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ABSTRACT
We introduce a heat flow associated to half-harmonic maps, which
have been introduced by Da Lio and Rivi�ere. Those maps exhibit
integrability by compensation in one space dimension and are
related to harmonic maps with free boundary. We consider a new
flow associated to these harmonic maps with free boundary which is
actually motivated by a rather unusual heat flow for half-harmonic
maps. We construct then weak solutions and prove their partial
regularity in space and time via a Ginzburg-Landau approximation.
The present paper complements the study initiated by Struwe and
Chen-Lin.
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1. Introduction

In [1,2], Da Lio and Rivi�ere introduced a new notion of harmonic map by considering

critical points of a Gagliardo-type _H
sðRdÞ semi-norm in the conformal case s ¼ 1

2 and
d¼ 1. Those maps have found a geometric application in the works of Fraser and
Schoen about extremal metrics of Steklov eigenvalues (see e.g. [3] and references
therein). These maps correspond to an extrinsinc version of harmonic maps with free
boundary as proved by Millot and Sire in [4]. On the other hand, Moser [5] introduced
an intrinsic version of those latter maps, and Roberts [6] investigated regularity of gen-
eralized versions of those maps, i.e. considering Gagliardo functionals for any s 2 ð0, 1Þ:
Whenever the extrinsic version of those maps is concerned, critical points of the func-
tional introduced by Da Lio and Rivi�ere satisfy the following equation in the distribu-
tional sense

ð�DÞ12u?TuN

whenever u : S1 ! N: As pointed out in [4], the harmonic extension of those maps
into the unit disk are so-called harmonic maps with free boundary. We now introduce
such maps in a general setup: let (M, g) be an m-dimensional smooth Riemannian
manifold with boundary @M and N be another smooth compact Riemannian manifold
without boundary. Suppose R is a k-dimensional submanifold of N without boundary.
Any continuous map u0 : M ! N satisfying u0ð@MÞ � R defines a relative homotopy

� 2022 Taylor & Francis Group, LLC

COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS
2022, VOL. 47, NO. 9, 1845–1882
https://doi.org/10.1080/03605302.2022.2091453

http://crossmark.crossref.org/dialog/?doi=10.1080/03605302.2022.2091453&domain=pdf&date_stamp=2022-08-19
http://www.tandfonline.com


class in maps from ðM, @MÞ to ðN,RÞ: A map u : M ! N with uð@MÞ � R is called
homotopic to u0 if there exists a continuous homotopy h : ½0, 1� �M ! N satisfying
hð½0, 1� � @MÞ � R, hð0Þ ¼ u0 and hð1Þ ¼ u: An interesting problem is that whether or
not each relative homotopy class of maps has a representation by harmonic maps,
which is equivalent to the following problem:

�Du ¼ CðuÞðru,ruÞ,
uð@MÞ � R,
@u
@�

?TuR:

8>>><>>>: (1.1)

Here � is the unit normal vector of M along the boundary @M, D � DM is the Laplace-
Beltrami operator of (M, g), C is the second fundamental form of N (viewed as a sub-

manifold in R
‘ via Nash’s isometric embedding), TpN is the tangent space in R

‘ of N at

p and ? means orthogonal in R
‘: (1.1) is the Euler-Lagrange equation for critical points

of the Dirichlet energy functional

EðuÞ ¼
ð
M
jruj2 dvg

defined over the space of maps

H1
RðM,NÞ ¼ fu 2 H1ðM,NÞ : uðxÞ � R a:e: x 2 @Mg:

Here H1ðM,NÞ ¼ fu 2 H1ðM,R‘Þ : uðxÞ 2 N a:e: x 2 Mg: Both the existence and par-
tial regularity of energy minimizing harmonic maps in H1

RðM,NÞ have been established
(for example, in [7–11]). A classical approach to investigate (1.1) is to study the follow-
ing parabolic problem

@tu� Du ¼ CðuÞðru,ruÞ on M � ½0,1Þ,
uðx, tÞ 2 R on @M � ½0,1Þ,
@u
@�

ðx, tÞ?Tuðx, tÞR on @M � ½0,1Þ
uð�, 0Þ ¼ u0 on M:

8>>>>><>>>>>:
(1.2)

This is the so-called harmonic map flow with free boundary. (1.2) was first studied by
Ma [12] in the case m ¼ dimM ¼ 2, where a global existence and uniqueness result for
finite energy weak solutions was obtained under suitable geometrical hypotheses on N
and R. Global existence for weak solutions of (1.2) was established by Struwe in [13]
for m � 3: In [14], Hamilton considered the case when @N ¼ R is totally geodesic and
the sectional curvature KN 	 0: He proved the existence of a unique global smooth
solution for (1.2). When N is an Euclidean space, the first equation in (1.2) is the stand-
ard heat equation

ut � Du ¼ 0 on M � 0,1Þ:½ (1.3)

As pointed out in [15] and [13], estimates near the boundary for (1.2) are difficult
because of the highly nonlinear boundary conditions. Struwe in [13] introduced the
heat flow for the intrinsic version of harmonic maps with free boundary. In particular,
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he used a Ginzburg-Landau approximation in the interior, hence keeping the boundary
condition highly nonlinear.
In the present paper we revisit the Struwe approximation argument by considering a

natural, though unusual, heat flow associated to the equation derived by Da Lio and
Rivi�ere, that we called half-harmonic maps. Wettstein [16,17] considered the natural

L2�gradient flow of the _H
1
2-energy of half-harmonic map defined distributionally by

@tuþ ð�DÞ12u?TuN inR� 0,1Þ,½ (1.4)

where @t þ ð�DÞ12 is the so-called Poisson operator whose expression is explicit. Some
weak solutions for this flow have been constructed in [18]. Infinite-time blow up has
been considered in [19].
As far as the (partial) regularity of the heat flow of harmonic maps is concerned, a

way to construct weak solutions is to have a suitable monotonicity formula for a
Ginzburg-Landau approximation of the system (see the monograph [20] for an up to
date account). At the moment such a monotonicity formula is not available for the lat-
ter system (1.4), despite this flow being the natural one analytically.
Therefore, we replace the previous flow by

ð@t � DÞ12u?TuN in R
m � ð0, þ1Þ,

uðx, tÞ ¼ u0ðx, tÞ in R
m � ð�1, 0�:

(
(1.5)

Clearly, these two flows admit the same stationary solutions, which are (weak) half-har-
monic maps into N. However, it is known (see [21]) that, suitably formulated, the flow
(1.5) does enjoy a monotonicity formula. This is due to the existence of a suitable (cal-
oric) extension to the upper-half space (see [22] and [23]). As we will see below, though

the operator ð@t � DÞ12 defined as a Fourier-Laplace multiplier seems unnatural, its cal-
oric extension to the upper half-space is naturally associated to extrinsic harmonic
maps with free boundary. Considering a Ginzburg-Landau approximation at the bound-
ary, which is more in the spirit of the approach by Da Lio and Rivi�ere and motivated
by the Ginzburg-Landau approximation of extrinsic harmonic maps with free boundary
proved in [4], we construct weak solutions which are partially regular.
We will always assume in the following that ðM, gÞ ¼ ðRm, dx2Þ: To keep the technical-

ities as simple as possible we will present the detailed proof for the case that the target
manifold is a sphere, and provide necessary modifications of proof for general target mani-

folds N in Appendix B. Let ðS‘�1, gcanÞ be the ð‘� 1Þ dimensional unit sphere in R
‘

equipped with the standard metric. Given u0 : R
m � ð�1, 0� ! S

‘�1 with u0ð�, tÞ 2
_H
sðRmÞ for t 	 0, we introduce the following evolution: for ðX, tÞ ¼ ðx, y, tÞ 2 R

mþ1
þ � R,

@ueðX, tÞ
@t

¼ DXueðX, tÞ in R
mþ1
þ � ð0,1Þ,

ueðx, 0, tÞ ¼ u0ðx, tÞ in R
m � ð�1, 0�,

limy!0þ
@ueðX, tÞ

@y
¼ � 1

e2
ð1� juej2Þue in R

m � ð0, þ1Þ:

8>>>><>>>>: (1.6)

The following result is our main theorem.
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Theorem 1.1. For any given u0 2 _H
1
2ðRm,NÞ, the following statements hold:

A. There exists a global solution u 2 L1ðRþ, _H
1
2ðRm,NÞÞ of the equation of 12-harmonic

map heat flow:

ð@t � DÞ12u?TuN inRm � ð0,1Þ,
ujt	0 ¼ u0 inRm:

(
(1.7)

Furthermore, there exists a closed subset R � R
m � ð0,1Þ, with locally finite m-

dimensional parabolic Hausdorff measure, such that u 2 C1ðRm � ð0,1Þ n RÞ, and
B. there exists T0 > 0, depending on ku0k _H

1
2ðRmÞ, such that R \ ðRm � ½T0,1ÞÞ ¼ ;

and

kruð�, tÞkL1ðRmÞ 	
Cffiffi
t

p , 8t � T0:

Hence there exists a point p 2 N such that uð�, tÞ ! p in C2
locðRmÞ as t ! 1, and

C. for any 0 < t < T0, Rt ¼ R \ ðRm � ftgÞ has finite ðm� 1Þ-dimensional
Hausdorff measure.

At the end of this section, we would like to remark that when 1
2 6¼ s 2 ð0, 1Þ, while

Lemma 3.1 for the energy monotonicity inequality remains true, the arguments pre-
sented in Lemma 4.3 (for the �0-regularity) and in Proposition 5.1 (for uniform bound-
ary C1, a-estimates) do not seem to be valid because of the degeneracy of coefficient
function y1�2s in the extended equation. Thus Theorem 1.1 remains open
for s 2 ð0, 1Þ n f12g:

2. Existence of weak solutions

In this section we prove the existence of a weak solution of

@t � Dð Þsu?TuS
‘�1 in R

m � ð0,1Þ,

uðx, tÞ ¼ u0ðxÞ in R
m � ð�1, 0�,

8>><>>: (2.1)

for any s 2 ð0, 1Þ, here u0 2 _H
sðRm,S‘�1Þ: This equation is a mere generalization of

(1.5), and thanks to [22,23] fits well in our framework (see also [24] for a similar setup
and related results). It is important to remark that the case s¼ 1/2 and m¼ 1 corre-
sponds to a geometric problem since the image by those maps are minimal surfaces
with free boundary. See [4]. We will then consider only the case s¼ 1/2 in any dimen-
sion in the subsequent sections. However, we provide here the existence of weak solu-
tions (but not their partial regularity) for the general system (1.5) for all 0 < s < 1
when the initial datum u0 is a function of x only.
Here ð@t � DÞsu is defined by the Poisson representation formula (found independ-

ently by Nystr€om-Sande [22] and by Stinga-Torrea [23]): For any u belonging to a suit-
able class of functions (see [22,23])

1848 A. HYDER ET AL.



@t � Dð Þsuðx, tÞ ¼
ð1
0

ð
R

m
ðuðx, tÞ � uðx � z, t � sÞÞKsðz, sÞ dzds, (2.2)

where the kernel Ks is given by

Ksðz, sÞ ¼ 1

ð4pÞm2 jCð�sÞj
e�

jzj2
4s

s
m
2þ1þs , 8z 2 R

m, s > 0,

where C denotes the Gamma function.

As in [25] and in [26], we relax the constraint u 2 S
‘�1 and introduce the Ginzburg-

Landau type approximation. For any e > 0, we consider the problem (cs is a normaliza-
tion constant that will be defined later)

@t � Dð Þsue ¼ cs
e2
ð1� juej2Þue in R

m � ð0, þ1Þ,

ueðx, tÞ ¼ u0ðxÞ in R
m � ð�1, 0�:

8>><>>: (2.3)

Here cs ¼ Cð1�sÞ
22s�1CðsÞ :

The proof of the existence of a solution to the approximate problem (2.3) and of its conver-
gence to a solution of (2.1) heavily relies on the possibility of reformulating the nonlocal prob-
lems (2.1) and (2.3) as local problems but in an extended variable setting (see [22] and [23]).
First we recall the extension method for the nonlocal operator ð@t � DÞs, then we

prove the existence of a solution of the Ginzburg-Landau approximation (2.3). Finally,
we address the problem of the convergence when e ! 0:

2.1. Extension method

In this subsection we briefly recall the extension method of [22] and [23]. If u ¼ uðx, tÞ
is a function belonging1 to

DðHsÞ :¼ v 2 S0ðRmþ1Þ : bv 2 L1locðRmþ1Þ, ðn, rÞ 7! ð2pjnjÞ2 þ 2pir
� �sbvðn, rÞ 2 L2ðRmþ1Þ

n o
,

(2.4)

where S0ðRmþ1Þ is the space of tempered distributions and bv is the Fourier transform
with respect to (x, t), then we can consider the degenerate parabolic problem in the
extended variables ðX, tÞ :¼ ðx, y, tÞ 2 R

m � ð0, þ1Þ � R :

y1�2s @UðX, tÞ
@t

¼ divXðy1�2srXUðX, tÞÞ in R
mþ1
þ � R,

Uðx, 0, tÞ ¼ uðx, tÞ, in R
m � R:

8>><>>: (2.5)

Given the boundary datum u in the regularity class DðHsÞ above, there exists a smooth
solution U of the parabolic problem above. Moreover, there holds (see [22] and [23])

1Note that in the papers [29] and [33] it is actually considered a slightly different definition for DðHsÞthat prescribes
that its elements belong to L2ðRmþ1Þ: The reason for considering the “homogeneous” version (2.4) lies in the fact that
we have to deal with maps satisfying the constraint jvj ¼ 1 in the whole R

mþ1:
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� 1
cs

lim
y!0þ

y1�2s @UðX, tÞ
@y

¼ @t � Dð Þsu: (2.6)

The limit in (2.6) is understood in the L2ðRm � RÞ sense. See also [27].
With this discussion in mind we rewrite the nonlocal and nonlinear system (2.1) as

the following local and degenerate parabolic problem with nonlinear boundary condi-
tions in the extended variables ðX, tÞ 2 R

mþ1
þ � R :

y1�2s @UðX, tÞ
@t

¼ divXðy1�2srXUðX, tÞÞ, in R
mþ1
þ � R,

Uðx, 0, tÞ ¼ u0ðxÞ, in R
m � ð�1, 0�,

limy!0þ y
1�2s @UðX, tÞ

@y
?TuS

‘�1, on R
m � ð0, þ1Þ,

8>>>>>>>>><>>>>>>>>>:
(2.7)

where the limit in the last condition is understood in the L2 sense. We note that the
previous system for the case s¼ 1/2 arises as the harmonic map flow with a free bound-
ary and has been investigated in [15].

Notice that our solution u to (2.1) is S
‘�1 valued, and therefore it is not in L2ðRmÞ:

Nevertheless, one can interpret distributional solutions of (2.1) directly through traces
of weak solutions of (2.7), which are defined below. In particular, in [22,23] the domain
DðHsÞ is designed so that the R.H.S. of (2.2) makes sense. As previously mentioned, we
slightly modify this domain to take into account the constraint. In any case, we always
interpret solutions of (2.1) via its extension.

Remark 2.1. We also want to point out that this is the flow of harmonic maps with
free boundary from a manifold with edge-singularities into the sphere. Indeed, for a >

�1, the operator y2�adivðyarÞ is an edge-operator in the sense of [28]. Therefore, the
flow (2.7) is the Ginzburg-Landau approximation of the heat flow of harmonic maps of
a manifold with edge-singularities into the round sphere. See also [29] for related
results. We postpone a deeper investigation of such flows on singular manifolds to
future work.

Remark 2.2. We would like to point out that the approach used in [30] would be an
alternative way to build weak solutions for our system too.

Now we discuss the weak formulation of (2.7). First of all, we introduce some func-
tional spaces. Given an open set A � R

mþ1
þ , we introduce the Lebesgue and the Sobolev

spaces with weights

L2ðA; y1�2sdXÞ :¼ V : A ! R
‘ :

ð
A
jVj2y1�2sdX < þ1

� �
, (2.8)

and

H1ðA; y1�2sdXÞ :¼ V : A ! R
‘ : V and rXV 2 L2ðA, y1�2sdXÞ

� �
, (2.9)

endowed with the norm
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kVkH1ðA;y1�2sdXÞ :¼
ð
A
jVj2y1�2sdX þ

ð
A
jrXVj2y1�2sdX

	 
1
2

: (2.10)

Moreover, we let

X
2sðAÞ :¼ V : A ! R

‘ : rXV 2 L2ðA, y1�2sdXÞ
� �

, (2.11)

endowed with the semi-norm

kVk
X

2sðAÞ :¼
	ð

A
y1�2sjrXVj2dX


1=2

: (2.12)

Thanks to [31, Theorem 2.8], there exists a unique bounded linear operator (the trace
operator)

Tr : X2sðRmþ1
þ Þ ! _H

sðRmÞ, (2.13)

such that TrV :¼ Vj
R

m�f0g for any V 2 C1
c ðRmþ1Þ

Finally, given a Banach space X with norm k � kX , we let Lpða, b;XÞ (p 2 ½1, þ1�)
denote the space of classes of functions which are strongly measurable on ½a, b� and
with values in X and such that

kvkLpða, b;XÞ < þ1,

where

kvkLpða, b;XÞ :¼
� Ð b

a kvðtÞkpXdt
�1=p

if p 2 ½1, þ1Þ
ess supt2ða, bÞkvðtÞkX if p ¼ þ1:

(
Moreover, we let

H1ða, b;XÞ :¼ v 2 L2ða, b;XÞ : d
dt

v 2 L2ða, b;XÞ
� �

,

where the derivative is understood in the sense of distributions (see, e.g., [32,
Chapter 1])

Definition 2.1. Given a u0 2 _H
sðRm, S‘�1Þ, a map U : Rmþ1

þ � R ! R
‘, with

jUðx, 0, tÞj ¼ 1 for almost every ðx, tÞ 2 R
m � R, is weak solution of (2.7) if

@tU 2 L2ðRþ; L2ðRmþ1
þ , y1�2sdXÞÞ, (2.14)

U 2 L1ðRþ;X2sðRmþ1
þ ÞÞ, (2.15)

Uðx, 0, tÞ ¼ u0ðxÞ a:e:ðx, tÞ 2 R
m � ð�1, 0�, (2.16)

and ð1
0

ð
R

mþ1
þ

h@tU,Ui þ hrXU ,rXUið Þy1�2sdXdt ¼ 0, (2.17)

for any U 2 L1ðRþ;X2sðRmþ1
þ ÞÞ \ L1ðRþ; L1ðRmþ1

þ ÞÞ with Uðx, 0, tÞ 2 TUðx, 0, tÞS
‘�1 for

almost every ðx, tÞ 2 R
m � ð0, þ1Þ:
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Note that if U is a weak solution according to the above definition taking U with
Uðx, 0, tÞ ¼ 0 for almost any ðx, tÞ 2 R

m � ð0, þ1Þ we get that U verifies

y1�2s @UðX, tÞ
@t

¼ divX y1�2srXUðX, tÞ� �
, in R

mþ1
þ � R: (2.18)

Owing to the previous definition, we now define what we mean by a weak solution of
the original system (2.1):

Definition 2.2. Given u0 2 _H
sðRm,S‘�1Þ, we say that u : Rm � R ! S

‘�1 is a weak
solution of (2.1) if the pair (U, u) with u ¼ TrðUÞ is a weak solution of the extended
equation according to Definition 2.1.

Remark 2.3. It would be possible of course to have a more straightforward definition of
weak solutions for (2.1) by defining suitable function spaces so that the Fourier-Laplace
multiplier ð@t � DÞs is well defined. This would actually introduce some additional tech-
nicalities which are unnecessary for our purposes and we do not pursue along this line.
We refer the reader to [27] for a related construction.

Following [20, 25, 26], in the next Lemma we exploit the symmetry of the constraint

S
‘�1 to write (2.17) in an equivalent way that is more suited for the treatment of the

nonlinear boundary condition in the limit procedure. The reformulation of (2.17) makes
use of test functions defined in R

mþ1
þ � R with values in

V
kðR‘Þ: Therefore we have to

introduce some notation. The exterior algebra of R‘ is denoted by
VðR‘Þ and the exter-

ior (or wedge) product by � : If e1, :::, e‘ is the canonical orthonormal basis of R‘, we
let
V

kðR‘Þ (k 	 ‘) be the space of k-vectors, namely the subspace of
VðR‘Þ spanned by

ei1�:::�eik with ð1 	 i1 	 :::, ik 	 ‘). We let h�, �i denote the scalar product in R
‘: We

denote with the same symbol the induced scalar product in
V

kðR‘Þ
hv1�:::�vk,w1�:::�wki :¼ det hvi,wiið Þ, (2.19)

where vi,wi 2 R
‘ for i ¼ 1, :::, k:

We finally introduce the Hodge star operator

? :
^

k
ðR‘Þ !

^
‘�k

ðR‘Þ 0 	 k 	 ‘,

by

? ei1 � :::� eikð Þ :¼ ej1�:::�ej‘�k ,

where j1, :::, j‘�k is chosen in such a way that ei1 , :::, eip , ej1 , :::, ej‘�k is a (positive) basis of

R
‘: The following hold

?ð1Þ ¼ e1�:::�e‘,
?ðe1�:::�e‘Þ ¼ 1,

? ? v ¼ ð�1Þkð‘�kÞv, 8v 2 VkðR‘Þ,
and

u� ? v ¼ hu, vie1�:::�e‘, for any u, v 2
^

k
ðR‘Þ, (2.20)

or, equivalently,
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? u� ? vð Þ ¼ hu, vi for any u, v 2
^

k
ðR‘Þ: (2.21)

In the familiar case in which u, v are vectors in R
3, then the relation above with ‘ ¼ 3

and k¼ 1 gives

? u� vð Þ ¼ u� v:

Then, we introduce some new function space. We set

X
2s

R
mþ1
þ ;

^
‘�2

ðR‘Þ
� �

:¼ V : Rmþ1
þ !

^
k
ðR‘Þ : rXV 2 L2 R

mþ1
þ , y1�2sdX

� �n o
:

We have the following

Lemma 2.4. U is a weak solution in the sense of Definition 2.1 if and only if U verifies
(2.14), (2.15), (2.16), (2.18) andð1

0

ð
R

mþ1
þ

h@tU, ? U �Wð Þi þ hrXU, ? U �rXWð Þi� �
y1�2sdXdt ¼ 0, (2.22)

for any W 2 L1ðRþ;X2sðRmþ1
þ ;

V
‘�2ðR‘ÞÞÞ \ L1ðRþ; L1ðRmþ1

þ ;
V

‘�2ðR‘ÞÞÞ:

Proof. If U is a weak solution in the sense of Definition 2.1, then we take U ¼ ?ðU �WÞ
where W 2 L1ðRþ;X2sðRmþ1

þ ;
V

‘�2ðR‘ÞÞÞ: Thanks to the properties of the wedge prod-
uct and of the Hodge-star operator, it is immediate to check that U is indeed a vector
field. The fact that U 2 X

2sðRmþ1
þ Þ for a.e. t is a consequence of the the fact that its

components are product of functions which lie in X
2sðRmþ1

þ Þ and in L1 for almost

every t. We have to check that Uðx, 0, tÞ 2 TUðx, 0, tÞS
‘�1, namely that, denoting with

uð�, �Þ :¼ Uð�, 0, �Þ (in the sense of traces),

hu, ? u�Wð Þi ¼ 0 a:e: in R
m � R:

This is a consequence of (2.21). In fact,

hu, ? u�Wð Þi ¼ ? u� ? ? u�Wð Þð Þð Þ ¼ ð�1Þ‘�1 ? u� ðu�WÞð Þð Þ ¼ 0: (2.23)

Finally, since the Hodge star operator commutes with the covariant differentiation (here
derivation in R

mþ1
þ ) we have that

hrXU ,rXð? U �Wð ÞÞi ¼ hrXU , ? rXU �Wð Þi þ hrXU, ? U �rXWð Þi
¼ hrXU , ? U �rXWð Þi,

where the first addendum is treated as in (2.23). As a result we have that U verifies
also (2.22).
On the other hand, let U be a function verifyng (2.14), (2.15), (2.16), (2.17) and

(2.18). For any given vector field U as in the Definition 2.1 we set

W :¼ ? U �Uð Þ:
We have that W 2 L1ðRþ;X2sðRmþ1

þ ;
V

‘�2ðR‘ÞÞÞ: Moreover for almost any ðx, tÞ 2
R

m � ð0, þ1Þ there holds
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? U �Wð Þ ¼ U:

Thus (2.18) and (2.22) give that U verifies also (2.17) and thus it is a weak solution in
the sense of Definition (2.1). w

According to [23], given a solution U of the above problem, its trace on R
m � f0g

uðx, tÞ :¼ TrUðx, y, tÞ,
is indeed a (weak) solution of (2.1). Weak solutions to (2.7) are constructed as limits of
solution of the the (local) extension of the Ginzburg Landau approximation (2.3) of
(2.1). Therefore, for any e > 0 we consider the following system

y1�2s @UeðX, tÞ
@t

¼ divXðy1�2srXUeðX, tÞÞ in R
mþ1
þ � ð0,1Þ,

Ueðx, 0, tÞ ¼ u0ðxÞ, in R
m � ð�1, 0�,

limy!0þ y
1�2s @UeðX, tÞ

@y
¼ � cs

e2
ð1� jUej2ÞUe, in R

m � ð0, þ1Þ:

8>>>>>>><>>>>>>>:
(2.24)

2.2. Existence for the approximate problem and a priori estimates

In this subsection we discuss the existence of the approximate problem (2.24).
First of all, we introduce some notation. For e > 0 and V 2 X

2sðRmþ1
þ Þ, we introduce

the following energy functional

EeðV , vÞ :¼ 1
2

ð
R

mþ1
þ

y1�2sjrXVj2dX þ cs
4e2

ð
R

m
ð1� jvj2Þ2dx, forV 2 V, (2.25)

where v ¼ Tr V: We seek for minimizers in the space

V :¼
n
V 2 X

2sðRmþ1
þ Þ : v :¼ TrðVÞjðjvj2 � 1Þ2 2 L1ðRmÞ

o
:

We let U0 : R
mþ1
þ � ð�1, 0� ! R

‘ be the Caffarelli-Silvestre extension of u0, namely,
for any t 2 ð�1, 0�,

�div y1�2srU0ðX, tÞ
� � ¼ 0 in R

mþ1
þ ,

U0ðx, 0, tÞ ¼ u0ðxÞ on R
m:

(
(2.26)

Thanks to [33] we have that the extension operator

E : v 7!V , with V the unique solution of ð2:26Þ with boundary datum v, (2.27)

is an isometry from _H
sðRmÞ to X

2sðRmþ1
þ Þ and we have

kTrVk _H
sðRmÞ ¼ kEðTrðVÞÞk

X
2sðRmþ1

þ Þ 	 kVk
X

2sðRmþ1
þ Þ, (2.28)

for any V 2 X
2sðRmþ1

þ Þ:
Toward the construction of a solution to (2.24) we observe that, since U0 is constant

with respect to time, the function U0 verifies
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y1�2s @U0ðX, tÞ
@t

¼ divXðy1�2srXU0ðX, tÞÞ, in R
mþ1
þ � ð�1, 0�,

U0ðx, 0, tÞ ¼ u0ðxÞ, in R
m � ð�1, 0�:

8><>: (2.29)

Therefore, we study existence of a solution of the following initial and boundary value
problem:

y1�2s @UeðX, tÞ
@t

¼ divXðy1�2srXUeðX, tÞÞ in R
mþ1
þ � ð0, þ1Þ,

Ueðx, y, 0Þ ¼ U0ðx, yÞ, in R
mþ1
þ � f0g,

limy!0þ y1�2s @UeðX, tÞ
@y

¼ � cs
e2

1� jUej2
� �

Ue, in R
m � ð0, þ1Þ:

8>>>>>>>>><>>>>>>>>>:
(2.30)

As a result, if we let ~U e be a solution of the above problem, then

UeðX, tÞ :¼
~U eðX, tÞ for ðX, tÞ 2 R

mþ1
þ � ð0,1Þ,

U0ðX, tÞ for ðX, tÞ 2 R
mþ1
þ � ð�1, 0�,

(
(2.31)

is a solution of (2.24). As the behavior of t 	 0 of Ue is ruled by U0 which only depends
on the known “initial” condition u0, with some abuse of notation we will use the same
symbol Ue to denote both a solution of (2.24) and a solution of (2.30).
We concentrate on (2.30). Since for the moment we work at fixed e, we do not indi-

cate the dependence on e in the notation. Existence of a solution can be proven, for
instance, by using a time discretization scheme. More precisely, for n 2 N we set s :¼ T

n

and tk :¼ sk for k ¼ 0, :::, n: We set U0 :¼ U0 and we (iteratively) let Uk (with
k ¼ 1, :::, n) be the solution of

Uk � sy�ð1�2sÞdiv y1�2srXUk
� � ¼ Uk�1, in R

mþ1
þ ,

limy!0þ y
1�2s @U

k

@y
¼ � cs

e2
1� jUkj2
� �

Uk in R
m � f0g:

8>>><>>>: (2.32)

Equation (2.32) is the Euler-Lagrange equation for the minimizer of the energy (as in
(2.25) we indicate with u the trace of U on R

m � f0g)

FðU, uÞ :¼ 1
2

ð
R

mþ1
þ

jU � Uk�1j2
s

y1�2sdX þ EeðU, uÞ:

Existence of a minimizer in the space V is a consequence of the Direct method of
Calculus of Variations. Once we have constructed the discrete solutions Uk for k ¼
1, :::, n, we can standardly introduce the piecewise constant and piecewise affine (in
time) interpolants of the discrete solutions and pass to limit when s (the time step)
tends to 0. This limit procedure gives (we restore the e-dependence) a solution Ue of
(2.30). We let ueð�, �Þ :¼ Ueð�, 0, �Þ (in the sense of traces). The function Ue satisfies by

construction the following a priori estimate (that correspond with testing (2.30) with @Ue
@t

and integrating on R
mþ1
þ )
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ð
R

mþ1
þ

y1�2sj @Ue

@t
j2dX þ d

dt
EeðUe, ueÞðtÞ ¼ 0: (2.33)

Thus, integrating with respect to time in ð0,TÞ for 0 < T < 1, we get (recall that

TrðU0ð�, � , 0ÞÞ ¼ u0ð�) and that u0 2 S
l�1 a.e. in R

m)ðT
0

ð
R

mþ1
þ

y1�2s





 @UeðX, tÞ
@t





2dXdt þ ð
R

mþ1
þ

y1�2sjrXUeðX, tÞj2dX

þ cs
4e2

ð
R

m
ð1� juej2Þ2dx ¼

ð
R

mþ1
þ

y1�2sjrXUeðX, 0Þj2dX 	 ku0k2_HsðRmÞ:
(2.34)

Thus, we obtainðT
0

ð
R

mþ1
þ

y1�2s





 @UeðX, tÞ
@t





2dXdt þ ð
R

mþ1
þ

y1�2sjrXUeðX, tÞj2dX

þ cs
4e2

ð
R

m
ð1� juej2Þ2dx 	 C,

(2.35)

where the constant C does not depend on e: Thus, we conclude that @tUe and Ue are
uniformly bounded with respect to e in the spaces

L2ðRþ; L2ðRmþ1
þ , y1�2sdXÞÞ and L1ðRþ;X2sðRmþ1

þ ÞÞ, (2.36)

respectively. Moreover, recalling (2.31) we have indeed constructed a solution (still
denoted with Ue) of (2.30) that satisfies

kUekH1ðRþ;L2ðRmþ1
þ , y1�2sdXÞÞ þ kUekL1ðRþ;X2sðRmþ1

þ ÞÞ 	 C: (2.37)

Note that ue is a solution of (2.3).

2.3. Limit procedure and existence of a weak solution

The energy estimate (2.35) and weak compactness results guarantee the existence of a
map U : Rmþ1

þ � Rþ ! R
‘ with

@tU 2 L2 Rþ; L2ðRmþ1
þ , y1�2sdXÞ

� �
and U 2 L1 Rþ;X2sðRmþ1

þ Þ
� �

and of a subsequence of e (not relabeled) such that

@tUe!e!0
@tU weakly in L2 Rþ; L2ðRmþ1

þ , y1�2sdXÞ
� �

, (2.38)

rXUe!e!0rXU weakly star in L1 Rþ; L2ðRmþ1
þ , y1�2sdXÞ

� �
: (2.39)

Moreover, the Aubin-Lions compactness Lemma gives that

Ue!e!0
U strongly in L2loc Rþ; L2locðRmþ1

þ , y1�2sdXÞ
� �

: (2.40)

Now, denoting with u and with ue the traces of U and of Ue on R
m � f0g, respectively,

we have that
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ue!e!0
u in L2locðRþ; L2locðRmÞÞ, (2.41)

and thus ue ! u almost everywhere in R
m � Rþ, up to the extraction of a further sub-

sequence. The convergence almost everywhere above combined with the fact that,
thanks to estimate (2.35),

lim
e!0

ð
R

m
1� juej2
� �2

dx ¼ 0,

allows us to reach that juðx, tÞj ¼ 1 for almost any ðx, tÞ 2 R
m � Rþ: To conclude that U

is a weak solution of (2.7) in the sense of Definition 2.1 we have to prove that U verifies
(2.22). We consider W 2 L1ðRþ;X2sðRmþ1

þ ;
V

‘�2ðR‘ÞÞÞ \ L1ðRþ; L1ðRmþ1
þ ;

V
‘�2ðR‘ÞÞÞ

and we test (2.30) with ?ðUe �WÞ: For almost any ðx, tÞ 2 R
m � ð0, þ1Þ�

1
e2

1� juej2
� �

ue, ? ue �Wð Þ
�

¼ ?
1
e2

1� juej2
� �

ue � ? ?ðue �WÞ
	 


¼ ð�1Þ‘�1 ?
1
e2

1� juej2
� �

ue � ðue �WÞ
	 


¼ 0,

thanks to (2.21) (recall (2.23)). For t 	 0, we have that Ueðx, 0, tÞ ¼ ueðx, tÞ ¼ u0ðxÞ and
therefore, since ju0j ¼ 1 by hypothesis, we conclude that

1
e2

1� jueðx, tÞj2
� �

ueðx, tÞ ¼ 0, for a:e: x 2 R
m and t 	 0:

Thus, after integration by parts in space we conclude that Ue verifiesð
Rþ

ð
R

mþ1
þ

h@tUe, ? Ue �Wð Þi þ hrXUe, ? Ue �rXWð Þi� �
y1�2sdXdt ¼ 0: (2.42)

Convergences (2.38)-(2.40) are enough to pass to the limit in Equation (2.42) and to
obtain that U verifies (2.22). Thus, thanks to Lemma 2.4 we conclude that U is indeed a
weak solution of (2.7). Therefore, the trace of U on R

m � f0g is a weak solution of (2.1).

3. Monotonicity formula for the approximate problem

This section is devoted to the derivation of monotonicity formula for (2.30). For the
later purpose, we will provide both global and local versions of such formulas.
For t0 � 0 and 0 	 R 	 t0

2 , we set

Tþ
R ðt0Þ :¼ fðX, tÞ 2 R

mþ1
þ � Rþ : t0 � 4R2 < t < t0 � R2g, Tþ

1 :¼ Tþ
1 ð0Þ,

@þTþ
R ðt0Þ :¼ fðx, 0, tÞ 2 R

m � f0g � Rþ : t0 � 4R2 < t < t0 � R2g, @þTþ
1 :¼ @Tþ

1 ð0Þ:

For X0 ¼ ðx0, 0Þ 2 R
m � f0g and 0 < s < 1, let

Gs
X0, t0ðX, tÞ :¼

1

CðsÞð4pÞm2 jt � t0j
m
2þ1�s e

�jX�X0 j2
4jt�t0 j , t < t0

be the backward fundamental solution of (2.30). For X0 ¼ 0 and t0 ¼ 0, we write Gs ¼
Gs
X0, t0 : Note that
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rGsðX, tÞ ¼ � X
2jtj G

sðX, tÞ, GsðRX,R2tÞ ¼ R�m�2þ2sGsðX, tÞ, 8ðX, tÞ 2 R
mþ1
þ � R�, R > 0:

Lemma 3.1. For every Z0 ¼ ðX0, t0Þ with X0 2 @Rmþ1
þ and t0 > 0, if Ue solves (2.30) then

the following two renormalized energies

DðUe,Z0,RÞ :¼ R2

	
1
2

ð
R

mþ1
þ �ft0�R2g

Gs
X0, t0ðX, tÞy1�2sjrUej2dX

þ cs
4e2

ð
R

m�ft0�R2g
Gs
X0, t0ðX, tÞð1� juej2Þ2dx



and

EðUe,Z0,RÞ :¼ 1
2

ð
Tþ
R ðZ0Þ

Gs
X0, t0ðX, tÞy1�2sjrUej2dXdt

þ cs
4e2

ð
@þTþ

R ðZ0Þ
Gs
X0, t0ðX, tÞð1� juej2Þ2dxdt

are monotone nondecreasing with respect to R. Namely,

DðUe,Z0, rÞ 	 DðUe,Z0,RÞ, 0 < r 	 R <
ffiffiffiffi
t0

p
,

EðUe,Z0, rÞ 	 EðUe,Z0,RÞ, 0 < r 	 R <
1
2

ffiffiffiffi
t0

p
:

8<: (3.1)

Proof. Here we just sketch a proof for EðUe,Z0,RÞ: Let us set
Ue,RðX, tÞ :¼ UeðRX þ X0,R

2t þ t0Þ, ue,Rðx, tÞ :¼ ueðRxþ x0,R
2t þ t0Þ

for X 2 R
mþ1
þ and t > �R�2t0: Then Ue,R satisfies

y1�2s@tUe,RðX, tÞ ¼ divXðy1�2srXUe,RðX, tÞÞ, in R
mþ1
þ � ð�R�2t0,1Þ,

Ue,Rðx, 0, tÞ ¼ ue,Rðx, tÞ, in R
m � ð�R�2t0,1Þ,

Ue,Rðx, 0, tÞ ¼ u0ðRx þ X0Þ, in R
m � ð�1, � R�2t0�,

limy!0þ y
1�2s@yUe,RðX, tÞ ¼ �R2s cs

e2
ð1� jue,Rj2Þue,R, in R

m � ð�R�2t0,1Þ:

8>>>>><>>>>>:
(3.2)

By the change of variables X 7!RX þ X0, t 7!R2t þ t0, we get

EðUe,Z0,RÞ :¼ 1
2

ð
Tþ
1

Gsy1�2sjrXUe,Rj2dXdt þ cs
4e2

R2s
ð
@þTþ

1

Gsð1� jue,Rj2Þ2dxdt:

Therefore, integrating by parts we obtain

1
2
d
dR

ð
Tþ
1

Gsy1�2sjrXUe,Rj2dXdt
¼ ÐTþ

1
Gsy1�2srXUe,R � rX@RUe,RdXdt

¼ �ÐTþ
1
divX Gsy1�2srXUe,R

� � � @RUe,RdXdt �
Ð
@þTþ

1
limy!0þ Gsy1�2s@yUe,R � @RUe,R

� �
dxdt

¼ �ÐTþ
1
Gsy1�2s X

2t
� rXUe,R þ @tUe,R

� �
� @RUe,RdXdt

þ R2s cs
e2

ð
@þTþ

1

Gsð1� jue,Rj2Þue,R � @Rue,Rdxdt:
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Here we have used the fact X
2t ¼ � X

2jtj , and that @RUe,Rðx, 0, tÞ ¼ @Rue,Rðx, tÞ for t >

�R�2t0, which is a consequence of

lim
y!0þ

y@yUeðRX,R2tÞ ¼ lim
y!0þ

y2s y1�2s@yUeðRX,R2tÞ
h i

¼ 0:

While

d
dR

cs
4e2

R2s
ð
@þTþ

1

Gsð1� jue,Rj2Þ2dxdt
( )

¼ scs
2e2

R2s�1
ð
@þTþ

1

Gsð1� jue,Rj2Þ2dxdt

� R2s cs
e2

ð
@þTþ

1

Gsð1� jue,Rj2Þue,R � @Rue,Rdxdt:

Since

@RUe,R ¼ 1
R
ðX � rXUe,R þ 2t@tUe,RÞ,

we obtain

d
dR

EðUe,Z0,RÞ ¼ 1
2R

ð
Tþ
1

Gs

jtj y
1�2sjX � rXUe,RðX, tÞ þ 2t@tUe,RðX, tÞj2dXdt

þ scs
2e2

R2s�1
ð
@þTþ

1

Gsð1� jue,Rj2Þ2dxdt

� 0:

(3.3)

This yields the monotonicity of EðUe,Z0,RÞ with respect to R> 0 and hence completes
the proof. w

We will also need the following local energy inequality. Here we denote

Pþ
R ðZ0Þ ¼ Bþ

R ðX0Þ � t0 � R2, t0 þ R2
� �

, @þPþ
R ðZ0Þ ¼ Pþ

R ðZ0Þ \ ð@Rmþ1
þ � ð0,1ÞÞ

for R> 0 and Z0 ¼ ðX0, t0Þ 2 R
mþ1
þ � R:

Lemma 3.2. If Ue solves (2.30) then for any g 2 C1
0 ðRmþ1Þ it holds that

d
dt

ð
R

mþ1
þ

1
2
jrUej2g2 þ

ð
R

m

c1
2

4e2
ð1� juej2Þ2g2

( )
þ 1
2

ð
R

mþ1
þ

j@tUej2g2

	 4
Ð
R

mþ1
þ

jrUej2jrgj2:
(3.4)

In particular, for any Z0 ¼ ðX0, t0Þ 2 R
mþ1
þ � ð0,1Þ and 0 < R <

ffiffiffi
t0

p
2 , we have thatð

PþR ðZ0Þ
j@tUej2 	 CR�2

ð
Pþ2RðZ0Þ

jrUej2 þ
ð
@þPþ2RðZ0Þ

c1
2

4e2
ð1� juej2Þ2

 !
: (3.5)

Proof. Multiplying the first equation of (2.30) by @tUeg2 and integrating the resulting
equation over R

mþ1
þ , and applying the third equation of (2.30) in integration by parts,

we obtain
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d
dt

ð
R

mþ1
þ

1
2
jrUej2g2 þ

ð
R

m

c1
2

4e2
ð1� juej2Þ2g2

( )
þ
ð
R

mþ1
þ

j@tUej2g2

¼ �2
Ð
R

mþ1
þ

hg@tUe,rUergi 	 1
2

ð
R

mþ1
þ

j@tUej2g2 þ 2
ð
R

mþ1
þ

jrUej2jrgj2:

This yields (3.4). To see (3.5), let g 2 C1
0 ðRmþ1Þ be a cutoff function of BRðX0Þ, i.e.

0 	 g 	 1, g � 1 in BRðX0Þ, g � 0 outside B2RðX0Þ, and jrgj 	 4R�1: By Fubini’s the-
orem, there exists t
 2 ðt0 � 4R2, t0 � R2Þ such thatÐ

Bþ
2RðX0Þ�ft
g

1
2
jrUej2 þ

ð
ðB2RðX0Þ\@Rmþ1

þ Þ�ft
g

c1
2

4e2
1� juej2
� �2

	 16
R2

ð
Pþ2RðZ0Þ

1
2
jrUej2 þ

ð
@þPþ2RðZ0Þ

c1
2

4e2
1� juej2
� �2 !

:
(3.6)

Now if we integrate (3.4) for t
 	 t 	 t0 þ R2 and apply (3.6), we obtain thatÐ
PþR ðZ0Þj@tUej2 	 ÐBþ

2RðX0Þ�ft
g
1
2
jrUej2 þ

ð
ðB2RðX0Þ\@Rmþ1

þ Þ�ft
g

c1
2

4e2
1� juej2
� �2

þ CR�2
Ð
Pþ2RðZ0ÞjrUej2

	 CR�2
Ð
Pþ2RðZ0ÞjrUej2 þ

Ð
@þPþ2RðZ0Þ

c1
2

4e2
1� juej2
� �2	 


:

This implies (3.5) and completes the proof. w

4. e2Regularity result

From now on, we will always assume s ¼ 1
2 : Therefore, according to

cs :¼ Cð1� sÞ
22s�1CðsÞ ,

we have that c1=2 ¼ 1:
As previously mentioned, we now focus only on the system (2.30). We will derive a pri-

ori estimates of its solutions Ue under a smallness condition on the renormalized energy.
For X0 ¼ ðx0, 0Þ, t0 > 0 and 0 < R 	 ffiffiffiffi

t0
p

, we set

Pþ
R ðX0, t0Þ :¼ ðX, tÞ 2 R

mþ1
þ � ð0,1Þ : jX � X0j 	 R, t0 � R2 	 t 	 t0 þ R2

n o
:

Lemma 4.1. Assume Ue is a bounded, smooth solution of (2.30). Then jU�j 	 1
in R

mþ1
þ � ð0,1Þ:

Proof. We argue by contradiction. Suppose the conclusion were false. Then by the max-
imum principle there exists Z0 ¼ ðx0, 0, t0Þ 2 @Rmþ1

þ � ð0,1Þ such that

ðjUej2 � 1ÞðZ0Þ ¼ max
Z2Rmþ1

þ �½0,1ÞðjUej2 � 1ÞðZÞ > 0:

Set Ue ¼ jUej2 � 1: Then it satisfies
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@tUe � DUe ¼ �2jrUej2 	 0 in R
mþ1
þ � ½0,1Þ,

limy!0þ
@Ue

@y
ðX, tÞ ¼ 2cs

e2
Ueðx, 0, tÞjuej2ðx, tÞ on @Rmþ1

þ � ½0,1Þ:

8<:
It follows from the Hopf boundary Lemma that

@Ue

@y
ðZ0Þ ¼ lim

y!0þ

@Ue

@y
ðx0, y, t0Þ < 0:

On the other hand, the boundary condition of Ue yields that

@Ue

@y
ðZ0Þ ¼ 2cs

e2
UeðZ0ÞÞjuej2ðZ0Þ > 0:

We get the desired contradiction. w

The next Lemma is a clearing-out result, which plays a crucial role in the small-
energy regularity result.

Lemma 4.2. There exists e0 > 0 such that if Ue is a smooth solution of (2.30) with
jUej 	 1, that satisfies

EðUe, ðX0, t0Þ, 1Þ 	 e0

for some X0 2 @Rmþ1
þ and t0 > 4, then

jUej � 1
2

on Pþ
d ðX0, t0Þ

for some d > 0 independent of Ue, X0 and t0.

Proof. We divide the proof into two cases:
Case 1: e � 1

2 : Set

Veðx, y, tÞ ¼
ðy
0
Ueðx, s, tÞds, y > 0:

Then

@yð@t � DÞVeðx, y, tÞ ¼ 0,

that is, ð@t � DÞVe is independent of y 2 ð0,1Þ: In particular, we get

ð@t � DÞVeðx, y, tÞ ¼ ð@t � DÞVeðx, 0, tÞ ¼ �@yUeðx, 0, tÞ ¼
c1
2

e2
ð1� juej2Þue, y > 0:

Note that
c1
2

e2
j1� juej2jjuej 	 4c1

2
inRmþ1

þ � ð0,1Þ, andVe ¼ 0 for y ¼ 0:

Hence, by the standard parabolic theory [21, Theorem 2.13] we conclude that Ve is

bounded in C2, 1ðPþ
1
2
ðX0, t0ÞÞ: In other words, Ue is bounded in C1, 1ðPþ

1
2
ðX0, t0ÞÞ, which

gives
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jUeðX, tÞ � Ueð~X ,~tÞj 	 C1 jX � ~X j þ jt �~tj12
� �

for ðX, tÞ and ð~X ,~tÞ 2 Pþ
1
2
ðX0, t0Þ,

(4.1)

for some C1 > 0: Now we choose d1 2 0, 12
� �

such that d1C1 	 1
8 : By the monotonicity

inequality (3.1) we get that

c1
2

4e2

ð
@Rmþ1

þ \Bd1 ðX0Þ

ðt0�d21

t0�4d21

ð1� juej2Þ2dxdt

	 Cd�ðmþ1Þ
1

c1
2

4e2

ð
@Rmþ1

þ

ðt0�d21

t0�4d21

G1
2
X0, t0ðX, tÞð1� juej2Þ2dxdt

	 Cd�ðmþ1Þ
1 EðUe, d1,X0, t0Þ

	 Cd�ðmþ1Þ
1 EðUe, 1,X0, t0Þ

	 Cd�ðmþ1Þ
1 e0:

Therefore, by choosing e0 > 0 sufficiently small we obtain that

juej � 4
5

for jX � X0j 	 d1, X 2 @Rmþ1
þ , t0 � 4d21 	 t 	 t0 � d21:

From the choice of d1 > 0 we conclude that jUej � 1
2 on Pþ

d1
ðX0, t0Þ, thanks to (4.1).

Case 2: e 	 1
2 : Let X1 ¼ ðx1, y1Þ 2 BdðX0Þ with y1 � 0 and t1 2 ðt0 � d2, t0 þ d2Þ being

fixed. Set ~X1 ¼ ðx1, 0Þ, and
~U eðX, tÞ ¼ Ueð~X1 þ e2X, t1 þ e4tÞ:

Then ~U e satisfies

@t ~U eðX, tÞ ¼ D~U eðX, tÞ in R
mþ1
þ � R,

~U eðx, 0, tÞ ¼ ~ueðx, tÞ in R
m � ð�e�4t1,1Þ,

~U eðx, 0, tÞ ¼ ~u0ðx, tÞ in R
m � ð�1, � e�4t1�,

limy!0þ
@ ~U e

@y
ðX, tÞ ¼ �c1

2
ð1� j~uej2Þ~ue in R

m � ð�e�4t1,1Þ:

8>>>>>><>>>>>>:
(4.2)

By the monotonicity inequality (3.1), we obtain

Eð~U e, ð0, 0Þ, 1Þ ¼ EðUe, ð~X1, t1Þ, e2Þ 	 E
	
Ue, ð~X1, t1Þ, 12



	 Cðe0 þ e1Þ,

where the last inequality follows from Lemma 4.4. Now one can proceed as in Case 1
to show that

j~U ej � 1
2

for ðX, tÞ 2 Pþ
d1
ð0, 0Þ,

for some d1 > 0 independent of e > 0: In particular, we obtain

jUeðX, tÞj � 1
2

for ðX, tÞ 2 Pþ
d1
ðX0, t0Þ, 0 	 y 	 d1e

2: (4.3)
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Next we find a small d2 > 0 such that jUeðX, tÞj � 1
2 on Pþ

d2
ðX0, t0Þ, provided e0 > 0 is

sufficiently small. Note that it suffices to consider points ðX, tÞ 2 Pþ
d2
ðX0, t0Þ, X ¼ ðx, yÞ

for which e2d1 	 y 	 d2, and e > 0 satisfies e2 	 d2
d1
: To this end we fix an arbitrary

point ðX1, t1Þ 2 Pþ
d ðX0, t0Þ with X1 ¼ ðx1, y1Þ, y1 > 0, and set R :¼ 1

4 y1,
~X1 ¼ ðx1, 0Þ:

We claim that for d > 0 small (depending on e0) it holds thatðt1
t1�10R2

ð
Bþ
10Rð~X 1Þ

jrUej2dXdt 	 Cðe0 þ e1ÞRmþ1, (4.4)

and

1
e2

ðt1
t1�10R2

ð
jx�x1j<10R

ð1� juej2Þ2dxdt 	 Cðe0 þ e1ÞRmþ1: (4.5)

To prove the above claims, let us first choose d > 0 small so that we can apply Lemma
4.4 with e1 ¼ e0, X1 ¼ ~X1 and t1 ¼ t1 þ 4R2: Then by the monotonicity inequality (3.1)
and Lemma 4.4,

EðUe, ð~X1, t1 þ 4R2Þ, 2RÞ 	 EðUe, ð~X1, t1 þ 4R2Þ, 1
2
Þ 	 Cðe0 þ e1Þ:

Since

G~X 1, t1þ4R2ðX, tÞ � R�ðmþ1Þ forjX � ~X1j 	 10R and t1 � 10R2 	 t 	 t1,

(4.4) and (4.5) follow immediately.
As B4RðX1Þ � Bþ

10Rð~X1Þ, and rXUe satisfies the heat equation on R
mþ1
þ � ð0,1Þ, by

(4.4) we obtain (see [34, page 61])

jrXUeðX, tÞj 	 C
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e0 þ e1

p
R

for jX � X1j 	 4R and t1 � 9R2 	 t 	 t1, (4.6)

and consequently, by the standard parabolic estimates,

j@tUeðX, tÞj 	 C
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e0 þ e1

p
R2

for jX � X1j 	 3R and t1 � 8R2 	 t 	 t1: (4.7)

Setting

�U eðtÞ :¼
ð

6

BRðX1Þ
UeðX, tÞdX,

we see that

jUeðX, tÞ � �U eðt1Þj 	 C
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e0 þ e1

p
for jX � X1j 	 R and t1 � 8R2 	 t 	 t1, (4.8)

thanks to (4.6)-(4.7).
For n 2 R

‘ we set dðnÞ ¼ j1� jnjj: Then d is 1-Lipschitz. Since

dð�U eðt1ÞÞ 	 dðUeðX, tÞÞ þ jUeðX, tÞ � �U eðt1Þj, 8X 2 BRðX1Þ, t1 � R2 	 t 	 t1,

taking an average integral one gets
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dð�U eðt1ÞÞ

	
ð

6

t1

t1�R2

ð

6

BRðX1Þ
dðUeðX, tÞÞdXdt þ

ð

6

t1

t1�R2

ð

6

BRðX1Þ
jUeðX, tÞ � �U eðt1ÞjdXdt

	
ð

6

t1

t1�R2

ð
6

BRðX1Þ
dðUeðX, tÞÞdXdt þ C

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e0 þ e1

p
,

thanks to (4.8). By Jensen’s inequality, and using that BRðX1Þ � Bþ
5Rð~X1Þ, we getð

6

t1

t1�R2

ð
6

BRðX1Þ
dðUeðX, tÞÞdXdt

 !2

	 C
Rmþ1

ð

6

t1

t1�R2

ð
Bþ
5Rð~X 1Þ

dðUeðX, tÞÞ2dXdt

	 C
Rmþ1

ð

6

t1

t1�R2
R
ð
jx�x1j<5R

dðueðx, tÞÞ2dxþ R2
ð
Bþ
5Rð~X 1Þ

jrdðUeðX, tÞÞj2dX
 !

dt

	 C
Rmþ2

ðt1
t1�R2

ð
jx�x1j<5R

ð1� juej2Þ2dxdt þ C
Rmþ1

ðt1
t1�R2

ð
Bþ
5Rð~X 1Þ

jrUej2dXdt

	 Cðe0 þ e1Þ e2

R
þ 1

	 

:

The second inequality above follows from the Poincar�e inequality, and we have used
that d is 1-Lipschitz in the third inequality, and the last inequality follows from the esti-
mates (4.4)-(4.5).
As we have mentioned before, we only need to consider 4R ¼ y1 � d1e2 and e2 < d

d1
:

Thus we obtain

dð�U eðt1ÞÞ 	 C
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e0 þ e1

p
1þ 1ffiffiffiffiffi

d1
p

	 

:

Hence, if e0 > 0 is sufficiently small, from (4.8) we have

jUeðX1, t1Þj � 1
2
:

Consequently, corresponding to this e0 we obtain d ¼ d2 > 0 as determined by Lemma
4.4 for the choice of e1 ¼ e0: w

Next we show that under a smallness condition on the renormalized energy, Ue

enjoys a gradient estimate. More precisely, we have

Lemma 4.3. There exists e0 > 0, depending only on m, such that if Ue is a smooth solu-
tion of (2.30), with jUej 	 1, which satisfies, for Z0 ¼ ðX0, t0Þ 2 @Rmþ1

þ � ð0,1Þ and

some 0 < R <
ffiffiffi
t0

p
2 ,

EðUe,Z0,RÞ < e20, (4.9)

then
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sup
Pþd0RðZ0Þ

R2jrUej2 	 Cd�2
0 , sup

Pþd0RðZ0Þ
R4j@tUej2 	 Cd�4

0 , (4.10)

where 0 < d0 < 1 and C> 0 are independent of e:

Proof. By scaling, we may assume that t0 > 4 and R¼ 1. Let d > 0 be as determined by

Lemma 4.2. Since Ue is smooth in R
mþ1
þ � ð0,1Þ, there exists re 2 ð0, dÞ such that

ðd� reÞ2 max
Pþre ðZ0Þ

ðjrUej2 þ j@tUejÞ ¼ max
0	r	d

ðd� rÞ2 max
Pþr ðZ0Þ

ðjrUej2 þ j@tUejÞ:

Let Ze
1 ¼ ðXe

1, t
e
1Þ 2 Pþ

reðZ0Þ be such that

max
Pþre ðZ0Þ

ðjrUej2 þ j@tUejÞ ¼ ðjrUej2 þ j@tUejÞðZe
1Þ :¼ e2e :

Set qe ¼ 1
2 ðd� reÞ: Since Pþ

qe
ðZe

1Þ � Pþ
qeþreðZ0Þ, we have that

max
Pþqe ðZe

1Þ
ðjrUej2 þ j@tUejÞ

	 max
Pþqeþre

ðZ0Þ
ðjrUej2 þ j@tUejÞ 	 4e2e :

(4.11)

Write Xe
1 ¼ ðxe1, ye1Þ 2 R

mþ1
þ with xe1 2 R

m and ye1 � 0: Set ~X
e
1 ¼ ðxe1, 0Þ 2 @Rmþ1

þ and
define

~U eðX, tÞ ¼ Ue ~X
e
1 þ

X
ee
, te1 þ

t
e2e

	 

, ðX, tÞ 2 Pþ

re ðYe
1, 0Þ,

where re ¼ qeee and Ye
1 ¼ ð0, ye1eeÞ 2 R

mþ1
þ : Setting

1

~e2
:¼ c1

2

e2ee
,

one gets

ð@t � DÞ~U e ¼ 0 in Pþ
re ðYe

1, 0Þ,
@� ~U e ¼ 1

~e2
ð1� j~uej2Þ~ue on @Pþ

re ðYe
1, 0Þ \ ð@Rmþ1

þ � RÞ,
ðjr~U ej2 þ j@t ~U ejÞðX, tÞ 	 4 in Pþ

re ðYe
1, 0Þ,

ðjr~U ej2 þ j@t ~U ejÞðYe
1, 0Þj ¼ 1:

8>>>>>><>>>>>>:
(4.12)

Note that if re 	 2, then from the definition of re we obtain

d2

4
sup

P d
2þ

ðZ0Þ
ðjrUej2 þ j@tUejÞ 	 ðd� reÞ2 sup

Pþre ðZ0Þ
ðjrUej2 þ j@tUejÞ ¼ 4q2ee

2
e ¼ 4r2e 	 16:

This yields (4.10). Thus we may assume re > 2 and proceed as follows. In case that
ye1ee � 1

8 , one can use the interior regularity of heat equations to conclude that
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1 ¼ ðjr~U ej2 þ j@t ~U ejÞðYe
1, 0Þ

	 Cðkr~U ek2L2ðP1
9
ðYe

1, 0ÞÞ þ k@t ~U ekL1ðP 1
18
ðYe

1, 0ÞÞÞ

	 C

	
ð9eeÞ�ðmþ1Þ

ð
Pþ1
9ee

ðXe
1, t

e
1Þ
jrUej2 þ ð18eeÞ�ðmþ1Þ

ð
Pþ1
18ee

ðXe
1, t

e
1Þ
j@tUej



:

(4.13)

Next we need
Claim. For 0 < r, r < d with 2r þ r < d, it holds	

r
2


2�ðmþ1Þð
Pþr
2
ðZ1Þ

j@tUej2 þ r�ðmþ1Þ
	ð

Pþr ðZ1Þ

1
2
jrUej2 þ

ð
@þPþr ðZ1Þ

c1
2

4e2
ð1� juej2Þ2



	 Cðe20 þ e1E0Þ, 8Z1 2 Pþ

r ðZ0Þ:
(4.14)

Here E0 ¼
Ð
R

mþ1
þ

jrU0j2:
Assume (4.14) for the moment. Since 1

9ee
	 8ye1

9 	 re, it follows from (4.14) and (4.13)

that

1 	 Cðe20 þ e1E0Þ þ C
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e20 þ e1E0

q
,

which is impossible if we choose a sufficiently small e0: Therefore we must have ye1ee 	
1
8 and re > 2: In this case, we see that ~U e satisfies (5.1), (5.2) and (5.3) with e ¼ ~e:
Hence, by Proposition 5.1, we have that for any 0 < a < 1,

k~U ekC1þaðPþ1
7
ðYe

1, 0ÞÞ 	 CðaÞ:

In particular, for any 0 < r < 1
60 it holds that

jðjr~U ej2 þ j@t ~U ejÞðX, tÞ � ðjr~U ej2 þ j@t ~U ejÞðYe
1, 0Þj 	 Cr

1
4, 8ðX, tÞ 2 Pþ

r ðYe
1, 0Þ:

Since ðjr~U ej2 þ j@t ~U ejÞðYe
1, 0Þ ¼ 1, it follows that

ðjr~U ej2 þ j@t ~U ejÞðX, tÞ � 1� Cr
1
4, 8ðX, tÞ 2 Pþ

r ðYe
1, 0Þ:

Thus we can find a 0 < r0 < 1
60 , independent of e, such that

ðjr~U ej2 þ j@t ~U ejÞðX, tÞ � 1
2
, 8ðX, tÞ 2 Pþ

r0ðYe
1, 0Þ:

This, combined with (4.14), yields that

r20 	 Cr�ðmþ1Þ
0

ð
Pþr0 ðYe

1, 0Þ
ðjr~U ej2 þ j@t ~U ejÞ

¼ Cðr0
2
qeÞ�ðmþ1Þ

ð
Pþr0

2 qe
ðZe

1Þ
ðjrUej2 þ j@tUejÞ

	 Cðe20 þ e1E0Þ þ C
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e20 þ e1E0

q
:
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This is again impossible if we choose a sufficiently small e0: Therefore we show that
re ¼ qeee 	 2 so that (4.10) holds.
Now we return to the proof of (4.14). For simplicity, assume Z0 ¼ ð0, 0Þ and write

GX
, t
 ðX, tÞ ¼ G1
2
X
, t
 ðX, tÞ:

For any Z1 ¼ ðX1, t1Þ 2 Pþ
r ð0, 0Þ, the monotonicity formula (3.1) implies

r�ðmþ1Þ
ð
Pþr ðZ1Þ

1
2
jrUej2dXdt þ

ð
@þPþr ðZ1Þ

c1
2

4e2
ð1� juej2Þ2dxdt

 !

	 c
ð
Tþ
r ðt1þ2r2Þ

1
2
jrUej2GX1, t1þ2r2dXdt þ

ð
@þTþ

r ðt1þ2r2Þ

c1
2

4e2
ð1� juej2Þ2GX1, t1þ2r2dxdt

 !

	 c
ð
Tþ
1
2
ðt1þ2r2Þ

1
2
jrUej2GX1, t1þ2r2dXdt þ

ð
@þTþ

1
2
ðt1þ2r2Þ

c1
2

4e2
ð1� juej2Þ2GX1, t1þ2r2dxdt

 !

¼ cE
	
Ue, ðX1, t1 þ 2r2Þ, 1

2



	 C EðUe, ð0, 0Þ, 1Þ þ e1E0ð Þ 	 Cðe20 þ e1E0Þ,

(4.15)

where we have used (4.16) from Lemma 4.4 below, since ðX1, t1 þ 2r2Þ 2 Pþ
d ð0, 0Þ: Now

one can see that (4.14) follows from (4.15) and (3.5). w

Lemma 4.4. Let e1 > 0 be given. Then there exists d ¼ dðe1Þ > 0 such that for every

ðX0, t0Þ 2 @Rmþ1
þ � ð4,1Þ, we have

E
	
Ue, ðX1, t1Þ, 12



	 CðEðUe, ðX0, t0Þ, 1Þ þ e1E0Þ for every ðX1, t1Þ 2 Pþ

d ðX0, t0Þ, (4.16)

where C> 0 is independent of e, d and e1, and E0 ¼
Ð
R

mþ1
þ

jrU0j2:

Proof. Proof of this Lemma is essentially contained in [26] Lemma 2.4. Here we give a
sketch of it. For ðX1, t1Þ 2 Pþ

d ðX0, t0Þ, we see that

GX1, t1ðX, tÞ 	
	 jt � t0j
jt � t1j


mþ1
2

exp
jX � X0j2
4jt � t0j � jX � X1j2

4jt � t1j

 !
GX0, t0ðX, tÞ

	 C exp
jX � X0j2
4jt � t0j � jX � X1j2

4jt � t1j

 !
GX0, t0ðX, tÞ

	 C exp cd2
jX � X0j2
4jt � t0j

 !
GX0, t0ðX, tÞ

	 CGX0, t0ðX, tÞ, jX � X0j 	 d�1

C exp ð�cd�2Þ, jX � X0j > d�1

(

for any ðX, tÞ 2 Tþ
1
2
ðt1Þ, where C, c > 0 are independent of d and e:
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Therefore, for a given e1 > 0 small one can find d > 0 small so that for
ðX, tÞ 2 Tþ

1
2
ðt1Þ,

GX1, t1ðX, tÞ 	 C GX0, t0ðX, tÞ if jX � X0j 	 d�1,
e1 if jX � X0j � d�1:

�
Hence

E
	
Ue, ðX1, t1Þ, 12



	 CEðUe, ðX0, t0Þ, 1Þ þ Ce1

Ð t1
t1�1

Ð
R

mþ1
þ

jr~U ej2dXdt þ
Ð t1
t1�1

Ð
@Rmþ1

þ
ð1� j~uej2Þ2dxdt

� �
	 Cðe0 þ e1E0Þ,

thanks to (2.35). w

5. Boundary C1þa-estimate

This section is devoted to establishing an uniform boundary C1þa-estimates for solu-
tions Ue to (2.30), under the smallness condition of the renormalized energy of Ue:

Notations: for r> 0, set

Pr :¼ Br � ð�r2, 0�, Pþ
r :¼ Pr \ ðRmþ1

þ � RÞ,
and

Cr :¼ fðx, 0, tÞ : jxj < r, � r2 < t 	 0g, Cþ
r :

¼ fðx, y, tÞ : jxj2 þ y2 ¼ r2, y > 0, � r2 < t 	 0g:
Let fUege>0 : P

þ
1 ! R

l be a family of solutions to

@tUe � DUe ¼ 0 in Pþ
1 , (5.1)

subject to the Neumann boundary condition

@Ue

@�
¼ 1

e2
ð1� juej2Þue on C1: (5.2)

Then we have

Proposition 5.1. Let fUeg be a family of solutions to (5.1)-(5.2). Assume that

1
2
	 jUej 	 1, j@tUej þ jrUej 	 4 in Pþ

1 : (5.3)

Then kUekC1þaðPþ1
4
Þ 	 CðaÞ for every 0 < a < 1 and e > 0:

Proof. Write Ue in the polar form. Namely, Ue ¼ qexe, with qe ¼ jUej and xe ¼ Ue
qe
:

Then qe and xe solve

@tqe � Dqe ¼ �jrxej2qe in Pþ
1

@qe
@�

¼
c1
2
e2

ð1� jqej2Þqe on C1,

8>><>>: (5.4)
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and

@txe � Dxe ¼ fe :¼ 2
rqe
qe

� rxe þ jrxej2xe in Pþ
1

@xe

@�
¼ 0 on C1:

8>><>>: (5.5)

It follows from (5.3) that

1
2
	 qe 	 1, jrqej 	 jrUej 	 8, � jrxej 	 2

jrUej
jUej 	 16, inPþ

1 , (5.6)

and hence

jfej 	 1000 in Pþ
1 :

From (5.5), we can apply the regularity theory for parabolic equations to conclude that

kxekC1þaðPþ7
8
Þ 	 CðaÞ for every a 2 ð0, 1Þ, (5.7)

uniformly with respect to e:

Next we show that qe is uniformly bounded in C1þa Pþ
1
4

� �
: From (5.4), it suffices to

prove Ca-regularity of @�qe on C1
2
: To this end, we set

heðX, tÞ ¼ 1� qeðX, tÞ, ðX, tÞ 2 Pþ
1 :

The boundary condition in (5.4), and (5.3) imply that

0 	 he 	 ce2 on C1: (5.8)

For any fixed ðY , 0Þ 2 C 7
16
, set

heYðX, tÞ :¼ heðX þ Y , tÞ � heðX, tÞ for ðX, tÞ 2 Pþ
7
16
:

By direct calculations, heY satisfies

ð@t � DÞheY ¼ feY in Pþ
7
16
,

e2

qeð1þ qeÞ
@�h

e
Y þ heY ¼ geY on C 7

16
,

8><>: (5.9)

where

feYðX, tÞ ¼ jrxeðX þ Y , tÞj2qeðX þ Y , tÞ � jrxeðX, tÞj2qeðX, tÞ,
and

geYðX, tÞ ¼ 1� qeðX þ Y , tÞð1þ qeðX þ Y , tÞÞ
qeðX, tÞð1þ qeðX, tÞÞ

	 

heðX þ Y , tÞ:

From the estimates (5.3), (5.7) and (5.8) we infer

jfeYðX, tÞj 	 CjYja in Pþ
7
16
, (5.10)

and
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jgeYðX, tÞj 	 Ce2jYja on C 7
16
: (5.11)

From (5.6) we also have

jheYðX, tÞj 	 CjYja, in Pþ
7
16
: (5.12)

Denote by

me
Y ¼ kfeYkL1ðPþ7

16
Þ, n

e
Y ¼ kgeYkL1ðPþ7

16
Þ, p

e
Y ¼ kheYkL1ðPþ7

16
Þ:

Now we need

Claim. There exists a function /e
Y 2 C1 Bþ

1
3

� �
satisfying

heY 	 /e
Y 	 10peY 	 CjYja inBþ

1
3
,

4e2

3
@�/

e
Y þ /e

Y ¼ 0 on @Bþ
1
3
\ fx 2 R

mþ1
þ : xmþ1 ¼ 0g:

8><>: (5.13)

To verify this claim, first choose a 1
3 < r0 < 7

16 such that Bþ
1
3
� Bm

r0 � ½0, r0�: Next define
/e
YðxÞ ¼ we

Yðxmþ1Þ : Bm
r0 � ½0, r0� ! R, where we

Y 2 C1ð½0, r0�Þ satisfies
we
Yðe2Þ ¼ 10peY ; 10p

e
Y 	 we

YðtÞ 	 20peY , e
2 < t 	 r0,

and

4e2

3
ðwe

YÞ0ðtÞ þ we
YðtÞ ¼ 0, 0 	 t 	 e2: (5.14)

Solving (5.14) yields

we
YðtÞ ¼ 10e

3
4 1� t

e2ð ÞpeY , 0 	 t 	 e2:

It is clear that (5.13) holds by restricting /e
Y on Bþ

1
3
:

Finally we let bhe

Y : Bþ
1
3
! R be the unique solution of the initial and boundary value

problem:

ð@t � DÞbhe

Y ¼ me
Y in Pþ

1
3
,bhe

Y ¼ /e
Y on Bþ

1
3
� f�ð13Þ2g,bhe

Y ¼ /e
Y on Cþ

1
3
,

4e2

3
@�bhe

Y þ bhe

Y ¼ 0 on C1
3
:

8>>>>>>>>><>>>>>>>>>:
(5.15)

For bhe

Y , it follows from both the maximum principle and the C0-estimate (see [35]) that

0 	 bhe

Y 	 C me
Y þ k/e

YkL1ðBþ
1
3
Þ

� � 	 CjYja in Pþ
1
3
: (5.16)

Furthermore, we have the following uniform gradient estimate, whose proof will be
given in the Appendix A.
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kbhe

YkC1ðPþ7
24
Þ 	 C me

Y þ k/e
YkL1ðBþ

1
3
Þ

� � 	 CjYja, for every e > 0: (5.17)

This, combined with the boundary condition on C1
3
in (5.15), implies that there exists a

constant C> 0, independent of e, such that

0 	 bhe

Y 	 Ce2jYja on C 7
24
: (5.18)

Define functions Hþ
Y , e and H�

Y , e on Pþ
1
3
by letting

H6
Y , eðX, tÞ ¼ bhe

YðX, tÞ6heYðX, tÞ þ neY in Pþ
1
3
:

Then it is easy to verify that

ð@t � DÞH6
Y , e � 0 in Pþ

1
3
,

H6
Y , e � 0 on Bþ

1
3
� f�ð13Þ2g,

H6
Y , e � 0 on Cþ

1
3
,

4e2

3
@�H

6
Y , e þH6

Y , e � 0 on C1
3
:

8>>>>>><>>>>>>:
(5.19)

Applying the maximum principle to (5.19) (see [35]), we conclude that

H6
Y , e � 0 in Pþ

1
3
,

or, equivalently,

�bhe

YðX, tÞ � neY 	 heYðX, tÞ 	 bhe

YðX, tÞ þ neY , ðX, tÞ 2 Pþ
1
3
:

Hence we obtain that

jheYðX, tÞj 	 bhe

YðX, tÞ þ neY 	 Ce2jYja, ðX, tÞ 2 C 7
24
,

thanks to (5.10), (5.11) and (5.18). In other words, we have

1
e2
jqeðX þ Y , tÞ � qeðX, tÞj 	 CjYja for ðX, tÞ 2 C 7

24
, jYj 	 7

16
: (5.20)

For every fixed T 2 ð� 7
16 , 0�, set

heTðX, tÞ ¼ heðX, t þ TÞ � heðX, tÞ, ðX, tÞ 2 Pþ
7
16
:

Then by an argument similar to that for (5.20) we can show that

1
e2
jqeðX, t þ TÞ � qeðX, tÞj 	 CðrÞjTja2 for ðX, tÞ 2 C 7

24
, � 7

16
	 T 	 0: (5.21)

Combining (5.20) and (5.21), and applying the boundary condition of qe in equation
(5.4), we conclude that

k@�qekCa C 7
24ð Þ 	 C

holds uniformly with respect to e:
Now Proposition 5.1 follows immediately from the standard parabolic regularity the-

ory for equation (5.4) (see [35]). w
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6. Passing to the limit and partial regularity

This section is devoted to the proof of our main theorem on the existence of partially
smooth solutions of the heat flow of 1/2-harmonic maps.
Completion of proof of Theorem 1.1:

Proof. For s ¼ 1
2 , let fUege>0 be a family of solutions of (2.30), satisfying the bound

(2.34), and U : Rmþ1
þ � ½0,1Þ ! R

l be the weak limit of Ue as e ! 0: It it readily seen

that U 2 C1ðRmþ1
þ � ð0,1ÞÞ solves
@tU � DU ¼ 0inRmþ1

þ � ð0,1Þ; Ujt¼0 ¼ U0 onRmþ1
þ , (6.1)

and u :¼ Uj@Rmþ1
þ �ð0,1Þ is a weak solution of the equation of 1/2-harmonic map heat

flow:

ð@t � DÞ12u?TuS
l�1 on R

m � ð0,1Þ; ujt¼0 ¼ u0 on R
m:

We are left with showing u enjoys the partial regularity as stated in Theorem 1.1. To
show this, let e0 > 0 be the constant determined by Lemma 4.3 and define the singular

set R � @Rmþ1
þ � ð0,1Þ by

R ¼ \
R>0

fZ0 ¼ ðX0, t0Þ 2 @Rmþ1
þ � ð0,1Þ : lim inf

e!0
EðUe,Z0,RÞ � e20g: (6.2)

It is well-known that the monotonicity inequality (3.1) implies that R is a closed set in

@Rmþ1
þ � ð0,1Þ: Furthermore, similar to the proof of Lemma 4.3 and Lemma 4.4, we

have that for any Z0 ¼ ðX0, t0Þ 2 R, there exists a 0 < r0 <
ffiffiffiffi
t0

p
such that for all

0 < r < r0,

r�m

	ð
Pþr ðZ0Þ

jrUej2 þ
ð
@þPþr ðZ0Þ

1
e2
ð1� juej2Þ2



� ce20:

Now we can apply Vitali’s covering Lemma to show that for any compact set K �
R

mþ1
þ � ð0,1Þ, the m-dimensional Hausdorff measure of R \ K is finite, i.e.,

PmðR \ KÞ 	 CðE0,KÞ < 1:

It follows from the definition of R that for any Z1 ¼ ðX1, t1Þ 2 @Rmþ1
þ � ð0,1Þ n R, we

can find a radius 0 < R1 <
ffiffiffi
t1

p
2 so that

liminf
e!0

EðUe,Z1,R1Þ < e20:

Hence by Lemma Lemma 4.3 and Lemma 4.4 we can conclude that there exists a d1 >
0, independent of e, such that for any a 2 ð0, 1Þ,

kUekC1þaðPþ2d1R1 ðZ1ÞÞ 	 Cðe0, aÞ: (6.3)

Thus Ue ! U in C1þaðPþ
d1R1

ðZ1ÞÞ: In particular, U 2 C1þa
loc ðRmþ1

þ � ð0,1Þ n RÞ:
Applying higher order boundary regularity theory of (6.1), we conclude that U 2
C1
locðRmþ1

þ � ð0,1Þ n RÞ: This yields part A) of Theorem 1.1.
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Observe that for any sufficiently large t0 > 0, and X0 2 @Rmþ1
þ , if choose R ¼

ffiffiffi
t0

p
2 , then

EðUe, ðX0, t0Þ,RÞ ¼
ð3t0

4

0

ð
R

mþ1
þ

1
2
jrUej2GX0, t0dXdt þ

ð3t0
4

0

ð
@Rmþ1

þ

c1
2

4e2
ð1� juej2Þ2GX0, t0dxdt

	 Ct
�mþ1

2
0

ð3t0
4

0

	ð
R

mþ1
þ

1
2
jrUej2dX þ

ð
@Rmþ1

þ

c1
2

4e2
ð1� juej2Þ2dx



dt

	 Ct
�m�1

2
0

ð
R

mþ1
þ

1
2
jrU0j2dXdt ¼ Ct

�m�1
2

0 E0 < e20,

uniformly in e, provided t0 > ðCE0e20
Þ 2
m�1: Here we have used (2.34).

Hence by Lemma 4.3 and Lemma 4.4, we can conclude that R \ ð@Rmþ1
þ � ½t0,1ÞÞ ¼

;, and Ue ! U in C2
locðRmþ1

þ � ½t0,1ÞÞ: Furthermore, it holds that

jrUðX, tÞj 	 cffiffi
t

p ,

for all X 2 R
mþ1
þ and t sufficiently large. There exists a point p 2 S

l�1 such that

Uð�, tÞ ! p in C2
locðRmþ1

þ Þ as t ! 1: Hence uð�, tÞ also converges to p in C2
locð@Rmþ1

þ Þ
as t ! 1: This yields part B) of Theorem 1.1.
The proof of part C) can be done in the same way as in Cheng [36]. We sketch it as

follows. First recall that for any d > 0, there exists a sufficiently large KðdÞ > 0 such

that for any t0 > 0 and 0 < R <
ffiffiffi
t0

p
2 , it holds for t0 � 4R2 	 t 	 t0 � R2,

GðX0, t0ÞðX, tÞ 	
R�ðmþ1Þ 8X 2 R

mþ1
þ ,

dGðX0, t0Þþð0,R2ÞðX, tÞ if X 2 R
mþ1
þ and jX � X0j � KðdÞR:

(
Hence

EðU�, ðX0, t0Þ,RÞ

	 R�ðmþ1Þ
ðt0�R2

t0�4R2

	ð
Bþ
KðdÞRðX0Þ

jrUej2 þ
ð
Bþ
KðdÞRðX0Þ\@Rmþ1

þ

c1
2

4e2
ð1� juej2Þ2



dt

þ d
ðt0�R2

t0�4R2

	ð
R

mþ1
þ

jrUej2GðX0, t0þR2Þ þ
ð
@Rmþ1

þ

c1
2

4e2
ð1� juej2Þ2GðX0, t0þR2Þ



dt:

On the other hand,

d
ðt0�R2

t0�4R2

	ð
R

mþ1
þ

jrUej2GðX0, t0þR2Þ þ
ð
@Rmþ1

þ

c1
2

4e2
ð1� juej2Þ2GðX0, t0þR2Þ



dt

	 2d
ðt0�R2

t0�4R2
ðR2 þ t0 � tÞ�1DðUe, ðX0, t0 þ R2Þ,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ t0 � t

p
Þ dt

	 2d

	ðt0�R2

t0�4R2
ðR2 þ t0 � tÞ�1 dt



DðUe, ðX0, t0 þ R2Þ,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ t0

p
Þ

	 Cdðt0 þ R2Þ1�m
2 E0 	 1

2
e20,
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provided d > 0 is chosen to be sufficiently small. Here we have used the monotonicity
inequality for DðUe, ðX0, t0 þ R2Þ, rÞ in the proof.
Note that Rt0 ¼ \0<R<

ffiffiffi
t0

p RR
t0 , where

RR
t0 ¼ fX0 2 @Rmþ1

þ : liminf
e!0

EðUe, ðX0, t0Þ,RÞ � e20g:

Thus we obtain that for any X0 2 RR
t0 , it holds

Rmþ1 	 2
e20
lim
e!0

ðt0�R2

t0�4R2

	ð
Bþ
KðdÞRðX0Þ

jrUej2 þ
ð
Bþ
KðdÞRðX0Þ\@Rmþ1

þ

c1
2

4e2
ð1� juej2Þ2



dt

so that by Vitali’s covering Lemma we can show that

Hm�1
KðdÞRðRR

t0Þ 	 CðKðdÞ,E0Þ:
This implies Hm�1ðRt0Þ < 1, after sending R ! 0: w

7. Appendix A: uniform estimate of heat kernels

In this section, we will sketch a proof of the gradient estimate (5.17) for the solution bhe

Y of the
auxiliary Equation (5.15), which holds uniformly with respect to e: We refer the reader to [35]
Theorem 4.31, in which an estimate similar to (5.17) is established but with a constant possibly
depending on e: Here we will provide a proof based on an explicit Green function representation
of the heat equation under an oblique boundary condition.

First recall the heat kernel in R
mþ1 given by

Cðx, tÞ ¼
1

ð4ptÞmþ1
2

exp � jxj2
4t

	 

, ðx, tÞ 2 R

mþ1 � ð0,1Þ,

0, ðx, tÞ 2 R
mþ1 � ð�1, 0�:

8><>:
For y ¼ ðy1, :::, ym, ymþ1Þ 2 R

mþ1
þ , denote y
 ¼ ðy1, :::, ym, � ymþ1Þ: Define Geðx, y, tÞ : Rmþ1

þ �
R

mþ1
þ � R ! R by

Geðx, y, tÞ ¼ Cðx� y, tÞ � Cðx� y
, tÞ � 2
ð1
0
e�

3
4e2

sDmþ1Cðx� y
 þ semþ1, tÞ ds, (7.1)

where Dmþ1Cðz, tÞ ¼ @C
@xmþ1

ðz, tÞ and emþ1 ¼ ð00, 1Þ 2 R
mþ1: Then we have

Lemma 7.1. Ge is the Green function of the heat equation in R
mþ1
þ with an oblique boundary

condition: for any fixed y 2 R
mþ1
þ ,

ð@t � DÞGeðx, y, tÞ ¼ dðx� yÞdðtÞ, ðx, tÞ 2 R
mþ1
þ � Rþ,

@Ge

@xmþ1
ðx, y, tÞ � 3

4e2
Geðx, y, tÞ ¼ 0, x 2 @Rmþ1

þ � 0,1Þ:½

8<: (7.2)

Proof. Since y
 2 R
mþ1
� for y 2 R

mþ1
þ , it follows that x� y
 6¼ 0 and x� y
 þ semþ1 6¼ 0 for any

x 2 R
mþ1
þ and s > 0: Hence we have

ð@t � DÞGeðx, y, tÞ ¼ ð@t � DÞCðx� y, tÞ ¼ dðx� yÞdðtÞ:
To check the boundary condition, let x 2 @Rmþ1

þ : Then we have that xmþ1 ¼ 0 and jx� yj ¼
jx� y
j so that Cðx� y, tÞ ¼ Cðx� y
, tÞ and Dmþ1Cðx� y
, tÞ ¼ �Dmþ1Cðx� y, tÞ: Hence
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@Ge

@xmþ1
ðx, y, tÞ � 3

4e2
Geðx, y, tÞ

¼ �2Dmþ1Cðx� y
, tÞ � 2
ð1
0
e�

3
4e2

s @

@xmþ1
Dmþ1Cðx� y
 þ semþ1, tÞ
� �

ds

þ 6
4e2

ð1
0
e�

3
4e2

sDmþ1Cðx� y
 þ semþ1, tÞ ds

¼ �2Dmþ1Cðx� y
, tÞ � 2
ð1
0

@

@s
ðe� 3

4e2
sDmþ1Cðx� y
 þ semþ1, tÞÞ ds

¼ 0

holds for x 2 @Rmþ1
þ : w

For any bounded f 2 C1ðRmþ1
þ � ½0,1ÞÞ, it is well-known that the unique smooth solution of

ð@t � DÞu ¼ f in R
mþ1
þ � ½0,1Þ,

@u
@xmþ1

� 3
4e2

u ¼ 0 on @Rmþ1
þ � ½0,1Þ,

u ¼ 0 on R
mþ1
þ � f0g,

8>>><>>>: (7.3)

is given by the Duhamel formula

ueðx, tÞ ¼
ðt
0

ð
R

mþ1
þ

Geðx, y, t � sÞf ðy, sÞ dyds, ðx, tÞ 2 R
mþ1
þ � 0,1Þ:½ (7.4)

Now we are ready with the proof of the following theorem.

Theorem 7.2. For any f 2 C1ðRmþ1
þ � ½0,1ÞÞ and e > 0, let ue : Rmþ1

þ � ½0,1Þ ! R be given
by (7.4). Then for any 0 < a < 1 there exists a constant C ¼ Cðm, aÞ > 0 such that

kuekC2þaðRmþ1
þ �½0,1ÞÞ 	 Ckf kCaðRmþ1

þ �½0,1ÞÞ, 8e > 0: (7.5)

Proof. Decompose Ge by Ge ¼ Ge
1 þ Ge

2, where

Ge
1ðx, y, tÞ ¼ Cðx� y, tÞ � Cðx� y
, tÞ; Ge

2 ¼ Ge � Ge
1,

and write ue ¼ ue1 þ ue2, where

ue1ðx, tÞ ¼
ðt
0

ð
R

mþ1
þ

Ge
1ðx, y, t � sÞf ðy, sÞ dyds; ue2 ¼ ue � ue1:

Since Ge
1ðx, y, tÞ is the Green function of the heat equation on R

mþ1
þ with zero Dirichlet boundary

condition, by the standard Schauder theory (see [35]) we have that ue1 2 C1ðRmþ1
þ � ½0,1ÞÞ and

kue1kC2þaðRmþ1
þ �½0,1ÞÞ 	 Cðm, aÞkf k

CaðRmþ1
þ �½0,1ÞÞ:

To prove a similar estimate for ue2 we first note that (7.1) gives

Ge
2ðx, y, tÞ ¼ �2

ð1
0
e�

3
4e2

sDmþ1Cðx� y
 þ semþ1, tÞ ds: (7.6)

By direct computation we have that

Dmþ1C x� y
 þ semþ1, tð Þ ¼ �1
2

1

4ptð Þmþ1
2

ðxmþ1 þ ymþ1 þ sÞ
t

exp � jx� y
 þ semþ1j2
4t

	 

:
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Moreover, by the very definition of y


jx� y
 þ semþ1j2 ¼ jx0 � y0j2 þ ðxmþ1 þ ymþ1 þ sÞ2,
where we recall

x0 :¼ x1, :::, xm, 0ð Þ y0 ¼ y1, :::, ym, 0ð Þ:
Therefore (7.6) becomes

Ge
2ðx, y, tÞ ¼

1

4ptð Þmþ1
2

e�jx0�y0 j2
ðþ1

0

ðxmþ1 þ ymþ1 þ sÞ
t

exp � 3s
4e2

� jxmþ1 þ ymþ1 þ sj2
4t

	 

ds:

We change variables in the integral according to

r :¼ xmþ1 þ ymþ1 þ sffiffi
t

p :

Moreover, we write

�jx0 � y0j2 ¼ �jx� y
j2 þ ðxmþ1 þ ymþ1Þ2:
Then,

Ge
2ðx, y, tÞ ¼

1

4ptð Þmþ1
2

e�jx�y
j2eðxmþ1þymþ1Þ2þ 3
4e2

ðxmþ1þymþ1Þ
ðþ1

xmþ1þymþ1ffi
t

p
r exp � 3r

ffiffi
t

p

4e2
� r2

4

	 

dr:

We introduce the function He : ½0, þ1Þ ! R given by

HeðkÞ :¼ eðxmþ1þymþ1Þ2þ 3
4e2

ðxmþ1þymþ1Þ
ðþ1

k
r exp � 3r

ffiffi
t

p

4e2
� r2

4

	 

dr,

and thus Ge
2 is represented as

Ge
2ðx, y, tÞ ¼

1

4ptð Þmþ1
2

e�jx�y
j2He
xmþ1 þ ymþ1ffiffi

t
p

	 

:

We have that for any e > 0, He 2 C1ð½0,1ÞÞ: Moreover, since

H0
eðkÞ ¼ �eðxmþ1þymþ1Þ2þ 3

4e2
ðxmþ1þymþ1Þk exp � 3k

ffiffi
t

p

4e2
� k2

4

	 

,

we get that

H0
e

xmþ1 þ ymþ1ffiffi
t

p
	 


¼ � xmþ1 þ ymþ1ffiffi
t

p
	 


e�
ðxmþ1þymþ1Þ2þ4t

4t ,

which is bounded, uniformly with respect to e and with respect to t> 0. Therefore, we conclude
thanks to Schauder theory that ue2 2 C1ðRmþ1

þ � ½0,1ÞÞ and
kue2kC2þaðRmþ1

þ �½0,1ÞÞ 	 Cðm, aÞkf k
CaðRmþ1

þ �½0,1ÞÞ:

Combining the estimates for ue1 and ue2 yields (7.5). w

Now we will give a proof of (5.17). To do it, let g1 2 C1
0

	
Bm

1
3
� �ð13Þ2, 0
� �


be such that

g1 ¼ 1 in Bm
7
24
� �ð 724Þ2, 0
� �

, and g2 2 C1
0 ð½0,1Þ be such that g2 ¼ 1 in ½0, 13� and g2 ¼ 0 in

½23 ,1Þ: Define gðx, tÞ ¼ g1ðx0, tÞg2ðxmþ1Þ for ðx, tÞ 2 R
mþ1
þ � R: Then by direct calculations we

obtain that
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@

@xmþ1
ðbhe

YgÞ �
3
4e2
bhe

Yg



ðx, tÞ

¼ bhe

Yðx, tÞg1ðx0, tÞg02ðxmþ1Þ þ @

@xmþ1

bhe

Y � 3
4e2
bhe

Y

	 

ðx, tÞgðx, tÞ

¼ 0þ 0 ¼ 0

holds for any ðx, tÞ 2 @Rmþ1
þ � ð0,1Þ \ Cþ

1
3
: Hence by Duhamel’s formula, we conclude that for

any ðx, tÞ 2 Pþ7
24
, it holds

ðbhe

YgÞðx, tÞ ¼
ð
R

mþ1
þ �ð0,1Þ

Geðx, y, t � sÞð@t � DÞðbhe

YgÞðy, sÞ dyds

¼ me
Y

ð
R

mþ1
þ �ð0,1Þ

Geðx, y, t � sÞgðy, sÞ dyds

þ
ð
R

mþ1
þ �ð0,1Þ

Geðx, y, t � sÞbhe

Yðy, sÞð@tg� DgÞðy, sÞ dyds

þ 2
ð
R

mþ1
þ �ð0,1Þ

ðryGðx, y, t � sÞrgðy, sÞ þ Gðx, y, t � sÞDgðy, sÞÞbhe

Yðy, sÞ dyds

¼: Aeðx, tÞ þ Beðx, tÞ þ Ceðx, tÞ:

(7.7)

Applying Theorem 7.2, there exists a constant C> 0 independent of e such that

kAekC2þaðRmþ1
þ �ð0,1ÞÞ 	 Cme

Y 	 CjYja:
For Be and Ce, it is not hard to see that

krBekCaðRmþ1
þ �ð0,1ÞÞ þ krCekCaðRmþ1

þ �ð0,1ÞÞ 	 Ckbhe

YkC0ðPþ1
3
Þ 	 CpeY 	 CjYja:

Putting these estimates together, we conclude that bhe

Y satisfies the gradient estimate (5.17).

8. Appendix B: Proof of Theorem 1.1 for general targets

In this section, we will sketch the modifications that are necessary in order to show Theorem 1.1
for any compact Riemannian manifold N,!R

l:
To do it, first recall that there exists a constant dN > 0 such that both the nearest point projec-

tion map

PN : NdN � fy 2 R
l : dðy,NÞ < dNg ! N

and the square of distance function to N, d2ðp,NÞ ¼ jp�PNðpÞj2, are smooth in the dN-neigh-
borhood of N.

Now let v 2 C1
0 ð½0,1ÞÞ be such that

vðtÞ ¼ t for 0 	 t 	 d2N ; vðtÞ ¼ 2d0 for t � ð2dNÞ2:
Then we replace the potential function 1

4e2 ð1� juj2Þ2 by 1
e2 vðd2ðu,NÞÞ: More precisely, we con-

sider the following approximated system:
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ð@t � DÞUe ¼ 0 inRmþ1
þ � ð0,1Þ,

Uejt¼0 ¼ U0 onRmþ1
þ ,

limy!0þ
@Ue

@y
¼ c1

2

e2
v0ðd2ðUe,NÞÞDUed

2ðUe,NÞ onRm � ð0,1Þ:

8>>>><>>>>: (8.1)

As in (2.34), it is readily seen that any solution Ue of (8.1) satisfies the following energy inequality:ðt
0

ð
R

mþ1
þ

j @UeðX, rÞ
@t

j2dXdr þ
ð
R

mþ1
þ

jrXUeðX, tÞj2dX

þ c1
2

e2

ð
R

m
vðd2ðue,NÞÞdx ¼

ð
R

mþ1
þ

jrXU0ðXÞj2dX 	 ku0k2_H 1
2ðRmÞ

:

(8.2)

As in Section 3, we can similarly define the renormalized energies DðUe,Z0,RÞ and EðUe,Z0,RÞ
for Ue by simply replacing the term ð1� juej2Þ2 by vðd2ðue,NÞÞ: For example,

EðUe,Z0,RÞ :¼ 1
2

ð
Tþ
R ðZ0Þ

GX0, t0ðX, tÞjrUej2dXdt

þ c1
2

e2

ð
@þTþ

R ðZ0Þ
GX0, t0ðX, tÞvðd2ðue,NÞÞdxdt:

Then by the same argument as in Lemma 3.1, we have

Lemma 8.1. For Z0 ¼ ðX0, t0Þ 2 @Rmþ1
þ � ð0,1Þ, if Ue solves (8.1) then it holds that

DðUe,Z0, rÞ 	 DðUe,Z0,RÞ, 80 < r 	 R <
ffiffiffiffi
t0

p
,

EðUe,Z0, rÞ 	 EðUe,Z0,RÞ, 80 < r 	 R <

ffiffiffiffi
t0

p
2

:

As in Lemma 3.2, we also have the local energy inequality.

Lemma 8.2. For any g 2 C1
0 ðRmþ1Þ, if Ue solves (8.1) then it holds that

d
dt

�ð
R

mþ1
þ

1
2
jrUej2g2 þ

ð
R

m

c1
2

e2
vðd2ðue,NÞÞg2

�
þ 1
2

ð
R

mþ1
þ

j@tUej2g2 	 4
ð
R

mþ1
þ

jrUej2jrgj2: (8.3)

In particular, for any Z0 ¼ ðX0, t0Þ 2 R
mþ1
þ � ð0,1Þ and 0 < R <

ffiffiffi
t0

p
2 , we have thatð

PþR ðZ0Þ
j@tUej2 	 CR�2

	ð
Pþ2RðZ0Þ

jrUej2 þ
ð
@þPþ2RðZ0Þ

c1
2

e2
vðd2ðue,NÞÞ



: (8.4)

We also have the following clearing out result for any solution Ue of (8.1).

Lemma 8.3. There exists e0 > 0 such that if Ue solves (8.1) and satisfies

EðUe, ðX0, t0Þ, 1Þ 	 e20,

for some X0 2 @Rmþ1
þ and t0 > 4, then dðUe,NÞ 	 dN and vðd2ðUe,NÞÞ ¼ d2ðUe,NÞ hold on

Pþb ðX0, t0Þ for some b > 0 that is independent of Ue,X0, and t0.

The next Lemma, analogous to Proposition 5.1, plays a crucial role in the proof.

Lemma 8.4. Let fUege>0 be a family of solutions to (8.1). Assume that

dðUe,NÞ 	 dN , j@tUej þ jrUej 	 4 in Pþ1 : (8.5)

Then kUekC1þaðPþ1
4
Þ 	 CðaÞ for any a 2 ð0, 1Þ and e > 0:
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Proof. The proof is similar to that of Proposition 5.1 (see also [6, pages 342-346]). Since
UeðPþ1 Þ � NdN , we can decompose

Ue ¼ Ve þ �NðVeÞqe in Pþ1 :

Here Ve ¼ PNðUeÞ, qe ¼ dðUe,NÞ ¼ jUe � Vej, and �NðVeÞ 2 ðTVeNÞ? is a smooth unit vector
field in the normal space ðTVeNÞ?: By direct calculations, we obtain that

0 ¼ @tUe � DUe

¼ ðIl þ qerVe�NðVeÞÞð@tVe � DVeÞ þ �NðVeÞð@tqe � DqeÞ
� 2rð�NðVeÞÞrqe � qer2

Ve
�NðVeÞðrVe,rVeÞ

hold in Pþ1 : If we multiply the equation above by �NðVeÞ and observe that

hðIl þ qerVe�NðVeÞÞð@tVe � DVeÞ, �NðVeÞi ¼ hDVe, �NðVeÞi ¼ �rVe�NðVeÞðrVe,rVeÞ,
we can show that Ve and qe solve

ðIl þ qerVe�NðVeÞÞð@tVe � DVeÞ ¼ qePNðVeÞðr2
Ve
�NðVeÞðrVe,rVeÞÞ

� 2rð�NðVeÞÞrqe þ qerVe�NðVeÞðrVe,rVeÞ�NðVeÞ in Pþ1 ,
@Ve

@y
¼ 0 inC1:

8>>><>>>: (8.6)

and

@tqe � Dqe ¼ qehr2
Ve
�NðVeÞðrVe,rVeÞ, �NðVeÞi

� qerVe�NðVeÞðrVe,rVeÞ in Pþ1 ,

@qe
@y

¼
2c1
2

e2
qe inC1:

8>>>>>><>>>>>>:
(8.7)

Here we have used the fact that rpqeðpÞ ¼ �NðPNðpÞÞ for p 2 NdN , so that the boundary condi-
tion for Ue implies that on C1,

0 ¼ @Ue

@y
�
c1
2
e2

v0ðd2ðUe,NÞÞDUed
2ðUe,NÞ

¼ @Ve

@y
þ @�NðVeÞ

@y
qe þ

@qe
@y

�
2c1
2

e2
qe

0B@
1CA
�NðVeÞ:

If we multiply this equation by �NðVeÞ and observe that h@Ve
@y , �NðVeÞi ¼ h@�NðVeÞ

@y , �NðVeÞi ¼ 0,
we would obtain the above boundary condition for qe: On the other hand, the boundary condi-
tion for Ve follows from the following identity

0 ¼ @Ve

@y
þ @�NðVeÞ

@y
qe ¼ ðIl þ qerVe�NðVeÞÞ @Ve

@y
,

and the invertibility of the map ðIl þ qerVe�NðVeÞÞ : Rl ! R
l:

Note that (8.5) implies that

ðj@tVej þ jrVejÞ þ ðj@tqej þ jrqejÞ 	 8 in Pþ1 :

This implies

kðIl þ qerVe�NðVeÞÞ � IlkL1ðPþ1 Þ 	 CdN ,

and
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kqehr2
Ve
�NðVeÞðrVe,rVeÞ, �NðVeÞi � qerVe�NðVeÞðrVe,rVeÞkL1ðPþ1 Þ 	 C:

Hence by the W2, 1
p -estimate for linear parabolic equations, we obtain that

kVekC1þaðPþ7
8
Þ 	 CðaÞ, 8 a 2 ð0, 1Þ,

uniformly with respect to e:
The boundary C1þa-estimate of qe can be done exactly as in Proposition 5.1. This completes

the proof of Lemma 8.4. w

Finally with Lemma 8.4 at hand, we can show that Ue also satisfies the gradient estimate as in
Lemma 4.3. More precisely, we have that

Lemma 8.5. There exists e0 > 0, depending only on m, such that if Ue solves (8.1) and satisfies,
for Z0 ¼ ðX0, t0Þ 2 @Rmþ1

þ � ð0,1Þ and some 0 < R <
ffiffiffi
t0

p
2 ,

EðUe,Z0,RÞ < e20, (8.8)

then

sup
Pþd0RðZ0Þ

R2jrUej2 	 Cd�2
0 , sup

Pþd0RðZ0Þ
R4j@tUej2 	 Cd�4

0 , (8.9)

where 0 < d0 < 1 and C> 0 are independent of e:
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