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Ocean Network Canada’s NEPTUNE observatory (Seyfried et al., 2022). These samples exhibit very low Mg
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concentrations (Mg = 0.19-3.07 mmol/kg), indicative of little-to-no contamination by ambient seawater,

Keywords: providing excellent insight into sub-seafloor hydrothermal processes. Here, we present analyses of these

seafloor hydrothermal samples for transition metals identified as biological nutrients (V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Mo, Cd, and

long-term observation W) and identify possible controlling processes.

Pacific Ocean Overall, nutrient transition metal concentrations in collected samples reflect dynamic responses to

early life subtle deep-seated and near-surface changes in the hydrothermal system. Roughly two months into the

Ocean Networks Canada deployment, inmixing of a Mg- and sulfate-rich fluid is decoupled from observed changes in vent fluid

temperature but coincides with noticeable decreases in fluid Co and Mo concentrations, likely indicating
subtle or more deep-seated cooling of the system and subsurface deposition of these temperature-
sensitive metals. Several months later, a ~20°C drop in vent fluid temperature from 304 °C to 280-285°C
over ~20 hours is accompanied by ~90% decreases in Cu, Zn, and Cd concentrations and an additional
decrease in Mo attributable to precipitation of metal sulfides, presumably in the shallow subsurface.
Relative stability in concentrations of other metals (V, Cr, Mn, Ni, W) suggests more deeply seated
higher-temperature controls, though covariations in Cr and Ni concentrations decoupled from vent
fluid temperature suggest subtle, temporally variable lithologic controls. Molybdenum concentrations
(29-220 nmol/kg) are higher than expected based on previous analyses of seafloor hydrothermal vent
fluids and do not reflect contamination by modern Mo-rich seawater. This finding has implications for
understandings of hydrothermal Mo delivery to the ocean, relevant to hypotheses about the evolution of
Mo-dependent biological pathways among early life forms in anoxic and Mo-poor ocean environments
thought to be prevalent throughout the Archean Eon.

© 2022 Elsevier B.V. All rights reserved.

1. Introduction Ardyna et al.,, 2019; Schine et al., 2021). Recent mapping of trace
elements in deep open ocean waters has identified hydrothermal
Seafloor hydrothermal fluids affect ocean chemistry, with in-  sources of dissolved Fe, Mn, and Zn and particulate V, Cr, Mn, Fe,
puts mediated by hydrothermal plumes (German et al,, 1991; Alt,  Co, Cu, and Zn (SCOR Working Group, 2007; GEOTRACES, 2021).
1995: German and Seyfried, 2014; Findlay et al, 2015; Gartman Hydrothermal vents have also been invoked as sources of tran-
and Findlay, 2020; Kleint et al., 2022). Hydrothermal plumes have sition metal nutrients necessary for life’s origin and subsequent
been shown to transport materials long distances (Wu et al., 2011;  evolution, either globally (Da Silva and Williams, 2001; Saito et al.,
Nishioka et al., 2013; Fitzsimmons et al., 2014; Resing et al., 2015;  2003; Moore et al,, 2017, 2018), or in vent-centered microenviron-
Roshan et al., 2016; Fitzsimmons et al., 2017) and enhance bio- ments (e.g., Nitschke and Russell, 2009; Weiss et al,, 2016). Early
logical activity at regional-to-global scales (Tagliabue et al., 2010; life processes requiring transition metals include methanogenesis,

which currently requires Fe, Co, Ni, and Mo or W, and nitrogen

fixation, which requires Mo, V, or Fe (Bishop and Joerger, 1990;

* Corresponding author. Nitschke and Russell, 2009; Weiss et al., 2016; Moore et al., 2017).
E-mail address: gevans@umn.edu (G.N. Evans). Transition metals identified as essential biological nutrients include

https://doi.org/10.1016/j.epsl.2022.117943
0012-821X/© 2022 Elsevier B.V. All rights reserved.


https://doi.org/10.1016/j.epsl.2022.117943
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/epsl
http://crossmark.crossref.org/dialog/?doi=10.1016/j.epsl.2022.117943&domain=pdf
mailto:gevans@umn.edu
https://doi.org/10.1016/j.epsl.2022.117943

G.N. Evans, W.E. Seyfried and C. Tan

V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Mo, and possibly Cd and W (Williams
and Rickaby, 2012).

Despite such hypotheses, knowledge of nutrient transition met-
als in seafloor vent fluids remains relatively poor. While experi-
mental studies and routine measurements have provided insight
into the behavior of Mn, Fe, Zn, and Cu (Seewald and Seyfried,
1990; Seyfried and Ding, 1993; Pester et al., 2011; Xing et al.,
2022), data on other nutrient transition metals remain sparse, de-
spite some intermittent progress (e.g., Trefry et al., 1994; Metz and
Trefry, 2000; Seyfried et al., 2003; Schmidt et al., 2007, 2011; Find-
lay et al., 2015; McDermott et al., 2018; Evans et al., 2020).

Here, we present analyses of nutrient transition metals (V, Cr,
Mn, Fe, Co, Ni, Cu, Zn, Mo, Cd, and W) in a nine-month time
series of hydrothermal vent fluids collected from Main Endeav-
our Field (MEF) on the Juan de Fuca Ridge (northeast Pacific
Ocean) using a recently developed remotely triggered sampling
device (Seyfried et al, 2022). Samples exhibit little-to-no sea-
water contamination, providing unprecedented temporal insights
into dynamic subseafloor processes through their effects on vent
fluid transition metal concentrations. Trace element partitioning
between fluid samples and metal-rich precipitates that formed as
samples cooled provides insight into analogous processes occur-
ring in the first several meters of the buoyant hydrothermal plume
(e.g., Findlay et al,, 2015), as hydrothermal fluids cool and inject
particles into the water column. Time series studies, such as that
presented here, provide insight into the dynamics of hydrothermal
systems and offer invaluable informational inputs to biogeochemi-
cal models of nutrient transition metals in deep-sea marine envi-
ronments.

2. Study area

Main Endeavour Field (47° 57’' N, 129° 06" W, ~2200 m water
depth) is located along the western edge of the axial valley that
bisects the central, shallowest section of the Endeavour Segment
of the Juan de Fuca Ridge, off the west coast of North America
(Tivey and Delaney, 1986; Delaney et al., 1992; Fig. 1). Motivated in
part by its proximity to major scientific research and port facilities
in Canada and the United States and additional hydrothermal in-
teractions with continentally derived sediment, MEF has been the
subject of intense scientific research beginning with the initial dis-
covery papers of Delaney et al. (1992) and Robigou et al. (1993).
Since 2009, this primarily ship-based research has been enhanced
by instrumentation linked to Ocean Network Canada’s NEPTUNE
cabled observatory (https://oceannetworks.ca/).

Main Endeavour Field vent fluids, which exhibit maximum tem-
peratures > 350°C (e.g., Butterfield et al., 1994), are character-
ized by high (1.8-3.4 mmol/kg) concentrations of isotopically light
(813C = -48.4 - -55.0) methane attributed to thermogenesis from
organic matter in continentally derived sediment (Lilley et al.,
1993). Hydrothermal fluid pH measured at 25 °C (pHas-¢c = 4.3-4.5,
Butterfield et al., 1994) is also somewhat higher than comparable
basalt-hosted vent fluids from unsedimented mid-ocean spreading
centers, a difference attributed to pH buffering by NH3 /NHI like-
wise derived from thermogenesis (Tivey et al., 1999).

Butterfield et al. (1994) identified a north-south gradient of
decreasing salinity across the vent field in vent fluids collected
in 1984-1989, attributing this observation to phase separation at
shallower pressures toward the southern end of the field. In 1999,
a seismic swarm and inferred dike intrusion (Johnson et al., 2000)
lead to anomalously large differences in vent fluid salinity con-
sistent with phase separation at near-seafloor pressures (220 bar)
(Seyfried et al, 2003). However, fluids collected in 2000 more
closely resembled pre-event vent fluid chemistry (Seewald et al.,
2003). The extensive scientific record concerning the MEF system,
including trace metal analyses of 1999 vent fluids (Table 1), il-
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lustrates the dynamics of the MEF system on longer time scales
and adds context to the more subtle variations in hydrother-
mal processes and associated vent fluid characteristics presented
here.

3. Methods
3.1. Sample acquisition

Samples were collected using a newly developed remotely oper-
ated serial sampler comprising 12 isobaric gas-tight fluid samplers
similar to those of Seewald et al. (2002) connected to a single sam-
pling snorkel (Seyfried et al., 2022; Fig. 2). All wetted components
are constructed of grade 2 titanium or PEEK, precluding corrosion
in high temperature fluids and/or seawater. The sampler was de-
ployed at the MEF South BARS site of the NEPTUNE observatory
(Fig. 1, 3), a small ~1 m-high hydrothermal chimney deposit (47°
57’ 53" N, 129° 05’ 56” W, 2188 meters below sea level) a few me-
ters away from the historically named “Smoke & Mirrors” (S&M)
deposit structure of Delaney et al. (1992), collecting nine 160 ml
fluid samples between October 2019 and May 2020. Further details
about the sampler’s design and initial deployment and major ele-
ment chemistry of collected fluid samples can be found in Seyfried
et al. (2022).

Vent fluid samples were maintained at seafloor pressures (220
bar) prior to laboratory sampling and analysis at University of Min-
nesota. This pressure was confirmed immediately prior to pH, gas,
and total sulfide analysis by connecting the back pressure fluid
reservoir to a Teledyne 260D ISCO syringe pump (Teledyne ISCO,
Lincoln NE, USA). Temperature was obviously not maintained dur-
ing sampling, leading to precipitation of solid particles within the
samplers. Sampler precipitate (a.k.a. “dregs”) fractions were col-
lected on 0.2 ym pore-size polysulfone filters. Additional samples
were collected of mineralization that accumulated on the sampler
snorkel head throughout the nine-month deployment and similar
mineralization that grew on a temperature-pH-redox sensor of the
type described in Ding and Seyfried (2007) deployed in the same
vent orifice the year prior. In both cases, minerals grew on solid
titanium in direct contact with venting fluid (Fig. 4).

3.2. Hydrothermal fluid chemistry

Vent fluid temperature, Cl, HyS, Hy, pH (at 25°C) and other
major chemical components are as reported in Seyfried et al.
(2022). Briefly, Cl and sulfate were determined by ion chromatog-
raphy (Dionex ICS-5000, Thermo Fisher Scientific, Waltham, MA,
USA), H,S by iodometric titration, H, by gas chromatography (Ag-
ilent 6980, Santa Clara, CA, USA), and pH (NBS scale, at 25°C) by
Thermo-Ross pH electrode calibrated with pH 4 (K-biphthalate),
pH 7 (KH,PO4, NaOH), and pH 10 (KCO3, K3BO3, KOH) buffers im-
mediately prior to measurement. Major elements (Na, K, Ca Si, Mg)
were determined by inductively coupled plasma-optical emission
spectrometry (iCAP 6000, Thermo Fisher Scientific, Waltham, MA,
USA).

Following collection, dissolved metals samples were acidified
with 1 M HCl prepared from trace metal grade 12 N HCI (Fisher
Scientific, Pittsburgh, PA, USA) and 18 M2 deionized water. Filters
and collected particles were digested in reverse aqua regia (3:1 v/v
HNO3: HCI), dried down at 70°C in a trace-metal free hood, and
brought up in 20 ml 2% HNOs using trace metal grade reagents
and 18 M deionized water. Samples were diluted 100x in 2%
HNOj3 prior to analysis.

Trace element analyses were performed at University of Min-
nesota using a triple quadrupole inductively coupled plasma mass
spectrometer (Thermo Fisher Scientific iCAP TQ, Waltham, MA,
USA) measured against matrix-matched standard lines prepared
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Fig. 1. (A) Overview map of the NEPTUNE cabled observatory and (B) detail map of the Main Endeavour Field and associated NEPTUNE infrastructure. The vent fluid sampler
was deployed at the MEF South BARS instrument node (black rectangle) located a few meters away from the historical Smoke & Mirrors (S&M) vent deposit structure.
Continuous power and communications were delivered through cabled connection to junction box JB-10. Vent deposit structure names are as in Delaney et al. (1992). Labels
are slightly offset to allow greater visibility of deposit structures on the background bathymetric map.

Table 1

Concentrations of trace metals and select chemical components in vent fluid samples collected from Main Endeavour Field in 1999 (Seewald et al., 2003). Chloride, volatile,
and metal concentrations are endmember values extrapolated to zero-Mg (e.g., Von Damm et al., 1985); “min. Mg” is the lowest Mg sample collected from a given vent,
indicative of mixture with seawater prior to or during sample acquisition. Temperature, pH and dissolved ions including metals are from Seyfried et al. (2003); Volatiles are

from Seewald et al. (2003)?. Vent locations are illustrated in Fig. 1.

Vent Temp. pH min. Mg cl H3 HaS CH} NH;§

°C 25°C mmol/kg mmol/kg mmol/kg mmol/kg mmol/l umol/kg
Dante 350 3.72 133 418 0.52 13 na 529
Bastille 368 3.44 5.84 208 0.62 22 1.7 602
Cantilever 375 3.74 243 32 25 25 1.7 645
Vent Mn Fe Co Ni Cu Zn cd Mo

pmol/kg pmol/kg nmol/kg nmol/kg pmol/kg pmol/kg nmol/kg nmol/kg
Dante 475 2000 0.2 1.6 15 35 30 78
Bastille 550 2200 0.14 0.8 25 32 65 68
Cantilever 70 350 0.04 0.2 10 155 225 37

from NIST-traceable single- and multi-element standards (SPEX
CertiPrep, Metuchen, NJ, USA). Because of a lack of certified ref-
erence materials for hydrothermal fluids, analytical errors were
estimated by interspersed measurements of matrix-matched con-
trol samples containing similar concentrations of trace elements
as measured samples. Process blanks were determined by analyses
of digested blank filters. Element specific detection limits, quan-
tification limits, blank levels, and estimated errors are detailed in
Table 3.

3.3. Solubility calculations, in situ pH

Hydrothermal fluid pH and mineral saturation states were cal-
culated using Geochemists’ Workbench (Bethke and Yeakel, 2012).
Thermodynamic properties at 220 bar were calculated using Py-
GeoChemCalc (https://bitbucket.org/Tutolo-RTG/pygcc/src/master/),
a Python version of formulas contained in DBCreate (Kong et al.,
2013). Thermodynamic data for Mo species were calculated us-
ing the Unitherm module of HCh (Shvarov, 2008) based on data
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Fig. 2. Diagram of the remotely operated serial vent fluid sampler (Seyfried et al., 2022). (a) Main body comprises a computer control and a sample vessel manifold composed
of 12 independently operated grade 2 titanium isobaric gastight samplers. The sampler manifold is connected to the sampling snorkel (b) by PEEK tubing.
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Fig. 3. Images of the vent fluid sampler (A) immediately after deployment (September 21, 2019) and (B) before recovery (June 11, 2020). Also shown is the BARS temper-
ature/resistivity sensor located in the same chimney structure (left in both images). Mineralization of the sampler nozzle served to isolate the sampler inlet from ambient
seawater. Original photographs taken by ROV Odysseus, obtained from Ocean Networks Canada, SeaTube V3 (https://data.oceannetworks.ca/SeaTubeV3). Heading in left image

= 246°. Heading in right image = 283°.

from Robie and Hemingway (1995) for molybdenite, Shock et al.
(1997) for MoOi_, Minubayeva and Seward (2010) for HMoO, and
H,Mo04(aq), and Shang et al. (2020) for NaHMoOj. Data for Znt
and sphalerite were updated with data from Tagirov and Seward
(2010) following Xing et al. (2022). Relevant input, database, and
output files are included in supplementary materials.

Seafloor vent fluid chemistry was reconstructed by adding back
the elemental content of the precipitate fraction to the dissolved
fluid chemistry and calculating the speciation and mineral sat-
uration states of fluid samples at seafloor conditions (220 bar,
281-304°C). Sulfide, which was not measured in precipitates, was
added back to the fluid composition in equimolar ratio with Fe and

Zn, resulting in a 0.3-9.2% increase in total sulfide. Calculation of
in situ pH is based on saturation with respect to chalcopyrite or
pyrite, consistent with the composition of mineralization on the
fluid sampler and the previously deployed temperature-pH-redox
sensor removed to install the fluid sampler (Fig. 4). Vent fluid
pH values calculated for in situ temperatures are 0.2-0.5 pH units
higher than those measured at 25 °C (Table 2).

4. Results

Compared to ambient seawater, S&M 2019-2020 vent fluids are
greatly depleted in Mg and sulfate (94-99.6% and 95-99.7%, re-
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Fig. 4. Photomicrographs of: (A) mineralization collected from sensor deployed in the same vent orifice as the sampler that was removed prior to installation of the sampler;
estimated fluid temperature = 302 °C; (B) mineralization collected from the sampler snorkel; estimated fluid temperature = 281 °C. Bottom edge of each sample was origi-
nally attached to a non-porous titanium sensor/sampler snorkel wall and grew in contact with vent fluid, located upward in photomicrographs. cp=chalcopyrite; py=pyrite;

wtz=wurtzite. Image width is 1.6 mm.

spectively), 14-29% depleted in Na, 3.0-3.5 x enriched in Ca, and
2.1-2.5 x enriched in K, consistent with high-temperature basalt-
seawater reactions (e.g., Seyfried, 1987), and previous analyses of
MEF vent fluids (Butterfield et al., 1994; Seyfried et al., 2003).
Chloride concentrations are 18-23% depleted relative to seawa-
ter, indicative of sub-surface phase separation prior to venting.
Dissolved H, and HS concentrations are consistent with high-
temperature reactions in the presence of a moderately reducing
set of mineral buffers such as anhydrite-magnetite-pyrite (Seyfried
et al., 2002).

Notably, the lowest Mg and sulfate concentrations obtained
in S&M 2019-2020 vent fluids are consistent with those of
high-temperature basalt-seawater and mineral-buffer experiments
(Seyfried et al., 2002), suggesting little-to-no contamination of
these samples by ambient seawater. While still low in compari-
son to typical seafloor sampling, Samples 3-6 contain higher and
strongly correlated concentrations of Mg and sulfate, suggesting
minor addition of seawater-like Mg- and sulfate-containing fluid.
Based on systematic deviation of the Mg:sulfate from that of sea-
water and a lack of temperature change at the vent, Seyfried et
al. (2022) propose that Mg- and sulfate addition is caused by
subsurface injection of hot (>150°C) seawater-like fluid not yet
chemically equilibrated with seafloor crust.

Except for Mo, which is variably depleted and enriched rel-
ative to seawater, transition metal- and silica concentrations are
highly enriched relative to seawater. Mineralization collected from
the sampler snorkel contains bladed wurtzite and intergrown chal-
copyrite with subhedral pyrite (Fig. 4B). Mineralization collected
from the previously deployed temperature/pH/redox sensor com-
prises euhedral pyrite and massive chalcopyrite (Fig. 4A). Thermo-
dynamic modeling based on measured fluid chemistry and equilib-
rium with respect to pyrite indicates that in situ pH= 4.16-4.53 and
fluids are saturated or near-saturated with respect to chalcopyrite.
All samples are calculated to be undersaturated with respect to
sphalerite but become saturated if conductively cooled 20-30°C.
Considering model uncertainties, these results suggest that vent
fluids are saturated or near saturated with respect to sphalerite
and/or wurtzite.

4.1. Vent fluid temperatures and metal concentrations

Vent fluid temperatures as recorded by the BARS resistiv-
ity/temperature sensor indicate that Samples 1-6 were collected
at 302-304°C while Samples 7-9 were collected at 281-282°C
(Fig. 5A). The most abundant transition metal in Samples 1-6 is

Zn, followed by Fe and Mn. This order is reversed in Samples 7-9,
where Mn>Fe>Zn (Table 2, Fig. 5). Compared to Samples 1-2 and
Samples 7-9, Samples 3-6 contain elevated concentrations of Mg
and sulfate (Table 1). Close analysis of these fluids by Seyfried et
al. (2022) suggests that elevated Mg and sulfate concentrations are
not directly the result of contamination by cold seawater, as vent
fluid temperature does not noticeably change during this period
and vent fluid Mg:sulfate ratios are slightly elevated above that
of seawater. However, Co and Mo both decreased significantly be-
tween Samples 1-2 and Samples 3-6, indicating that this incursion
of Mg- and sulfate-containing fluid does have an effect on con-
centrations and likely subsurface deposition rates of these metals,
whether by a subtle change in fluid temperature or chemistry, e.g.,
a slight increase in pH.

A second, more obvious change in vent fluid temperature and
composition occurred on March 13, 2020, when BARS recorded
vent fluid temperatures decreased ~20 °C over ~20 hours (Fig. 5B).
The BARS-mounted thermocouple exhibits minimal sensor drift,
as evidenced by regular maintenance cruises and performance
confirmation by ROV-mounted thermocouples over several years.
However, BARS recorded vent fluid temperatures and coupling
with the fluid sampler are sensitive to mineralization of the BARS
temperature sensor and/or the fluid sampler. That the March 13,
2020, temperature change recorded by the BARS reflects an ac-
tual change in vent fluid temperature and not a sampling artifact
caused by mineralization of the sensor is supported by concur-
rent decreases in temperature-sensitive metals (e.g., Cu, Zn, Mo) in
associated fluid samples.

On average, Samples 1-6 contain 15x as much Cd, 13x as
much Zn, 10x as much Cu, and 5x as much Mo and as Sam-
ples 7-9 (Table 3, Fig. 6K, I, H). Concentrations of Cu, Zn, and Cd
are highly correlated (R? > 0.98) with an average molar Zn/Cu ra-
tio = 23 + 1 and Zn/Cd = 1050 + 30 (Fig. 7A, B). Molybdenum is
moderately correlated with Zn (R? = 0.65, Fig. 7C) with an average
Zn/Mo ratio of 3000 £ 300 (Fig. 7C).

Iron responds only weakly to the observed temperature drop,
with variability in Samples 1-6 (Fe = 281-777 umol/kg) exceed-
ing differences between Samples 1-6 and Samples 7-9. Vanadium,
Mn Cr, Co, and Ni do not vary in response to the observed tem-
perature drop (Table 3, Fig. 6D, C, F, G). However, Ni, Co, Cr, and to
some extent V, are elevated in Sample 1, as well as Sample 2 for
Co. Concentrations of Ni and Cr are strongly correlated (R% = 0.98,
Fig. 7D).
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Vent fluid temperature, major element chemistry and in situ pH calculated by thermodynamic modeling. Data are from Seyfried et al. (2022). An analysis of IAPSO standard

seawater (salinity = 33.992 practical salinity units) is included for comparison.

Sample Date Days deployed Temp. PpH, NBS H2 H2S Cl
°C at 25°C mmol/kg mmol/kg mmol/kg
1 10/8/2019 17 302 421 0.23 2.7 424
2 11/1/2019 41 302 429 0.24 33 443
3 11/20/2019 60 302 4.22 0.23 2.8 453
4 12/12/2019 82 302 4.49 0.22 3.6 437
5 1/15/2020 116 303 427 0.20 34 451
6 2/28/2020 160 304 4.06 0.21 32 432
7 3/19/2020 180 281 4.22 0.21 31 428
8 4/17/2020 209 282 437 0.24 3.5 432
9 5/26/2020 248 281 413 0.23 34 429
Seawater IAPSO 2 7.8 - - 559
Error 0.5 0.05 5% 10% 3%
Sample Na Ca K Si Mg Sulfate pH, calc.
mmol/kg mmol/kg mmol/kg mmol/kg mmol/kg mmol/kg in situ
1 330 309 215 141 0.24 0.12 443
2 349 331 22.8 15.2 0.19 0.09 4.68
3 400 353 25.1 16.4 2.55 1.05 447
4 337 30.1 21.0 133 2.35 0.71 4.85
5 368 323 22.7 14.7 3.07 14 4.71
6 350 319 22.0 151 1.39 0.63 4.26
7 347 315 215 14.8 0.8 0.21 443
8 349 324 212 14.8 0.63 0.23 4.58
9 332 31.8 22.7 154 0.56 0.23 438
Seawater 454 10.5 10.7 - 523 28.6 -
Error 3% 2% 5% 5% 5% 2%
A 1 2 3 4 5 6
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Fig. 5. Vent fluid temperature as recorded by the BARS resistivity/temperature sensor during (A) the duration of the vent fluid sampler deployment and (B) the observed
temperature change. Data and original plots from Ocean Networks Canada: Plotting Utility (https://data.oceannetworks.ca/PlottingUtility). Fluid samples are marked as black

circles.

4.2. Trace element partitioning

Cooling within the sample vessels leads to precipitation of
metal- and sulfide-rich particles. Chemical analyses indicate that
these (>0.2 pm) particles are predominantly Zn- and Fe sulfides.
Partitioning of a trace element during closed system phase sepa-
ration can be modeled by the following formula (e.g., Neumann et
al.,, 1954):

solid/aqueous
[T1/IMIsolia _ Dr/m

[T/ IMltora (Dsro/lisl/aqueous x FM,solid) + (1 = Fum.solia)

where [T]/[Mlsiig is the trace-element/major-element ratio of

the sampler precipitate, [T]/[M];q is the trace-element/major-

element ratio of the whole fluid, DSTO/I',dV/ a9UeOtSis the partitioning

coefficient of the trace element into sampler precipitates rela-

tive to the major element, and Fy, sig is the mole fraction the
major element incorporated into sampler particles. For simplicity,
DSTO/h,s,/ aquedtsis assumed constant. This formula is most sensitive to

the partition coefficient DSTO”AC,i,/ aquedts ‘\when F M. solid 1S small. How-

ever, the appropriateness of the closed-system equilibrium parti-
tioning model is best evaluated if Fy, soiig covers a range of values
0-1.

The metal fractions contained in sampler particulates range
from 0-2% for Mn to 97-100% for Zn and Cd (Table 4). Iron, V,
Cr, Ni, and Co, and Mo exhibit intermediate particulate fractions
(Table 4). Ratios of V/Fe and Mo/Fe fit closely with a model of
closed system equilibrium partitioning into Fe particles with Dy/re
= 24, Dpojre= 46 (Fig. 8A, C). Ratios of Cr/Fe deviate from model
projections and do not converge to a solid/total Cr/Fe ratio of 1,
as expected for a simple partitioning model. This deviation from
simplified model expectations could be accounted for by precip-
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Nutrient transition metal concentrations in dissolved and particulate fractions and whole fluids. Analyses of a digested blank filter and seawater collected in a titanium
integrated gastight sampler are listed for comparison. The two dissolved fractions for Sample 1 are replicate dilutions indicative of combined laboratory and analytical

precision.

\ Cr Mn Fe Co Ni Cu Zn Mo Cd w

nmol/kg umol/kg umol/kg umol/kg nmol/kg nmol/kg umol/kg umol/kg nmol/kg nmol/kg nmol/kg
Detection Limit 1 0.054 0.0 0.4 2 14 0.02 0.01 13 1 0.5
Quantification Limit 3 0.18 0.04 1.30 8 47 0.08 0.05 43 3 1.6
Estimated Error 17% 15% 2% 2% 3% 1% 10% 4% 6% 7% 5%
Blank Filter® 5 0.12 0.04 1.91 3 35 0.05 0.19 15.1 2 83
Seawater” 36.5 bdl 0.05 33 14 42 013 0.6 107 0.8 52
Sample 1
Dissolved 104 0.37 215 171 4 361 0.4 33 20 5 5.0
Dissolved® 105 0.40 219 174 3 259 1.9 11.7 20 8 4.8
Dregs 409 5.06 0.8 108 15 1008 16.5 436 199 433 119
Total 513 5.45 218 281 18 1318 17.7 443 220 439 16.7
Sample 2
Dissolved 93 0.26 237 180 3 127 0.4 10.8 8 10 54
Dregs 198 0.94 14 205 15 201 26.0 699 192 687 4.1
Total 291 1.20 238 385 18 329 264 710 200 697 9.5
Sample 3
Dissolved 130 0.64 218 161 4.8 182 0.1 2.5 6 2 109
Dregs 280 0.70 31 280 3.0 180 174 447 126 444 43
Total 410 1.34 221 441 7.8 362 174 450 132 446 15.2
Sample 4
Dissolved 105 0.30 209 156 4.6 204 0.1 0.8 10 1 329
Dregs 113 0.15 0.8 128 1.9 91 11.6 336 89 308 5.0
Total 218 0.45 210 284 6.6 294 11.7 337 100 309 379
Sample 5
Dissolved 97 0.26 215 148 48 128 0.1 1.5 5 1 111
Dregs 324 0.17 39 629 13 57 33.0 740 117 849 49
Total 422 0.43 219 777 6.1 186 33.0 742 122 850 16.0
Sample 6
Dissolved 105 0.22 221 147 2.2 114 0.1 0.6 2 0 23
Dregs 228 0.35 1.8 240 1.8 111 115 258 56 281 12
Total 333 0.57 223 387 4.0 225 11.6 259 58 282 3.5
Sample 7
Dissolved 87 0.37 218 158 3.2 271 0.1 1.0 3 1 31
Dregs 240 0.19 0.3 30 11 74 1.5 349 27 27 0.9
Total 326 0.56 219 189 43 345 1.6 359 30 28 4.0
Sample 8
Dissolved 53 0.25 224 161 25 124 0.04 0.6 4 0 5.0
Dregs 318 0.13 0.5 53 0.7 48 2.6 53.7 25 56 0.8
Total 370 0.38 225 214 3.2 171 2.6 54.4 29 56 5.8
Sample 9
Dissolved 95 0.28 219 151 6.0 160 0.04 0.5 2 0 5.3
Dregs 270 0.22 1.0 25 0.9 37 14 21.0 27 16 5.5
Total 365 0.50 220 176 6.9 197 14 215 29 16 10.8

2 Analysis of blank filter digested in reverse aqua regia, reported to equivalent dilution factor as dregs samples.

b Analysis of seawater collected with Integrated Gastight Sampler.

¢ Replicate analysis; Fluid total based on average of two replicates. bdl = below detection limit.

itation of Cr-enriched (e.g., oxide) and Cr-depleted (e.g., sulfide),
Fe-rich particles. However, because priority was given to quanti-
tative analysis of fluid samples, the exact mineralogy of sampler
precipitates is unknown. Ratios of Co/Fe and Ni/Fe closely reflect
those of the total fluid, suggesting partitioning coefficients, Dcojre
~ 1 and Dyjjre ~1, during Fe mineral precipitation within the sam-
plers.

5. Discussion

Elemental analyses of vent fluids collected as part of the S&M
2019-2020 time series reveal coherent patterns -consistent ma-
jor elements and correlations among temperature-sensitive trace
elements- suggesting that differences in measured sample com-
positions reflect real changes in vent fluid chemistry rather than
sampling artifacts. Except for Mn, large and variable fractions of

Table 4
Element Particulate Fraction.
Minimum Maximum

\Y 52% 86%
Cr 33% 93%
Mn 0% 2%
Fe 14% 81%
Co 13% 85%
Ni 19% 76%
Cu 93% 100%
Zn 97% 100%
Mo 86% 96%
cd 97% 100%

nutrient transition metals are incorporated into sampler precipi-
tates (Table 4; similar tables in Trefry et al., 1994; Schmidt et al.,
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Fig. 6. Nutrient Transition Metal Concentrations in S&M 2019-2020 Fluids. X-axis is the number of days since sampler deployment. Positive error bars represent 1o estimated
errors; negative error bars include possible laboratory contamination based on blank filter analysis (Table 3).

2007). Thus, meaningful data on most transition metal nutrients
can only be obtained if sampler precipitate fractions are quanti-
tatively collected and analyzed. Importantly, the S&M 2019-2020
time series samples contain very low concentrations of Mg and
sulfate, indicative of little-to-no contamination by ambient seawa-
ter, providing unprecedented insight into hydrothermal vent fluid
compositions and related processes.

Cabled connection of the sampler to the NEPTUNE observatory
led to several unforeseen advantages. First, the extended deploy-
ment period allowed time for the vent deposit to grow around
the snorkel head, effectively isolating it from ambient seawater.
Second, collection of many samples from a single location over
a period of several months allows the combined consistency of
repeat sampling and vent fluid chemistry to be effectively evalu-

ated. Third, connection to the NEPTUNE observatory allowed for
continuous co-located temperature monitoring. This third point
proved essential as strictly co-located temperature monitoring pro-
vided by the thermocouple inherent to the fluid sampler was lost
when the reference thermocouple failed prior to the first fluid
sampling. However, continuous proximal temperature monitoring
was provided by a “BARS” resistivity/temperature probe (Larson
et al., 2007) installed in the same chimney structure throughout
the duration of the deployment (Fig. 3). Comparative temperature
readings of fluids venting from both orifices obtained during instal-
lation and removal of sampling devices and during the period in
which the fluid sampler thermocouple was working strongly sug-
gest that these two devices are effectively co-located with respect
to fluid temperature.
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Fig. 7. Concentrations of Zn vs. Cu, Cd, and Mo and Cr vs. Ni.

5.1. Response to temperature change

On March 13, 2020, vent fluid temperatures decreased from
304°C to 281-282°C over ~20 hours (Fig. 5B). In the absence
of fluid chemistry, this decrease would likely be attributed to
entrainment of cold seawater and/or a localized change in fluid
flow around the BARS resistivity/temperature sensor. However, low
Mg and sulfate concentrations and decreased metal concentrations
support a real change in vent fluid temperature without signifi-
cant inmixing of ambient seawater. The ~20 hour duration of this
temperature drop in the context of months-long stability in vent
fluid temperature is consistent with seismically induced changes in
near-surface fluid flow. Previous field observations (e.g., Fornari et
al.,, 1998; Sohn et al., 1998; Johnson et al., 2000; Hooft et al., 2010)
and model calculations (Wilcock, 2004; Ramondenc et al., 2008)
suggest that seismically induced temperature changes can occur
within days of a seismic event, reflecting changes in subseafloor
permeability. Further analyses of contemporaneous seismic data
collected by the NEPTUNE observatory may provide greater insight
into the causes of the observed temperature decrease and related
changes in vent fluid chemistry.

Concentrations of Cu, Zn, Cd, and to a lesser extent Mo and Fe
respond strongly to the observed ~20°C temperature drop. Sol-
ubility calculations and mineral samples obtained from sampling
devices installed in the vent orifice indicate S&M 2019-2020 vent
fluids are saturated with respect to chalcopyrite and pyrite, and
likely saturated or nearly saturated with respect to wurtzite. Con-
centrations of Cu and Zn are somewhat higher than those previ-
ously reported for MEF vent fluids (Seyfried et al., 2003) and other
Juan de Fuca vent fields (Trefry et al., 1994), and may indicate

slight localized enrichment attributable to ongoing dissolution of
near-surface sulfide deposits and/or less complete recovery of in-
soluble elements in previous samples.

The observed Zn/Cd molar ratio of 1050 £ 30 is consistent with
subsurface remobilization of Cd-containing zinc sulfides, as sup-
ported by previously reported Zn/Cd in hydrothermal fluids (Zn/Cd
= 600-1200; Metz and Trefry, 2000), and exhalative zinc deposits
(Zn/Cd = 575-1150; Schwartz, 2000). In contrast, the observed
Zn/Cu ratio of 23 + 1 is not consistent with congruent dissolution
of Zn-containing chalcopyrite or Cu-containing sphalerite. Experi-
mental studies indicate chalcopyrite can maximally accommodate
0.9 mol% Zn and sphalerite can maximally accommodate 2.4 mol%
Cu (Kojima and Sugaki, 1985). The observed Zn/Cu ratio could indi-
cate congruent dissolution/precipitation of a chemically and min-
eralogically homogeneous subsurface deposit, in which case vent
fluid Zn/Cu ratios would reflect the bulk composition of underly-
ing deposits.

More generally, these combined temperature and vent chem-
istry data indicate an oscillating dynamic of subsurface deposits
and venting fluids in response to changes in vent fluid tempera-
ture, most likely caused by seismically induced changes in subsur-
face permeability. Vent fluid cooling leads to lower fluxes of Cu, Zn,
and Cd to the water column and, correspondingly, greater trapping
efficiency by subsurface deposits. Conversely, heating of the system
leads to redissolution of these deposits and higher vent fluid metal
concentrations. Over the course of our sample collection, a ~20°C
drop in temperature led to a roughly 90% decrease in vent fluid Cu,
Zn, and Cd concentrations, demonstrating that even minor changes
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Fig. 8. Measured ratios and best-fit partitioning models of V, Cr, and Mo trace ele-
ment partitioning as a substitute for Fe in sampler precipitates.

in fluid temperature can have large effects on vent fluid metal con-
centrations, water column inputs, and subsurface mineralization.
Separately from the March 13, 2020, drop in vent fluid temper-
ature, Mo concentrations in Samples 3-6 are systematically lower
than those in Samples 1-2 (Fig. 6]). Because Mo solubility is highly
sensitive to temperature and Mo is highly supersaturated in vent-
ing fluids, this decrease may reflect a slight cooling in the system
subsurface coincident with the injection of hot (>150°C) partially
reacted seawater proposed by Seyfried et al. (2022). While insuf-
ficient to noticeably affect vent fluid exit temperatures, subsurface
injection of a somewhat cooler, chemically distinct fluid may be
sufficient to induce subsurface precipitation of Mo and reduce Mo
concentrations in venting fluids. This same process would also ex-
plain the observed decrease in Co. As can be inferred from numer-
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ous ore deposit studies and, more recently, trace element analyses
of drill cores from the TAG hydrothermal mound, Co and Mo are
enriched in pyrite recovered from the highest-temperature sections
of sulfide deposition (Grant et al., 2018).

5.2. Substrate composition

Considering the consistency in major element- and dissolved
gas chemistry (Table 2), the timing of the event, and the response
of elements like Cu, Zn, and Cd known to be concentrated in
seafloor massive sulfide deposits, the observed ~20 °C temperature
drop most likely reflects near-surface changes in vent field hydrol-
ogy. Conversely, concentrations of elements that do not respond
to the observed temperature drop likely reflect higher-temperature
reactions between fluids and hydrothermally altered host rocks.

Seafloor rocks dredged from the Endeavour Segment comprise
enriched- and transitional mid-ocean ridge basalts that exhibit
ubiquitous, small-scale geochemical and mineralogical heterogene-
ity (Karsten et al., 1990). Concentrations of Mn, V, and W do
not vary significantly in S&M 2019-2020 vent fluids, indicating
that factors controlling the concentrations of these elements re-
main more-or-less constant throughout the sampling period. This
is consistent with analyses of seafloor rocks, which indicate limited
ranges in concentrations of these elements (Karsten et al., 1990).
Vent fluid V and W concentrations are rarely reported, but these
data suggest that V and W may behave similarly to Mn in seafloor
hydrothermal systems, albeit at much lower concentrations, consis-
tent with source rock and general solubility constraints. Concentra-
tions of W in vent fluids from the ultramafic hosted Niebelungen
vent field (W = 12-14 nmol/kg; Schmidt et al., 2011) are broadly
similar to those reported here (W = 4-38 nmol/kg), suggesting lit-
tle distinct contrast between basalt-hosted and ultramafic-hosted
systems.

The strong correlation between Cr and Ni in S&M 2019-2020
vent fluids, lack of response to changes in vent fluid temperature,
and enrichment in Sample 1 suggest these elements reflect some
of the compositional heterogeneity observed in seafloor rocks. A
likely source of Ni and Cr is olivine cumulates present in some
Endeavour Segment basalts (Karsten et al.,, 1990). Olivine has also
been found to preferentially react in basalt-seawater hydrothermal
experiments (Berndt et al., 1989) and could be expected to release
Cr and Ni. Consistent with this hypothesis, elevated concentrations
of Ni have been reported in vent fluids from the ultramafic-hosted
Rainbow vent field (Diehl and Bach, 2020). An interesting impli-
cation of this observation is that vent fluids may react with tem-
porally varying localized sections of the seabed such that spatial
heterogeneity in seafloor rocks may lead to subtle variations in
vent fluid chemistry over time.

5.3. Molybdenum

Biologically, Mo is a functional component of methanogene-
sis and nitrogen fixation pathways (Joerger et al., 1988; Stiefel et
al,, 1993; Leigh, 2000). In some organisms, methanogenesis can
be performed using W (Jones and Stadtman, 1977; Kletzin and
Adams, 1996); in others, nitrogen fixation can be performed using
reduced Fe or V (Bishop and Joerger, 1990; Raymond et al., 2004;
Sippel and Einsle, 2017). However, genetic studies suggest that
Mo-utilizing enzymes evolved before widespread oxidation of the
Earth (Boyd et al,, 2011) and may even have been present in the
last universal common ancestor (Weiss et al., 2016). Paradoxically,
geologic and geochemical studies indicate that Mo concentrations
in anoxic Archean oceans were much lower than modern values
(Scott et al., 2008; Saito et al., 2003; Roué et al., 2021) and con-
tinental weathering inputs were much reduced (Wille et al., 2013;
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Johnson et al., 2019). Hence, Mo may have been a limiting nutri-
ent in anoxic Archean environments with implications for nitrogen
fixation and overall biological productivity (Anbar and Knoll, 2002;
Anbar, 2008).

Concentrations of Mo in S&M 2019-2020 fluids are 29-220
nmol/kg, a range that spans modern seawater values (Mo = 108
+ 3 nmol/kg; Ho et al,, 2018). That elevated Mo concentrations
are observed even among modest temperature (302-304 °C) vents
stands in stark contrast to previous reports, wherein seafloor hy-
drothermal fluids are typically Mo-depleted with respect to mod-
ern seawater (Trefry et al, 1994; Metz and Trefry, 2000; Miller
et al, 2011; Schmidt et al,, 2011). The only previously known ex-
ception is a 363°C vent fluid collected from the Trans-Atlantic
Geotraverse (TAG) hydrothermal field (Mo = 148 nmol/kg; Metz
and Trefry, 2000).

An explanation for high Mo concentrations observed here com-
pared to the depleted values reported elsewhere is incorporation
of Mo into early-formed (copper)-iron-sulfide particles, as previ-
ously proposed in a study of plume particles by Findlay et al.
(2015), which are then preferentially excluded from typical vent
fluid samples. Alternatively, Mo might be sourced from underlying
mineral deposits. However, Mo is not enriched in other seafloor
vent fluids where extensive deposit remobilization has been clearly
identified (Craddock, 2009). Moreover, S&M 2019-2020 fluids are
greatly oversaturated with respect to molybdenite and would not
be expected to dissolve Mo even at slightly elevated subsurface
temperatures.

In contrast, Mo is readily adsorbed onto iron-sulfide particles
(Helz et al., 1996, 2004), especially in the presence of thiomolyb-
date and polysulfide species (Erickson and Helz, 2000; Vorlicek et
al., 2004). Thermodynamic calculations indicate that these species
are dominant in the intermediate temperature, pH, and redox con-
ditions associated with hydrothermal fluid-seawater mixing, but
not in the high temperature, low pH, reducing conditions imposed
by unmixed hydrothermal fluids (Liu et al., 2020). Because the
sampler used in this study was encased in the mineral structure,
samples were protected from mixing and precipitation/adsorption
effects that would otherwise be expected to remove Mo. There-
fore, values reported here may in fact be typical of seafloor vent
fluids, which suggests that hydrothermal Mo inputs are signifi-
cantly higher than previously estimated (Miller et al., 2011). Analo-
gously high reactivity has been observed for Ba, for which accurate
measurements of hydrothermal fluid concentrations can only be
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achieved using specialized isotopic techniques (Hsieh et al., 2021)
or alternatively, by obtaining uncontaminated samples (Seyfried et
al,, 2022).

The incorporation of Mo into rapidly forming iron-sulfide parti-
cles also has implications for long-range transport. Molybdenum
and V are preferentially partitioned into sampler particles and
are presumably also incorporated into hydrothermal plume par-
ticles. Indeed, such behavior has been recognized for particulate
V (Ho et al., 2018). Dynamic exchanges between particulate and
dissolved phases of hydrothermal plumes, and the presence of
complexing ligands, can enhance long-range transport (e.g., Sander
and Koschinsky, 2011), as observed for Fe in the equatorial Pacific
Ocean (Fitzsimmons et al., 2017). While relatively unimportant in
the context of a modern Mo-rich ocean, such a mechanism could
be significant for Mo delivery to an ancient Mo-poor ocean, with
ancient ocean profiles perhaps resembling modern profiles of V
(Fig. 9). In support of a plume transport mechanism for Mo, labora-
tory studies have shown that rapidly formed iron-sulfide particles
will initially adsorb, but then release Mo as they subsequently
mature and recrystallize (Helz et al, 2004). The availability of
Mo-complexing ligands during this process is also likely to play
a significant role in determining long-range transport potential.
Analyses of Mo isotopes in modern hydrothermal fluids and plume
particles could help distinguish Mo sources to these plumes and
provide insight into the potential for long-range oceanic transport
via hydrothermal plumes.

6. Conclusions

Advances in the design and development of vent fluid sampling
systems in response to power available from seafloor cabled ob-
servatories have resulted in fundamentally new perspectives on
the temporal evolution of deep-sea hydrothermal fluids and pos-
sible underlying controls. Remote acquisition of time series data
over relatively long intervals from a single vent provides previously
unavailable insight on the nature and effect of changes in deep
seated and near surface processes that characterize such systems.
These changes influence mineral dissolution and precipitation on
a range of temporal and special scales and stand in stark contrast
to more stable hydrothermal processes previously inferred. More-
over, use of a novel remotely operated fluid sampler enables repeat
sampling of vent fluids uncontaminated by ambient seawater, and
thus, provides added value to and confidence in interpretations of
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the time series data. Here, we focus on nutrient transition metals
(V, Cr, Co, Ni, Fe, Cu, Zn, Mo, Cd, W) in hydrothermal fluid samples
from the S&M vent area of Main Endeavour Field. Despite their
biological importance and potential relevance for modern and an-
cient ecosystems, many of these elements are rarely measured in
seafloor hydrothermal fluids.

Concentrations of nutrient transition metals in hydrothermal
vent fluids are typically greater than seawater, indicating a net
source to the ocean. Fluids are saturated or near-saturated with re-
spect to chalcopyrite, pyrite, and sphalerite and dramatic decreases
in Cu, Zn, and Cd concentrations following a drop in vent fluid
temperature from 302-304°C to 281-282°C can be attributed to
interactions between hydrothermal fluids and subsurface mineral
deposits at near-venting conditions, presumably in the shallow
subsurface. Less dramatic decreases in Fe are also observed. In con-
trast, concentrations of V, Cr, Co, Ni, and W do not respond to
this temperature change, suggesting these elements reflect more
deep-seated higher-temperature conditions. For example, corre-
lated Cr and Ni concentrations may represent transient interactions
with subsurface basalt of variably mafic composition and cumulate
olivine content.

Concentrations of Mo in these relatively moderate-temperature
vent fluids are surprisingly high when compared to previous mea-
surements of Mo in seafloor hydrothermal fluids and thermody-
namic expectations based on molybdenite solubility at venting
conditions. It is proposed that seafloor vent fluids likely deliver
much more Mo to the ocean than previously estimated, but that
much of this Mo might be rapidly adsorbed onto metal-sulfide
particles formed near the vent orifice. The identification of a hy-
drothermal source of Mo and other nutrient transition metals
is significant in light of speculation about hydrothermal delivery
of nutrient transition metals to the anoxic early-Earth environ-
ments which characterize the origin and early evolution of life on
Earth. Further attention and investigation of these metals should
be conducted to determine more precisely the processes by which
seafloor hydrothermal systems contribute to delivery and transport
of these metals to the ocean.
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