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ABSTRACT ARTICLE HISTORY

We introduce a heat flow associated to half-harmonic maps, which Received 28 November 2021
have been introduced by Da Lio and Riviere. Those maps exhibit Accepted 15 June 2022
integrability by compensation in one space dimension and are
related to harmonic maps with free boundary. We consider a new
flow associated to these harmonic maps with free boundary which is
actually motivated by a rather unusual heat flow for half-harmonic

KEYWORDS
Ginzburg-Landau approxi-
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with free boundary; heat

maps. We construct then weak solutions and prove their partial flow of fractional harmonic
regularity in space and time via a Ginzburg-Landau approximation. maps; partial regularity
The present paper complements the study initiated by Struwe and

Chen-Lin.

1. Introduction

In [1,2], Da Lio and Riviere introduced a new notion of harmonic map by considering

critical points of a Gagliardo-type H (RY) semi-norm in the conformal case s =1and
d=1. Those maps have found a geometric application in the works of Fraser and
Schoen about extremal metrics of Steklov eigenvalues (see e.g. [3] and references
therein). These maps correspond to an extrinsinc version of harmonic maps with free
boundary as proved by Millot and Sire in [4]. On the other hand, Moser [5] introduced
an intrinsic version of those latter maps, and Roberts [6] investigated regularity of gen-
eralized versions of those maps, i.e. considering Gagliardo functionals for any s € (0, 1).
Whenever the extrinsic version of those maps is concerned, critical points of the func-
tional introduced by Da Lio and Riviere satisfy the following equation in the distribu-
tional sense

(—=AViuLT,N

whenever u:S' — N. As pointed out in [4], the harmonic extension of those maps
into the unit disk are so-called harmonic maps with free boundary. We now introduce
such maps in a general setup: let (M, g) be an m-dimensional smooth Riemannian
manifold with boundary OM and N be another smooth compact Riemannian manifold
without boundary. Suppose X is a k-dimensional submanifold of N without boundary.
Any continuous map uy : M — N satisfying uo(OM) C T defines a relative homotopy

© 2022 Taylor & Francis Group, LLC
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class in maps from (M,0M) to (N,X). A map u: M — N with u(OM) C T is called
homotopic to u, if there exists a continuous homotopy h: [0,1] x M — N satisfying
h([0,1] x OM) C %, h(0) = uy and h(1) = u. An interesting problem is that whether or
not each relative homotopy class of maps has a representation by harmonic maps,
which is equivalent to the following problem:

—Au =T'(u)(Vu, Vu),
u(OM) C %,
ou

— 1T,
ov

(L.1)

Here v is the unit normal vector of M along the boundary OM, A = Ay, is the Laplace-
Beltrami operator of (M, g), I' is the second fundamental form of N (viewed as a sub-

manifold in R’ via Nash’s isometric embedding), T,N is the tangent space in R’ of N at

p and L means orthogonal in R’. (1.1) is the Euler-Lagrange equation for critical points
of the Dirichlet energy functional

E(u) —J |Vl dv,
M

defined over the space of maps
Hy(M,N) = {u € H(M,N) : u(x) C Ta.e.x € OM}.

Here H'(M,N) = {u € H'(M,R") : u(x) € Na.e.x € M}. Both the existence and par-
tial regularity of energy minimizing harmonic maps in H}(M,N) have been established
(for example, in [7-11]). A classical approach to investigate (1.1) is to study the follow-
ing parabolic problem

Ot — Au =T (u)(Vu, Vu)  on M x [0,00),

u(x,t) € X on OM x [0, 0),

(1.2)
%(x, t) LTy Z on OM x [0,00)
u(+0) = ug on M.

This is the so-called harmonic map flow with free boundary. (1.2) was first studied by
Ma [12] in the case m = dimM = 2, where a global existence and uniqueness result for
finite energy weak solutions was obtained under suitable geometrical hypotheses on N
and X. Global existence for weak solutions of (1.2) was established by Struwe in [13]
for m > 3. In [14], Hamilton considered the case when ON = X is totally geodesic and
the sectional curvature Ky < 0. He proved the existence of a unique global smooth
solution for (1.2). When N is an Euclidean space, the first equation in (1.2) is the stand-
ard heat equation

uy—Au=0 on M x [0,00). (1.3)
As pointed out in [15] and [13], estimates near the boundary for (1.2) are difficult

because of the highly nonlinear boundary conditions. Struwe in [13] introduced the
heat flow for the intrinsic version of harmonic maps with free boundary. In particular,
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he used a Ginzburg-Landau approximation in the interior, hence keeping the boundary
condition highly nonlinear.

In the present paper we revisit the Struwe approximation argument by considering a
natural, though unusual, heat flow associated to the equation derived by Da Lio and
Riviere, that we called half-harmonic maps. Wettstein [16,17] considered the natural

L?—gradient flow of the H %—energy of half-harmonic map defined distributionally by
Ot + (—A)uLT,NinR x [0,00), (1.4)

where 0; + (—A)% is the so-called Poisson operator whose expression is explicit. Some
weak solutions for this flow have been constructed in [18]. Infinite-time blow up has
been considered in [19].

As far as the (partial) regularity of the heat flow of harmonic maps is concerned, a
way to construct weak solutions is to have a suitable monotonicity formula for a
Ginzburg-Landau approximation of the system (see the monograph [20] for an up to
date account). At the moment such a monotonicity formula is not available for the lat-
ter system (1.4), despite this flow being the natural one analytically.

Therefore, we replace the previous flow by

(0 — AVulT,N  in R™ x (0, + 00), (L5)
u(x, t) = up(x, t) in R™ x (—00,0]. ’

Clearly, these two flows admit the same stationary solutions, which are (weak) half-har-
monic maps into N. However, it is known (see [21]) that, suitably formulated, the flow
(1.5) does enjoy a monotonicity formula. This is due to the existence of a suitable (cal-
oric) extension to the upper-half space (see [22] and [23]). As we will see below, though

the operator (9; — A)% defined as a Fourier-Laplace multiplier seems unnatural, its cal-
oric extension to the upper half-space is naturally associated to extrinsic harmonic
maps with free boundary. Considering a Ginzburg-Landau approximation at the bound-
ary, which is more in the spirit of the approach by Da Lio and Riviere and motivated
by the Ginzburg-Landau approximation of extrinsic harmonic maps with free boundary
proved in [4], we construct weak solutions which are partially regular.

We will always assume in the following that (M, g) = (R, dx*). To keep the technical-
ities as simple as possible we will present the detailed proof for the case that the target
manifold is a sphere, and provide necessary modifications of proof for general target mani-

folds N in Appendix B. Let (S“!, g.,) be the (£ — 1) dimensional unit sphere in R
equipped with the standard metric. Given ug: R™ x (—00,0] — S'™! with uy(-¢) €
H'(R™) for t < 0, we introduce the following evolution: for (X, t) = (x,y,t) € R xR,

& X)
W = Axu (X, t) in R7T*" x (0,00),
uy(x,0,8) = up(x, t) in R” x (—o00,0], (1.6)
, Oug(X, t 1 -
lim,,_,q+ # = —8—2(1 — |ugHu,  in R™ x (0, + 00).

The following result is our main theorem.
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Theorem 1.1. For any given uy € H*(R™, N), the following statements hold:

A. There exists a global solution u € L°(Ry, H%(Rm,N)) of the equation of }-harmonic
map heat flow:

{(&—A)ZuJ_TuN inR™ x (0,00), w7

— 3 m
Ulco = to inR™.

Furthermore, there exists a closed subset ¥ C R™ x (0,00), with locally finite m-
dimensional parabolic Hausdorff measure, such that u € C*°(R™ x (0,00) \ Z), and
B. there exists Ty > 0, depending on HMOHH%(R"‘)’ such that =N (R™ x [Ty, 00)) = 0
and

IVl iy € S0 V2 T
Hence there exists a point p € N such that u(-,t) — p in C;_(R™) as t — oo, and
C. for any 0<t<TyXZ,=XN(R"x{t}) has finite (m— 1)-dimensional
Hausdorff measure.

At the end of this section, we would like to remark that when %;ﬁ s € (0,1), while
Lemma 3.1 for the energy monotonicity inequality remains true, the arguments pre-
sented in Lemma 4.3 (for the €,-regularity) and in Proposition 5.1 (for uniform bound-
ary Cb*-estimates) do not seem to be valid because of the degeneracy of coefficient

function »'"* in the extended equation. Thus Theorem 1.1 remains open

for s € (0,1) \ {}.

2. Existence of weak solutions

In this section we prove the existence of a weak solution of

(0, — A)’uLT,S"! in R™ x (0,00),
(2.1)

u(x,t) = up(x) in R™ x (—o00,0],

for any s € (0,1), here uo € H'(R™,S!). This equation is a mere generalization of
(1.5), and thanks to [22,23] fits well in our framework (see also [24] for a similar setup
and related results). It is important to remark that the case s=1/2 and m=1 corre-
sponds to a geometric problem since the image by those maps are minimal surfaces
with free boundary. See [4]. We will then consider only the case s=1/2 in any dimen-
sion in the subsequent sections. However, we provide here the existence of weak solu-
tions (but not their partial regularity) for the general system (1.5) for all 0 <s <1
when the initial datum u, is a function of x only.

Here (0; — A)'u is defined by the Poisson representation formula (found independ-
ently by Nystrom-Sande [22] and by Stinga-Torrea [23]): For any u belonging to a suit-
able class of functions (see [22,23])
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(0 — A)'u(x,t) = JOC JRm(u(x, t) —u(x — z,t — 1))K(z, 1) dzdr, (2.2)

0

where the kernel K; is given by

1 e

KS Z,T) = m m b)
& (4m)*|0(—s)| T

VzeR™ >0,

where I' denotes the Gamma function.
As in [25] and in [26], we relax the constraint u € S and introduce the Ginzburg-

Landau type approximation. For any & > 0, we consider the problem (¢, is a normaliza-
tion constant that will be defined later)
s Cs 2 . m
(O — A)'u, = — (1 — || )ue in R x (0, + 00),

g2

(2.3)
ug(x,t) = up(x) in R” x (—00,0].

Here ¢, = 25311_}5(1)

The proof of the existence of a solution to the approximate problem (2.3) and of its conver-
gence to a solution of (2.1) heavily relies on the possibility of reformulating the nonlocal prob-
lems (2.1) and (2.3) as local problems but in an extended variable setting (see [22] and [23]).

First we recall the extension method for the nonlocal operator (9, — A)’, then we
prove the existence of a solution of the Ginzburg-Landau approximation (2.3). Finally,
we address the problem of the convergence when ¢ — 0.

2.1. Extension method

In this subsection we briefly recall the extension method of [22] and [23]. If u = u(x, t)
is a function belonging' to

D(H’) := {v e SR™Y): e Ll (R™), (&0)— ((2n)¢])* + 27ic) V(¢ 0) € LZ(Rm+1)})
(2.4)

where S'(R™*!) is the space of tempered distributions and v is the Fourier transform
with respect to (x, t), then we can consider the degenerate parabolic problem in the
extended variables (X, ) := (x,y,t) € R™ x (0, + 00) x R:

12 OU(X, 1)

y o = diVX(ylizstU<X, l’)) in Rerl x R,

(2.5)
U(x,0,t) = u(x, 1), in R" x R.

Given the boundary datum u in the regularity class D(H*) above, there exists a smooth
solution U of the parabolic problem above. Moreover, there holds (see [22] and [23])

'Note that in the papers [29] and [33] it is actually considered a slightly different definition for D(H*)that prescribes
that its elements belong to L2(R™"). The reason for considering the “homogeneous” version (2.4) lies in the fact that
we have to deal with maps satisfying the constraint |v| = 1 in the whole R™"'.



1850 (&) A. HYDER ET AL.

1 U(X, ¢t
- hm ylfzsa ( )

= (0, — A)'u. (2.6)
Cs y—0* dy

The limit in (2.6) is understood in the L?*(R™ x R) sense. See also [27].

With this discussion in mind we rewrite the nonlocal and nonlinear system (2.1) as
the following local and degenerate parabolic problem with nonlinear boundary condi-
tions in the extended variables (X, ) € R7T™" x R:

12 OU(X, 1)

T = diVX(ylizSVXU(X, t)), in RT+1 X R,
U(x,0,t) = up(x), in R™ x (—00,0], (2.7)
X’ —
lim,_ o+ ylzs%yt)J_TuSk L on R™ x (0, 4+ c0),

where the limit in the last condition is understood in the L* sense. We note that the
previous system for the case s=1/2 arises as the harmonic map flow with a free bound-
ary and has been investigated in [15].

Notice that our solution u to (2.1) is S valued, and therefore it is not in L?(R™).
Nevertheless, one can interpret distributional solutions of (2.1) directly through traces
of weak solutions of (2.7), which are defined below. In particular, in [22,23] the domain
D(H?) is designed so that the R.H.S. of (2.2) makes sense. As previously mentioned, we
slightly modify this domain to take into account the constraint. In any case, we always
interpret solutions of (2.1) via its extension.

Remark 2.1. We also want to point out that this is the flow of harmonic maps with
free boundary from a manifold with edge-singularities into the sphere. Indeed, for a >
—1, the operator y**div(y*V) is an edge-operator in the sense of [28]. Therefore, the
flow (2.7) is the Ginzburg-Landau approximation of the heat flow of harmonic maps of
a manifold with edge-singularities into the round sphere. See also [29] for related
results. We postpone a deeper investigation of such flows on singular manifolds to
future work.

Remark 2.2. We would like to point out that the approach used in [30] would be an
alternative way to build weak solutions for our system too.

Now we discuss the weak formulation of (2.7). First of all, we introduce some func-
tional spaces. Given an open set A C R7"', we introduce the Lebesgue and the Sobolev
spaces with weights

L*(A;y'dX) := {V cA— R J VP 2dX < +oo}, (2.8)
A
and

H' (A;y2dX) :={V:A - R’ : V and VxV € L*(A,y"%dX)}, (2.9)

endowed with the norm
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1

1Vl gy = (L|V|2y”5dx+ wavfywmx) | (2.10)
Moreover, we let
XE(A):={V:A =R :VxVel}Ay 5dX)}, (2.11)
endowed with the semi-norm
1/2
1Vl == (J }’125|VxV|2dX> : (2.12)
A

Thanks to [31, Theorem 2.8], there exists a unique bounded linear operator (the trace
operator)

Tr: X*(R™) — H'(R™), (2.13)
such that TrV := Vlgn, 1, for any V € C}(R™"")
Finally, given a Banach space X with norm || - [|,, we let L(a,b; X) (p € [1, + o0])

denote the space of classes of functions which are strongly measurable on [a,b] and
with values in X and such that

VIl (4, b52) < +005
where
b 1 .
W) = { (J; Iv(e)lan) if pell + o)
Lr(a,b;X) .
ess Sup,(,, ) [1V(1)]| x if p=+oc.

Moreover, we let
1 2 d 2
H'(a,b;X) :=q{veL(ab; X): aveL(a,b;X) ,

where the derivative is understood in the sense of distributions (see, e.g., [32,
Chapter 1])

Definition 2.1. Given a ug € HS(]R”‘,SFI), a map U: RT“ xR — RY,  with
|U(x,0,t)| =1 for almost every (x,t) € R" x R, is weak solution of (2.7) if

U € *(Ry; L (R, y'7#dX)), (2.14)
U e L®(Ry; X*(RM), (2.15)
U(x,0,t) = up(x) ae.(xt) € R™ x (—o0,0], (2.16)
and
J J ((0,U, @) + (VxU, Vx®))y' *dXdt = 0, (2.17)
0 R$+l

for any ® € L(R; X*(RT™)) N L¥(R; L (RTH)) with ®(x,0,¢) € Tyy,0,S"" for
almost every (x,t) € R™ x (0, + 00).
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Note that if U is a weak solution according to the above definition taking ® with
®(x,0,t) = 0 for almost any (x,¢) € R™ x (0, 4+ 0o) we get that U verifies
12, 0U(X 1)
ot

Owing to the previous definition, we now define what we mean by a weak solution of
the original system (2.1):

= divx (y' *VxU(X,t)), in R xR. (2.18)

Definition 2.2. Given u, € H'(R™,S!), we say that u:R™ x R — S is a weak
solution of (2.1) if the pair (U, u) with u = Tr(U) is a weak solution of the extended
equation according to Definition 2.1.

Remark 2.3. It would be possible of course to have a more straightforward definition of
weak solutions for (2.1) by defining suitable function spaces so that the Fourier-Laplace
multiplier (9; — A)’ is well defined. This would actually introduce some additional tech-
nicalities which are unnecessary for our purposes and we do not pursue along this line.
We refer the reader to [27] for a related construction.

Following [20, 25, 26], in the next Lemma we exploit the symmetry of the constraint

S to write (2.17) in an equivalent way that is more suited for the treatment of the
nonlinear boundary condition in the limit procedure. The reformulation of (2.17) makes

use of test functions defined in R7™" x R with values in Ai(RY). Therefore we have to
introduce some notation. The exterior algebra of R’ is denoted by A(R’) and the exter-
ior (or wedge) product by A. If ey, ..., e is the canonical orthonormal basis of R’, we
let A\,(R) (k < ) be the space of k-vectors, namely the subspace of /\(R’) spanned by
eiA..Ag, with (1 <ip < ...,i < {). We let (-,-) denote the scalar product in R’. We
denote with the same symbol the induced scalar product in A, (R")

(VIA AV WA AWE) = det({v;, w;)), (2.19)

where v, w; € Rl fori=1,..,k.
We finally introduce the Hodge star operator

i \,R) = A\, (R  o0<k<d
by
K8y A Aei) T G ALLAE, s

where jj, ..., ji—k is chosen in such a way that e;, ceo €y €5 e €, 1S @ (positive) basis of
R. The following hold

*(1) = e1A...Aep,
*(e1A...nep) = 1,
ook = (=1 e AURY,

and
un*v = (U, v)erA... ey, for any u,v € /\k(RZ), (2.20)

or, equivalently,
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*(Un *v) = (u,v) for any u,v € /\k(RZ). (2.21)
In the familiar case in which u, v are vectors in R>, then the relation above with ¢ = 3
and k=1 gives

*(UAV) =u X V.
Then, we introduce some new function space. We set
X2 (RT‘H; /\g,z(RZD = {V (R — /\k(Ré) . VxVel? (RTH,)/I_ZSdX) }
We have the following

Lemma 2.4. U is a weak solution in the sense of Definition 2.1 if and only if U verifies
(2.14), (2.15), (2.16), (2.18) and

JOO J (30U, x (UAW)) + (VxU, « (UAVxP)))y' 2dXdt =0, (2.22)
0 RT+1

for any ¥ € L (Ry; X* (RT3 Ay, (R)) N L (R L (R Ay, (RY).

Proof. If U is a weak solution in the sense of Definition 2.1, then we take ® = x(U A'Y)
where W € L*(R; X*(R7; A,_,(R"))). Thanks to the properties of the wedge prod-
uct and of the Hodge-star operator, it is immediate to check that @ is indeed a vector
field. The fact that ® € X*(R""*") for a.e. t is a consequence of the the fact that its
components are product of functions which lie in X*(R”"") and in L for almost
every t. We have to check that ®(x,0,t) € Ty, ,)Sf_l, namely that, denoting with
u(-,-) := U(+,0,-) (in the sense of traces),

(u, * (uAP)) =0 a.e. in R™ x R.
This is a consequence of (2.21). In fact,
(y, x (UAW)) = *(un (xx (UAP))) = (=) % ((un (uaW))) =0. (2.23)

Finally, since the Hodge star operator commutes with the covariant differentiation (here
derivation in R7"") we have that

<VXU, VX(*(U/\‘P)» = <VXU, * (VxU/\\P» + <VxU, * (U/\VX‘P»
= (VxU, x (UAVxY)),
where the first addendum is treated as in (2.23). As a result we have that U verifies
also (2.22).

On the other hand, let U be a function verifyng (2.14), (2.15), (2.16), (2.17) and
(2.18). For any given vector field @ as in the Definition 2.1 we set

Y .= x(UAD).

We have that ¥ 6L°°(R+;XZS(R$“;/\Z_z(RZ))). Moreover for almost any (x,t) €
R™ x (0, + 00) there holds
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*(UAY) = .

Thus (2.18) and (2.22) give that U verifies also (2.17) and thus it is a weak solution in
the sense of Definition (2.1). 0

According to [23], given a solution U of the above problem, its trace on R™ x {0}
u(x, t) := TrU(x, y, t),

is indeed a (weak) solution of (2.1). Weak solutions to (2.7) are constructed as limits of
solution of the the (local) extension of the Ginzburg Landau approximation (2.3) of
(2.1). Therefore, for any ¢ > 0 we consider the following system

125 OU(X, t)

— = divy(y' " *VxU(X, t)) in R7™ x (0,00),

U.(x,0,t) = up(x), in R" x (—o0,0], (2.24)

1_as OU(X, 1)
dy

= _:_;(1 - |U1:‘2)U8> in Rm X (0’ +OO)

2.2. Existence for the approximate problem and a priori estimates

In this subsection we discuss the existence of the approximate problem (2.24).
First of all, we introduce some notation. For ¢ > 0 and V € X*(R""*"), we introduce
the following energy functional

£V, ) ::%J

m+1
RY

y1 |V VX _,_%J (1 —|v|*)dx, for V eV, (2.25)
Rm

where v = Tr V. We seek for minimizers in the space
V= {v € XER™Y) 1y = Tr(V)|([vf —1)* € Ll(Rm)}.
We let Up : R7* x (—00,0] — R’ be the Caffarelli-Silvestre extension of g, namely,
for any t € (—00,0],
{ —div(y" 2V Uy(X, 1)) = 0 in R,

(2.26)
Uop(x,0,t) = up(x) on R™.

Thanks to [33] we have that the extension operator

E:v—V, with V the unique solution of (2.26) with boundary datum v,  (2.27)

is an isometry from H'(R™) to X*(R™"!) and we have

ITeV | g ey = IE(Tr(V) ey < VI, (2.28)

for any V € X*(R7H).
Toward the construction of a solution to (2.24) we observe that, since U, is constant
with respect to time, the function Uy verifies
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L, 0Uy(X, 1) . _ .

1-2s _ 1-2s m+1 _
¥ 5 divx(y " *VxUy(X, 1)), in R x (—00,0], (2.29)
Uo(x,0,t) = up(x), in R™ x (—00,0].

Therefore, we study existence of a solution of the following initial and boundary value
problem:

U.(X,t _
ym% — divk () 2V U (X, 1)) in R™! x (0, + o00),
U:(x,9,0) = Up(x, y), in R x {0}, (2.30)

15 OUL(X, 1)
dy

lim, o+ y = —;—; (1—|uP)u,, in R™ x (0, 4+ 00).

As a result, if we let U, be a solution of the above problem, then

U.(X,t) for (X,t) € RT" x (0,00),

. (2.31)
Uo(X, t) for (X,£) € R™! x (—00,0],

U.(X,t) := {
is a solution of (2.24). As the behavior of ¢t < 0 of U, is ruled by U, which only depends
on the known “initial” condition u,, with some abuse of notation we will use the same
symbol U, to denote both a solution of (2.24) and a solution of (2.30).

We concentrate on (2.30). Since for the moment we work at fixed ¢, we do not indi-
cate the dependence on ¢ in the notation. Existence of a solution can be proven, for

instance, by using a time discretization scheme. More precisely, for n € N we set 7 : =1

and t*:=1k for k=0,...n. We set U’:=U, and we (iteratively) let U (with
k =1, ...,n) be the solution of

UF — 1y~ (1=2)div (y! "2V U¥) = UK, in R7H,

(2.32)
. L, OUk Cs ) "
lim, g+ ' 2‘@—}/ =-3 (1—|Uq?) Uk in R” x {0}.

Equation (2.32) is the Euler-Lagrange equation for the minimizer of the energy (as in
(2.25) we indicate with u the trace of U on R™ x {0})

k—1)2
F(U, u) = lj W=UTF aax 1 6,00, ).
2 RTH T
Existence of a minimizer in the space ) is a consequence of the Direct method of
Calculus of Variations. Once we have constructed the discrete solutions U* for k =
I,..,n, we can standardly introduce the piecewise constant and piecewise affine (in
time) interpolants of the discrete solutions and pass to limit when 7 (the time step)
tends to 0. This limit procedure gives (we restore the ¢-dependence) a solution U, of
(2.30). We let u,(-,-) := U,(+0,-) (in the sense of traces). The function U, satisfies by
construction the following a priori estimate (that correspond with testing (2.30) with %

and integrating on Rﬁ“)
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1-2s €2 o
—|"dX +—&.(U,, t) =0. 2.33
JRT‘)/ | It | i o(Us» ) (1) (2.33)

Thus, integrating with respect to time in (0,T) for 0 < T < oo, we get (recall that
Tr(Uy(+, +,0)) = up(+) and that ug € S ae. in R™)

JT J y1—2$ an (X’ t)
0 RT+1

2
— dth+J YIE|VRU(X, 1) PdX

m+1
R+

(2.34)
Cs —2s
o | (1 ) dx —J Y IVxU(X, 00X < fuoll .
4e% Jpm R
Thus, we obtain
T 2
U (X, t
J y172s % dxdt + J y1723|vXUE(X’ t)|2dX
0 Jrrt t RY* (2.35)
Cs 242
—_— 1 - & dx < C)
e I R

where the constant C does not depend on &. Thus, we conclude that 0,U; and U, are
uniformly bounded with respect to ¢ in the spaces

2R I2(R™,y172dX)) and L(R,;XX(R™)), (2.36)

respectively. Moreover, recalling (2.31) we have indeed constructed a solution (still
denoted with U,) of (2.30) that satisfies

Vel (g, a2 yr-2ax)) + | Uell e, ey < C (2.37)

Note that u, is a solution of (2.3).

2.3. Limit procedure and existence of a weak solution

The energy estimate (2.35) and weak compactness results guarantee the existence of a
map U : R™"' x R, — R’ with

AU € I2 (R+; AR, yI*ZSdX)) and UeL> (R+; XZS(M“))

and of a subsequence of ¢ (not relabeled) such that

8tU8£:>08tU weakly in L? (R+;L2(RT+1,y1_25dX)), (2.38)
VXU;:PVXU weakly star in L™ (RJr;LZ(]RTH,yI_zSdX)). (2.39)

Moreover, the Aubin-Lions compactness Lemma gives that

U =2U strongly in L{_ (R+;L2 (RT+1’)’1725dX))' (2.40)

loc

Now, denoting with u and with u, the traces of U and of U, on R™ x {0}, respectively,
we have that
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e—0

U, —u in leoc

(Ri; Lip (R™)), (2.41)

loc

and thus u; — u almost everywhere in R™ x R, up to the extraction of a further sub-
sequence. The convergence almost everywhere above combined with the fact that,
thanks to estimate (2.35),

limJ (1- |us|2)2dx =0,

e—0

allows us to reach that |u(x,t)| = 1 for almost any (x,¢) € R™ x R.. To conclude that U
is a weak solution of (2.7) in the sense of Definition 2.1 we have to prove that U verifies
(2.22). We consider ¥ € L®(Ry; X*(RT A,_,(RY))) NL®(Ry; LR A, (RY)))
and we test (2.30) with x(U, A V). For almost any (x,t) € R™ x (0, 4+ c0)

<8l2(1 )y (us/\‘I‘)> - *<8l2(1 — ) A **(us/\‘P)>
— (1) Gz (1- |u8|2)u£A(u£A\y)) o,

thanks to (2.21) (recall (2.23)). For t < 0, we have that U,(x,0,t) = u.(x,t) = up(x) and
therefore, since |ug| = 1 by hypothesis, we conclude that

1
2 (1 — |us(x8))us(x,t) =0, forae. x € R™  and t <O.

Thus, after integration by parts in space we conclude that U, verifies

J J (80U, % (U AW)) + (VxU,, x (U, AVx'WP)))y'>dXdt = 0. (2.42)
R, erﬂ

Convergences (2.38)-(2.40) are enough to pass to the limit in Equation (2.42) and to
obtain that U verifies (2.22). Thus, thanks to Lemma 2.4 we conclude that U is indeed a
weak solution of (2.7). Therefore, the trace of U on R™ x {0} is a weak solution of (2.1).

3. Monotonicity formula for the approximate problem

This section is devoted to the derivation of monotonicity formula for (2.30). For the
later purpose, we will provide both global and local versions of such formulas.
Forty > 0and 0 <R <%, we set
Tx(to) == {(X,t) ERT*' xRy 1 tg —4R? <t < o — R*}, T{ =T/ (0),
OTTH () :i={(x0,t) ER" x {0} x Ry : tg —4R* < t <ty — R*}, 0T} := 9T} (0).

For Xy = (x0,0) € R™ x {0} and 0 < s < 1, let

1 Ix—Xo[?

=
BT

Gy (Xo1) 1=

be the backward fundamental solution of (2.30). For X, = 0 and t, = 0, we write G’ =
%.1,- Note that
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X
VG (X, t) = —MQS(X, 1), G(RX,R*t) = R G (X, 1), V(X,t) e RT*' x R_, R > 0.

Lemma 3.1. For every Zy = (Xo,ty) with Xy € 8RT+1 and ty > 0, if U, solves (2.30) then
the following two renormalized energies
1

D(U, Zy, R) := RZ(J
2 R x {ty—R?}

G (01— |us|2>2dx)

Gty X0y ¥V UL dX

18 J —R?
R™x {t(] R }
and

1
E(Us, Zo, R) := Ejmz )Q;O,to (X, t)y' |V U,|*dXdt

Cs J
4¢2 0T} (Z)

are monotone nondecreasing with respect to R. Namely,

g}o»to (X’ t)(l - |ue|2)2d)€dt

D(UC,Z(),T) S D(Us,Zo,R), o0<r S R < \/5,

1 3.1
E(Us 7o) < E(UnZosR), 0<r <R <y (-
Proof. Here we just sketch a proof for £(U,, Zy, R). Let us set
U, r(X,t) := Uy(RX + Xo, R*t + to), g r(x,t) := uy(Rx + xo, R*t + t)
for X € R7™" and t > —R~%t,. Then U, ¢ satisfies
y172satU€’R(X) t) = diVX()/lizstUg,R(X, t)), in RT+1 X (—Rizto, OO),
UE,R(-x> 0’ t) = M&R(xx t)x in Rm X (—Rizt(), OO),
Uy r(3,0, ) = tig(Rx + Xp), in R" x (—o0, — R 2, (3:2)
lim, o y'=20,U, o(X, ) = —stz—;(l —Jupr)tters i R™ x (—R2ty, 00).

By the change of variables X — RX + Xy, t — R*t + t, we get
1 s
E(Uy Zo, R) = J Gy ¥|Vx U, p|*dXdt + CRZSJ G (1 — |uy g|*) dxdt.
2 T, 4¢2 TS
Therefore, integrating by parts we obtain
1d
2dR
= fT* gs)/lfzst Ug g - VxOrU; rdXdt
= _vrT;r diVX [gsyl_ZSVX US,R] . GR US)Rdth — IB+T1+ limy_,0+ [gs}/l_zsa), Us,R . (')R Us,R] dxdt

J Gy 5| Vx U, p|*dXdt
T

X
= _IT+gsJ’1_2S {Z -VxUgr + 0:U, r| - OrU,, rdXdt
1

C
+ RZSSEJ +g5(1 — |u£,R|2)u£,R . aRug,Rdxdt.
ot T,
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Here we have used the fact 5, = —i:, and that OpU,r(x,0,t) = Orute,r(x,t) for t >

—Rt;, which is a consequence of

lim y8,U,(RX, R*t) = lim y* [y1*258yU8(RX, th)} —o0.

y~>0+ y~>04r
While
d e , 202
2 ) ISR (1 — |u, dxdt
dR {4{‘2 3+Tl+g< |ué’R| ) x
SCs 251 s 252
:2_2R G (1 — |ug,g|") dxdt
€ orrt
RS G Juy o)t - Dut, el
& Jorrs
Since
1
aRUC,R = ﬁ (X . VXUC,R + 2t8tU£,R)>
we obtain
d 1 S s 2
ﬁg(UmZO)R) =zl |X - VxU,r(X.t) + 2t0, U, r(X, t)|"dXdt
T+ ||
e I =
€ oty

> 0.

This yields the monotonicity of £(U,, Zy, R) with respect to R>0 and hence completes
the proof. O

We will also need the following local energy inequality. Here we denote
Py (Zo) = B (Xo) % [to — R, to + R?], OV Py (Z) = P (Zo) N (IR x (0,00))
for R>0 and Zy = (X, to) EW x R.
Lemma 3.2. If U, solves (2.30) then for any n € C°(R™ ") it holds that

— —|IVU,|’n* + —2 (1 — |u, Gl AARTS
dt{JM“2| K J]R”‘ 452( el ZJM“| el (3.4)

S 4JRT+1 |VU6|2|V11|2

In particular, for any Zy = (Xo, to) € R x (0,00) and 0 < R < ‘/25, we have that

2 2 2 a 22
10,U,]> < CR IVU,)* + (1 |u?) ). (3.5)
P; (%) P (%) 0+ Ph(20) 46

Proof. Multiplying the first equation of (2.30) by 9,U.#* and integrating the resulting
equation over R”"*!, and applying the third equation of (2.30) in integration by parts,
we obtain
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d 1 2.2 9 212 2 22

hd ~ VU, 2 (1= |u, 0,U,

dt{jmﬂzw K T T B B

1
== _2J‘Rm+l <r,atUS) VU.E,V]/]> S _J |atU3|21/,2 + 2J |VI]b|2|v’7|2
+ 2 RTH RTH

This yields (3.4). To see (3.5), let n € C°(R™*") be a cutoff function of Br(Xy), i.e.

0<n<1,n=1 in Br(Xy), n =0 outside Byr(Xp), and |Vy| < 4R™'. By Fubini’s the-
orem, there exists t, € (tp — 4R* ty — R?) such that

1 2 C1 2\2
+ « = VUE, +J —2(1— Ug
JﬁBzR(X0> {t.} o | | (B (Xo)POR™ ) x {£.} 4¢2 ( || )
16 1 P a N2 (3.6)
szl 5|VU8| + E(l—w )" )
P2R<ZO> 8+P;R<ZO)
Now if we integrate (3.4) for t. <t <ty + R* and apply (3.6), we obtain that
1 2 cl 2\2
Joy 2y |0: U Sy 10 2 . (Ban(Xo) ORI ) {1, } 467 (1= hul)
+ CR*ZIP;R(ZO)|VUS‘2
_ 2 9 2)2
<CR 2<IP2+R(ZO)|VUS| + fa+p2+R(Zo)4_82 (1 — [us| ) .
This implies (3.5) and completes the proof. O

4, :—Regularity result

From now on, we will always assume s = % Therefore, according to
I'(1—s)
Co 1=t
ST2%TIT(s)

we have that ¢; ), = 1.
As previously mentioned, we now focus only on the system (2.30). We will derive a pri-
ori estimates of its solutions U, under a smallness condition on the renormalized energy.
For Xy = (x0,0), fp > 0 and 0 < R < /%5, we set

P (Xo, t) = {(X,t) ERT x (0,00) : |[X —Xo| <R, tg—R* <t <t +R2}.
Lemma 4.1. Assume U, is a bounded, smooth solution of (2.30). Then |U.| <1
in R x (0, 00).

Proof. We argue by contradiction. Suppose the conclusion were false. Then by the max-
imum principle there exists Zy = (x0,0, ) € ORT*" x (0,00) such that

(U = 1)(Zo) = max

ZERT! %[0, 00)

(Ul = 1)(2) > 0.

Set ®, = |U,|* — 1. Then it satisfies
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D, — AD, = —2|VU,[> <0 in R™ x [0,00),
) 00, 2¢; m
lim,,_,q+ Dy (X, t) = E—ZCI)C(x, 0,t)|u*(x,t) on OR"! x [0, 00).

It follows from the Hopf boundary Lemma that

oD, . 00,
8y (Z()) = yli}l'glJra—y (X(),y, t()) < 0.

On the other hand, the boundary condition of @, yields that

aq)g ZCS 2
3y (Zo) = —5 ©u(Z0))|usl"(Zo) > 0.

We get the desired contradiction. O

The next Lemma is a clearing-out result, which plays a crucial role in the small-
energy regularity result.

Lemma 4.2. There exists ¢ > 0 such that if U, is a smooth solution of (2.30) with
|U,| < 1, that satisfies

E(Us, (Xo,19),1) < &

for some Xo € ORTH! and ty > 4, then
1
|U3| 25 on Pgr(X(),to)
for some 6 > 0 independent of U, X, and t,.

Proof. We divide the proof into two cases:
Case 1: 6 > 1. Set

Y
V,(xt) :J Us(x,s,0)ds, y> 0.
0

Then
0y(0r — A)Vi(x,9,t) = 0,
that is, (0; — A)V, is independent of y € (0,00). In particular, we get
(0 = A)Vi(x,9,t) = (Or — A)Vi(x,0,t) = =0, U;(x,0,t) = :—i(l - |u3|2)u8, y > 0.
Note that

1
g—;|1 — ||| < 4c%inRT+l x (0,00), and V, = 0fory = 0.

Hence, by the standard parabolic theory [21, Theorem 2.13] we conclude that V is
bounded in C*!(P}(Xo,t)). In other words, U, is bounded in C"!(P}"(Xy,t))), which

gives
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U6, 6) — UK, D) < G (X = X 40— 1) for (X,1)and (X,7) € P (X 1),
(4.1)

for some C; > 0. Now we choose §; € (0, %) such that §,C; < é By the monotonicity
inequality (3.1) we get that

a tof(ﬁ "
—ZJ J (1 — |, 2dxdt
4e” Jorring, (xo) Jip—a0?
~(m+1) G " )2
<cs;™ _ZZJ J ot (X 1) (1 — [ue] ") "dxdt
46 Jorrt Jy—a0?
—(m+1)
< C51 S(UmébXOs tO)
< €37 " VE(ULL 1, X0, 1)
< oM g
Therefore, by choosing &, > 0 sufficiently small we obtain that

4
] 25 for |X —Xo| <61, X € ORI, 10— 48] <t <t — 6},

From the choice of d; > 0 we conclude that [U,| > 1 on P;l (Xo, ty), thanks to (4.1).

Case 2: ¢ <1. Let X; = (x1,51) € B5(Xo) with y; >0 and t; € (t, — &6°, 1 + &) being
fixed. Set X, = (x1,0), and

U.(X,t) = UX, + X, 1, + &*r).

Then U, satisfies

O U(X,t) = AU(X, t) in R xR,
U,(x,0,t) = its(x, t) in R™ x (—&~*t;, 00),
U(x,0,t) = iig(x, t) in R™ x (—oo, — & %], (4.2)

lim},ﬁma—ya(X, t)=—a(l- |lit,[")it,  in R™ x (—& *t,00).
By the monotonicity inequality (3.1), we obtain
- - - 1
E(U{t’ (0’ 0)’ 1) == S(U{," (Xb tl)) 82) S 5<U81 (Xb tl)’ 5) S C(EO + 81);

where the last inequality follows from Lemma 4.4. Now one can proceed as in Case 1
to show that

[U,| > for (X,t) € P} (0,0),

for some 6; > 0 independent of ¢ > 0. In particular, we obtain

for (X,t) € P} (Xo,t0), 0 <y <. (4.3)
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Next we find a small 6, > 0 such that [U,(X,t)| >3 on P (Xo,t), provided & > 0 is
. . . . . + .
sufficiently small. Note that it suffices to consider points (X,t) € P; (Xo,t), X = (x,y)
for which ¢26; <y < J,, and ¢ > 0 satisfies &% < g—f To this end we fix an arbitrary

point (X1, t) € P{(Xo,to) with X; = (x1,51), y1 >0, and set R :={y, X1 = (x1,0).
We claim that for é > 0 small (depending on &) it holds that
1
J J |VU,|*dXdt < C(gy + &) R™, (4.4)
t1—10R* JBf (X))
and
L 22 mt1
= (1 — |ue|”)"dxdt < C(eo + & )R™. (4.5)
& 2
f,—10R2 J |x—x)|<10R

To prove the above claims, let us first choose ¢ > 0 small so that we can apply Lemma
4.4 with & = &, X; = X, and #; = #; + 4R?. Then by the monotonicity inequality (3.1)
and Lemma 4.4,

~ . 1
E(U,, (X1, t; + 4R*),2R) < E(U,, (X1, t; + 4R?), 5) < Cleg + &1).
Since
G, oare (X ) ~ RT™ - for|X — X;| < 10R and f; — 10R* <t < 1y,
(4.4) and (4.5) follow immediately.

As Bir(X1) C Bjx(X1), and VyxU, satisfies the heat equation on R”"' x (0,00), by
(4.4) we obtain (see [34, page 61])

Cy/
ViU (X, 1) < YR TE 0 IXZ X, <4R and t, —9R2<t<t, (4.6)
R
and consequently, by the standard parabolic estimates,
Cy/
10,U,(X, 1)] < 8137;“91 for |X — X;| <3R and t; —8R? <t < t,. (4.7)
Setting
U,(t) _][ U.(X, t)dX,
Br(X)
we see that
|U,(X,t) — Uy(t1)| < CV/eg + & for [ X—X,|<Randt; —8R* <t <t, (4.8)

thanks to (4.6)-(4.7).
For ¢ € R® we set d(&) = |1 — |¢]|. Then d is 1-Lipschitz. Since

d(U,(1)) < d(Us(X, 1) +|Up(X, 1) = Us(tr)], VX € Br(X1), 1 — R <t < 1y,

taking an average integral one gets
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t

d(0,
< } Rz][BMXI)d(US(X, £))dxdt +][

S} ][ d(U,(X,t))dXdt + C\/eg + €1,
th—R2J Br(Xy)

} |U.(X, t) — Uy(t,)|dXdt
Br(X1)

th—R?

(1))

thanks to (4.8). By Jensen’s inequality, and using that Bg(X;) C Bip(X1), we get

<£1—R2£3 G t))dth) 2

c (n J 5
— d(U,(X,t)) dXdt
= Rm+1 Ji w2 B;R(Xl) ( ( ))
c
<< RJ (1, (1)l + R J Vd(U(X, )X | dt
RS —re \ x| <R BL, (X))
c J 2\2 c 2
<— (1 — |ue|”) " dxdt + J J |V U,|"dXdt
R™2 ), g Jjx—xy|<sR R ) g Jp k)

82
SC(80+31) §+1 .

The second inequality above follows from the Poincare inequality, and we have used
that d is 1-Lipschitz in the third inequality, and the last inequality follows from the esti-
mates (4.4)-(4.5).

As we have mentioned before, we only need to consider 4R = y; > §;¢* and &* < %
Thus we obtain

d(U,(t)) < C\/m(l + \/—15_1>

Hence, if ¢ > 0 is sufficiently small, from (4.8) we have

1
|U:(X1, 1) = 5
2
Consequently, corresponding to this & we obtain 6 = J, > 0 as determined by Lemma

4.4 for the choice of & = &. O

Next we show that under a smallness condition on the renormalized energy, U,
enjoys a gradient estimate. More precisely, we have

Lemma 4.3. There exists ¢y > 0, depending only on m, such that if U, is a smooth solu-
tion of (2.30), with |U,| <1, which satisfies, for Zy = (Xo,t) € OR"" x (0,00) and

some 0 < R < @,
E(U,, Zy,R) < &, (4.9)
then
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sup REVU,|> <CS;%  sup RYDUJ> < Co;°, (4.10)
P00R<ZO> P00R<Z")

where 0 < 09 < 1 and C> 0 are independent of e.

Proof. By scaling, we may assume that ) >4 and R=1. Let 6 > 0 be as determined by

Lemma 4.2. Since U, is smooth in R x (0,00), there exists ¢, € (0,0) such that

(6 —a,)° max(|vu| + |6, U,]) = max (0 — 0)* max (|[VU,|* + |8, U,|).
PG; 0 <) P;(ZO)

Let Z{ = (X{,t]) € P} (Zy) be such that

Pm(aZX(IVUI +10.U) = (VUL + 0,U)(Z]) ==

Set p, =3 (0 — ;). Since P} (Z}) C P

' +0.(Zo), we have that

max (|VU,> + 8, U,])
Py (Z5)

< max (IVU|> +10,Uy)) < 4€2.

Petoe 0

(4.11)

Write X? = (x¢,5¢) € R™™ with x € R™ and y: > 0. Set X, = (x£,0) € OR"™' and
define
3 s X t +(ye
U:(X,t) = U X t ot (X,t) € P/ (Y7,0),
3 €

where 1, = p,e, and Yi = (0,yie,) € R7T"". Setting

1 a
2 e,
one gets
(0 — AU, = in P,/ (Y%,0),
1 m
a,U, —8—2( Jit:|*)it, ondP; (Y4,0) N (ORT! x R),

(4.12)
(VU +10,U.)(X.t) <4 inP}(Y},0),

(VU + 10:U:)(Y1,0) = 1.

Note that if r, < 2, then from the definition of ¢, we obtain

52
— sup (|[VU.]> +0:U]) < (6 — a.)* sup ([VU.|> +|0:Uy|) = 4p?e? = 4> < 16.
4 p, () P} (o)

T ag \ &0

This yields (4.10). Thus we may assume r, > 2 and proceed as follows. In case that
yie: > g, one can use the interior regularity of heat equations to conclude that
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(IVU * +10,0.1)(17,0)
CUNVUellLa oy vz,0) + 10T elliaee, (v2,0)

) i (4.13)

C<(9e£)_(m+l>J VU, + (1865)_("’“)J |8,US|).
PY (X5, £) PY (X5, 15)

e 18e;

IN

Next we need
Claim. For 0 < r,0 < 0 with 2r + ¢ < 0, it holds

C

m+1 1
( ) |0:U [ + <J ~ VU, +J
P+ 2) P (1) 2 9+Pf (2)) 4€
<

C(SO + SIE()) VZl S P+(Z0)

|N|>—‘

55}

(- lu )

(4.14)
Here E() = me+1|VU0|2.

Assume (4.14) for the moment. Since 5~ § Y < g,, it follows from (4.14) and (4.13)

that
1 < C(& + &1Ey) + Cy/ ek + &, Ey,

which is impossible if we choose a sufficiently small ¢,. Therefore we must have y{e, <
% and r, > 2. In this case, we see that U, satisfies (5.1), (5.2) and (5.3) with & = &.
Hence, by Proposition 5.1, we have that for any 0 < o < 1,

Hf]chHa(Pf(yf,o)) < C().
In particular, for any 0 < r < g it holds that
(VUL + 100X, 1) = (VU +10,0.)(Y},0) < Cr, - V(X 1) € P (Y},0).
Since (|[VU,|* + |0,U,|)(Y%,0) = 1, it follows that
(VU +18,0.))(X,t) > 1 —Cri, V(X,t) € PF(Y%,0).

Thus we can find a 0 < 7y < -, independent of ¢, such that

50
1
(|IVU, | + 10, U, (X, t) > > V(X,t) € P;;(Yf,O).
This, combined with (4.14), yields that
2 < oo <'“+”J (V.1 +18.0,)
P} (Y%,0)

T _
—cp) | (VUL + o)
Pr (z9)

0 1
2Pe

< C(&2 + &1 Ey) + Cy/ & + &1 Ey.
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This is again impossible if we choose a sufficiently small &,. Therefore we show that
e = p.e; < 2 so that (4.10) holds.

Now we return to the proof of (4.14). For simplicity, assume Z, = (0,0) and write

Gx.1.(X,t) = Gy, (X 1)
For any Z; = (X, t) € P1(0,0), the monotonicity formula (3.1) implies
1 CL
pm(mt+D) J ~|VU,PdXxdt —I—J 2 (1 — |u,[*) dxdt
P () 2 o P (z2) 48
J 1
T (t+212) 2

CL
( VU, |*Gx, 1, +2rdXdt +J (1 - |u£|2)2gxl,,1+2,zdxdt>
1 2 a 2\2
S C — |VU£| gXI’tH_z,Zdth + —<1 — |u£| ) gXl)t1+2r2dxdt
T, (
£

2
9T (1 +2r?) A€

2
O TH (1 +2r2) 4E
2

< C(E(U,, (0,0),1) + &, Ep) < C(&f + &1 Ey),
(4.15)

where we have used (4.16) from Lemma 4.4 below, since (Xi,#; + 2r*) € P (0,0). Now
one can see that (4.14) follows from (4.15) and (3.5). O

Lemma 4.4. Let & > 0 be given. Then there exists 6 = (&) > 0 such that for every
(X0, o) € OR"H! x (4,00), we have

1
€<U5, (X1, 1), 5) < C(E(U,, (Xort0), 1) + &1Eg)  for every (X, 1) € PY(Xo.to),  (4.16)
where C> 0 is independent of &,0 and &), and Ey = [gnn VU,

Proof. Proof of this Lemma is essentially contained in [26] Lemma 2.4. Here we give a
sketch of it. For (X;, 1) € PJ (Xo,ty), we see that

= to|)’”T“exp <|x—x02 X -xP

G X, t
It— 1| 4t — | 4|t—t1|> o (Xo1)

< Cexp |X_X0|2—|X_X1|2 Gx,,1, (X, 1)
= At —to]  At—rn| ) 00T

X — X,
< Cexp c52Q Gx,,1, (X, )
4|t — to| ’

GXl:tl (X’ t) < (

< CGx, 1, (X,t), |X —Xo| <67°
T | Cexp(—c6?), |X—Xo|>67"

for any (X,t) € T,"(t;), where C,c > 0 are independent of J and &.
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Therefore, for a given & >0 small one can find 6 >0 small so that for
(X, 1) € T,/ (1),

GXoJo (X’ t) lf |X - X0| S 571,

X, 1) < ~
Grion ( )—C{gl if [X—Xo|>0""

Hence

1
S(U,;, (Xl’ tl)) E)
< CE(U,, (Xorto), 1) + Cey ( Sy fo VUL XA + [ [ (1 |i¢g|2)2dxdt)

< C(eo + &1Ep),
thanks to (2.35). O

5. Boundary C'**-estimate

This section is devoted to establishing an uniform boundary C'**-estimates for solu-
tions U, to (2.30), under the smallness condition of the renormalized energy of U,.
Notations: for > 0, set

P, :=B, x (-r*,0], P} :=P,N(RT"" x R),
and
[, = {(x0,t):|x|<r, —r*<t<0},T/:
={(ept): x> +y =7 y>0, —r* <t<0}.
Let {U.},- : Pf — R’ be a family of solutions to
U, — AU, =0 in P/, (5.1)

subject to the Neumann boundary condition

ou, 1
5 :8—2(1 - |u£|2)us on I. (5.2)

Then we have

Proposition 5.1. Let {U,} be a family of solutions to (5.1)-(5.2). Assume that
1
7S Ul <1, [6U| +|VU;| <4 in Pf. (5.3)

Then ||Ug||crexpry < C(a) for every 0 < o < 1 and &> 0.

i

Proof. Write U, in the polar form. Namely, U, = p,w;, with p, = |U,| and w, = %
Then p, and w, solve '

Oip. = Bp, = —|Va,’p,  in Pf
1

op, (5.4)

ov

2 2
= 8_2(1 = lp:)p. on I7,
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and

Vo,
O, — Aw, = f, == 2i -Vo, + |ng|2w8 in P}

Pe (5.5)
ow,
By =0 on I7.

It follows from (5.3) that

VU
Vol < VU <8 AV <2120 < 16 inpy, (5.6)

1
&

2

and hence
If:l <1000 in P;.
From (5.5), we can apply the regularity theory for parabolic equations to conclude that
el griapry < Clar)  for every o € (0,1), (5.7)
§
uniformly with respect to .
Next we show that p, is uniformly bounded in C'*™* (P;) From (5.4), it suffices to
prove C*-regularity of d,p, on I'.. To this end, we set
h(X,t) =1—p,(X,t), (X,t)€P].
The boundary condition in (5.4), and (5.3) imply that
0<h,<ce on I. (5.8)
For any fixed (Y,0) € I'z, set
hi (X, t) .= h (X +Y,t) — h(X,t) for (X,t) € Plzs.

By direct calculations, h, satisfies

(0 — A)h§, =15 in P%,
2 oM H gl r (59)
— 09,k L =gb on [z,
pu(Ttpy) Y T B :
where
£5,(X,1) = Vo (X + Y, 1) p,(X + Y, 1) — [V, (X, 1) p,(X, ),
and
p.X+Y, )1+ p,(X+7Y, t))>
*"’X,t:(l £ £ ho(X +Y,t).
8{%.1) i+ p k) )Y
From the estimates (5.3), (5.7) and (5.8) we infer
fy (X, 6)] < ClY[* in Pj, (5.10)
16

and
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gy (X, 1) < C|Y|" on T (5.11)

16
From (5.6) we also have

by (X, )] < CY[%, in P;. (5.12)

16

Denote by

my = ||f§/||Loc(p£)» ny = ||g§/||Lw(P;)’ py = ||hgi/||Loc(p¢)~

16 16

Now we need
Claim. There exists a function ¢, € C* (ﬁ) satisfying
3
b, < ¢ < 10p < CJY[* inB,

4 N . (5.13)
3 0,y + ¢y =0 on 0B; O{XGR+  Xmi1 = 0}.
3

To verify this claim, first choose a § < ry < & such that B; C B x [0, 1o]. Next define
Py (x) = Yy (xmi1) = By X [0,19] — R, where /3, € C*([0, ro]) satisfies
Wi (&%) = 10p5; 10p5 < Y (1) < 20p%, & <t <1,

and

4t . 5

S W@+ =0 0< <2 (5.14)
Solving (5.14) yields

e (1) = 106 ()t 0 < £ < 2.

It is clear that (5.13) holds by restricting ¢ on B;.

Finally we let l/;; : B/ — R be the unique solution of the initial and boundary value

problem:

(0 — A)ﬂ; = mj in P/,

hy = ¢} on B; X {—(%)2},

~& 5.15

hy, = ¢§ on I'f, ( )
3

4¢2

~E ~E&
?&,hy—i—hyzo on F%.

For ﬂ;, it follows from both the maximum principle and the C-estimate (see [35]) that

0<hy < c(m"y + ||¢;||Lw<3+)> < ClY]* inP;. (5.16)
3

1
3

Furthermore, we have the following uniform gradient estimate, whose proof will be
given in the Appendix A.
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||lA11',HC1(Pz) < C(mﬁ, + \|¢§,||LOQ(BD) < C|Y|*, for every ¢ > 0. (5.17)

3

This, combined with the boundary condition on I'i in (5.15), implies that there exists a

constant C > 0, independent of ¢, such that
0 <hy, <C&Y[" onT;. (5.18)
Define functions Hy , and Hy , on P, by letting
’ 3
Hy (X t) = By (X, t) £hG (X, ) +nf in Y.

Then it is easy to verify that

(& — A)HE, >0 in P,
X !
His >0 on B; X {—(%)2},
Hy, >0 on I'f, (5.19)
4¢? '

78VH§,8+H$,820 on I'.

Applying the maximum principle to (5.19) (see [35]), we conclude that
Hy , >0 in P,
or, equivalently,
—h, (X,1) — n} <BG(X,1) Shy(X 1) + i, (X 1) € P
Hence we obtain that
IS, (X, 1)) < hy (X, ) +nf < CE2|Y[, (X,1) € T3,

thanks to (5.10), (5.11) and (5.18). In other words, we have

Slz‘pg(X—F Y,t) = p,(X.0)| < CIY]" for (X,1) € T, [¥] < 1—76 (5.20)
For every fixed T € (—£,0], set
W (X, 1) = h(X,t+T) — h(X, 1), (X,1) € Pllt.
Then by an argument similar to that for (5.20) we can show that
8lz|pg(X,t—|— T) = p, (X, < COITE for (X,1) € Tz, — % <T<0.  (521)

Combining (5.20) and (5.21), and applying the boundary condition of p, in equation
(5.4), we conclude that

||8Vps||C“(l"l) <C
holds uniformly with respect to ¢.

Now Proposition 5.1 follows immediately from the standard parabolic regularity the-
ory for equation (5.4) (see [35]). O
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6. Passing to the limit and partial regularity

This section is devoted to the proof of our main theorem on the existence of partially
smooth solutions of the heat flow of 1/2-harmonic maps.
Completion of proof of Theorem 1.1:

Proof. For s =1, let {U,},., be a family of solutions of (2.30), satisfying the bound
(2.34), and U : RTH x [0,00) — R! be the weak limit of U, as ¢ — 0. It it readily seen
that U € C*(R7*" x (0,00)) solves

OU — AU = 0inR"! x (0,00); Ul,_o=Us onR7", (6.1)

and u = U|E)R'j“x(0,oc) is a weak solution of the equation of 1/2-harmonic map heat

flow:
(0 — A)%uJ_TuSl*1 on R" x (0,00); u|,_y=1uy onR"™.

We are left with showing u enjoys the partial regularity as stated in Theorem 1.1. To
show this, let &, > 0 be the constant determined by Lemma 4.3 and define the singular
set & C ORTH x (0,00) by

¥ = Rmo{zo = (Xo, 1) € ORT™ x (0,00) : lim inf £(U, Zo, R) > e} (6.2)
> &e—

It is well-known that the monotonicity inequality (3.1) implies that X is a closed set in
ORTT x (0,00). Furthermore, similar to the proof of Lemma 4.3 and Lemma 4.4, we
have that for any Z; = (Xo,t)) € X, there exists a 0 <ry < /fp such that for all
0<r<ry,

1
r=m <J IVU,|? +J (1= |u€|2)2> > cep.
Pf(Z) Pl (2) &

Now we can apply Vitali’s covering Lemma to show that for any compact set K C

R7*! x (0,00), the m-dimensional Hausdorff measure of £ N K is finite, i.e.,
P™(ENK) < C(Ep, K) < 0.

It follows from the definition of X that for any Z; = (X;,#;) € OR}™ x (0,00) \ =, we
can find a radius 0 < R; < ‘/TE so that

llmlglf 5(U3, Zl, Rl) < Sg.
&—

Hence by Lemma Lemma 4.3 and Lemma 4.4 we can conclude that there exists a d; >
0, independent of ¢, such that for any o € (0, 1),

|| USHCH%(P;:SIRI (21)) S C(80) OC) (63)

Thus U, — U in C'"*(P;,(Z)). In particular, U e CI*(RT™ x (0,00)\ ).

loc

Applying higher order boundary regularity theory of (6.1), we conclude that U &€
CX (R x (0,00) \ Z). This yields part A) of Theorem 1.1.
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Observe that for any sufficiently large o > 0, and X, € R, if choose R = \/_ , then

3t 3ty
1 C1

E(U,, (Xo, 1), R) _J J ~|VU,|[*Gx,, tOdth+J J —=(1— |ue|*)>Gx,, 1, dxdt
0 Rm+1 2 0 Rm+l 48

mi1

<ot J (J —|VUS|2dX+J 20 ) )dt
o \Jrri2 Rt 48

—m=1 1 _m-1
S Cto 2 J E|VU0|2dth = Cto 2 Eo < 8(2),
m+1
"
uniformly in ¢, provided ¢, > (%)ﬁ Here we have used (2.34).
0
Hence by Lemma 4.3 and Lemma 4.4, we can conclude that £ N (OR7*! x [f, 00)) =
(), and U, — U in C} (R’jr1+1 X [tg, 00)). Furthermore, it holds that

loc

c
VUX, t)| < —,
VU=
for all X € R7™" and t sufficiently large. There exists a point p € S such that
U(t) = pin C

l()C(]R:’f“l) as t — oo. Hence u(-,t) also converges to p in C} (OR7™)

as t — oo. This yields part B) of Theorem 1.1.
The proof of part C) can be done in the same way as in Cheng [36]. We sketch it as
follows. First recall that for any 6 > 0, there exists a sufficiently large K(6) > 0 such

that for any f, > 0 and 0 < R < ‘/EJ, it holds for t; — 4R> < t < t, — R?,
Rm+D) VX € R™,

g X,t) <
0t (X ) { G0y (Ko ) if X € R™ and [X — Xo| > K(O)R,

Hence

E(U,, (Xo, 1), R)

t()—Rz
< R*(H’H»l) J (J
- t—4R> \JB

0—R* C1
4 5] (j VUG 010) + L G- |ua|2>zg<xo,to+m) d.
RTJA

to—4R2 Rt 462

2 Cl
VU, +j = P ) e

Xo) Bl e (Xo)NOR ! 4

K(())R(

On the other hand,

to—R? C1
3 ([ VUG 4 | 0 P G )
ty—4R? \JR"! L 8

to—R?
< 26j (R* + ty — t) 'D(U,, (Xo, to + R}, VR2 + tg — 1) dt

to—4R2
to—R?
§25<J (R +ty—1t)" dt) (U, (Xo» to + R), \/R2 + 1)
to—4R?

w1
< CS(ty + R T'Ey < S
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provided 6 > 0 is chosen to be sufficiently small. Here we have used the monotonicity
inequality for D(U,, (Xo, to + R?),r) in the proof.
Note that 2;, = Ny pe \/;(;Zf) , Where

Th = {Xo € ORT liminf £ (UL, (Xo, to), R) > &}
Thus we obtain that for any X, € Zﬁ , it holds

)
m+1 2 : o=k
R < 5lim
&4 e—0
0 to—4R? B

so that by Vitali’s covering Lemma we can show that

Hy'51(Z) < C(K(9), Eo).

2 C1
VU, +J

B

(1- |u€|2)2> dt

2
2
Xo) Xo)nOR" 1 4E

"
K((S)R( E(é)R(

This implies H"1(X,;,) < oo, after sending R — 0. O

7. Appendix A: uniform estimate of heat kernels

In this section, we will sketch a proof of the gradient estimate (5.17) for the solution lAl; of the
auxiliary Equation (5.15), which holds uniformly with respect to . We refer the reader to [35]
Theorem 4.31, in which an estimate similar to (5.17) is established but with a constant possibly
depending on &. Here we will provide a proof based on an explicit Green function representation
of the heat equation under an oblique boundary condition.

First recall the heat kernel in R™*! given by

1 < Mz)
w1 €XP | — , xt) € R™1 x (0,00),
[(xt) = (4mt) T P 4t (o t) (0,00)

0, (x,t) € R™! x (—00,0].

For y = (y1, .. Ym>yms1) € RTTY, denote y* = (y1,.., ¥m» — Ymr1). Define G¥(x,y,t) : R7TH! x
R7T™ xR — R by
00

G pt)=T(x—pt) —T(x—y"t) — ZJ e @ Dy T(x —y" + Temt1, t) dr, (7.1)
0

where D, 1 T(z,t) = 52 (z,t) and e, = (0',1) € R™". Then we have

- OXmi1

Lemma 7.1. G° is the Green function of the heat equation in R7™" with an oblique boundary
condition: for any fixed y € R7T™,
(0 — NG (x,3,t) = S(x — y)3(t),  (x.t) ERTT x Ry,
: .

x € OR™1 x [0,00). (7:2)

9G 3
m(%)’» t) — 126 (xy:t) =

Proof. Since y* € R"™! for y € R, it follows that x — y* # 0 and x — y* + e, 1 # 0 for any
x € Rf“ and 7 > 0. Hence we have

(0r — NG (x,9,t) = (0r — A)T(x — y,t) = 5(x — ¥)d(1).

To check the boundary condition, let x € OR”*". Then we have that x,,,; =0 and |x—y| =
|x — y*| so that T'(x — y,t) = T'(x — y*,t) and D11 I'(x — y*,t) = =Dy I'(x — y,t). Hence
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oG* 3
> )t 77G8 > )t
Do (0y.t) = 5 G (i)
00
= 2Dy I'(x—y"t) — ZJ e [DmHF(x — ¥+ Tems1, t)] dt
0 Xm+1
6 [* _s
+ @Jo e @ Dy [(x—y + tepir,t) dt
0
= 2Dy l(x—y" 1) — ZJ g (efﬁrDmHl"(x —y* + temi1, 1)) dr
0 T
=0
holds for x € 8]1%1“. O

For any bounded f € C* (R x [0,00)), it is well-known that the unique smooth solution of

at—Au— ianIX O,X,
+
au 3

m+1
Doy =t 0 on IR x [0,00), (7.3)
u=0 on R7™ x {0},
is given by the Duhamel formula
t
uy(x, t) = J J G (x, 3.t — s)f (y»5) dyds, (x,1) € RTH x [0,00). (7.4)
0 ]RT+1

Now we are ready with the proof of the following theorem.

Theorem 7.2. For any f € C*(R7™! x [0,00)) and & > 0, let u* : R7™" x [0,00) — R be given
by (7.4). Then for any 0 < o < 1 there exists a constant C = C(m,a) > 0 such that

[4°]] covanst x o, 00)) < Cllf ll o w0, o0))> V& > 0- (7.5)

Proof. Decompose G° by G° = G: + G5, where
Gi(xyt) =T(x—yt) - T(x - y',t); G = G - Gi,

and write u® = u} + u5, where
t
ui (x,t) = Jo JRMHGi (6yt —)f (v, 5) dyds; u = u® — ui.
+

Since G(x,y,t) is the Green function of the heat equation on RT“ with zero Dirichlet boundary
condition, by the standard Schauder theory (see [35]) we have that u} € C*(R7"" x [0,00)) and

Hu‘i ||C2’°‘(Rfr"“ x[0,00)) < C(m’ a)”f”C"(@x[O,oo)) .

To prove a similar estimate for u5 we first note that (7.1) gives
Gi(xpt) = —ZJ e’ﬁfDmHl"(x — ¥+ temi1, t) dr. (7.6)
0

By direct computation we have that
=1 1 (X1 + Ymp1 +7)

Dy I'(x — y* + tepyr,t) = B3 a )'"T“ . exp (
Tt

_ lx—y"+ Tem+1|2)
4t '
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Moreover, by the very definition of y*
% =y 1w P = ¥ =Y [ 4 Kt + Y + )%
where we recall
X = (XX, 0) Y = (V15 Y 0).
Therefore (7.6) becomes

Glapt) = — L P T (K + Y1 +7) ox 3t st + Yot + 7 dr.
Y il P
2 (amt)™T 0 t

We change variables in the integral according to

42 4t

— Xm+1 +ym+1 + T
Moreover, we write

— =y = =[x =y + Err + ymir)”
Then,

—+00 2
G; (XJ/, t) = ! mt1 e—\x_y*\ze(xmﬂ+J’m+1)z+ﬁ(xm+1+ym-1) J rexp (7 3"\{; - L) d?’.
(47_”)7 xm-l\*/’r_yrn#rl 4¢ 4

We introduce the function ©, : [0, 4+ 0c0) — R given by
+0oo 2
®£(/1) = e(Xm\1+}’m\1)2+4;%(Xm41+}’m41> J 1 exp (_ 37‘—\/2 — T_) dr,
2 42 4
and thus G} is represented as
: 1 . m m
Gi(xy,t) = e ‘o, (M) .
(4nt) 2 Vi

We have that for any ¢ > 0, ®, € C*([0,0)). Moreover, since
3t X

4¢2 4)’

o Xmt1 + Ymi1\ Xm41 + Ym+1 _4%“”3“)2“‘
AT v )T U ) ’

which is bounded, uniformly with respect to ¢ and with respect to t> 0. Therefore, we conclude
thanks to Schauder theory that u5 € C*(R”"" x [0,00)) and

< C(m, o)

@2(}) — _e(xm+1+,‘\'m+1)2+ﬁ(xm+1+}/m+1)/1 exp (

we get that

&
”uZ”CZ”‘(Rﬁ“X[O,x)) ”f”C"(WX[O,oo))'

Combining the estimates for u} and u} yields (7.5).
Now we will give a proof of (5.17). To do it, let , € C( Bl x (—(%)2,0) be such that
;=1 in B? x (—(%)2,0), and 7, € C°([0,00) be such that n, =1 in [0, 4] and 5, =0 in
24

2,00). Define n(x,t) = n,(x,t)n,(Xms1) for (x,t) € R7*' x R. Then by direct calculations we
obtain that
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(o ) - iﬂin) (%1)

axm+1 42

~& 0 ~¢ 3 ~¢
= hY(X, t)i’]l(x/, t)l/]/z(mer]) + (m y — Ehy) (X, t)n(x, t)
—04+0=0

holds for any (x,t) € 9R7T*" x (0,00) NI'}". Hence by Duhamel’s formula, we conclude that for
any (x,t) € Pf, it holds »

Eoen=] o Glont= oo - B0 b
% (0,00
=mj G (x, y,t — s)n(y,s) dyds
Rf“ % (0, 00)
+] o ent = 9By 05)0m M) ss) s 77)
R7* % (0,00
+2 (V,G(x% 3t — )V 5) + G, 35 t — $)An(y,5))hy (3,5) dyds
R71x(0,00)

=: A’(x,t) + B*(x,t) + C*(x, t).
Applying Theorem 7.2, there exists a constant C > 0 independent of ¢ such that
A v 0,000 < Cmy < CIYI™
For B® and C¥, it is not hard to see that

IVE|

c@®*1x(0,00) T IVC]

e [x
c®1x(0,00) < Clibylleopr) < Cpy < CIYT™
3

~&
Putting these estimates together, we conclude that h, satisfies the gradient estimate (5.17).

8. Appendix B: Proof of Theorem 1.1 for general targets

In this section, we will sketch the modifications that are necessary in order to show Theorem 1.1
for any compact Riemannian manifold N—R'.

To do it, first recall that there exists a constant oy > 0 such that both the nearest point projec-
tion map

My:Ns, ={yeR: d(y,N) <oy} =N

and the square of distance function to N, d?(p,N) = |p — IIy(p)|*, are smooth in the dy-neigh-
borhood of N.
Now let y € C3°([0,00)) be such that

2(t) = tfor0 < t < 0%;  y(t) = 25, fort > (20x)>.

Then we replace the potential function ;5 (1 — [u|*)* by £ y(d?(u, N)). More precisely, we con-

sider the following approximated system:
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(0 =AU, =0 inR7™ x (0, 00),
Uelyeo = Uo on RT“,

: U, _ 4 , » 2 m

lim, o+ Iy =7 (d*(U;,N))Dy,d*(U,,N) onR™ x (0,00).

(8.1)

As in (2.34), it is readily seen that any solution U, of (8.1) satisfies the following energy inequality:

t
J J |M|2dXdr+J |Vx U, (X, t)|*dX
RmHL at

C1
= y@(w,>Mx—LR\Vﬂhwndx<uwn

g2 R™ Hz (Rm

(8.2)

As in Section 3, we can similarly define the renormalized energies D(U,, Zy,R) and &E(U,, Zy, R)

for U, by simply replacing the term (1 — |u,|*)* by 7(d?(u,, N)). For example,

1
E(Us Zo,R) = EJTWZ )gxo)to(x’ t)|VUc|2dth

—ZJ G o (X, )7 (11, N) .
& Jorri(zo)

Then by the same argument as in Lemma 3.1, we have
Lemma 8.1. For Zy = (Xo, t) € BR'j“ x (0,00), if U, solves (8.1) then it holds that
D(US)ZO, 1’) S D(US,Z(),R), YO0 <r S R < \/_

t
E(Un Zo7) < E(Un Zos R), V0 < 7 < R < Y10

As in Lemma 3.2, we also have the local energy inequality.

Lemma 8.2. For any n € C*(R™"), if U, solves (8.1) then it holds that

d a 1
_{J |VU| J 3 /(d (ue, N))yp } +—J ‘atUs|21’12 < 4J |VUE|2‘V;7|2.
dt R+ 12 2 RH R

In particular, for any Zy = (Xo, ty) € R”j“ x (0,00) and 0 < R < ‘/5,

[ jou |<az(j v+ | ﬂfww>ﬂ.
Py (Zo) P} (Zo) d+P2R<Zo)

We also have the following clearing out result for any solution U, of (8.1).
Lemma 8.3. There exists &5 > 0 such that if U, solves (8.1) and satisfies
S(Um (XO) tO)) 1) S 83;

(8.3)

(8.4)

for some X, € OR"™ and ty >4, then d(U,N) < oy and y(d*(U,N)) = d*(U,,N) hold on

Py (Xo, to) for some > 0 that is independent of Uy, Xo, and to.
The next Lemma, analogous to Proposition 5.1, plays a crucial role in the proof.

Lemma 8.4. Let {U,},., be a family of solutions to (8.1). Assume that
d(U,,N) < dn, |0,U,| + |[VU,| < 4in P}

Then ||Us|| qisa(pry < C(o) for any o € (0,1) and & > 0.

L
4

(8.5)
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Proof.

The proof is similar to that of Proposition 5.1 (see also [6, pages 342-346]). Since
U.(P{) C Ny, we can decompose

U, = V. +vn(Ve)p, in Pl

Here V, = IIy(U,), p, = d(U,,N) = |U, — V,|, and vn(V;) € (Ty,N)" is a smooth unit vector
field in the normal space (Ty,N)". By direct calculations, we obtain that

0=0,U, — AU,
= I+ p.Vvon(Ve) (0 Ve — AV;) + vn (V) (Oip, — Ap,)
—2V(un (V) Vp, — Psv%/LVN(VS)(VVa’VVS)
hold in P; . If we multiply the equation above by vy(V;) and observe that

(I + p,Vv,un(Ve)(0: Ve — AV,), un (V) = (AV, un(Ve)) = =Vy,on(Ve)(VV, V),
we can show that V, and p, solve

(Hl + pavVl;VN(Véi))(ath - AV&) = paHN(Vs)(v%/‘,,VN(VE)(VVss VV;:))

—2V(uNn(Ve))Vp, + p.Vvvn(V)(VV, VV)un(Ve) in P, 86)
aazs = in Fl.
and

Op, — Ap, = Pa<V%/£VN(VS)(VVA’ VV.),vn(Ve))

— ,OCVV‘ VN(VH)(va,VVE) inP1+,
261 (8.7)
9. _ 2 :
oy - P inI.

Here we have used the fact that V,p,(p) = vn(IIn(p)) for p € N;,, so that the boundary condi-
tion for U, implies that on I},
B!
U, E (32 2
= ——=7(d*(U,N))Dy,d*(U;, N
= 2 (U )Py (U )

2c1
LoV, dun(VL) o, 3
= ay + 8}1 P+ 8)/ 2 Pe I/N(VS).

If we multiply this equation by vy(V,) and observe that (

. Ovn (Ve
%‘; , VN(VE)> = ( aﬁ,v ) > VN(VE)> =0,
we would obtain the above boundary condition for p,. On the other hand, the boundary condi-
tion for V, follows from the following identity

0= 8‘/& 8VN(V8)

- 8}’ 6)} pc = (Hl + vaV:VN(Vf))

and the invertibility of the map (I; + p,Vy,vn(V;)) : R — R%.
Note that (8.5) implies that

oV,
dy’

(10:Vel + IV Vi) + (10, + [Vp,|) < 8 in P}
This implies

10+ p.Vv,un(Ve)) = Ll pr) < Con,
and
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||p£<v%/(,:VN(Va)(VVE> VVS)> VN(Vs» - pgvVl;VN(Vs)(VVg, VVE) HLC)C(PIA) <C.
Hence by the Wﬁ’l—estimate for linear parabolic equations, we obtain that
[Vallowqes) < Cl), Y€ (0,1),
8
uniformly with respect to ¢.

The boundary C'™*-estimate of p, can be done exactly as in Proposition 5.1. This completes
the proof of Lemma 8.4. 0

Finally with Lemma 8.4 at hand, we can show that U, also satisfies the gradient estimate as in
Lemma 4.3. More precisely, we have that

Lemma 8.5. There exists ¢y > 0, depending only on m, such that if U, solves (8.1) and satisfies,
for Zy = (Xo, 1) € ORT*! x (0,00) and some 0 < R < 4L,

E(Up Zo,R) < €5, (8.8)
then
sup R2|VU£\2 < Cégz, sup R‘*|6,Ug|2 < Céa‘l, (8.9)
Pt (Zo) Pl (Zo)

SoR S0R

where 0 < dg < 1 and C> 0 are independent of ¢.
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