1,−x2, t)

−v2(x1,−x2, t)

]

,

P̃(x1, x2, t) = P(x1,−x2, t), F̃D =
[

FD,1(x1,−x2, t)
−FD,2(x1,−x2, t)

]

, x2 < 0

such that the half space problem can be regarded as an interior problem, and thus all
the precise pointwise estimates can be achieved by the Oseen tensor inR2 (see [23,
Section 3]). The second method is by explicit Green’s tensor for Stokes operator
with Navier boundary conditions in the half space.
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7. Solving the partially free boundary system

In this section, we will solve the full system (1.1)–(1.2). First, we analyze the
effect of the couplings, i.e., the transported term v · ∇u in the harmonic map heat
flow and the forcing−ε0∇ ·(∇u � ∇u − 1

2 |∇u|2I2
)
in the incompressible Navier–

Stokes equation. Next, we introduce the weighted topologies for (v, u) and then
solve the full system using fixed point argument.

7.1. Couplings in the full system

In previous sections, we neglect the transported term and carry out all the
elements for the harmonic map heat flow. Now we consider the full transported
harmonic map heat flow

ut + v · ∇u = �u + |∇u|2u,
and analyze the effect of the transported term. Most importantly, we need to check
v · ∇u does not violate the symmetry of the boundary inner problem. In fact, by
(3.3), one has

(v · ∇u) · E (2)
2 = (v1∂x1u + v2∂x2u) · E (1)

2

= − (v1∂x1u1 + v2∂x2u1) sin θ1 + (v1∂x1u3 + v2∂x2u3) cos θ1

= 0 on ∂R2+,

where we have used the partially free boundary conditions (1.6). On the other hand,
it is direct to check that

v · ∇u =
⎡

⎣
v1∂1u1 + v2∂2u1
v1∂1u2 + v2∂2u2
v1∂1u3 + v2∂2u3

⎤

⎦

satisfies the partially free boundary conditions (1.6)1–(1.6)3, meaning that the
trasported term is also compatible with the outer problem.

For the external forcing coming from the orientation field, we notice that the
orientation field u only gets coupled with velocity field v solved from the forcing
after Helmholtz projection since the curl-free term is part of the pressure. For the
Stokes system, we do Helmholtz projection first

∂tv + ∇P1 = �v − P [∇ · (∇u � ∇u)] ,

where P is the Helmholtz projection such that P [∇ · (∇u � ∇u)] is solenoidal

∇ ·
(

∇u � ∇u − 1

2
|∇u|2I2

)

= P [∇ · (∇u � ∇u)] + ∇�P , P = P1 + �P .

By our ansatz

u = U∗ + � − (� ·U∗)U∗ + aU∗

∼ U (1) +U (2) +
2∑

j=1

η
( j)
R

(
∑

k∈Z
φ
( j)
k (y j , t)

)

+ �out(x, t),
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we know that the forcing in the incompressible Navier–Stokes equation near q( j)

∇ ·
(

∇u � ∇u − 1

2
|∇u|2I2

)

∼
∑

k∈Z
∇ ·

(
2∇U ( j) � ∇φ

( j)
k − (∇U ( j) : ∇φ

( j)
k )I2

)

since the outer solution �out is smaller, and the leading term actually vanishes

∇ · (∇U ( j) � ∇U ( j) − 1/2 |∇U ( j)|2 I2) = �U ( j) · ∇U ( j) = −|∇U ( j)|2(U ( j) · ∇U ( j)) = 0.

Here, ∇U ( j) : ∇φ
( j)
k = ∑

p,q
∂pU

( j)
q ∂p(φ

( j)
k )q , where (φ

( j)
k )q stands for the q-th

component of φ( j)k . In the sequel, we shall call the term

∇ ·
(
2∇U ( j) � ∇φ

( j)
k − (∇U ( j) : ∇φ

( j)
k )I2

)

the forcing at mode k. Another useful fact observed in [23] is that the forcing at
mode 0, which is of largest size on the right hand side of the Stokes system, actually
enters into the pressure, so it is not involved in the loop.

7.2. Inner–outer gluing system and reduced problems

Wewill get a desired solution (v, u) to the partially free boundary system (1.1)–
(1.2) if (v, φ(1), φ(2), ψ, Z∗, λ(1), λ(2), ω, ξ (1), ξ (2)) solves the following inner–
outer gluing system

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tv + ∇P = �v − ε0∇ · F[v, φ(1), φ(2), ψ, Z∗, λ(1), λ(2), ω, ξ (1), ξ (2)]
− ∇ · (v ⊗ v) in R

2+ × (0, T ),

∇ · v = 0 in R
2+ × (0, T ),

∂x2v1 = v2 = 0 on ∂R2+ × (0, T ),

v(·, 0) = v0 in R
2+,

(7.1)

⎧
⎪⎪⎨

⎪⎪⎩

(λ( j))2∂tφ
( j) = L( j)W [φ( j)] + h( j)[v, φ(1), φ(2), ψ, Z∗, λ(1), λ(2), ω, ξ (1), ξ (2)] in D( j)

2R ,

φ( j)(·, 0) = 0 in B( j)
2R(0),

φ( j) · Wj = 0 in D( j)
2R ,

(7.2)

⎧
⎪⎪⎨

⎪⎪⎩

∂tψ = �xψ + G[v, φ(1), φ(2), ψ, Z∗, λ(1), λ(2), ω, ξ (1), ξ (2)] in R
2+ × (0, T ),

∂x2ψ1 = ∂x2ψ2 = ψ3 = 0 on ∂R2+ × (0, T ),

ψ(·, 0) = 0 in R
2+,

(7.3)

where

F[v, φ(1), φ(2), �out, λ
(1), λ(2), ω, ξ (1), ξ (2)] = ∇u � ∇u − 1

2
|∇u|2I2
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with

u = (1 + a)U∗ + � − (� ·U∗)U∗,

� = η
(1)
R φ(1)(y1, t) + η

(2)
R Qωφ

(2)(y2, t) + ψ + Z∗ + �0,

h(1)[v, φ(1), φ(2), ψ, Z∗, λ(1), λ(2), ω, ξ (1), ξ (2)]
= (λ(1))2

[
L̃(1)U [�out] + K(1)

0 + K(1)
1 − (λ(1))−1�

(1)
U⊥(v · ∇y1u)

]
,

h(2)[v, φ(1), φ(2), ψ, Z∗, λ(1), λ(2), ω, ξ (1), ξ (2)]
= (λ(2))2Q−1

ω

[
L̃(2)U [�out] + K(2)

0 + K(2)
1 − (λ(2))−1�

(2)
U⊥(v · ∇y2u)

]
,

and

G[v, φ(1), φ(2), ψ, Z∗, λ(1), λ(2), ω, ξ (1), ξ (2)]
:= (1 − η

(1)
R − η

(2)
R )L̃( j)U �out + Cin + N

+
[
v · ∇u − η

(1)
R �

(1)
U⊥(v · ∇u) − η

(2)
R �

(2)
U⊥(v · ∇u)

]
.

Here the coupling Cin and the nonlinear term N are defined in (5.4) and (5.5),
respectively.

As discussed in Sect. 6, suitable inner solution with space-time decay can be
obtained under orthogonalities by adjusting the modulation parameters λ(1), λ(2),
ω, ξ (1), ξ (2) at corresponding modes. To solve the inner problems (7.2) in Fourier
modes, we further decompose

h( j) = h( j)1 + h( j)2 + h( j)3

with

h(1)1 [v, φ(1), φ(2), ψ, Z∗, λ(1), λ(2), ω, ξ (1), ξ (2)]
=
(
(λ(1))2

(
[L̃U ](1)0 [�out] + [L̃U ](1)2 [�out] + K(1)

0

)
+ λ(1)[�(1)

U⊥ (v · ∇u)]0
)
χD(1)

2R
,

h(1)2 [v, φ(1), φ(2), ψ, Z∗, λ(1), λ(2), ω, ξ (1), ξ (2)]
=
(
(λ(1))2

(
[L̃U ](1)1 [�out](0) + K(1)

1

)
+ λ(1)

(
[�(1)

U⊥ (v · ∇u)]1 + [�(1)
U⊥ (v · ∇u)]⊥

))
χD(1)

2R
,

h(1)3 [v, φ(1), φ(2), ψ, Z∗, λ(1), λ(2), ω, ξ (1), ξ (2)]
= (λ(1))2

(
[L̃U ](1)1 [�out] − [L̃U ](1)1 [�out](0)

)
χD(1)

2R
,

h(2)1 [v, φ(1), φ(2), ψ, Z∗, λ(1), λ(2), ω, ξ (1), ξ (2)]
=
(
(λ(2))2Q−1

ω

(
[L̃U ](2)0 [�out] + [L̃U ](2)2 [�out] + K(2)

0

)
+ λ(2)Q−1

ω [�(2)
U⊥ (v · ∇u)]0

)
χD(2)

2R
,

h(2)2 [v, φ(1), φ(2), ψ, Z∗, λ(1), λ(2), ω, ξ (1), ξ (2)]
=
(
(λ(2))2Q−1

ω

(
[L̃U ](2)1 [�out](0) + K(2)

1

)
+ λ(2)Q−1

ω

(
[�(2)

U⊥ (v · ∇u)]1 + [�(2)
U⊥ (v · ∇u)]⊥

))
χD(2)

2R
,

h(1)3 [v, φ(1), φ(2), ψ, Z∗, λ(1), λ(2), ω, ξ (1), ξ (2)]
= (λ(2))2Q−1

ω

(
[L̃U ](2)1 [�out] − [L̃U ](2)1 [�out](0)

)
χD(2)

2R
,
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where [�( j)
U⊥(v · ∇u)]0, [�( j)

U⊥(v · ∇u)]1 and [�( j)
U⊥(v · ∇u)]⊥ stand respectively

for the projection on modes 0, 1 and higher modes |k| ≥ 2 defined in (6.3)–(6.5)
(notice that there is no projection on mode −1 since v ·∇u is in the right symmetry
class), and

[L̃U ](1)1 [ψ](0)
= − 2(λ(1))−1wρ1 cosw(ρ1)

[
(∂x1ψ2(ξ

(1)(t), t)) cos θ1 + (∂x2ψ2(ξ
(1)(t), t)) sin θ1

]
E(1)1

+ 2(λ(1))−1wρ1 cosw(ρ1)
[
(∂x2ψ2(ξ

(1)(t), t)) cos θ1 − (∂x1ψ2(ξ
(1)(t), t)) sin θ1

]
E(1)2 ,

[L̃U ](2)1 [ψ](0)
= − 2(λ(2))−1wρ2 cosw(ρ2)

[
(∂x1ψ3(ξ

(2)(t), t)) cos θ2 + (∂x2ψ3(ξ
(2)(t), t)) sin θ2

]
QωE

(2)
1

− 2(λ(2))−1wρ2 cosw(ρ2)
[
(∂x1ψ3(ξ

(2)(t), t)) sin θ2 − (∂x2ψ3(ξ
(2)(t), t)) cos θ2

]
QωE

(2)
2 .

Then for j = 1 2, by decomposing φ( j) = φ
( j)
1 + φ

( j)
2 + φ

( j)
3 in a similar manner

as h( j)i ’s, the inner problems (7.2) become

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(λ( j))2∂tφ
( j)
1 = L( j)W [φ( j)1 ] + h( j)1 [v, φ(1), φ(2),�out, λ

(1), λ(2), ω, ξ(1), ξ (2)]
−
∑


=1,2

c̃( j)0
 [h( j)1 [v, φ(1), φ(2),�out, λ
(1), λ(2), ω, ξ(1), ξ (2)]]w2

ρ j
Z ( j)0,


−
∑


=1,2

c( j)1
 [h( j)1 [v, φ(1), φ(2),�out, λ
(1), λ(2), ω, ξ(1), ξ (2)]]w2

ρ1
Z ( j)1,
 in D( j)

2R

φ
( j)
1 · Wj = 0 in D( j)

2R

φ
( j)
1 (·, 0) = 0 in B( j)2R(0)

(7.4)
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(λ( j))2∂tφ
( j)
2 = L( j)W [φ( j)2 ] + h( j)2 [v, φ(1), φ(2),�out, λ

(1), λ(2), ω, ξ(1), ξ (2)]
−
∑


=1,2

c( j)1
 [h( j)2 [v, φ(1), φ(2),�out, λ
(1), λ(2), ω, ξ(1), ξ (2)]]w2

ρ j
Z ( j)1,
 in D( j)

2R

φ
( j)
2 · Wj = 0 in D( j)

2R

φ
( j)
2 (·, 0) = 0 in B( j)2R(0)

(7.5)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(λ( j))2∂tφ
( j)
3 = L( j)W [φ( j)3 ] + h( j)3 [v, φ(1), φ(2),�out, λ

(1), λ(2), ω, ξ(1), ξ (2)]
−
∑


=1,2

c( j)1
 [h( j)3 [v, φ(1), φ(2),�out, λ
(1), λ(2), ω, ξ(1), ξ (2)]]w2

ρ j
Z ( j)1,


+
∑


=1,2

c∗( j)0
 [v, φ(1), φ(2),�out, λ
(1), λ(2), ω, ξ(1), ξ (2)]w2

ρ j
Z ( j)0,
 in D( j)

2R

φ
( j)
3 · Wj = 0 in D( j)

2R

φ
( j)
3 (·, 0) = 0 in B( j)2R(0)

(7.6)

c∗( j)0
 (t) − c̃( j)0
 (t) = 0 for all t ∈ (0, T ), ( j, 
) = {
(1, 1), (2, 1), (2, 2)

}
, (7.7)

c( j)1
 (t) = 0 for all t ∈ (0, T ), ( j, 
) = {
(1, 1), (2, 1), (2, 2)

}
. (7.8)
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7.3. Weighted topologies and fixed point argument

We now design the weighted topologies for inner solutions φ(1), φ(2), outer
solution �out and parameters (λ(1), λ(2), ω, ξ (1), ξ (2)).

According to the linear theories in Sect. 6, we shall solve the outer problem
(7.3), inner problems (7.4)–(7.6) and forced Navier–Stokes equation (7.1) in the
norms below

• We use the norm ‖ · ‖∗∗ defined in (6.13) to measure the right hand side G in
the outer problem (7.3).

• We use the norm ‖ · ‖#,!,γ defined in (6.14) to measure the solution ψ solving
the outer problem (7.3), where ! > 0 and γ ∈ (0, 1/2).

• We use the norm ‖·‖( j)νi ,ai to measure the right hand side h( j)i with i = 1, · · · , 3,
where

‖h( j)i ‖( j)νi ,ai = sup
R
2+×(0,T )

|h( j)1 (y j , t)|
λ
νi∗ (t)(1 + ρ j )−ai

(7.9)

with νi > 0, ai ∈ (2, 3) for i = 1, 2, and a3 ∈ (1, 3).
• We use the norm ‖ · ‖( j)∗,ν1,a1,δ to measure the solution φ( j)1 solving (7.4), where

‖φ( j)1 ‖( j)∗,ν1,a1,δ = sup
D( j)

2R

|φ( j)1 (y j , t)| + (1 + ρ j )|∇y j φ
( j)
1 (y j , t)| + (1 + ρ j )

2|∇2
y j φ

( j)
1 (y j , t)|

λ
ν1∗ (t)max

{
Rδ(5−a1)

(1+ρ j )
3 ,

1
(1+ρ j )

a1−2

}

with ν1 ∈ (0, 1), a1 ∈ (2, 3), δ > 0 fixed small.
• We use the norm ‖ ·‖( j)in,ν2,a2−2 to measure the solution φ( j)2 solving (7.5), where

‖φ( j)2 ‖( j)in,ν2,a2−2

= sup
D( j)

2R

|φ( j)2 (y j , t)| + (1 + ρ j )|∇y jφ
( j)
2 (y j , t)| + (1 + ρ j )

2|∇2
y jφ

( j)
2 (y j , t)|

λ
ν2∗ (t)(1 + ρ j )2−a2

with ν2 ∈ (0, 1), a2 ∈ (2, 3).
• We use the norm ‖ · ‖( j)∗∗,ν3 to measure the solution φ( j)3 solving (7.6), where

‖φ( j)3 ‖( j)∗∗,ν3 = sup
D( j)

2R

|φ(y j , t)| + (1 + ρ j )

∣
∣
∣∇y jφ

( j)
3 (y j , t)

∣
∣
∣+ (1 + ρ j )

2|∇2
y jφ

( j)
3 (y j , t)|

λ
ν3∗ (t)R2(t)(1 + ρ j )−1

with ν3 > 0.
• We will solve the incompressible Navier–Stokes equation (7.1) in the norms

‖ · ‖( j)S,ν−1,1, ‖ · ‖( j)S,ν−2,a+1

for the velocity v and forcing F , respectively. Here

‖F‖( j)S,ν−2,a+1 := sup
(x,t)∈R2+×(0,T )

λ2−ν∗ (t)

⎛

⎝1 +
∣
∣
∣
∣
∣

x − q( j)

λ∗(t)

∣
∣
∣
∣
∣

a+1
⎞

⎠ |F(x, t)|

+ sup
(x,t)∈R2+×(0,T )

λ3−ν∗ (t)

⎛

⎝1 +
∣
∣
∣
∣
∣

x − q( j)

λ∗(t)

∣
∣
∣
∣
∣

a+2
⎞

⎠ |∇x F(x, t)|,
(7.10)
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and we require ν ∈ (0, 1) and a ∈ (1, 2).

The way to solve (7.1) is similar to that of the transported harmonic map flow. We
derive R2+ into three parts (the regions near two concentrations q( j) and the inter-
mediate region), and then analyze the behaviors of the forcing and corresponding
velocity field in each region.

We solve the inner problems in the weighted spaces

Ẽ ( j)
1 = {φ( j)1 ∈ L∞(D( j)

2R ) : ∇y jφ
( j)
1 ∈ L∞(D( j)

2R ), ‖φ( j)1 ‖( j)∗,ν1,a1,δ < ∞},
Ẽ ( j)
2 = {φ( j)2 ∈ L∞(D( j)

2R ) : ∇y jφ
( j)
2 ∈ L∞(D( j)

2R ), ‖φ( j)2 ‖( j)in,ν2,a2−2 < ∞},
Ẽ ( j)
3 = {φ( j)3 ∈ L∞(D( j)

2R ) : ∇y jφ
( j)
3 ∈ L∞(D( j)

2R ), ‖φ( j)3 ‖( j)∗∗,ν3 < ∞},
and denote that

E ( j)
φ = Ẽ ( j)

1 × Ẽ ( j)
2 × Ẽ ( j)

3 , �
( j)
inner = (φ

( j)
1 , φ

( j)
2 , φ

( j)
3 ) ∈ E ( j)

φ

‖�( j)
inner‖E ( j)

φ

= ‖φ( j)1 ‖( j)∗,ν1,a1,δ + ‖φ( j)2 ‖( j)in,ν2,a2−2 + ‖φ( j)3 ‖( j)∗∗,ν3 .

We define the closed ball

B( j) = {�( j)
inner ∈ E ( j)

φ : ‖�( j)
inner‖E ( j)

φ

≤ 1}.

For the outer problem, we introduce

Eψ =
{
ψ ∈ L∞(R2+ × (0, T )) : ‖ψ‖#,!,γ < ∞

}
.

For the incompressible Navier–Stokes equation, we shall solve the velocity field v
in the space

Ev =
{
v ∈ L2(R2+;R2) : ∇ · v = 0, ‖v‖S,ν−1,1 < Mε0

}
, (7.11)

where 0 < ε0 � 1 is the universal number in (1.1), and M > 0 is some fixed
number.

For the parameters

λ(1)(t), p2(t) = λ(2)(t)eiω(t), ξ (1)(t) = (ξ
(1)
1 (t), 0), ξ (2)(t) = (ξ

(2)
1 (t), ξ (2)2 (t)),

we set

X
λ(1) := {λ(1) ∈ C([−T, T ;R]) ∩ C1([−T, T ;R]) λ(1)(T ) = 0,

∥
∥λ(1) − κ(1)λ∗(t)

∥
∥∗,3−σ

< ∞},
X p2 := {p2 ∈ C([−T, T ;C]) ∩ C1([−T, T ;C]) p2(T ) = 0,

∥
∥p2 − κ(2)eiω0λ∗(t)

∥
∥∗,3−σ

< ∞},

X
ξ(1) =

{

ξ
(1)
1 ∈ C1((0, T );R) : ξ̇ (1)1 (T ) = 0, ‖ξ(1)‖X

ξ(1)
< ∞

}

,

X
ξ(2) =

{

ξ(2) ∈ C1((0, T );R2) : ξ̇ (2)(T ) = 0, ‖ξ(2)‖X
ξ(2)

< ∞
}

,
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where ‖ · ‖∗,3−σ is defined by

‖g‖∗,3−σ := sup
t∈[−T,T ]

| log(T − t)|3−σ |ġ(t)|,

and

‖ξ ( j)‖X
ξ( j)

= ‖ξ ( j)‖L∞(0,T ) + sup
t∈(0,T )

λ−σ∗ (t)|ξ̇ ( j)(t)|

for some σ ∈ (0, 1).
By similar computations as to those in [23, Section 4], under some restrictions

on the constants in the norms introduced above

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

0 < ! < min

{

γ∗,
1

2
− γ∗, ν1 − 1 + γ∗(a1 − 1), ν2 − 1 + γ∗(a2 − 1), ν3 − 1

}

,

! < min {ν1 − δγ∗(5 − a1) − γ∗, ν2 − γ∗, ν3 − 3γ∗, } ,
δ � 1, ν >

1

2
,

(7.12)

we have

Proposition 7.1. Assume (7.12) hold true. If T > 0 is sufficiently small, then there
exists a solution ψ = $(v,�

(1)
inner,�

(2)
inner, λ

(1), p2, ξ (1), ξ (2)) to the outer problem
(7.3) with

‖$(v,�
(1)
inner,�

(2)
inner, λ

(1), p2, ξ
(1), ξ (2))‖#,!,γ

� T ε
2∑

j=1

(

‖v‖( j)S,ν−1,1 + ‖�( j)
inner‖E ( j)

φ

+ ‖λ(1)‖X
λ(1)

+ ‖p2‖X p2
+ ‖ξ( j)‖X

ξ( j)
+ 1

)

,

for some ε > 0.

We define Tψ by the operator which solves ψ in Proposition 7.1. For the inner

problems (7.4)–(7.6), we then take �( j)
inner ∈ E ( j)

φ and substitute

�out(v,�
(1)
inner,�

(2)
inner, λ

(1), p2, ξ
(1), ξ (2))

= Z∗ + $(v,�
(1)
inner,�

(2)
inner, λ

(1), p2, ξ
(1), ξ (2))

into inner problems (7.2). We can then write equations (7.2) as the fixed point
problems

�
( j)
inner = A( j)(�

( j)
inner

)
, j = 1, 2, (7.13)

where

A( j)(�
( j)
inner) = (A( j)

1 (�
( j)
inner),A

( j)
2 (�

( j)
inner),A

( j)
3 (�

( j)
inner)),

A( j) : B̄( j)
1 ⊂ E ( j)

φ → E ( j)
φ
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with

A( j)
1 (�

( j)
inner) = T ( j)

1

(

h1[v,�out(v,�
(1)
inner,�

(2)
inner, λ

(1), p2, ξ
(1), ξ (2)), λ(1), p2, ξ

(1), ξ (2)]
)

,

A( j)
2 (�

( j)
inner) = T ( j)

2

(

h2[v,�out(v,�
(1)
inner,�

(2)
inner, λ

(1), p2, ξ
(1), ξ (2)), λ(1), p2, ξ

(1), ξ (2)]
)

,

A( j)
3 (�

( j)
inner) = T ( j)

3

(

h3[v,�out(v,�
(1)
inner,�

(2)
inner, λ

(1), p2, ξ
(1), ξ (2)), λ(1), p2, ξ

(1), ξ (2)]

+
2∑


=1

c∗( j)0
 [v,�out(v,�
(1)
inner,�

(2)
inner, λ

(1), p2, ξ
(1), ξ (2)), λ(1), p2, ξ

(1), ξ (2)]w2
ρ j

Z ( j)0,


)

.

Here T ( j)
1 (·), T ( j)

2 (·), T ( j)
3 (·) stand for the operators that solve the inner problems

(7.4), (7.5), (7.6), respectively.
By the linear theories in Sect. 6, it is direct to check (similar to [23, Section 4])

that the inner problems can be solved provided that
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ν = ν1 = ν2 < min {1, 1 − γ∗(a2 − 2)} ,
ν3 < min

{

1 + ! + 2γ∗γ, ν1 + 1

2
δγ∗(a1 − 2)

}

,

1 < a < 2,

0 < ε0 � 1.

(7.14)

Here ε0 � 1 is required to ensure the implementation of the loop. More precisely,
we have

Proposition 7.2. Assume (7.14) are satisfied. If T > 0 and ε0 > 0 are sufficiently
small, then the system of equations (7.13) for �( j)

inner = (φ
( j)
1 , φ

( j)
2 , φ

( j)
3 ) has a

solution �( j)
inner ∈ E ( j)

φ for j = 1, 2.

Above propositions together with the compactness fromHölder regularity com-
plete the proof of Theorem 1.1 by Schauder fixed point theorem.
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Appendix A. Derivation of the partially free boundary system

We derive in this appendix the energy law and compatibility for the partially free
boundary system (1.1)–(1.2).
We first derive the energy law.Multiplying (1.1)1 by v and integrating over� ⊂ R

d

(d ≤ 3), we get

1

2

d

dt

∫

�

|v|2 +
∫

�

(v · ∇v) · v +
∫

�

∇P · v = −
∫

�

|∇v|2 −
∫

�

(�u · ∇u) · v,

where we have used

∇ ·
(

∇u � ∇u − 1

2
|∇u|2Id

)

= �u · ∇u.

By (1.1)2 and (1.2)1,
∫

�

(v · ∇v) · v =
∫

�

∇P · v = 0,

so we have

1

2

d

dt

∫

�

|v|2 = −
∫

�

|∇v|2 −
∫

�

(�u · ∇u) · v. (A.1)

Next we multiply (1.1)3 with �u + |∇u|2u and integrate over �

−1

2

d

dt

∫

�

|∇u|2 +
∫

�

(v · ∇u) · (�u + |∇u|2u) =
∫

�

∣
∣
∣�u + |∇u|2u

∣
∣
∣
2
.

Since
∫

�

(v · ∇u) · (|∇u|2u) =
∫

�

|∇u|2v · ∇(|u|2)
2

= 0,

we obtain

− 1

2

d

dt

∫

�

|∇u|2 +
∫

�

(�u · ∇u) · v =
∫

�

∣
∣
∣�u + |∇u|2u

∣
∣
∣
2
. (A.2)

Combining (A.1) and (A.2), we get

1

2

d

dt

(∫

�

|v|2 + |∇u|2
)

= −
∫

�

|∇v|2 −
∫

�

∣
∣
∣�u + |∇u|2u

∣
∣
∣
2

(A.3)

which is called the basic energy law (see [27]). The energy law (A.3) reflects the
energy dissipation property of the flow of liquid crystals.
On the other hand, the physical compatibility condition should be satisfied

〈(
1

2
(∇v + (∇v)T ) − PId − ∇u � ∇u

)

ν, τ

〉

= 0 on ∂�, (A.4)
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where

∇ ·
(
1

2
(∇v + (∇v)T ) − PId − ∇u � ∇u

)

is the stress tensor. It is easy to see that < PIdν, τ >= 0 as < ν, τ >= 0. Also,
〈
1

2
(∇v + (∇v)T )ν, τ

〉

= 0

is the Navier boundary condition (1.2)2, and

0 = 〈(∇u � ∇u)ν, τ 〉 = 〈∇νu,∇τu〉
implies the partially free boundary condition (1.2)4

∂u

∂ν
⊥ Tu� on ∂� × (0, T ).

In conclusion, with the partially free boundary conditions (1.2), the system (1.1) is
physically meaningful.

Appendix B. Multiple bubbles: analysis of the interactions

In fact, we have three different cases for multiple bubbles, and we can take the
following ansatz for each case

• multiple bubbles all placed in the interior

u∗ =
k∑

j=1

Qω j

[

W1

(
x − ξ ( j)

λ( j)

)

+ W1

(
x − (ξ ( j))∗

λ( j)

)]

− (2k − 1)W1(∞),

where ξ ( j) = (ξ
( j)
1 , ξ

( j)
2 ) and (ξ ( j))∗ = (ξ

( j)
1 ,−ξ

( j)
2 ).

• multiple bubbles all placed on the boundary

u∗ =
k∑

j=1

W1

(
x − ξ ( j)

λ( j)

)

− (k − 1)W1(∞) with ξ ( j) = (ξ
( j)
1 , 0).

• mixed case: finite linear combination of interior and boundary bubbles

u∗ =
kB∑

j=1

W1

⎛

⎝
x − ξ

( j)
B

λ
( j)
B

⎞

⎠− (kB − 1)W1(∞)

+
kI∑

j=1

QωI, j

⎡

⎣

⎛

⎝W1

⎛

⎝
x − ξ

( j)
I

λ
( j)
I

⎞

⎠− W1(∞)

⎞

⎠+
⎛

⎝W1

⎛

⎝
x − (ξ

( j)
I )∗

λ
( j)
I

⎞

⎠− W1(∞)

⎞

⎠

⎤

⎦ ,

where ξ ( j)I = (ξ
( j)
I,1, ξ

( j)
I,2), (ξ

( j)
I )∗ = (ξ

( j)
I,1,−ξ

( j)
I,2), and ξ

( j)
B = (ξ

( j)
B,1, 0).
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Here W1 is defined in (2.3). The purpose of the reflection terms in the first and
third case is to enforce the symmetry (2.1) for the full system. Observe that the first
case is “localized” as the core inner region does not touch the boundary, while the
second case is automatically in the symmetry class (2.1). So the most interesting
case is the third case of mixed bubbles. Here we give some heuristic discussions
about the reason for placing the reflected bubble in the mix case.

Remark B.1. Notice that above general ansatz is slightly different from what we
take for the two-bubble case in Sect. 4, and the choices are of course not unique.

The key here is the interaction between the boundary bubble and the pair of the
interior bubble and its reflection. More precisely, we need to analyze the error
produced by the interior bubble and its associated reflection entering into the tangent
plane of the boundary bubble. Write

Qω

[

W1

(
x − ξ (2)

λ(2)

)

+ W1

(
x − (ξ (2))∗

λ(2)

)]

=

⎡

⎢
⎢
⎣

cosω − sinω 0

sinω cosω 0

0 0 1

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎣

2λ(2)(x1−ξ
(2)
1 )

(x1−ξ
(2)
1 )2+(x2−ξ

(2)
2 )2+(λ(2))2

+ 2λ(2)(x1−ξ
(2)
1 )

(x1−ξ
(2)
1 )2+(x2+ξ

(2)
2 )2+(λ(2))2

(x1−ξ
(2)
1 )2+(x2−ξ

(2)
2 )2−(λ(2))2

(x1−ξ
(2)
1 )2+(x2−ξ

(2)
2 )2+(λ(2))2

+ (x1−ξ
(2)
1 )2+(x2+ξ

(2)
2 )2−(λ(2))2

(x1−ξ
(2)
1 )2+(x2+ξ

(2)
2 )2+(λ(2))2

2λ(2)(x2−ξ
(2)
2 )

(x1−ξ
(2)
1 )2+(x2−ξ

(2)
2 )2+(λ(2))2

+ 2λ(2)(x2+ξ
(2)
2 )

(x1−ξ
(2)
1 )2+(x2+ξ

(2)
2 )2+(λ(2))2

⎤

⎥
⎥
⎥
⎥
⎥
⎦

:= W̃1 + W̃2,

where ξ (2) = (ξ
(2)
1 , ξ

(2)
2 ) with ξ (2)2 > 0. Then the error

S(W̃1 + W̃2) = −∂t W̃1 − ∂t W̃2 + |∇W̃1|2W̃2 + |∇W̃2|2W̃1

+2(∇W̃1 · ∇W̃2)(W̃1 + W̃2).

In the proof of Theorem 1.1, a crucial observation is that the projection of the error
onto QωE2-direction of the tangent plane for the boundary linearization will in fact
destroy the symmetry of the boundary inner problem across the ∂R2+. Recall

E2 =
⎡

⎢
⎣

− x2
|x−ξ (1)|
0

x1−ξ
(1)
1

|x−ξ (1)|

⎤

⎥
⎦ .

Here for notational simplicity, we have dropped the superscripts, and ξ (1) =
(ξ

(1)
1 , 0) is the concentration point on ∂R2+. Since W̃1 and W̃2 are symmetric about

the boundary ∂R2+, it is clear that

(−∂t W̃1 − ∂t W̃2) · QωE2

∣
∣
∣
x2=0

= 0,

(W̃1 + W̃2) · QωE2

∣
∣
∣
x2=0

= 0,



20 Page 46 of 54 Arch. Rational Mech. Anal. (2023) 247:20

and thus

(2(∇W̃1 · ∇W̃2)(W̃1 + W̃2)) · QωE2

∣
∣
∣
x2=0

= 0.

For the term |∇W̃1|2W̃2 + |∇W̃2|2W̃1, straightforward computations imply that on
∂R2+

|∇W̃1|2 = |∇W̃2|2,

and thus

(|∇W̃1|2W̃2 + |∇W̃2|2W̃1) · QωE2

∣
∣
∣
x2=0

= (|∇W̃1|2(W̃1 + W̃2)) · QωE2

∣
∣
∣
x2=0

= 0.

Therefore, we obtain

S(W̃1 + W̃2) · QωE2

∣
∣
∣
x2=0

= 0

as desired.
Certainly, onemay dealwith the inner problem touching the boundarywithout using
the reflection, but this will rely on careful analysis on the non-degeneracy results
and boundary linear theory, which might also be very interesting. Above formal
analysis implies that the presence of reflected bubble can simplify the analysis of
the inner problem near boundary concentration.

Appendix C. Analysis of the Stokes operator

As mentioned in Sect. 6, another straightforward way to capture the precise point-
wise estimates for the velocity field without using reflection is by explicit Green’s
tensor, which we now derive.
We consider the following Stokes system with Navier boundary conditions:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂tv + ∇P = �v + F in R
2+ × (0,∞),

∇ · v = 0 in R
2+ × (0,∞),

∂x2v1 = v2 = 0 on ∂R2+ × (0,∞),

v
∣
∣
t=0 = 0.

(C.1)

Here F = (F1, F2)T is solenoidal:

∇ · F = 0, F2
∣
∣
x2=0 = 0. (C.2)

Our aim is to construct Green’s tensor and its associated pressure tensor to (C.1).
To this end, we first consider the homogeneous system with F = 0 and non-zero
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boundary condition on x2 = 0
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂t u + ∇P = �u in R
2+ × (0,∞),

∇ · u = 0 in R
2+ × (0,∞),

∂x2u1
∣
∣
∣
x2=0

= a1(x1, t), u2
∣
∣
∣
x2=0

= a2(x1, t),

u
∣
∣
t=0 = 0,

u → 0 as |x | → +∞,

(C.3)

and then useDuhamel’s principle to get a solution for the non-homogeneous system
(C.1). We will use Fourier transform in x1 and Laplace transform in t

ũ(ξ1, x2, s) = Fx1Lt [u] :=
∫

R1

∫ ∞

0
e−i x1ξ1−st u(x1, x2, t)dtdx1.

Then taking Fourier-Laplace transform on (C.3), we get
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

sũ1 + ξ21 ũ1 − d2ũ1
dx22

+ iξ1 P̃ = 0

sũ2 + ξ21 ũ2 − d2ũ2
dx22

+ d P̃

dx2
= 0

iξ1ũ1 + dũ2
dx2

= 0

dũ1
dx2

∣
∣
∣
∣
x2=0

= ã1(ξ1, s), ũ2

∣
∣
∣
∣
x2=0

= ã2(ξ1, s)

ũ → 0 as x2 → ∞.

We look for solution of the form

u = u′ + ∇ϕ,

where u′ is solenoidal which solves the heat equation and ϕ is harmonic. Since
ũ → 0 as x2 → ∞, we have

ũ′ = θ1(ξ1, s)e
−
√

ξ21+sx2 , ϕ̃ = θ2(ξ1, s)e
−|ξ1|x2 .

Then

ũ = φ(ξ1, s)e
−
√

ξ21+sx2 + ψ(ξ1, s)e
−|ξ1|x2 ,

where

φ =
⎛

⎝φ1,
iξ1φ1
√

ξ21 + s

⎞

⎠ , ψ = (iξ1,−|ξ1|) ϕ(ξ1, s).
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The functions φ1 and ϕ are determined by the boundary condition:
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

φ1

√

ξ21 + s + iξ1|ξ1|ϕ = −ã1,

iξ1φ1
√

ξ21 + s
− |ξ1|ϕ = ã2.

Then
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

φ1 =
(iξ1ã2 − ã1)

√

ξ21 + s

s
,

ϕ = − iξ1ã1 + (ξ21 + s )̃a2
s|ξ1| ,

and thus

ũ1(ξ1, x2, s) =
(iξ1ã2 − ã1)

√

ξ21 + s

s
e−
√

ξ21 +sx2 + ξ21 ã1 − iξ1(ξ21 + s )̃a2
s|ξ1| e−|ξ1|x2 ,

ũ2(ξ1, x2, s) = − ξ21 ã2 + iξ1ã1
s

e−
√

ξ21 +sx2 + iξ1ã1 + (ξ21 + s )̃a2
s

e−|ξ1|x2 ,

P̃(ξ1, x2, s) = − sϕe−|ξ1|x2 = − iξ1ã1 + (ξ21 + s )̃a2
|ξ1| e−|ξ1|x2 ,

(C.4)

where ã = (̃a1, ã2). Then we look for solution of the non-homogeneous problem
(C.1) with zero Navier boundary condition

v = u + w,

where

w1 =
∫ t

0

∫

R
2+

[
	(x − y, t − τ) − 	(x − y∗, t − τ)

]
F1(y, τ )dydτ

w2 =
∫ t

0

∫

R
2+

[
	(x − y, t − τ) + 	(x − y∗, t − τ)

]
F2(y, τ )dydτ

(C.5)

with y∗ = (y1,−y2) being the reflection of y = (y1, y2). Then it is direct to see
from the fact that F is solenoidal that

⎧
⎪⎪⎨

⎪⎪⎩

∂tw = �w + F

∇ · w = 0

∂x2w1

∣
∣
∣
x2=0

= −b1(x1, t), w2

∣
∣
∣
x2=0

= −b2(x1, t),

(C.6)

where

b1(x1, t) = −
∫ t

0

∫

R
2+
∂x2

[
	(x − y, t − τ) − 	(x − y∗, t − τ)

]
F1(y, τ )dydτ

∣
∣
∣
x2=0

,

b2(x1, t) = 0.
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Therefore, from (C.6), u solves the homogeneous problem (C.3) with a(x1, t) =
b(x1, t), and

ã1 =
∫ ∞

0
e
−
√

ξ21+sy2 F̃1(ξ1, y2, s)dy2.

By (C.4), one has

ũ1(ξ1, x2, s) = ã1
s

∂

∂x2

(

e
−
√

ξ21+sx2 − e−|ξ1|x2
)

,

ũ2(ξ1, x2, s) = − iξ1
ã1
s

(

e
−
√

ξ21+sx2 − e−|ξ1|x2
)

,

P̃(ξ1, x2, s) = − iξ1ã1
e−|ξ1|x2

|ξ1| .

Taking inverse Fourier-Laplace transform, we obtain

u1 = ∂

∂x2

[

− 2
∫ t

0
ds
∫ s

0

∫

R
2+

∂	(x − y∗, s − τ)

∂x2
F1(y, τ )dydτ

− 4
∫

R

∂E(x − y)

∂x2
dy1

∫ t

0
ds
∫ s

0

∫

R
2+

∂	(y − z, s − τ)

∂z2
F1(z, τ )dzdτ

∣
∣
∣
y2=0

]

,

u2 = ∂

∂x1

[

− 2
∫ t

0
ds
∫ s

0

∫

R
2+

∂	(x − y∗, s − τ)

∂x2
F1(y, τ )dydτ

− 4
∫

R

∂E(x − y)

∂x2
dy1

∫ t

0
ds
∫ s

0

∫

R
2+

∂	(y − z, s − τ)

∂z2
F1(z, τ )dzdτ

∣
∣
∣
y2=0

]

,

P(x, t) = 4
∂

∂x1

[ ∫

R1
E(x − y)dy1

∫ t

0
dτ
∫

R
2+

∂	(y − z, t − τ)

∂z2
F1(z, τ )dz

∣
∣
∣
y2=0

]

,

(C.7)

where we have used the following inverse Fourier-Laplace transforms

(Fx1Lt )
−1
[
e−|ξ1|x2

]
= 2δ(t)

∂E(x)

∂x2
, (Fx1Lt )

−1

[
e−|ξ1|x2

|ξ1|

]

= −2δ(t)E(x)

(Fx1Lt )
−1

[

e
−
√

ξ21+sx2

]

= −2
∂	(x, t)

∂x2
, (Fx1Lt )

−1

⎡

⎢
⎣
e
−
√

ξ21+sx2
√

ξ21 + s

⎤

⎥
⎦ = 2	(x, t)

(Fx1Lt )
−1
[
1

s

]

= δ(x1)

(C.8)

with

E(z) = 1

2π
log |z|, 	(x, t) =

⎧
⎨

⎩

1

4π t
e− |x |2

4t , t > 0,

0, t < 0.
(C.9)
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Then from (C.5), the representation formula for Navier slip boundary is the follow-
ing

v1(x, t) =
∫ t

0

∫

R
2+

[
	(x − y, t − τ) − 	(x − y∗, t − τ)

]
F1(y, τ )dydτ

+ ∂

∂x2

[

− 2
∫ t

0
ds
∫ s

0

∫

R
2+

∂	(x − y∗, s − τ)

∂x2
F1(y, τ )dydτ

− 4
∫

R

∂E(x − y)

∂x2
dy1

∫ t

0
ds
∫ s

0

∫

R
2+

∂	(y − z, s − τ)

∂z2
F1(z, τ )dzdτ

∣
∣
∣
y2=0

]

,

v2(x, t) = ∂

∂x1

[

− 2
∫ t

0
ds
∫ s

0

∫

R
2+

∂	(x − y∗, s − τ)

∂x2
F1(y, τ )dydτ

− 4
∫

R

∂E(x − y)

∂x2
dy1

∫ t

0
ds
∫ s

0

∫

R
2+

∂	(y − z, s − τ)

∂z2
F1(z, τ )dzdτ

∣
∣
∣
y2=0

]

,

P(x, t) = 4
∂

∂x1

[ ∫

R

E(x − y)dy1

∫ t

0
dτ
∫

R
2+

∂	(y − z, t − τ)

∂z2
F1(z, τ )dz

∣
∣
∣
y2=0

]

.

(C.10)

Therefore, the Green’s tensor and its associated pressure tensor for half space with
Navier boundary conditions have been constructed:

Proposition C.1. The solution to (C.1) with solenoidal forcing can be expressed in
the form

v(x, t) =
∫ t

0

∫

R
2+
G0(x, y, t − τ)F(y, τ )dydτ

+
∫ t

0

∫

R
2+

∫ τ

0
G∗(x, y, τ − s)F(y, s)dsdydτ,

P(x, t) =
∫ t

0

∫

R
2+
P(x, y, t − τ) · F(y, τ )dydτ

with G0 = (G0
i j )i, j=1,2, G∗ = (G∗

i j )i, j=1,2, P = (Pj ) j=1,2, and

G0
i j (x, y, t) = δi j (	(x − y, t) − 	(x − y∗, t)),

G∗
i j (x, y, t) = (1 − δi j )

∂

∂x1

[

− 2
∂	(x − y∗, t)

∂x2
− 4

∫

R

∂E(x1 − z1, x2)

∂x2

∂	(z1 − y1, y2, t)

∂y2
dz1

]

+ δi j
∂

∂x2

[

− 2
∂	(x − y∗, t)

∂x2
− 4

∫

R

∂E(x1 − z1, x2)

∂x2

∂	(z1 − y1, y2, t)

∂y2
dz1

]

,

Pj (x, y, t) = 4(1 − δ j2)
∂

∂x j

[ ∫

R

E(x1 − z1, x2)
∂	(z1 − y1, y2, t)

∂y2
dz1

]

.

To derive the pointwise estimates of the Green’s tensor and pressure tensor as in
(C.10), we have the following lemma in the general case Rn+ (n ≥ 2), whose proof
is similar to [38] in the no-slip boundary case (see also [39, Proposition 2.3]).
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Lemma C.1. Let M(x, t) be a function defined for x ∈ R
n+ (n ≥ 2) and t > 0 with

the properties

M(λx, λ2t) = λqM(x, t) ∀λ > 0

|Dk
x D

s
t M(x, t)| � t

q−|k|−2s
2 e−c |x |2

t .

Then the integral

Ji (x, yn, t) =
∫

Rn−1
∂yi E(y)M(x ′ − y′, xn, t)dy′

satisfies

Ji (λx, λyn, λ
2t) = λq Ji (x, yn, t), (C.11)

and

|Dk
x D

l
yn∂

s
t Ji (x, yn, t)| � t

q+n−1−2s−kn
2 [|x ′|2 + (xn + yn)

2 + t]− |k′|+l+n−1
2 e− cx2n

t ,

(C.12)

where x ′ = (x1, . . . , xn−1) and k′ = (k1, . . . , kn−1).

As a consequence of the above proposition, we have the following pointwise esti-
mates for the Green’s tensor and pressure tensor.

Proposition C.2. The pressure tensor and Green’s tensor in Proposition C.1 have
the following pointwise upper bounds

|∂st Dk
x D

m
y Pj (x, y, t)| � t−1−s−m2

2 (|x − y∗|2 + t)−
1+|k|+|m′|

2 e− cy22
t ,

|∂st Dk
x D

m
y G

∗
i j (x, y, t)| � t−1−s−m2

2 (|x − y∗|2 + t)−
2+|k|+|m′|

2 e− cy22
t .

Let us now consider
⎧
⎪⎨

⎪⎩

∂tv + ∇P = �v + F in R
2+ × (0, T ),

∇ · v = 0 in R
2+ × (0, T ),

∂x2v1
∣
∣
x2=0 = 0, v2

∣
∣
x2=0 = 0, v

∣
∣
t=0 = v0,

(C.13)

where the forcing is not solenoidal. By the Helmholtz decomposition

F = PF + QF,

where PF is a potential ∇�P , and QF is divergence-free, one can write

�P (x, t) = −
∫

R
2+

∇y N (x, y) · F(y, t)dy,

where

N (x, y) = E(x − y) + E(x − y∗)
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is the Green function of the Neumann problem for the Laplace operator in the
half-space with E defined as

E(z) = 1

2π
log |z|,

and y∗ = (y1,−y2). Thus,

QF = F + ∇
∫

R
2+

∇y N (x, y) · F(y, t)dy (C.14)

is solenoidal, i.e.,

div(QF) = 0, QF
∣
∣
x2=0 = 0.

Then, a solution to the model problem (C.13) is defined by the representation
formulae

v(x, t) =
∫

R
2+
G0(x, y, t)v0(y)dy +

∫ t

0

∫

R
2+
G∗(x, y, t − s)v0(y)dyds

+
∫ t

0

∫

R
2+
G0(x, y, t − s)QF(y, s)dyds +

∫ t

0

∫

R
2+

∫ τ

0
G∗(x, y, τ − s)QF(y, s)dsdydτ,

(C.15)

P(x, t) =
∫

R
2+
P(x, y, t) · v0(y)dy + �P (x, t) +

∫ t

0

∫

R
2+
P(x, y, t − s) · QF(y, s)dyds, (C.16)

where G0, G∗ and P are given in Proposition C.1.
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