
Abstract In this paper, we address the study of elliptic boundary value prob-
lems in presence of a boundary condition of integral type (IBC) where the po-
tential is an unknown constant and the flux (the integral of the flux density)
over a portion of the boundary is given by a value or a coupling condition.
We first motivate our work with realistic examples from nano-electronics, high
field magnets and ophthalmology. We then define a general framework stem-
ming from the Hybridizable Discontinuous Galerkin method that accounts
naturally for the IBC and we provide a complete analysis at continuous and
discrete levels. The implementation in the Feel++ framework is then detailed
and the convergence and scalability properties are verified. Finally, numeri-
cal experiments performed on the real-life motivating applications are used to
illustrate our methodology.
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1 Introduction

In this paper, we study non standard boundary conditions for the following
model elliptic boundary value problem of second order, written in mixed form:

j+Krp = 0 in ⌦, (1a)

r · j = f in ⌦. (1b)
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Here, we denote by ⌦ the open bounded set of Rd, d = 2, 3, representing the
computational domain and K can be a scalar field or a symmetric tensor.

Many physical problems fit into this framework. The dependent variables
p and j could represent, for example, the electric potential and electric cur-
rent density in a circuit, or the temperature and heat flux in a solid. Another
relevant application is the flow in a porous medium in stationary conditions.
In this case, p and j denote the fluid pressure and the Darcy velocity, respec-
tively. Equation (1a) represents then a constitutive law (also referred to as
Darcy’s law), while equation (1b) expresses the conservation of fluid mass un-
der the presence of the source/sink term f . The above mentioned applications
are characterized by a wide variety of boundary conditions, typically including
Dirichlet, Neumann and Robin types. If such standard boundary conditions
(Dirichlet, for example) are enforced on p, well-posedness of problem (1) in
the space H

1(⌦) for p is a consequence of the elimination of j as a function
of p through (1a) and the application of the Lax-Milgram Lemma to the re-
sulting second-order elliptic boundary value problem for p. This provides also
existence and uniqueness of j in the space H(div;⌦) because of (1b). However,
the simulation of complex systems in nanoscale electronics or ocular biome-
chanics gives rise to physical properties of some portions of the boundary that
do not fall into such categories, thus making it necessary to introduce novel
kinds of boundary conditions. In many cases, a boundary condition of integral
type, henceforth called integral boundary condition (IBC), may be profitably
adopted to mathematically represent the behavior of the unknowns on a sub-
set of @⌦, denoted by �ibc, where it is not possible to directly enforce the
value of p or its associated normal flux density j · n, where n is the outward
unit normal vector on the boundary of ⌦. Specifically, the following boundary
conditions can be considered: (i) the restriction p|�ibc

is equal to a constant
value (to be determined); and (ii) the integral over �ibc of the normal flux
density j · n is equal to a given value. This latter situation may occur when it
is not possible (or easy) to experimentally access the pointwise value of p on a
portion of the boundary where the global flux of the vector field j across �ibc

is a given design target. More details about such realistic applications can be
found in Section 2.

To address problems of the form (1), we carry out a complete analysis of
the formulation at the continuous level in Section 3 and we propose a Hy-
bridizable Discontinuous Galerkin method (HDG), which we adapt for the nu-
merical treatment of the novel integral boundary conditions in Section 4. The
HDG method has several attractive features: i) it provides optimal approxi-
mation of both primal and flux variables; ii) it requires less globally coupled
degrees of freedom than DG methods of comparable accuracy; iii) it allows
local element-by-element postprocessing to obtain new approximations with
enhanced accuracy and conservation properties.

The HDG implementation has been carried out using Feel++ in Section 5.
Feel++ is a C++ library for solving partial di↵erential equations in R

d
, d = 1, 2, 3

and on manifolds using a wide range of Galerkin methods, from standard fi-
nite element methods, both continuous and discontinuous, to reduced basis
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methods. Endowed with a domain specific language, whose grammar and vo-
cabulary are tailored to the description of variational formulations and their
discretization, Feel++ provides a scalable, versatile and expressive computa-
tional framework that applied mathematicians, engineers and scientists can
use to access and test a wide range of methods and problems, both classical
and newly developed.

This computational framework is then tested by various numerical experi-
ments in presence of integral boundary conditions including convergence and
performance tests in Section 5.3, and then realistic applications on large prob-
lems (up to 75 millions dofs) in Section 6. Finally, conclusions and outlook are
discussed in Section 7.

2 Applications involving an integral boundary condition

Before introducing the model problem that we will use to carry out the analy-
sis, and presenting the discretization method we will employ to tackle it, let us
give some examples of realistic problems where integral boundary conditions
naturally arise.

2.1 Floating-gate nMOS transistor in inversion conditions

The first example is the study of the distribution of the electric potential V in a
nanoscale floating-gate nMOS (Metal-Oxide-Semiconductor) transistor work-
ing in inversion conditions. The prefix “n” indicates that the electric current is
due to negatively charged electrons. A scheme of a realistic floating-gate nMOS
transistor used as a nonvolatile memory device is shown in Figure 1. Under
the assumption of electroneutrality, the distribution of V is obtained as the
solution of a linear elliptic problem that can be written in mixed form similarly
to (1) (see e.g [36, Section 6.1], [27, Sections 4.6-4.7] and [29, Section 9.1]) as:

D+ "rV = 0 in ⌦, (2a)

r ·D = 0 in ⌦, (2b)

where D denotes the electric displacement, V is the electric potential and " is
the dielectric permittivity.
The computational domain ⌦ is the three-dimensional bounded set obtained
by extruding the scheme of Figure 1 (right panel) by a width Lz along the
axis z perpendicular to the plane of the figure. The domain ⌦ is made of the
union of four subdomains, namely ⌦ox (silicon dioxide, here simply oxide), ⌦S

(source), ⌦D (drain) and ⌦B (bulk). The union of the last three subdomains
represents the silicon semiconductor region, namely ⌦si = ⌦S [⌦D [⌦B . The
subdomains, ⌦si and ⌦ox are separated by an interface surface �int = @⌦si \

@⌦ox. Figure 1 also reports the notation for the various domain boundaries
and their geometrical dimensions.
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Fig. 1: Scheme of a nonvolatile memory. The device is composed of a pair
of n-doped source and drain regions, a p-doped substrate region and a sili-
con dioxide (SiO2) region on top of which a floating gate �G is located. The
regions denoted by �S , �D and �B are the source, drain and bulk contacts,
respectively.

Equations (2) are equipped with the following boundary conditions:

V = V j + V bi,j on �j , j = S,D,B, (3a)

D · n = 0 on � lat
si [ �

lat
ox , (3b)

Z

�G

D · n d⌃ = qNB�LchLz, V is constant on �G, (3c)

and interface conditions:

JV K�int = 0, JDK�int = qNB� on �int. (4)

where J·K�int denotes the jump of a scalar or vector field across �int . The
quantity q is the electron charge, NB is the concentration of ionized dopants
in the bulk region and � is the width of the accumulation region in the y

direction of the channel, while the quantities V bi,j are the built-in potentials
associated with the subdomain regions ⌦j , j = S,D,B.
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Fig. 2: A sliced view of a so called bitter magnet [14].

2.2 A nonlinear thermoelectric application

The second example is the study of the current density distribution j, electric
potential V and temperature T in a resistive magnet. We consider a real-life
model devised within the HiFiMagnet project [14] which aims at developing
an e�cient multi-physics model for high field magnets. Let the domain ⌦ be
a 14 helices magnet (a sliced view of the magnet is shown in Figure 2). The
magnet is composed by several helices, each with a di↵erent kind of copper,
linked by rings at the top and bottom of them. Between each helix, the magnet
is cooled by passing water in the channels.

Under appropriate assumptions [13], the current density within ⌦ is de-
scribed by the following elliptic problem:

j+ �(T )rV = 0 in ⌦, (5a)

r · j = 0 in ⌦, (5b)

where V is the electric potential and � = �0/(1 + ↵(T � T0)) is the electric
conductivity which depends on the temperature, with �0, ↵ and T0 given con-
stant material parameters. The system is coupled with the following nonlinear
elliptic problem describing heat transfer:

q+ k(T )rT = 0 in ⌦, (6a)

r · q = �
kjk

2

�(T )
in ⌦, (6b)
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where q is the heat flux and k(T ) = �(T )LT is the thermal conductivity, L
being the Lorentz number, and where k·k denotes the euclidean norm.

Here, the model corresponds to an experiment where an electric potential
di↵erence is applied between �in and �out and the aim is to reach a target
current intensity I on �out. The standard approach (both in experimental and
numerical frameworks) would be to treat this as an inverse problem and test
di↵erent values of the electric potential, until the target value for the current
intensity on �out is attained. Alternatively, we can equip system (5) with the
boundary conditions:

V = 0 on �in, (7)

j · n = 0 on @⌦ \ (�in [ �out), (8)
Z

�out

j · n = I, V is constant on �out, (9)

and directly obtain the electric potential needed to achieve the target value I

for the current intensity. In addition, problem (6) is equipped with the follow-
ing boundary conditions:

q · n = hi(T � Tw) on �channeli , (10)

q · n = 0 on @⌦ \ ([i�channeli), (11)

modeling the fact that the magnet is thermally insulated on @⌦ \ ([i�channeli)
and cooled by water on �channeli , where the amount of exchanged heat depends
on a heat transfer coe�cient for each channel hi.

2.3 Tissue perfusion with applications in ophthalmology

The last example is the perfusion of the lamina cribrosa, a collagen structure
located in the optic nerve head that plays a crucial role in several diseases
such as glaucoma [21,26]. In the spirit of [?], the lamina cribrosa is modeled as
a porous material where blood vessels are viewed as isotropically distributed
pores in a solid matrix comprising collagen, elastin, extracellular matrix and
neural tissue, leading to the following time-dependent problem:

j+ kp rp = 0 in ⌦ ⇥ (0, T ), (12a)

@p

@t
+r · j = f in ⌦ ⇥ (0, T ), (12b)

where p is the Darcy pressure, j is the discharge velocity (or blood perfusion
velocity), and kp is the permeability. The domain ⌦ ⇢ R

3 represents the
spatial domain occupied by the lamina cribrosa, which is schematized as the
hollow cylinder depicted in Figure 3.

In order to account for systemic factors that influence the local perfusion,
we couple the three-dimensional (3d) model (12) for the lamina perfusion with



8 Silvia Bertoluzza et al.

⌦

⌃hole

⌃top

⌃bottom

⌃lateral

rlc
rop

hlc

UI
QI

R
⇧1

C1

R12 ⇧2

C2

R23 ⇧3

C3

Rout

⇧out

Fig. 3: Schematic representation of the multi-
scale coupled system describing the perfusion
of the lamina cribrosa in the optic nerve head.

Fig. 4: Lamina
cribrosa microstruc-
ture. Courtesy of
https://coggle.it.

a simplified zero-dimensional (0d) model for the blood circulation in the poste-
rior ciliary arteries nourishing the lamina, as depicted in Figure 3. Leveraging
the electric analogy to fluid flow, the current through the circuit corresponds
to volumetric blood flow rate and the electric potential corresponds to blood
pressure [16]. Denoting by ⇧ = [⇧1, ⇧2, ⇧3]

T the vector of unknown pres-
sures at the circuit nodes, the dynamics of the 0d circuit is described by

d⇧

dt
= A⇧ + s+ b, (12c)

where A is a matrix accounting for the e↵ect of the vascular resistances and
compliances, and

b = [QI , 0, 0]
T
, s =


0, 0,

⇧out

Rout

�T
,

with QI =
UI �⇧1

R
, where UI is the unknown pressure on ⌃lateral (assumed

to be spatially uniform). We remark that QI and UI are only functions of
time, namely QI = QI(t) and UI = UI(t).

The coupling conditions at ⌃lateral guarantee the continuity of mass and
pressure and read:

Z

⌃lateral

j · n = QI , p is a constant on ⌃lateral, (12d)

UI = p on ⌃lateral. (12e)

System (12a)� (12d) is completed by the boundary conditions:

p = phole on ⌃hole (12f)

j · n = 0 on ⌃top [⌃bottom (12g)
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with phole given, and the initial conditions:

p(x, t = 0) = p0(x) in ⌦ (12h)

⇧(t = 0) = ⇧0 . (12i)

The blood flow through the 3d-0d coupled system is driven by the pressure
di↵erence between the imposed values ⇧out and phole, representing the blood
pressure at the level of the posterior ciliary arteries and the central retinal
vein, respectively.

3 The model problem

The three realistic problems described in the previous section share some com-
mon features: they involve the mixed formulation of a second order elliptic
equation in divergence form, complemented by several boundary conditions,
among which an IBC. These characteristics are synthesized in the model prob-
lem presented in this section.

Let ⌦ ⇢ R
d denote a polygonal (for d = 2) or polyhedral (for d = 3)

domain, for which we do not assume convexity; the boundary of ⌦ is denoted
by � , whereas n is the outward unit normal vector on � . K 2 (L1(⌦))d⇥d is a
symmetric d⇥d matrix, uniformly positive definite over ⌦ and f 2 L

2(⌦). Let
the boundary � of ⌦ be partitioned into three disjoint subsets: �D,�N , and
�ibc. We assume that �̄D \ �̄ibc = ;, implying that the Dirichlet and integral
boundary portions are not adjacent.

Our goal is to solve the following mixed problem: find j, p such that:

j+Krp = 0 in ⌦, (13)

r · j = f in ⌦, (14)

subject to the non standard boundary conditions:

p = 0 on �D, j · n = gN on �N , (15)

p is an (unknown) constant on �ibc,

Z

�ibc

j · n = Itarget, (16)

where |�ibc| denotes the measure of �ibc and where Itarget is a given constant.
We use a compact notation for integrals: for functions p, q 2 L

2(D), we write
(p, q)D =

R
D
pq if D ⇢ R

d, and hp, qiD =
R
D
pq if D ⇢ R

d�1.

We next introduce a function '̄ 2 H
1/2(� ) verifying

'̄|�D
= 0, '̄|�ibc

= 1.

Since �̄D \ �̄ibc = ;, such a function exists and can be chosen as regular as

needed. We let � = span < '̄ > �H
1/2
00 (�N ), where span < '̄ > denotes the

linear space generated by the function '̄, and

H
1/2
00 (�N ) = {' 2 H

1/2(� ) : ' = 0 on �D [ �ibc}.
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We then consider the following weak formulation of (13)-(16): find j 2

H(div;⌦), p 2 L
2(⌦), bp 2 � such that for all v 2 H(div;⌦), w 2 L

2(⌦),
µ 2 �:

(K�1
j,v)⌦ � (p,r · v)⌦ + hbp,v · ni� = 0, (17a)

(r · j, w)⌦ = (f, w)⌦ , (17b)

hj · n, µi� = hgN , µi�N
+ Itarget|�ibc|

�1
hµ, 1i�ibc

. (17c)

In order to analyze Problem (17) we start by observing that, since the
normal trace operator from H(div;⌦) to H

�1/2(� ) admits a bounded right
inverse, the following inf-sup condition holds

inf
 2�
 6=0

sup
j2H(div;⌦)

j 6=0

hj · n, i�

kjkH(div;⌦)k k1/2,�
& 1, (18)

where, from here on, we will use the notation A . B (resp. A & B) to indicate
that the quantity A  cB (resp. A � cB), c being a strictly positive constant,
which, in the discrete framework, we will assume to be independent of the
mesh size parameter.

Next, we prove the following Lemma.

Lemma 1 Setting

Z = {j 2 H(div;⌦) : hj · n, i� = 0 8 2 �},

the following inf-sup condition holds

inf
p2L2(⌦)

p 6=0

sup
j2Z
j 6=0

(p,r · j)⌦
kpk0,⌦kjkH(div;⌦)

& 1. (19)

Proof In order to prove the Lemma, for any given p 2 L
2(⌦) we need to find

j 2 Z such that
(p,r · j)⌦ & kpk0,⌦kjkH(div;⌦).

Let then p 2 L
2(⌦) be given and let  2 H

1(⌦) be the zero mean solution
of

�r · (Kr ) = p in ⌦, Kr · n = bg on �,

where bg 2 L
2(� ) is defined as

bg =

(
�|� |

�1
R
⌦
p on �D,

0 on � \ �D,

so that the source term p and Neumann boundary data bg are compatible, which
implies that  is well defined and j = �Kr belongs to Z. By construction
we have

(p,r · j)⌦ =

Z

⌦

|p|
2
.
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The inf-sup bound (19) follows by observing that

kjkH(div;⌦) . k k1,⌦ . kpk(H1(⌦))0 + kbgk�1/2,� . kpk0,⌦ ,

where (H1(⌦))0 is the dual of H1(⌦).

In view of (18) and of (19), we can then prove the following Theorem

Theorem 1 For f 2 L
2(⌦), gN 2 L

2(�N ), Problem (17) admits a unique
solution (j, p, bp), with j = �Kp and bp = p|� , p satisfying p 2 H

1(⌦) and

�r · (Krp) = f in ⌦, p = 0 on �D, �Krp · n = gN on �N , (20)

as well as the non standard boundary condition:

p is constant on �ibc. (21)

Moreover, if gN satisfies suitable compatibility conditions, the non standard
boundary condition Z

�ibc

�Krp · n = Itarget (22)

is also satisfied.

Proof Using the theory developed in [30], the two inf-sup conditions (18) and
(19), imply existence, uniqueness and stability of the solution (j, p, bp). Testing
equation (17b) with an arbitrary w 2 C

1
0 (⌦) and integrating by part we can

see that rp = K
�1

j in ⌦. As, under our assumptions, K�1
2 L

1(⌦), this
implies rp 2 L

2(⌦) and, hence, p 2 H
1(⌦). By standard arguments, we can

then verify that (20) holds and that p = bp on � . Condition (21) is then encoded
directly in the definition of the space �. To conclude, we only need to prove
that (22) holds. In order to do so, we need to give a rigorous meaning of such
an equality, by showing that p has enough regularity for the integral on the
left hand side to be well defined. Indeed, writing

Z

�ibc

j · n =

Z

�

(j · n) ¯̄' with ¯̄' =

(
1 on �ibc

0 on � \ �ibc

, (23)

as ¯̄' 62 H
1/2(� ), for a generic j 2 H(div;⌦), we would not be able to give a

sense to such an integral. We start by observing that p also solves equation
(20) with standard mixed Dirichlet-Neumann boundary condition obtained by
complementing the boundary conditions in (20) with the additional boundary
condition p = bp on �ibc. It is known (see e.g. [18,19]) that, under minimal reg-
ularity assumptions on the domain and on the data, the solution of a standard
mixed Dirichlet-Neumann problem verifies p 2 W

1,q(⌦) for some q > 2, where
W

1,q(⌦) denotes the Sobolev space of Lq(⌦) function with gradient in L
q(⌦).

This, in turn, implies that j · n = �Krp · n 2 W
�1/q,q(� ) = (W 1/q,q0)0 with

q
0
< 2 such that 1/q + 1/q0 = 1 ([18, Section 1.5]). Since ¯̄' 2 W

1/2,q0(� ) ⇢



12 Silvia Bertoluzza et al.

W
1/q,q0(� ), the integral on the right hand side of (22) can be defined by du-

ality. Let now '̄0 = '̄� ¯̄'. We have

Z

�ibc

j · n =

Z

�

(j · n) ¯̄' =

Z

�

(j · n)'̄�

Z

�

(j · n)'̄0

=

Z

�N

gN '̄+ Itarget �

Z

�

(j · n)'̄0 = Itarget,

where the last equation descends from the observation that supp('̄0) = �N

and that '̄0 = '̄ on its support.

4 The HDG method

Among the many possible approaches that can be used to discretize (13)-(16)
we choose to resort to the Hybridizable Discontinuous Galerkin method (HDG)
proposed in [6]. This method has some features that make it particularly well
suited for the applications at hand: it provides a direct approximation of the
normal component of the flux density vector field across the facets of the
discretization, a quantity that is the one the end users are often interested in.
Moreover it benefits from a superconvergence property that allows for a better
accuracy when compared to other methods based on polynomials of the same
order, and the particular form considered below turns out to outperform other
methods with similar characteristics (see [8,9]).

We then consider a family of conforming, regular triangulations {Th}h>0
of ⌦ into closed d-simplices K, i.e. straight triangles if d = 2 and straight
tetrahedra if d = 3 (see [32, Chapter 3]). For each K 2 Th, we denote by hK

the diameter of K and by |K| its d-dimensional measure. We let h = max
K2Th

hK .

We let @K denote the boundary of K and n@K the associated outward unit
normal vector on @K.

To simplify the exposition we adopt the convention to use a three dimen-
sional terminology, and use the word face to refer both to the faces of a tetra-
hedron for d = 3 and to the edges of a triangle for d = 2. We let Fh denote
the collection of all the faces of Th, whose union forms the skeleton of the de-
composition Th. For all faces F 2 Fh we let |F | denote the (d�1)-dimensional
measure of F . The set Fh naturally splits into the subset F�

h
of faces belonging

to � and into the subset of faces belonging to the interior of ⌦, denoted by
F

0
h
. Finally, assuming that the decomposition Th is such that for all faces F

in Fh with F ⇢ � either F ⇢ �D, F ⇢ �N or F ⇢ �ibc, the sets of boundary
faces can be further split into the subsets F�D

h
, F�N

h
and F

�ibc

h
.

Let q 2 (L2(⌦))d with q
K = q|K 2 H(div;K) for all K 2 Th, and

p 2 L
2(⌦) with p

K = p|K 2 H
1(K) for all K 2 Th. Let F = @K1 \ @K2,

K1,K2 2 Th, be a face belonging to F
0
h
. Then we can define the jump JqKF 2

H
�1/2(F ) of the normal trace of q as well as the jump JpKF 2 H

1/2(F ) of the
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scalar field p across F as

JqKF = q
K1 · n@K1 |F + q

K2 · n@K2 |F . (24)

JpKF = p
K1n@K1 |F + p

K2n@K2 |F . (25)

It can be proved (see [32, Prop. 3.2.2]) that

JqKF = 0 8F 2 F
0
h

, q 2 H(div;⌦). (26)

4.1 The HDG formulation

Let us introduce the finite element spaces:

Vh =
Y

K2Th

V(K), Wh =
Y

K2Th

W (K), Mh = M
⇤
h
� fMh (27)

with:

fMh = {µ 2 L
2(Fh) |µ|F 2 Pk(F ) 8F 2 F

0
h
[ F

�N

h
, µ|�D[�ibc

= 0}, (28)

M
⇤
h
= {µ 2 L

2(Fh) |µ|�ibc
= ↵, ↵ 2 R, µ|Fh\�ibc

= 0}, (29)

where, as proposed in [6], the local spaces are

V(K) = Pk(K), W (K) = Pk(K), M(F ) = Pk(F ), (30)

Pk(K) (resp. Pk(F )) denoting the space of polynomials of degree less or equal
to k on K (resp. F ), k � 0, with Pk(K) = (Pk(K))d. Definitions (27) and (30)
imply that functions belonging to Vh and Wh are, in general, discontinuous
across element edges in 2D and element faces in 3D of Th, whereas functions
in Mh are discontinuous across element vertices in 2D and element edges in
3D of Fh \ F

�ibc

h
, single-valued on each face F 2 Fh of the skeleton of Th and

constant on �ibc.
The functions of Mh play the role of “connectors” between adjacent ele-

ments that, otherwise, would be irremediably uncoupled in the discretization
process (see Section 5). For a mechanical interpretation of the interelement
connecting role of the space Mh, see [5] and references cited therein.

Defining the numerical normal flux on @K as

bj@K
h

· n@K = j
K

h
|@K · n@K + ⌧@K(pK

h
|@K � bph|@K), (31)

the discrete formulation reads: find jh 2 Vh, ph 2 Wh and bph 2 Mh such that
8vh 2 Vh, 8wh 2 Wh and 8µh 2 Mh:

X

K2Th

⇥
(K�1

j
K

h
,v

K

h
)K � (pK

h
,r · v

K

h
)K + hbph,vK

h
· n@Ki@K

⇤
= 0, (32a)

X

K2Th

h
�(jK

h
,rw

K

h
)K + hbj@K

h
· n@K , w

K

h
i@K

i
=

X

K2Th

(f, wK

h
)K , (32b)

X

K2Th

hbj@K
h

· n@K , µhi@K = hgN , µhi�N
+ Itarget|�ibc|

�1
hµh, 1i�ibc

. (32c)
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The dependent variables jh and ph are the approximations of j and p in
the interior of each element K 2 Th, whereas the dependent variable bph is
the approximation of the trace of p on each face of Fh. The numerical normal
flux (31) is characteristic of a particular class of HDG methods, the so-called
Local Discontinuous Galerkin Hybridizable (LDG-H) methods proposed and
investigated in a series of seminal papers [8,10,11,9].

The quantity ⌧@K is a nonnegative stabilization parameter and may assume
di↵erent values on each face F 2 @K depending on the mesh element which F

belongs to. We notice that if ⌧@K ' O(h�1), the second term on the right-hand
side of (31) may be regarded as an artificial di↵usion, thus justifying the name
stabilization parameter attributed to ⌧@K .

Equations (32a) and (32b) are the HDG discrete counterpart of equa-
tions (17a) and (17b), respectively. These discrete equations hold in the interior
of each K 2 Th and can be solved for each K to eliminate jK

h
and p

K

h
in favor of

the variable bp@K
h

. This elimination procedure is called static condensation and
was introduced for the first time in [38] in the context of dual mixed methods
for equilibrium in stress analysis and, subsequently, in [2] in the context of
the analysis and implementation of the dual mixed-hybridizable finite element
method.

Combining this procedure with equation (31) for each K 2 Th, it is possible
to express the normal numerical flux as a function of the sole variable bp@K

h
.

At this point, we can use the remaining equations (32c). It is convenient to
rewrite these equations in a di↵erent form by exploiting the property of the
test function µh of being single-valued on each face of Fh and discontinuous
across face edges. This leads to three sets of distinct equations. One group of
equations enforces in a weak sense the interelement continuity of the normal
component of bjh across each internal face as

hJbjhK, µhiF = 0, 8F 2 F
0
h
, µh 2 Mh. (33)

Another group of equations enforces, again in a weak sense, the Neumann
boundary condition (equation (15), right) as

hbjh · n, µhiF = hgN , µhiF , 8F 2 F
�N

h
, µh 2 Mh. (34)

We are left with a single scalar equation weakly enforcing the integral boundary
condition (equation (16), right) as

hbjh · n, µhi�ibc
= Itarget|�ibc|

�1
hµh, 1i�ibc

, µh 2 Mh. (35)

In [2], it was proven that bph|F0
h

can also be interpreted as a Lagrange multiplier
associated with the continuity condition (33). Similarly, we could prove that
bph|�ibc

is the multiplier associated with the integral boundary condition (35),
thereby implying the condition on the left hand side of (16).

More details about the implementation will be provided in Section 5.

Remark 1 (Dirichlet boundary condition) The boundary condition (equation
(15), left) on the dependent variable bph is enforced in an essential manner in
the definition of the trial space Mh as in the standard CG method.
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Theorem 2 (Existence and uniqueness of the discrete solution) The
discrete problem (31)–(32) has a unique solution.

Proof Proposition 3.1 of [6] holds unchanged. Indeed by testing the discrete
equations with (vh, wh, µh) = (jh, ph,�bph) and integrating by parts, also in
our case we obtain the discrete energy equation

(K�1
jh, jh)⌦ +

X

K2Th

⌧@Khph � bph, ph � bphi@K = (f, ph)⌦

�hgN , bphi�N
� Itarget|�ibc|

�1
hbuh, 1i�ibc

.

Now, to prove uniqueness (which, in the finite dimensional setting, implies
existence) we need to prove that vanishing data yield the null solution. Let
then f = 0, gN = 0 and Itarget = 0. The discrete energy equation then
imply jh = 0 and p

K

h
= bph on @K for all K. Testing equation (32a) with

v
K

h
= rp

K

h
2 V(K) we obtain that rp

K

h
is a constant for all K. Then bph is a

constant itself, which is necessarily 0, due to the Dirichlet boundary condition.

In order to provide an a priori bound on the discretization error, let (j, p)
be the solution of Problem (13)–(14) with boundary conditions (15)–(16).
Observe that, by Theorem 1, p 2 H

1(⌦), and this allows us to define bp as the
trace of p on the skeleton. In order to prove an error estimate we start with
an observation: let PMh

: L2(Fh) ! Mh denote the L
2 projection onto Mh.

Thanks to the definition of Mh, it turns out that the value of PMh
(bp)|�ibc

is
the average of bp on �ibc. Since bpis a constant on �ibc, we have

PMh
(bp) = bp = p on �ibc. (36)

Moreover, letting PcMh

: L2(Fh) ! cMh denote the L
2 orthogonal projection

onto the auxiliary space

cMh = {q 2 L
2(Fh) : q|F 2 Pk(F ) 8F 2 Fh} ◆ Mh,

we have that PcMh

p = PMh
p. In view of this observation, Theorem 3.4 of [6]

holds with unchanged proof also in our case, that is, we have the following
theorem.

Theorem 3 Letting

ej = ⇧j� jh, ep = ⇧p� ph, ebp = PcMh

p� bph,

we have that

kejk
2
0,⌦ +

X

K2Th

⌧@K |e
K

p
� ebp|

2
0,@K . |⇧j� j|

2
0,⌦ .

Morover, if the elliptic regularity estimate kuk2,⌦ . kr · (Kru)k0,⌦ holds for
all u 2 H

1
0 (⌦) with r · (Kru) 2 L

2(⌦), then we have that

kepk0,⌦ . h
min{k,1}

k⇧j� jk0,⌦ .
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We now recall that, if j|K 2 (Hk+1(⌦))d with r · j 2 H
k+1(⌦), and

p 2 H
k+1(⌦) then we have ([6, Theorem 3.3])

|⇧
K
j� j|0,K . h

k+1
K

|j|k+1,K + h
k+1
K

⌧@K |p|k+1,K , (37)

|⇧
K
p� p|0,K . h

k+1
K

⌧@K |p|k+1,K + h
k+1
K

⌧
�1
@K

|r·j|k+1,K , (38)

which yields

|ep|0,⌦ . h
k+1 and |ej|0,⌦ . h

k+1+min{k,1}
,

and then, by triangular inequality,

kp� phk0,⌦ . h
k+1 and kj� jhk0,⌦ . h

k+1
.

Remark 2 We would like to point out that resorting to the proposed HDG
method is by no means the only viable option to solve (13)-(16), and other
methods exist, such as the hybridized version of the order k Brezzi-Douglas-
Marini method, that, by using polynomials of di↵erent order for the di↵erent
spaces, potentially yield the same order of convergence, possibly with less
degrees of freedom. However, it has been observed that the HDG method here
considered allows to achieve an overall better accuracy than several of such
methods with minimal computational overhead (see [8,9]), which justifies our
choice.

4.2 Static condensation

As it is customarily done for the HDG method, using a static condensation
approach, the system (31)–(32c) can be recast in terms of a global linear
system for the sole unknown bph (the numerical trace of the solution on the
boundaries of the mesh elements). More precisely, equations (32a) and (32b)
can be locally solved, yielding, in each element, jK

h
and p

K

h
as a function of bph.

We can then substitute j
K

h
= j

K

h
(bph) and p

K

h
= p

K

h
(bph) into (32c) to obtain

an equation for bph.
In order to account for the integral boundary condition in the static con-

densation procedure, we leverage the splitting Mh = fMh �M
⇤
h
, which allows

us to split bph and µh as bph = bp1,h+� ¯̄' and µh = µ1,h+⇠ ¯̄' with bp1,h, µ1,h 2 fMh

and �, ⇠ 2 R, where ¯̄' is defined in (23). The resulting linear system is natu-
rally split as 0

BB@

A14

A0 �A24

0
A

T

14 A
T

24 0 �A44

1

CCA

| {z }
A

0

BB@

J

P

bP1

�

1

CCA

| {z }
U

=

0

BB@

0

Af

0
0

1

CCA

| {z }
B

. (39)
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We observe that A0 is the matrix corresponding to the monolithic discretiza-
tion of the HDG discretization with homogeneous boundary conditions on
�D [ �ibc. The matrix A is obtained by complementing A0 with a single line
and column, accounting for the contribution of the space M

⇤
h

⇠ R to the
test and trial functions. The vectors A14 and A24, as well as the scalar A44

are obtained by assembling local contributions corresponding to the following
bilinear operators:

A
K

14 $ h� ¯̄',vK

h
· n@Ki@K (40)

A
K

24 $ h⌧@K� ¯̄', w
K

h
i@K , (41)

A
K

44 $ h⌧@K� ¯̄', ⇠ ¯̄'i@K . (42)

Remark 3 If more than one independent integral boundary conditions are im-
posed on di↵erent connected components of �ibc, we will have to complement
A0 with one row and one column for each component.

Eliminating J and P by static condensation results in a system of the form

✓
S B

T

B C

◆

| {z }
D

✓ bP1

�

◆

| {z }
= F+GN +G�ibc

, (43)

where GN is the vector containing the elements of hgN , µ1,hi�N
in the de-

grees of freedom corresponding to Neumann faces and zeros everywhere else,
whereas G�ibc

is a vector that has only zeros except for one single entry con-
taining Itarget|�ibc|

�1
h⇠ ¯̄', 1i�ibc

in the degree of freedom corresponding to faces
on F

�ibc

h
. The vector F and the matrix S are, respectively, the right hand side

and matrix obtained by static condensation of the HDG system with homoge-
neous Dirichlet boundary conditions on �D [�ibc and homogeneous Neumann
boundary conditions on �N (details on how such matrix and vector are con-
structed can be found in [7]). Observe that the Dirichlet boundary condition
p = 0 on �D is enforced onto bph = bp1,h + � ¯̄' in an essential manner in the

definition of the spaces fMh and M
⇤
h
. The resulting global system has smaller

size than other DG methods of comparable accuracy [10], and this results in
renewed interest in HDG, also because, after solving the global system, the
unknowns can be recovered locally, in parallel.

Remark 4 The linear system (39) could be solved in a monolithic way without
resorting to static condensation. However, such an approach would be imprac-
tical and ine�cient, as, letting Nibc denote the number of independent integral
boundary conditions, the size of the system is

dimVh + dimWh + dimMh = card{K}⇥ (nV + nW )

+ card{F0
h
[ F

�N

h
}⇥ dimnfM +Nibc ⇥ dimnM

⇤
h| {z }

=1

,
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Fig. 5: Comparison between the connectivity of the continuous Galerkin (CG)
and HDG methods in the case d = 2 without integral boundary conditions.
Cubic polynomials are used for both methods. Black circles identify the nodal
degrees of freedom of the CG method whereas black circles and black squares
identify the degrees of freedom of the HDG method on the boundary and in
the interior of each element, respectively. Left panel (CG method): all the
elements sharing node I contribute to the connections between node I and
the remaining nodes in Th. The number of connections (I, J) is equal to 37.
Right panel (HDG method): the two neighboring elements are interconnected
by the boundary degrees of freedom highlighted in the light blue rectangle.
The number of connections (I, J) in the global system is equal to 24.

which is indeed much larger than the standard Continuous Galerkin and Hy-
bridizable Discontinuous Galerkin counterparts.

4.3 Connectivity and partitioning

In absence of integral boundary conditions, the HDG method has degrees of
freedom inside each element and on each face of Fh. Therefore, unlike the
case of the standard continuous Galerkin (CG) method, no degree of freedom
is associated with the mesh vertices. This property makes the HDG method
extremely e�cient as far as coding is concerned because of its binary con-
nectivity structure, i.e., two elements K1 and K2 belonging to Th share their
degrees of freedom (including those in their interiors) only if they share a face.
This is not the case with the CG method for which nodal continuity at vertices
connects the degrees of freedom of a number of elements that is not possible
to predict a priori and which depends strongly on the regularity of the mesh.
This issue is thoroughly discussed in [25] where a detailed comparison between
the computational performance of the CG and HDG methods is carried out in
the case d = 3. An example of the di↵erent connectivity structure associated
with the CG and HDG approaches is shown in Figure 5 in the case of the space
Wh with polynomial degree k = 3. Piecewise cubic continuous elements are
used also for the CG method. We see that, for the same polynomial degree,
the HDG scheme has a far lower connectivity than that of the CG method.
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The presence of an integral boundary condition slightly alters the connec-
tivity of the HDG (and CG) method. All the faces F 2 F

�ibc

h
share a single

common degree of freedom �2,h. This fact couples all the degrees of freedom
on @K for all the elements K 2 Th having, at least, one face F 2 @K \F

�ibc

h
.

Therefore, denoting by nM the dimension of Pk(F ), F 2 Fh, the row (column)
of the global matrix H corresponding to �2,h will have as many 1⇥ nM block
rows (nM ⇥ 1 block columns) as the number of faces F /2 F

�ibc

h
belonging to

the elements coupled by the integral boundary condition, that is, the number
of faces in the following sets:

Eibc =
n
K 2 Th, @K \ F

�ibc

h
6= ;

o
(44)

Fibc =
n
F 2 Fh |F 2 @K \ F

�ibc

h
, with @K \ F

�ibc

h
6= ;, 8K 2 Th

o
. (45)

This property has an important consequence for parallelism: the integral
boundary condition induces parallel communications between each element in
Eibc. To avoid considerable performance loss, the elements in Eibc should all
belong to the same partition. This can be achieved by stating that all elements
Eibc are neighbors through the faces in {F ;F 2 @K \F

�ibc

h
} when setting the

graph to be partitioned. Numerical experiments reported in Section 5 illustrate
this property.

The process of static condensation outlined above can be easily extended
to the case of N di↵erent integral boundary conditions.

In such a situation, the set Fh of faces of Th is split as follows

Fh = F
0
h
[ F

�N

h
[ F

�D

h
[ F

�
1
ibc

h
[ · · · [ F

�
N
ibc

h
,

and the finite element space for the numerical trace bph becomes

Mh = M
⇤,1
h

� · · ·�M
⇤,N
h

e�Mh,

where fMh is defined as before, and, for i = 1, . . . ,N ,

M
⇤,i
h

= {µ 2 L
2(Fh) | µ|F 2 R 8F 2 F

�
i

ibc

h
, µ|F = 0 8F 2 Fh \ F

�
i

ibc

h
}.

Remark 5 (Performance) A comparison between CG and HDG methods is
carried out in [25]. We reached similar conclusions for standard boundary con-
ditions. To compare the HDG and CG formulations in the presence of integral
boundary conditions, we need to develop some strategies to handle the condi-
tions in CG. Possible approaches include: (i) solving an inverse problem using
a standard CG problem with Dirichlet condition on the potential; (ii) solving
a CG problem using Lagrange multipliers to enforce the IBC; (iii) solving a
mixed CG problem using Lagrange multipliers. The former method is clearly
more expensive than the HDG formulation in the present paper. A full com-
parison is beyond the scope of this paper and will be treated in a future pub-
lication. However in Section 6.2 we show a simple comparison with a variant
of (i) to solve a real life problem.
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5 Computational framework

We discuss in the following the computational framework implementing the
mathematical concepts described in the previous sections. We start by a gen-
eral introduction to the Open Source library Feel++ and then move to the
actual implementation showing the one-to-one relationship with the mathe-
matical framework. Next, we discuss some specific aspects of HDG, namely
the static condensation process and the algebraic representation. Even though
parallelism is hidden in the framework, we provide here some details since
HDG o↵ers interesting opportunities implemented in Feel++ . Finally we illus-
trate partitioning, performances and convergence tests in presence of integral
boundary conditions.

5.1 Feel++ general description

The computational framework described hereafter is based on the Finite Ele-
ment Embedded Library in C++ (Feel++ ). Feel++ allows using a very wide range
of Galerkin methods, as well as other numerical methods such as domain de-
composition methods including mortar and three fields methods, fictitious
domain methods or certified reduced basis. The ingredients of the software
include a very expressive embedded language, seamless interpolation, mesh
adaption and seamless parallelization. Feel++ has been used in various contexts
including the development and numerical verification of (new) mathematical
methods or the development of large multi-physics applications. The range of
users span from mechanical engineers in industry, physicists in complex flu-
ids, computer scientists in biomedical applications to applied mathematicians
thanks to the shared common mathematical embedded language hiding linear
algebra and computer science technical issues.

Feel++ provides a mathematical kernel for solving partial di↵erential equa-
tions using arbitrary order Galerkin methods (fem, sem, cg, dg, crb) in 1d,
2d, 3d and manifolds using simplices and hypercubes meshes [31]. It is based
on: (i) a polynomial library allowing for a wide range polynomial expansions
including Hdiv and Hcurl elements; (ii) a light interface to Boost.UBlas,
Eigen3 and PETSc/SLEPc as well as a scalable in-house solution strategy;
(iii) a language for Galerkin methods starting with fundamental concepts such
as function spaces, linear and bilinear forms, operators, functionals and inte-
grals; (iv) a framework that allows user codes to scale seamlessly from single
core computation to thousands of cores and enables hybrid computing.

Feel++ takes advantage of the newest C++ standard (C++17) such as type in-
ference and the Boost C++ Libraries such as theBoost.Parameter,Boost.Fusion,
Boost.Hana or Boost.MPL and many more. These language enhancements
and libraries favor the development of very concise, robust and expressive
C++ codes.
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5.2 HDG Implementation in Feel++

Feel++ provides the mathematical language ingredients to implement HDG
methods in C++ thanks to its Galerkin Domain Specific Embedded Language
(DSEL).

We start with the function spaces and meshes. First, we need to construct
F

ibc

h
and Fh \ F

ibc

h
.

// Th(⌦)
auto mesh=loadMesh( _mesh=new Mesh <Simplex <d >>);

// filter to retrieve the complement of F ibc
h in Fh

auto complement_integral_bdy = complement(faces(mesh),

[&mesh]( auto const& e ) {

if ( e.hasMarker () &&

e.marker (). matches(mesh ->markerName("Ibc*") ) )

return true;

return false;

});

// Fh \ F ibc
h

auto face_mesh = createSubmesh( mesh ,

complement_integral_bdy );

// F ibc
h

auto ibc_mesh = createSubmesh( mesh ,

markedfaces(mesh ,"Ibc*"));

Then, we need to construct the spaces Vh,Wh,
fMh and M

⇤
h
. We also would

like to handle an arbitrary number of integral boundary conditions, the number
of which will only be known at execution. We have

Xh = Vh ⇥Wh ⇥ fMh ⇥ (M⇤
h
)n

The specification of the function spaces is obtained as follows:

Vh_ptr_t Vh = Pdhv <OrderP >( _mesh=mesh );

Wh_ptr_t Wh = Pdh <OrderP >( mesh );

Mh_ptr_t Mh = Pdh <OrderP >( face_mesh );

// only one degree of freedom

Ch_ptr_t Ch = Pch <0>( ibc_mesh );

// n IBC

auto ibcSpaces = product( nb_ibc , Ch);

auto Xh = product( Vh , Wh, Mh, ibcSpaces );

Next we define the linear and bilinear forms on Xh and start assembling
terms as follows:

auto a = blockform2( Xh )

auto rhs = blockform1( Xh );

. . .

// Assembling the right hand side

rhs(1_c) += integrate(_range=elements(mesh),_expr=-f*id(w));

. . .

// Assembling the main matrix

a(0_c ,0_c) += integrate(_range=elements(mesh),

_expr=( trans(lambda*idt(u))*id(v)) );

. . .

//hp̂h|M̃
h
,vK

h
· n@Ki

a(0_c ,2_c) += integrate(_range=internalfaces(mesh),
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_expr=( idt(phat )*( leftface(trans(id(v))*N())+

rightface(trans(id(v))*N()))));

where 0_c, 1_c, 2_c . . . refer to the index at compile time of the test or trial
function spaces in Xh (Xh). Hence a(0_c,0_c) refers to the terms associated
with the flux.

We can choose at runtime whether to solve the problem using static con-
densation or the monolithic approach. Although the latter approach becomes
rapidly ine�cient in 3D as the number of elements in the mesh increases, it is
useful to provide its construction to debug and verify the static condensation
process. Finally, preconditioners such as algebraic multigrid or alternatives
from PETSc are used to solve the system. A matrix-free method might be
also employed, however the preconditioning approach would then have to be
redesigned.

In presence of several IBCs the framework enables a dynamic access to
each of them using a relative index to the corresponding block as shown in the
following code:

// A30 dealing with the i-th IBC

a( 3_c , 0_c, i, 0 ) +=

integrate( _range=markedfaces(mesh ,"Ibc"),

_expr=( trans(idt(u))*N()) * id(nu) );

The last step consists in solving the problem using either the monolithic or
static condensation strategy and retrieve the components (flux and potential)
of the solution field:

auto U = Xh.element ();

// static condensation is done during the solve

a.solve(_solution=U, _rhs=rhs , _name="hdg");

// get views over each component

auto up = U(0_c); // element of Vh

auto pp = U(1_c); // element of Wh

auto phat = U(2_c); // element of Mh

auto ip = U(3_c ,0); // element of M⇤
h

In order to reconstruct the flux and potential once the trace has been ob-
tained, the local solvers take advantage of the embarrassingly parallel context
using multi-threading, including within the MPI process when we run in par-
allel. Similar considerations apply whenever the solution is postprocessed to
get a potential of enhanced accuracy and/or a flux with better conservation
properties, i.e. 2 H(div;⌦).

5.3 Convergence tests

We now turn to the verification step by checking the convergence of the HDG
algorithm for the mixed Poisson problem (46) in 2D and 3D domains. Here
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we assume that K is the identity matrix:

j+rp = 0 in ⌦,

r · j = f in ⌦,

p = gD on �D,

j · n = gN on �N ,
Z

�ibc

j · n = Itarget, p constant on �ibc,

(46)

where the 2D and 3D domains are built by constructive solid geometry: in 2D

⌦⌘ ⌦
2d = D(0, 1, (0, 90))\D(0, 0.5, (0, 90))
�D = {(x, y) 2 � | y = 0}, �ibc = {(x, y) 2 � |x = 0}, �N = � \ (�D [ �ibc),

where D(x, R, (0, 90)) is the disk arc between 0o and 90o of radius R centered
in x and, similarly, in 3D

⌦⌘ ⌦
3d = {(x, y, z) 2 R

3
|(x, y) 2 ⌦

2d
, z 2 [0, 1]}

�D = {(x, y, z) 2 � | y = 0}, �ibc = {(x, y, z) 2 � |x = 0}, �N = � \ (�D [ �ibc).

Exact solutions in 2D are:

j =
1

2⇡

0

B@

�y

x2 + y2
x

x2 + y2

1

CA , p =
1

2⇡
atan2(y, x),

and in 3D are:

j =
atan2(y, x) cos(xyz)

2⇡

0

@
yz

xz

xy

1

A+
1 + sin(xyz)

2⇡(x2 + y2)

0

@
�y

x

0

1

A ,

p =
1

2⇡
atan2(y, x)(1 + sin(xyz)).

The domains and exact solutions in 2D are presented in Figure 6. In 3D,
the domain is obtained by extruding the 2D domain.

Thanks to the assumption that �D and �ibc are not adjacent, for the con-
tinuous problem the non homogeneous Dirichlet boundary conditions can be
reduced, by a standard approach, to homogeneous boundary conditions, with-
out impacting the integral boundary condition. In practice, at the the discrete
level, the non homogeneous Dirichlet boundary conditions are treated as they
usually are when dealing with the standard mixed Dirichlet-Neumann bound-
ary conditions case.

The results in 2D and 3D are shown in Figures 7(a) and 7(b), respectively.



24 Silvia Bertoluzza et al.

(a) 2D exact flux. (b) 2D exact potential.

Fig. 6: Computational domain and exact solution in 2D.

10�1.8 10�1.6 10�1.4 10�1.2 10�1
10�13

10�11

10�9

10�7

10�5

10�3

h

||
·
||
0
,⌦

Potential P0(1) Potential P1(2) Potential P2(3)

Potential P3(4) Potential P4(5.1) Flux P0(1)

Flux P1(2) Flux P2(3) Flux P3(4)

Flux P4(5)

(a) 2D

10�1.4 10�1.2 10�1 10�0.8
10�9

10�8

10�7

10�6

10�5

10�4

10�3

10�2

h

||
·
||
0
,⌦

Potential P0(1) Potential P1(1.9) Potential P2(2.9)

Potential P3(3.7) Potential P4(4.9) Flux P0(1)

Flux P1(1.9) Flux P2(2.9) Flux P3(3.8)

Flux P4(5)

(b) 3D

Fig. 7: Convergence with IBC conditions.

The expected convergence rates (see Theorem 3) are obtained for polyno-
mials up to degree 4.

5.3.1 Partitioning and parallel performance

Following the discussion in Section 4.3, we now turn to a numerical experiment
to illustrate specific treatment of the partitioning. Feel++ uses MPI as a parallel
framework and partitioning is handled through the library Metis [24]. In the
presence of integral boundary conditions, we need to adapt the element wise
graph data structure to force the partition algorithm to aggregate the elements
in Eibc on the same partition to avoid communication. Without this change,
the parallel performance can seriously deteriorate.

We conducted a performance study on a 30⇥106 dofs problem, solving (46)
in the 3D domain, to investigate the e↵ect of the aggregated mesh partitioning
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SOLVER COMPUTATIONAL GAIN
Partitioning np = 2 np = 4 np = 8 np = 16
Standard 1 (1132.7) 2.74(412.666) 0.06(17147.3) 0.05(21778.5)
Adapted 1.01(1145.71) 2.66(424.482) 3.19(354.697) 36.22(31.27
Gain 1.01 0.97 48.34 696.42

Table 1: The first and second rows display the speedup relative to np = 2
(row-wise) with the absolute timing in parenthesis. The last row corresponds
to the gain with respect to the same partitioning (column-wise)

(a) 4 subdomains (b) 8 subdomains (c) 16 subdomains

Fig. 8: Standard partitioning. The colors identify the process identifier for
np = 4, 8, 16.

(a) 4 subdomains (b) 8 subdomains (c) 16 subdomains

Fig. 9: Aggregated partitioning. The colors identify the process identifier for
np = 4, 8, 16.

proposed in the case of integral conditions on np = 2, 4, 8, 16 processors. Table
1 presents the results with and without aggregation. Figures 8 and 9 illustrate
the partitioning without and with aggregation respectively. In the latter case,
one can see that on the IBC face the elements belong to the same processor.

With 2 and 4 processors the results are very similar since the boundary with
the integral condition hasn’t been partitioned. With 8 processors, the solver
in the aggregation partitioning test case is almost 50 times faster than in
the case without aggregation. With 16 processors, the solver computational
time with aggregation partitioning is nearly 700 times faster than without
the aggregation (see Table 1).
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6 Numerical simulation of realistic problems and a real application

In this section, we aim at demonstrating the potential of the theoretical and
computational framework described above. By tackling the problems presented
in Section 2, we show that the newly introduced integral boundary condition,
together with its HDG discretization, can successfully address problems of dif-
ferent nature arising in science, engineering and medicine. More precisely, in
the simulation of a floating-gate nanoscale electronic device (see Section 6.1)
the combined adoption of the IBC, the interface condition and the HDG dis-
cretization method allows us to obtain an accurate prediction of the threshold
voltage of the device; in the simulation of a high field magnet (see Section 6.2)
which deals with a nonlinear model coupling electric potential and temper-
ature with material properties depending on the temperature, the adoption
of the IBC allows us to directly retrieve the value of the potential di↵erence
that must be applied to obtain a target current without the need to resort to
a feedback loop or to the solution of an inverse problem; the time-dependent
multiscale PDE-ODE problem arising in biomedical application from the cou-
pling of a 3d tissue perfusion with the systemic circulation (see Section 6.3), is
accurately, e�ciently and naturally handled, at each time step, by the HDG
approach for solving elliptic problems with the adoption of the IBC.

While they share a similar conceptual structure, including integral bound-
ary conditions, which is the main object of study of the present paper, the three
problems have, each, di↵erent mathematical and computational challenges in
adition to those embodied in the basic linear elliptic problem discussed in
Section 3. The results reported in this section show that the computational
framework described in detail for linear elliptic problems is quite flexible and
can be easily adapted to di↵erent situations, including also large-scale com-
puting problems.

6.1 Floating-gate nMOS transistor in inversion conditions

We consider here the simulation of a floating-gate nMOS transistor in inversion
conditions, modeled by equation (2a) and (2b) with boundary conditions given
by (3a), (3b) and (3c) and interface condition (4). This can be cast as particular
instance of the model problem (13)–(14) for j = D, p = V and K = "I (I
denoting the identity matrix).

The dielectric permittivity " in equations (2a) and (48) below can be writ-
ten as " = "0"r, where "0 is the dielectric permittivity of vacuum and "r is
the relative dielectric permittivity of silicon and oxide, equal to "si

r
in ⌦si and

"
ox
r

in ⌦ox, respectively. The quantity � can be estimated using a simplified
one-dimensional theory from solid state physics (see [29, Section 9.1]) as

� =

s
4"0"sir Vth ln(NB/ni)

qNB

, (47)
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where ni is the silicon intrinsic concentration and Vth is the thermal voltage
(see [36, Chapter 2]). The built-in potentials associated with the subdomain
regions ⌦j , j = S,D,B are given by:

V bi,S = +Vth ln

✓
NS

ni

◆
, V bi,D = +Vth ln

✓
ND

ni

◆
, V bi,B = �Vth ln

✓
NB

ni

◆
,

NS and ND being the concentrations of the ionized dopant impurities in the
source and drain regions, respectively.

Tables 2 and 3 report the values of physical and geometrical parameters
used in the simulations.

Parameter Symbol Value Units
Electron charge q 1.602 · 10�19 C
Permittivity of vacuum "0 8.854 · 10�12 F m�1

Relative permittivity of silicon "sir 11.7 [�]
Relative permittivity of silicon dioxide "oxr 3.9 [�]
Thermal voltage (at T = 300K) Vth 0.02589 V
Intrinsic concentration (at T = 300K) ni 1.45 · 1016 m�3

Table 2: Values of physical parameters. Data from [29].

Parameter Symbol Value Units
Horizontal length Lx 480 · 10�9 m
Vertical length Ly 320 · 10�9 m
Width Lz 320 · 10�9 m
Oxide thickness tox 10 · 10�9 m
Source and drain lengths |�S |, |�D| 160 · 10�9 m
Channel length Lch 40 · 10�9 m
Junction depth tJ 106 · 10�9 m
Source potential V S 0 V
Bulk potential V B 0 V
Drain potential V D 0 V
Source doping concentration NS 1026 m�3

Bulk doping concentration NB 5 · 1022 m�3

Drain doping concentration ND 1026 m�3

Table 3: Values of input parameters for device simulation.

The main goal of the simulations is to determine, via the integral bound-
ary condition (3c), the value attained on �G at inversion conditions by the
electric potential. This value is the threshold voltage of the device, denoted
henceforth by VT , and is a fundamental design parameter in integrated circuit
nanoelectronics (see [29] and [1]). The electric field E = �rV can be easily
determined on each K 2 Th by inverting the algebraic equation

D = "E in ⌦, (48)
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which, according to the theory of Maxwell equations [23], relates the electric
field to the electric displacement D, unlike standard displacement-based finite
element formulations, for which the electric field needs to be post-processed
through numerical di↵erentiation of the electric potential V . Figure 10(a) illus-
trates the 3D distribution of the computed electric potential superposed with
the vector plot of the electric field. We notice that the electric potential is an
increasing function of the vertical coordinate y, negative at the bulk contact
and positive at the source and drain contacts. The predicted value of VT is
positive and given by V

computed
T

= 0.8337965 V. The sign of V computed
T

is in
physical agreement with the fact that the transistor is of n type, so that elec-
tron charges are attracted from the bulk region up towards the gate contact.
To quantitatively assess the accuracy of the estimate of the threshold voltage
we adopt the analytical theory for an ideal MOS system developed in [29,
Chapter 8] and use formula (8.3.18) of [29] to obtain V

ideal
T

= 0.8591, which
agrees with the value predicted by the numerical simulation within 3%. This
result demonstrates that the combined adoption of the interface condition (4)
and of the integral boundary condition (3c), in conjunction with the use of the
HDG discretization method, are able to provide a very accurate prediction of
the threshold voltage of the device.

It is remarkable to notice that this latter quantity is always directed from
the gate of the device towards the bulk contact of the device in such a way to
attract electron charge from the bulk region towards the interface �int to form
the conductive channel. We can also notice the separation lines between the
source and bulk regions and the drain and bulk regions, which correspond to a
change of the sign of the ionized dopant charge density (positive in ⌦S and ⌦D,
negative in ⌦B). Figure 10(b) shows a vector plot of the computed electric field
with a color map of its strength throughout the device. Results clearly indicate
that the electric field is mainly directed parallel to the y axis except in the
region comprising the oxide layer, the interface and the two source and drain
contacts, where the electric field arrows strongly deviate from the y direction
and point from the floating gate towards the two contacts, in accordance with
the fact that the electric potential is much higher on �G than on �S and �D.

Figure 11(a) shows a 1D cut of the computed electric potential at x = Lx/2
along the y axis. We notice that the spatial distribution of V is approximately
linear in both semiconductor and oxide regions, with a change in the slope
across the interface coordinate y = Ly = 320nm. This is physically consistent
with the fact that (a) the relative dielectric constant "r has a jump between sil-
icon and oxide and (b) there is no space charge density inside each region of the
device (the right-hand side of the Poisson equation (2b)). To further support
these considerations about the electric potential V , we show in Figure 11(b)
the 1D cut of the computed electric field strength at x = Lx/2 along the y

axis. We notice that the field is discontinuous across the interface, in agree-
ment with (a), and that it is approximately constant in both semiconductor
and oxide regions, in agreement with (b).
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(a) (b)

Fig. 10: (a) 3D view of the potential with electric field direction. (b) 3D view
of the electric field with direction.

(a) (b)

Fig. 11: (a) 1D cut of the electric potential at x = Lx/2. (b) 1D cut of the
electric field at x = Lx/2. In both panels the abscissa is the y direction. In
panel (a) the y-axis is the potential whereas in panel (b) the y-axis is the
magnitude of the electric field.
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6.2 A nonlinear thermoelectric application

We now consider the simulation of the current density, potential and tem-
perature in one of the resistive magnet from the national laboratory of high
magnetic fields (LNCMI, France) , a modeled by the coupled equations (5)
and (6). Both problems can be cast as a particular instance of problem (13)-
(14), where j (resp. p and K) in (13)-(14) corresponds to j (resp. V and �(T )I)
in (5) and q (resp. T and the nonlinear function k(T )I) in (6). In physical
experiments, a feedback loop is performed on the potential di↵erence to reach
I, this approach corresponds to imposing Dirichlet conditions on the electric
potential. Numerically, if Dirichlet conditions are imposed on the electric po-
tential on �ibc, many solves are required to reach the targeted experimental
setup. This computationally expensive strategy is used with the CG method.
Conversely, in our case, thanks to the IBC condition, only one solve is su�-
cient. By solving (5)- (5b) with the integral boundary conditions (7)- (9), we
in fact impose the target current intensity value I directly, and we get the
required electric potential V on �out as an output.

The heat transfer coe�cients can be determined from the thermal con-
ductivity k(T ), the hydraulic diameter Dh and the Nusselt number Nu by
h = k(T )Nu/Dh. The Nusselt number is characteristic of the flow, and in the
case of high field magnet cooling, with perpendicular flows in annular region
between cylinders, di↵erent correlation can be used, for example those of Col-
burn [12], Montgomery [28], Dittus [15] or Silberberg [37]. In this case, we
use a constant approximation for the heat transfer coe�cients hi. On other
surfaces, the thermal exchanges are not considered. The values of the target
intensity imposed is 22148A.

Remark 6 We consider a simple update of the matrix blocks impacted by the
non-linearity, whereas the static condensation needs to be executed at each
nonlinear step.

The mesh has 3.3 million elements, the discontinuous vectorial space for
the flux has 39 million dofs, the discontinuous scalar space for the potential
has 13 million dofs and the discontinuous scalar space for the trace has 22
million dofs. On 48 processors (Intel Xeon E5-2680 v3 2.50GHz), using a Picard
iteration to solve this nonlinear problem, see Algorithm 1, took around 1600s of
computational time. Here, we want to emphasize the need of a proper partition
of the mesh, see Section 5.3.1, in order to be able to reach the solution in a
bounded time.

Figure 12 displays the computed electric potential (left panel) and the
temperature (right panel), along red dots representing the heat and voltage
sensors used during the experiment. Figure 13 shows the error for the di↵erent
sensors between the simulation and the experiment. We can see that for the
Dittus correlation, the error is less than 4%, and even under 2% for most of
the sensors.
Finally, we compare the conservation of the current density obtained with the
present framework with the results of the CG method. We solve the same
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Algorithm 1: Picard algorithm for thermoelectric problem

Choose ", N , V0, T0;
i 1, �  "+ 1;
while i  N and � > " do

�  �(Ti�1), k  k(Ti�1);
(Vi, ji) SolveV(�), (Ti,qi) SolveT(k, ji);

�  max(
||Vi�Vi�1||L2

||Vi�1||L2
,
||Ti�Ti�1||L2

||Ti�1||L2
);

i i+ 1;
end

Mesh elements Potential dofs Flux dofs Trace dofs Picard
Single CG 22⇥ 106 4.3⇥ 106 - - 500s

HDG 3.3⇥ 106 13⇥ 106 39⇥ 106 22⇥ 106 1600s

Table 4: Comparison between CG and HDG, for CG we need to solve several
times to achieve the correct intensity.

Method Number of dofs Input j Output j Di↵erence
CG Newton 4.3⇥ 106 30982.94 -31013.84 30.9
CG Picard 1⇥ 106 30991.47 -31021.05 29.58
HDG Picard 74⇥ 106 30898.33 -30898.35 0.02

Table 5: Di↵erence on the current between inlet and outlet

problem using the CG method and the Newton method for the nonlinearity
on a finer mesh (22M elements) and the CG method and the Picard method for
the nonlinearity on the same mesh (3.3M elements). The comparison between
the computational time of CG and HDG is summarized in Table 4. We recall
that for CG several iterations are required to achieve the target intensity, so
the computational cost becomes quickly similar, or even significantly larger,
when compared to a single HDG problem solving. Table 5 shows the di↵erence
between the input current and the output current compared for CG and HDG
method.

In conclusion, results are very similar to those in [13] obtained with the
CG formulation. However the HDG formulation is current conservative since
the IBC conforms with the experimental setup where we impose, on �out, the
current I rather than the current density j · n.

6.3 Tissue perfusion in ophthalmology

For the last test we illustrate the tissue perfusion problem introduced in
Section 2.3. The assumption of isotropically distributed pores implies that
K = kp I with kp positive constant. In addition, for the specific circuit schema-
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(a) Electric potential (b) Temperature

Fig. 12: Actual magnet operating at I = 22148 A
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tized in Figure 3, the matrix A takes the form

A =

2

666664

�
1

C1 R12

1

C1 R12
0

1

C2 R12
�

1

C2

✓
1

R12
+

1

R23

◆
1

C2 R23

0
1

C3R23
�

1

C3

✓
1

R23
+

1

Rout

◆

3

777775
,

where the vascular resistances R, R12, R23 and Rout, and the compliances C1,
C2, C3 are assumed to be given positive constants, see Table 6. In order to
solve the 3d-0d coupled system, we start by performing a semi-discretization
in time of problem (12) using operator splitting, in the same spirit as [3], thus
allowing to maintain the flexibility to apply the HDG method even in this
time-dependent multiscale coupled problem. We refer to [17] for a review of
operator splitting methods. Let us introduce a uniform time discretization so
that t

n = n�t, for n � 0, and let us utilize the notation '
n := '(tn) for a

generic quantity '. Then, given p
n and ⇧n, for n � 0 we solve the following

two steps sequentially to advance from t
n to t

n+1:

Step 1: find j, p and ⇧ such that:

j+ kprp = 0 in ⌦ ⇥
�
t
n
, t

n+1
�
,

@p

@t
+r · j = f in ⌦ ⇥

�
t
n
, t

n+1
�
,

d⇧

dt
= b in

�
t
n
, t

n+1
�
,

equipped with the boundary conditions (12f) –(12g), the interface condi-
tions (12d)– (12e) and the initial conditions p(tn) = p

n, ⇧(tn) = ⇧n and

then set pn+
1
2 = p(tn+1), ⇧n+ 1

2 = ⇧(tn+1) and j
n+ 1

2 = j(tn+1).
Step 2: find p and ⇧ such that

@p

@t
= 0 in ⌦ ⇥

�
t
n
, t

n+1
�
,

d⇧

dt
= A⇧ + s in

�
t
n
, t

n+1
�
,

equipped with the initial conditions p(tn) = p
n+ 1

2 and ⇧(tn) = ⇧n+ 1
2 ,

and then set p
n+1 = p(tn+1)

⇣
= p

n+ 1
2

⌘
, ⇧n+1 = ⇧(tn+1) and j

n+1 =

j(tn+1)
⇣
= j

n+ 1
2

⌘
.

We remark that the solution of Step 1, upon discretization in time, reduces
to the solution of an elliptic problem with integral interface conditions similar
to Section 3. The operator splitting scheme described above is characterized
by a first-order convergence in time, as discussed in [3,17] and verified in
Figure 14. In addition, this method could also be improved to achieve second-
order convergence in time via symmetrization, as described in [4,17]. For our
application we have used the data summarized in Table 6.
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Quantity Value Unit
rlc 0.095 cm
rop 0.008 cm
hlc 0.03 cm

kp = kp,1 0.015192 kg cm�1 s�1

RR = R12 = R23 = Rout 103 N s cm�5

C = C1 = C2 = C3 10�3 cm5 N�1

pcrv 0.25 N cm�2

⇧out

⇣
9
10 �

17⇡2

10000

⌘
sin

�⇡t
10

�
+ N cm�2

+
⇣

13⇡
250 �

3⇡3

10000

⌘
cos

�⇡t
10

�
+ 47

10

Table 6: Data of the test case
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Fig. 14: Convergence test for
the coupled model 3d� 0d

Numerical simulations are conducted to compare the distributions of pres-
sure and blood perfusion velocity in the lamina cribrosa (see Figure 15) and
pressure and flow rate in the upstream circulation (see Figure 16) correspond-
ing to healthy and disease conditions. Specifically, we study the e↵ect of de-
creased permeability in the lamina cribrosa, which is associated with capillary
dropout in glaucoma, see [20]. To simulate healthy and disease conditions,
we assume kp = kp,1 = 0.015192 and kp = kp,2 = kp,1/10 = 0.0015192, re-
spectively. Overall, the simulations suggest that the pressure in the lamina
decreases radially from the periphery to the center, consistently leading to a
distribution of blood perfusion velocity directed towards the center. This result
is consistent with the vascular structure in the lamina, which is supplied by
the posterior ciliary arteries at its periphery and drains into the central retinal
vein at its center. Interestingly, a decrease in permeability is predicted to lead
to an increase in pressure, maximum value from 1.093 to 3.476 N cm�2, and
a slightly increase in the perfusion velocity, especially close to the opening,
(see Figure 15) within the lamina, accompanied by a substantial increase in
pressure in the upstream circulation modeled by the circuit (see Figure 16). A
local pressure increase may lead to further capillary damage, thereby poten-
tially accelerating the disease process. These results suggest that a decrease in
permeability has a similar e↵ect as closing a faucet, which leads to an increase
in pressure upstream of the faucet itself. Since this faucet is distributed across
the lamina, the consequent e↵ect is also distributed across the tissue. This
pilot investigation demonstrates the importance of coupling local tissue per-
fusion with the rest of the circulation to determine hemodynamic conditions
in an organ, thereby motivating the quest for e�cient and accurate computa-
tional methods for the solution of multiscale coupled problems such as those
considered in this article.

7 Conclusions and outlook

In this paper, we propose a complete analysis of a HDG method for ellip-
tic problems with integral boundary conditions from theory to applications.
Theoretical results are verified by an experimental convergence analysis and
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(a) kp = kp,1 (b) kp = kp,2

Fig. 15: Simulated discharge velocity inside the lamina cribrosa, driven by the
pressure drop source in the circuit at t = 30 s.
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Fig. 16: Simulation results time evolution of the main variables in the circuit (⇧1, ⇧2 and
⇧3) and on the interface ( UI and QI).

relevant examples in industry and medicine. Implementation aspects are dis-
cussed and solutions are proposed to mitigate some issues such as scalability.

Besides enjoying standard HDG properties, by incorporating integral bound-
ary conditions, our method accounts naturally for flux boundary conditions as
well as natural spatial coupling between 3D+t and 0D+t models.

The suggested method is currently being used in various applications, in
particular in the Eye2Brain project [34,35] where it is employed in combination
with an operator splitting method for the time discretization [33, Chapter 7]
of the multiscale model, as well as in the commissioning process of high field
magnets [22].
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As mentioned in Section 5, a further comparison with other methods should
be conducted to better understand the pros and cons of our approach. This
work can also be extended to other types of equations such as elasticity [33,
Chapter 24] or the Stokes problem for viscous incompressible fluid [32, Chapter
9]. Finally, we will consider an alternative approach to aggregating faces asso-
ciated with an integral boundary condition on a single partition in a parallel
setting. This will be investigated in forthcoming publications.
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