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We prepare high-filling two-component arrays of tens of fermionic 6Li atoms in optical tweezers, with

the atoms in the ground motional state of each tweezer. Using a stroboscopic technique, we configure the

arrays in various two-dimensional geometries with negligible Floquet heating. A full spin- and density-

resolved readout of individual sites allows us to postselect near-zero entropy initial states for fermionic

quantum simulation. We prepare a correlated state in a two-by-two tunnel-coupled Hubbard plaquette,

demonstrating all the building blocks for realizing a programmable fermionic quantum simulator.

DOI: 10.1103/PhysRevLett.129.123201

Ultracold atoms in optical tweezer arrays have become a
popular platform for quantum simulation, computation, and
metrology [1]. The tweezer platform has recently witnessed
rapid breakthroughs, ranging from the development of
precise optical clocks [2,3] to the demonstration of entan-
gling operations [4–7]. The realization of defect-free
arbitrary geometries [8,9], in particular in two dimensions,
has paved the way for studying rich quantum many-body
physics with localized Rydberg atoms, including frustrated
spin models on a triangular lattice [10,11], topological
phases in a zig-zag chain [12], and quantum spin liquids
with atoms placed on the links of a kagome lattice [13].
The versatility of tweezer arrays has also been extended

to systems of itinerant atoms where quantum statistics play
a role [14–19]. In particular, tunnel-coupled arrays have
been realized for small systems of bosonic [14] and
fermionic [15–18] atoms in one-dimensional arrays. If
these experiments can be scaled, they would constitute a
bottom-up approach toward quantum simulation that com-
plements optical lattice experiments with quantum gas
microscopes, which currently lie at the forefront of study-
ing one- and two-dimensional Hubbard models [20–29].
The difficulty of reconfiguring microscope experiments has
led to an almost exclusive focus on physics in square
lattices (Ref. [30] is a recent exception). Programmable
Hubbard tweezer arrays would allow the extension of site-
resolved studies to arbitrary lattice geometries that bring
additional ingredients into play, including frustration, topo-
logy, and flat-band physics.
Hubbard tweezer arrays may also provide a route to

address another major challenge for optical lattice experi-
ments: the preparation of low-entropy phases of fermions.
In optical lattice experiments, the entropy of the gas is
limited by evaporative cooling, which is hindered by poor
efficiencies at low temperatures. Entropy redistribution

schemes relying on the flow of entropy away from gapped
phases have been proposed [31,32] and experimentally
explored [33], but they have not resulted in significant
reduction of achieved temperatures for correlated phases.
Here we show that stroboscopic optical tweezer arrays

can be used to prepare fermionic systems with arbitrary

two-dimensional (2D) geometry and entropies comparable

to those achieved in optical lattices, with the additional

advantage of being able to further reduce the entropy

through postselection. This is possible due to several

features particular to this platform. First, in loading a

tweezer from a degenerate Fermi gas, the tweezer acts

as a “dimple trap,” wherein the local Fermi temperature

(TF) is significantly higher than in the bulk gas. Since the

fraction of atoms loaded into the tweezers is low, the

temperature of the system remains approximately fixed to

the bulk gas’s temperature, but the tweezers’ phase space

density is enhanced. Furthermore, the occupancy of the

lowest level of each tweezer (given by the Fermi-Dirac

distribution) is close to unity. This enables the preparation

of a state with two atoms in the ground motional state (one

per spin state) on every tweezer with high fidelity, as first

demonstrated in Ref. [34]. Second, the system can be

evolved from the band insulator into a correlated state via

an adiabatic ramp on of additional sites, taking advantage

of independent tunability of each lattice site. We have

previously shown that this technique can be used to prepare

a state with antiferromagnetic correlations in an eight-site

Fermi Hubbard chain [18]. We extend this approach to 2D

and show that any preramp entropy in the system can be

effectively eliminated by postselection on the atom number

in each spin state. Postselection is enabled by spin- and

density-resolved readout [22,35], which we implement in a

bilayer imaging scheme.
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The experimental cycle, including tweezer loading, is the
same as detailed in Ref. [18]. Tweezers are loaded from a
bulk Fermi gas at T=TF ≈ 0.2 that is a balanced mixture of
the lowest and third lowest hyperfine ground states (j↑i,
j↓i, respectively). Our scheme for generating 2D arrays
uses two crossed acousto-optical modulators (AOMs)
[Fig. 1(a)]. The tweezers are produced using light with a
wavelength of 780 nm, and their waist at the atoms is

1000
þ180

−140
nm. Radiofrequency tones for both AOMs are

generated by a two-channel arbitrary waveform generator,
with a tone separation of 8 MHz corresponding to a tweezer
spacing of 1350 nm in the atom plane. The aperture size
and bandwidth of the modulators currently limit us to ∼9

tweezers in each direction. The beat frequency of neigh-
boring tweezers is > 100 times larger than typical tweezer
depths, leading to negligible parametric heating.
Homogenizing the tweezer depths is particularly cha-

llenging for 2D arrays generated using crossed AOMs. A
common approach used in Rydberg tweezer experiments is
to apply a static set of frequencies consisting of nx and ny
tones for the x- and y-directional AOMs, respectively. This
generates a rectangular array of nxny sites; however, the

nx þ ny degrees of freedom from the signal strength of each

tone are insufficient to independently tune the depth of each
tweezer. Better homogeneity can be achieved by tuning the
relative phases of the tones, but the typical resultant
inhomogeneity still exceeds 1%. Tunnel-coupled arrays
have more stringent requirements for homogeneity, since
the energy offsets in tweezers of a typical depth of ∼h ×
50 kHz must be controlled to within tunneling energies of
∼h × 250 Hz, or better than 0.5%.
To homogenize arrays to within this precision and

produce arrays with nearly arbitrary geometry (limited

by the optical resolution of our objective), we introduce
a stroboscopic tweezer technique. We generate the array
one column at a time, with different y-directional tones
applied in every time step [Fig. 1(b)]. Effectively, the atoms
experience a time-averaged potential of concatenated 1D
arrays, as long as the strobe rate fs far exceeds the
tweezers’ harmonic trap frequencies. As the typical axial
(radial) trap frequencies are around 2.5 (15) kHz, we need
strobe rates over an order of magnitude higher to avoid
significant Floquet heating of the atoms.
We verify that the stroboscopic scheme is compatible

with long lifetimes in the tweezer ground vibrational state
with the following study. We measure the dependence of
the lifetime in the lowest vibrational state on fs in a two-site
strobed array, varying the strobe rate from 163 to 1083 kHz,
as shown in the Supplemental Material [36]. Higher fre-
quencies are inaccessible due to limitations on the AOM
response rate, set by the speed of sound and beam size in
the crystal. We also compare the lifetimes to that of a static
(nonstrobed) tweezer, which is limited by background gas
collisions and off-resonant photon scattering due to the
trapping light. Consistent with expectations, the lowest
strobe rates give the shortest lifetimes in the ground state
[Fig. 1(d)]. Measurements and numerics using a discrete
variable representation method [36,44,45] both indicate
that Floquet heating decreases exponentially with increa-
sing fs and is negligible for fs ≳ 250 kHz, although the
numerics underestimate the threshold frequency range
below which severe heating occurs by ∼18%.
We demonstrate loading the arrays with band insulators

of fermions with high fidelity using the stroboscopic
method. These band insulators serve as low-entropy initial
states for fermionic quantum simulation. As proofs of
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FIG. 1. 2D stroboscopic tweezer technique and lifetimes. (a) Two crossed acousto-optic modulators spaced in a 4f configuration
generate the array. (b) Illustration of the principle of stroboscopic array generation of an eight-site ring. For a strobe frequency fs, each
column of the array is turned on for a quarter of the period 1=fs, generating a time-averaged potential shown in (c). (d) Lifetime of an
atom in the ground vibrational state of a tweezer versus strobe frequency, with the red point at 0 kHz indicating the nonstrobed lifetime.
The dashed line shows the theoretical prediction, and gray shading indicates the systematic uncertainties on the tweezer waist. The inset
shows an example of a decay curve of population in the ground state for fs ¼ 513 kHz with an exponential fit.
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principle, we implement a rectangular 5 × 5 array, 21-site
Lieb plaquette, triangular 4 × 5 array, and an eight-site
octagonal ring (Fig. 2) [36]. The tweezers are homogenized
using a density balancing algorithm where the number of
required experimental shots is almost independent of the
array size [18]. In these examples, the sites are not tunnel-
coupled due to the large separations. Readout is accom-
plished by transferring the atoms into a 2D lattice of
752 nm spacing, which oversamples the tweezer array by a
factor of 2 or more, and performing Raman sideband
cooling on the j↑i atoms after removal of the j↓i atoms
[18,23] with a detection fidelity of 98.5%. Throughout
these different geometries, the loading fidelity of a single
spin averages to 92%/site, corrected for imaging infidelity,
indicating a low entropy of loading in the array. As in
previous work [18,34], the tweezer depths are chosen so the
predominant type of defect in each tweezer is a missing
particle rather than an extra one in a higher motional state.
In these data, we only measure one of the spin states in a
given experimental shot, due to the problem of light-
assisted collisions, which necessitates the removal of the
other spin state before imaging [46].
To circumvent this problem and obtain full density

resolution and spin resolution, we adopt a high-fidelity
bilayer imaging scheme [35,47–49], which also allows the
reduction of entropy upon postselection. A bilayer density
readout and spin readout was first accomplished in fer-
mionic quantum gas microscope experiments in a super-
lattice charge-pumping scheme [35]. Our method is
conceptually similar but involves no superlattice (Fig. 3).
Starting with tweezer-trapped atoms, we adiabatically turn
off the tweezer and turn on a 2D lattice of 1064 nm to
60 ER and a vertical trap frequency of 1.2 kHz in 5 ms.

The magnetic field is brought to 572 G, where we perform a

spin flip of j↑i to the second-lowest hyperfine state j↑̃i,
with an efficiency exceeding 99%, and then decrease the

field to near 0 G. Atoms in j↑̃i and j↓i have a greater
differential magnetic moment than those in j↑i, enabling
the Stern-Gerlach separation of these populations to ∼9 μm
using a z-magnetic gradient of 168 G=cm in the 2D lattice
at a depth of 280 ER. We turn on two lightsheet potentials
[23]—highly anisotropic beams, each with z-directional
trap frequencies of 26 kHz—and linearly ramp their
vertical separation to 25 μm for imaging. We measure a
combined transport and spin identification fidelity of

(a) (b) (c) (d)

10 µm

FIG. 2. Examples of band insulators of different geometries,
showing (a) rectangular 5 × 5, (b) 21-site Lieb plaquette,
(c) 4 × 5 triangular, and (d) octagonal ring arrays. Only j↑i
atoms are imaged, and the sites here are not tunnel coupled. The
top row shows single shots with perfect filling of the j↑i state, and
the bottom row shows average images. Deviations of the atom
positions in the single-shot images are due to quantization onto
the lattice for imaging. Average fillings of j↑i are (93, 92, 91,
89)%, accounting for imaging fidelity of 98.5%, out of (411, 254,
275, 100) shots.
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FIG. 3. Bilayer imaging procedure and entropy reduction
through postselection. (a) Atoms in j↑i (yellow) and j↓i (blue)
are initially trapped in the tweezers, then adiabatically loaded into
(b) a 2D lattice with vertical waist of 75 μm, where j↑i is

transferred to j↑̃i (red). (c) A magnetic field gradient is applied to
separate the spins in the vertical direction, after which (d) two
lightsheet potentials turn on to fix the z positions. (e) The
lightsheets are further separated to 25 μm separation. Raman
sideband imaging commences, producing simultaneous images

of both spin states. (f) Single-shot image of j↓i and j↑̃i originally
from a 3 × 5 rectangular array. (g) Probability distribution versus

number of atoms in each spin state over 972 shots. Here, all
images with doublons (65 shots) were not used. (h) By post-
selecting on the maximum number of holes, effective entropy can
be reduced by varying amounts.
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98.7%. Finally, we image the atoms using Raman sideband
cooling simultaneously in both layers, with the 2D lattice
depth at 2500 ER and the two lightsheet z-trap frequencies
at 70 kHz. Resulting fluorescence is collected by a high
numerical aperture objective with atoms in the two planes
focused onto two different active areas of a CCD camera.

Imaging fidelity is 98% (97%) for the layer of j↑̃i (j↓i)
atoms.
Bilayer imaging enables reduction of the effective

entropy associated with the initial state of the tweezer
array (the band insulator) through postselection. The initial
entropy per particle of the tweezer ensemble, assuming
independent tweezers and single-band occupation, is
given by

S

hNi
¼ −

kB

p
ðp logpþ ð1 − pÞ logð1 − pÞÞ: ð1Þ

where p is the probability to load one spin on a site. With a
typical loading efficiency of p ¼ 0.907ð3Þ, the array starts
with 0.34(1) kB per particle, with entropy entering from
microstates with undesired holes. By selecting only images
with the population per spin state equal to the number of
loading tweezers, we can effectively choose a subsample
with S ¼ 0. Importantly, this postselection criterion elimi-
nates the initial state entropy even after changing the filling
of the system (by introducing additional tweezers) to
prepare a correlated state. The postselection criterion can
be relaxed to use more images from the experiment at the
cost of introducing additional initial state entropy. This
trade-off is illustrated in Figs. 3(g)–3(h) for a 3 × 5 array in
which j↑i and j↓i had average p ¼ 0.914ð3Þ and 0.900(3),
respectively (not accounting for imaging fidelity). Out of
972 images, 12% had perfect filling of 15 fermions of each
species. However, even keeping images with up to two
holes, or over 50% of shots, still results in a low entropy of
0.17(1) kB per particle, which is favorable compared with
state-of-the-art optical lattice experiments that range from
0.25 to 0.5 kB per particle [25,33,50,51].
While postselection can be used to reduce the effective

entropy of the initial state to near zero, subsequent ramps to
correlated states will inevitably introduce additional
entropy. Numerical simulations of the dynamical ramps
in small systems indicate this extra entropy should be low
for defect-free initial configurations. For example, for the
ramp used in our previous work with an eight-site chain
[18], the ramp is expected to have introduced an additional
entropy of 0.04 kB per particle when starting with a defect-
free state, but the presence of even a single localized hole
would lead to a significant entropy increase of 0.2–0.3 kB
per particle depending on the position of the hole. The
entropy reported in Fig. 3(h) should therefore be treated
only as a lower bound for future experiments.
Postselection on spin and density in this context should

be distinguished from the context of optical lattice-based

quantum gas microscopy measurements. For example, in a
recent study with a fermionic microscopes [51], spin
readout and density readout enabled postselection of half
filled systems with zero total magnetization, keeping ∼ 9%

of data. However, postselection there did not eliminate the
finite spin temperature in the initial state. Furthermore, our
postselection approach is difficult to implement in optical
lattice systems where it has proven challenging to engineer
arrays with sharp boundaries and a well-defined number of
sites [33].
Equipped with the ability to load near-zero-entropy band

insulators after postselection, we implement the simplest
building block of a two-dimensional Fermi-Hubbard
model: a tunnel-coupled 2 × 2 plaquette. The single-band
Hamiltonian is

Ĥ ¼ −

X

hi;jix;σ

txðĉ
†
iσ ĉjσ þ H:c:Þ −

X

hi;jiy;σ

tyðĉ
†
iσ ĉjσ þ H:c:Þ

þ
X

i

Uin̂i↑n̂i↓ þ
X

i;σ

Δin̂iσ; ð2Þ

where ĉ†iσ is the fermionic creation operator of spin σ at site

i, n̂iσ is the number operator, txðyÞ is the tunneling matrix

element in the xðyÞ direction, Δ is the energy offset, and U
is on site interaction between opposite spin states. We start
by loading two diagonal sites in a rectangular array with
vertical (horizontal) spacing of 1520 (1690) nm [Figs. 4(a)
and 4(b)]. The correlated state at half filling is prepared by
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FIG. 4. Low entropy preparation of a 2 × 2 array. (a) We load
two atoms per site on one diagonal of the array. (b) We create a
correlated state by ramping on the additional lattice sites and
increasing the scattering length to introduce on site interactions.
For the following data, we work with tx=h ¼ 140ð5Þ Hz,
ty=h ¼ 220ð5Þ Hz, and U=t̄ ¼ 3.4ð2Þ. (c) Measured spin-spin

correlations enabled by the bilayer imaging scheme. (d) Best fit
(purple bars) and measured (black dots) microstate populations
for 671 postselected experimental shots. The fit gives an entropy
in the range [0,0.09] kB per particle. Insets: the two most common
states.

PHYSICAL REVIEW LETTERS 129, 123201 (2022)

123201-4



adiabatically ramping on the two opposing diagonal
sites in 50 ms [18], with tunnelings of tx½ty� ¼
h × 140ð5Þ½220ð5Þ� Hz in the final configuration [36].
We also ramp U=t̄ from 0 to 3.4(2) in the same time using
the Feshbach resonance. Here, t̄ ¼ ðtx þ tyÞ=2.
The resulting spin-spin correlations are shown in

Fig. 4(c), which depicts Cij ¼ hSz;iSz;ji − hSz;iihSz;ji,
where Sz;i ≡

1

2
ðn↑;i − n↓;iÞ. Here, data were postselected

to include only images that contained two j↑i and two j↓i
atoms, for a total of 673 experimental cycles. With full spin
readout and density readout, we are able to reconstruct the
diagonals of the density matrix ρ ¼ jΨihΨj in the basis of

allowed number states (with Hilbert space size ð4
2
Þ2 ¼ 36),

and compare data with theory. In Fig. 4(d), we plot the
experimental population in each microstate together with
the populations expected theoretically for the plaquette
ground state, which are consistent within error bars. Here,
we reduce our statistical errors by taking advantage of the
spin symmetry of the Hubbard Hamiltonian to average the
probabilities for spin-reversed microstates. Furthermore,
we fit the temperature of the canonical ensemble to best
reproduce the distribution of microstates. The fit gives an
upper bound for the temperature of kBT ∼ 0.3t̄ (with the fit
losing sensitivity below that temperature). This corre-
sponds to an entropy in the range [0,0.09] kB per particle,
which is consistent with the prediction from simulating the
ramp dynamics (entropy gain of 0.02 kB per particle).
In conclusion, we have realized a 2D tweezer array of

fermions with software-programmable geometry using a
novel stroboscopic technique that allows independent
control over all tweezer depths and positions. We have
realized the building blocks to implement programmable
2D Fermi-Hubbard models, and demonstrated these on a
small scale. Future work will focus on increasing the
system size of the tunnel-coupled arrays. A natural target
for future work will be few-leg ladder systems. For
example, two-leg triangular ladder systems can be used
to explore the J1-J2 model, including the special case of the
Majumdar-Ghosh model and its valence-bond solid ground
states [52]. Furthermore, upon introducing spin imbalance
and hole doping, a triangular two-leg ladder is predicted to
host magnon-hole binding at energy scales set by the
tunneling, rather than the superexchange [53]. Multileg
triangular ladders may potentially host other exotic states
such as a chiral spin liquid at half filling and intermediate
U=t that evolves to a 120°-antiferromagnetic order at strong
U=t [54]. Ultimately, fully 2D tunnel-coupled arrays with
arbitrary geometry will be a rich playground for exploring
novel phases of correlated fermions.
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