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The Pi Chamber generates moist turbulent Rayleigh-Bénard flow in order to replicate

steady-state cloud conditions. We take inspiration from this setup and consider a particle-

laden, convectively driven turbulent flow using direct numerical simulation. The aim of our

paper is to develop a simple stochastic model that can accurately describe the residence

times of the particles in the flow, this time being determined by the complex competition

between the gravitational settling of the particles, and the interaction of the particles with

the turbulent structures in the flow. A simple conceptual picture underlies the stochastic

model, namely that the particles take repeated trips between the top and bottom boundaries,

driven by the convective cells that occur in Rayleigh-Bénard turbulence, and that their resi-

dence times are determined by the time it takes to complete one of these trips, which varies

from one trip to another, and the probability of falling out to the bottom boundary after

each trip. Despite the simplicity of the model, it yields quantitatively accurate predictions

of the distribution of the particle residence times in the flow. We independently vary the

Stokes numbers and settling velocities in order to shed light on the independent roles that

gravity and inertia play in governing these residence times.

DOI: 10.1103/PhysRevFluids.8.024307

I. INTRODUCTION

The settling of inertial particles in turbulent flows is relevant to a wide array of engineered and

natural systems, including the dispersion of pollutants [1], the settling of organic materials in the

ocean [2], and the cooling of Earth’s magma [3]. In this paper we are particularly motivated by

experiments conducted in the so-called Pi Chamber, a cloud chamber facility located at Michigan

Technological University which uses two temperature-controlled, saturated plates in order to repli-

cate cloud conditions via moist turbulent Rayleigh-Bénard (RB) flow. The chamber itself has been

described extensively elsewhere [4], including efforts to characterize unladen RB flow in moist

conditions [5], and for this paper it serves as a broad motivation for understanding the Lagrangian

dynamics of particles, especially their gravitational sedimentation. To this end, the Pi Chamber will

serve as the starting point, although our exploration will extend beyond the properties of the particles

seen in the experimental facility itself; i.e., our analysis spans ranges of nondimensional parameters
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that cannot be replicated experimentally in order to gain further insight into the separate roles of

gravity and inertia on the particle residence times in the flow.

Existing studies on particle laden RB turbulence have largely focused on how thermal and dy-

namic coupling affects turbulence and particle motion, primarily via two-way coupled simulations

that attempt to take into account all of the physics relevant to the onset of turbulence and the transfer

of heat and momentum [6–8]. In a somewhat similar setup to the Pi Chamber, Oresta and Prosperetti

[9] simulated RB flow and allowed solid, isothermal particles to settle from the top boundary.

Over a wide range of particle diameters, they found that mechanical and thermal coupling were

able to change the mean particle settling velocities. The results also suggested a tendency towards

“reverse one-way coupling” where varying fluid parameters had a small effect on the behavior of

the particles. In light of this, we are interested in particle residence times as a function of particle

properties and will only consider one set of flow parameters, with the understanding that for a

sufficiently turbulent environment, all of the relevant mechanisms will be present.

The study of isothermal, inertial particles was furthered in Yang et al. [10], which considered

particles with three different Stokes numbers (St). They found that both heat and momentum transfer

were significantly enhanced for the medium Stokes number due to strong coupling of the two phases,

while the coupling for the lowest and highest St was weak. This nonmonotonic relationship between

particle dispersion and St has been frequently observed in other particle-laden turbulent flows [11].

In an effort to isolate the effects of inertia from gravitational forces in turbulent, two-way coupled

RB flow, Park et al. [12] looked at nonisothermal particles and varied St and a scaled settling velocity

(Vs) independently, allowing for a more detailed exploration of momentum coupling. Although this

study [12] was more focused on how thermal and mechanical coupling changed the turbulent kinetic

energy and Nusselt number of the flow, the approach of independently varying St and Vs is an

essential component of the current paper.

The discussion of settling rates and residence times of small heavy particles is a well-studied

aspect of turbulent flows in general. Historically, these efforts have been focused on isotropic,

homogeneous turbulence with zero mean velocity. It has been demonstrated that the settling of

these particles is dependent on the particle inertia and the free-fall terminal velocity. When there

is no inertia, the particles on average settle at the same rate as in still fluid. However, inertia can

create a bias for particles to move towards downwards-sweeping regions of the flow [13]. The

resulting mechanics have since been studied extensively [14–16], showing that inertial clustering

and gravitational settling lead to preferential sweeping and ultimately increased settling velocities

when compared to the velocity predicted by Stokes drag in a quiescent medium. In Rosa et al.

[17], where it was shown that preferential sweeping was the dominant means of increasing average

settling velocity, the inertial and gravitational settling parameters were separated by varying the

ratio of particle to fluid density and the energy dissipation rate. Furthermore, another mechanism

proposed in [17] is called loitering, which refers to falling particles spending more time in regions

with upward flow, ultimately reducing average settling velocities. In numerical simulations of homo-

geneous isotropic turbulence, this mechanism only plays a role when nonlinear drag is considered

[18], which is not used in the present simulations.

In the present setup, we also must account for the effects of boundary layers near the wall. The

settling velocities of inertial particles through wall-bounded turbulence were studied in Bragg et al.

[19,20], which explored theoretically the physical mechanisms governing the particle transport, and

used direct numerical simulation (DNS) to explore how the various mechanisms contribute as Vs

and St are varied. While it was evident that the well-known effects of preferential sweeping were

present in the bulk of the flow, the contribution of this mechanism decreased near the wall. In the

near-wall region where the gradients in the turbulence statistics are strong, the turbophoretic drift

mechanism [21] takes over and becomes the dominant mechanism responsible for the enhanced

settling speed of the particles. This is in fact the same mechanism that is also responsible for

a buildup of the particle concentration near the wall even in the absence of settling [21]. These

additional considerations complicate the problem and have led to the implementation of stochastic

models of varying complexity [22–24].
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Understanding and modeling particle settling rates and residence times are relevant to under-

standing the formation of cloud droplets in the Pi Chamber. Works such as Chandrakar and Yang

[25] have studied the droplet size distributions (DSDs) in experimental clouds by deriving analytical

solutions to the Fokker-Planck equations given various turbulence and droplet removal assumptions.

Similarly, in Saito et al. [23], the focus was on the development of a Fokker-Planck equation and

its prediction of the broadening of DSD. In order to facilitate the comparison with statistical

theory, they took the simplest approach by assuming that the removal process (and therefore droplet

lifetime) was independent of particle size. In a similar exploration of an evolving Pi Chamber DSD,

Krueger [22] assumed that when a droplet becomes sufficiently close to the lower boundary, the

probability of falling out per unit time is determined by the terminal velocity, which is assumed to

follow Stokes law and is therefore proportional to the square of the radius. In this paper, we show

that these assumptions [22,23] are valid, but only within certain regimes of St and Vs. Our proposed

model accounts for the relevance of the Bénard cells and allows us to separate the effects of inertia

and gravitational forces. This is achieved through a small number of parameters relevant to RB

flow that are dependent on St and Vs. We will demonstrate how these parameters vary with particle

properties, and how these variations ultimately determine residence times.

II. METHODS

A. Numerical setup

To generate statistical data for the development of our stochastic model, we employ a DNS of

the turbulent Rayleigh-Bénard flow. The resulting flow is then one-way coupled with Lagrangian

particles, meaning that while the fluid is able to impart momentum to the particles, the particles do

not modify the background flow. As noted above, the setup is broadly motivated by the conditions

found in the Pi Chamber, and therefore is similar to the methods used by MacMillan et al.

[26], except that in the present case the particles are nonevaporating and one-way coupled to the

surrounding flow. While we will provide a brief overview of the DNS model as it pertains to

this paper, further details can be found in Richter et al. [27], Park et al. [12], and Helgans and

Richter [28].

The Navier-Stokes equations with the Boussinesq approximation are solved for mass, momen-

tum, and energy conservation of the carrier phase:

∇ · u = 0, (1)

∂u

∂t
+ u · ∇u = −∇π + k̂

g

T0

T + ν∇2u, (2)

∂T

∂t
+ u · ∇T = α∇2T, (3)

where u is the fluid velocity, T is the temperature, and π is a pressure variable which enforces

the divergence-free condition of Eq. (1). In Eq. (2), the buoyancy term in the vertical direction is

dependent on the acceleration due to gravity g = gk̂, and the reference temperature T0 = 300 K.

The terms ν and α refer to the kinematic viscosity and heat diffusivity of the fluid. Since we are

considering solid, one-way coupled particles, there is no need for the additional source terms from

particle coupling that are found in MacMillan et al. [26] and Park et al. [12]; this will allow us to

vary the gravity felt by each particle in later analysis without concern for the effects that the particles

may have on one another or the flow.

Along the upper and lower boundaries, the fluid velocity is governed by a no slip condition. The

aspect ratio of the domain is Lx/Lz = Ly/Lz = 2, and the number of grid points is [Nx, Ny, Nz] =

[128, 128, 128]. The 2:1 aspect ratio is similar to that found in the Pi Chamber. However, unlike

the Pi Chamber, the domain is horizontally periodic owing to the pseudospectral discretization in

the x and y directions. Second order finite differences are employed for derivatives in the vertical

z direction. The temperatures of the upper and lower boundaries of the rectangular domain are set to
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Ttop = 280 K and Tbot = 299 K, resulting in a temperature difference �T = 19 K. This corresponds

to a Rayleigh number of Ra ≡ (g�T L3
z )/(T0να) = 107. This value is used for all simulations in this

paper, along with a Prandtl number Pr ≡ ν/α = 0.715.

The particles evolve in a Lagrangian frame of reference according to the following set of

equations:

dxi
p

dt
= vi

p, (4)

dvi
p

dt
=

1

τp

(

u f − vi
p

)

− gpk̂, (5)

where the evolutions of the ith particle’s position xi
p and velocity vi

p depends solely on τp, gp,

and the local fluid velocity u f interpolated to the droplet location using trilinear interpolation. All

particles begin their lifetime at the midplane with zero initial velocity and are taken out of the

flow when they reach the bottom boundary. It is worth noting that, for simplicity, Eq. (5) neglects

terms from the full Maxey-Riley equations [29]. As will be evident in later sections, the model uses

statistics taken directly from the DNS. Therefore, while these additional terms may result in some

quantitative changes to the probability density functions (PDFs), any additional physics captured in

the simulation could straightforwardly be accounted for without any changes to the model.

The timescale τp = ρad2/18νρ f is the Stokes timescale, which governs the time taken by a

particle of diameter d to reach equilibrium with the local velocity of a fluid that has density ρ f

and kinematic viscosity ν. The gravitational acceleration experienced by the particle, gp, is separate

from that experienced by the fluid g, thus allowing us to specify the particle settling rate independent

of the buoyancy forcing of the fluid. Using Kolmogorov microscales to nondimensionalize the

velocities in Eq. (5), we obtain the following:

St
d ṽi

p

dt̃k
=

(

ũ f − ṽi
p

)

− Vs k̂. (6)

As a result, it is evident that particle motion is solely dependent on two nondimensional parameters:

St and Vs. For the purposes of this paper, they will be defined as St = τp/τk and Vs = τpgp/vk where

τk and vk are the vertically averaged Kolmogorov time and velocity microscales, respectively. Note

that the nondimensional time t̃k = t/τK is used in Eq. (6) to define St and Vs. A separate time

scale that will be used extensively in this paper is a convective time scale defined as t̃c = t/τe.

The parameter τe is the eddy turnover time given by τe = 2Lz/
√

〈u2
z 〉V,t , where 〈〉V,t indicates a

volumetric and temporal mean of the vertical velocity (uz) squared, a turnover time definition used

in multiple works by Sakievich [30,31]. For this simulation, τe = 3.95 min; how this relates to

predicting particle residence times will be explored in a later section.

Unladen RB flow has been studied extensively in the literature [32], and therefore will not be a

focus of discussion in this paper. More details on the specific setup used to inspire and generate the

flow in this application can be found in Chang et al. [4] and MacMillan et al. [26]. The focus for

the remainder of this paper will be on understanding and modeling the lifetime behavior of solid,

one-way coupled particles as a function of St and Vs.

B. Model description

The processes and mechanisms that govern particle transport in turbulent Rayleigh-Bénard flow

are very complicated. However, the conceptual framework behind our model assumes that a rela-

tively small number of flow quantities and simple processes determine the probability distribution

of the particle residence times. This conceptual framework is inspired by the observation that

particles are circulated globally by the convection cells in the flow, causing them to take a number

of “elevator trips” before eventually falling out; the number of these trips largely influences the total

residence time.
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FIG. 1. Sample distribution of the nondimensional residence times (T ) as defined in Eq. (7), resulting from

the DNS (e). To emphasize the importance of elevator trips on the qualitative nature of the distribution, see the

trajectories from the first (a), second (b), and third (c) peaks, as well as the tail of the distribution (d).

Concerning the dependence of the particle dynamics on St and Vs, a couple of limiting cases have

straightforward interpretations. In the limit of zero inertia and terminal velocity, i.e., Vs → 0 and

St → 0, the particles will act as fluid tracers. These are continuously circulated by the convection

with no chance of falling out in finite time because we do not consider diffusive processes. In

contrast, as Vs → ∞ and St → ∞ the infinite inertia eliminates the effect of the flow and prevents

the particle from ever accelerating to its terminal velocity. Another frequently made simplifica-

tion assumes that Vs ≈ finite and St → 0. In this case, for particles that are initially distributed

homogeneously, the mean velocity of the particles would be the Stokes settling velocity because

their lack of inertia means that the particles sample the flow uniformly for all times. This is

the assumption behind the well-known Rouse profile of suspended particulate matter [33]. In the

majority of applications, however, including the droplets found in the Pi Chamber, the presence of

a finite nonzero St introduces the complicating role of inertia.

The elevator trips that inspire this model are highlighted in Fig. 1, which shows a sample prob-

ability distribution of particle residence times from the DNS nondimensionalized by τe [Fig. 1(e)],

and identifies with color shading representative trajectories that correspond to its most obvious

features. If the trajectories were approximated to be sinusoidal, we could consider one of these

elevator trips to be one period that begins and ends at the midplane. The first two peaks in the

distribution are a result of those that either had an initial downward velocity and only traversed

the distance from midplane to bottom boundary, or those that had an initial upward velocity and

completed one-half period before traversing the same final distance. The remaining particles then

complete an unspecified number of elevator trips before ultimately traversing the distance from the

midplane to the bottom boundary. It is then evident that, in order to approximate the residence time

of a particle, we need four pieces of information: (1) (λd ) how likely the particle is to have an initial

downward velocity, (2) (ρe) the amount of time it takes the particle to complete one elevator trip,

(3) (λ f ) how likely the particle is to fall out of the flow after each trip, and (4) (ρb) how much time

it takes the particle to traverse from the midplane to the bottom boundary before falling out.

These are the four parameters that the stochastic model takes into account to predict the full

distribution of residence times, and are expected to be a function of both St and Vs. Our goal is to
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FIG. 2. Demonstration of the stochastic model for four trajectories given particles of the same size, where

{ξ = −1, Nt = 0} (a), {ξ = 1, Nt = 0} (b), {ξ = −1, Nt = 1} (c), and {ξ = −1, Nt = 6} (d). The residence

time predictions take into account the chance of falling out after each elevator trip, λ f (e), the likelihood of

having an initial downward velocity, λd (f), the time required to complete an elevator trip (as defined in the

“Model description” section), ρe, denoted by solid lines (g), and the time to traverse from the midplane to the

bottom boundary, ρb, denoted by dashed lines (h).

demonstrate this dependence in the formulation of this model. For the remainder of this paper, the

reported values of ρe and ρb will be nondimensionalized by the eddy turnover time τe.

In order to construct a stochastic model based on this conceptual framework, two steps are

required to determine the residence time of the ith particle, Ti.

(1) Determine whether the particle has an initial upward or downward velocity based on λd .

While no additional considerations must be taken for an initial downward velocity, if it is upward,

add the time associated with half of an elevator trip (ρe/2).

(2) Determine if the particle will fall out of the flow based on λ f . If it does, add the time required

to pass from the midplane to bottom boundary ρb and consider the particle dead. If the particle does

not fall out, add the time required for an elevator trip ρe, and repeat step 2 until the particle does fall

out of the flow.

How this simple process replicates the trajectories shown in Fig. 1 is demonstrated visually in

Fig. 2. In Figs. 2(a) and 2(b), we see particles that complete zero elevator trips and have initial

downward and upwards velocities respectively. Figure 2(c) shows a particle completing one elevator

trip before falling out, while Fig. 2(d) shows a particle completing multiple elevator trips.

The procedure described above may be summarized mathematically as follows. Let ξ denote a

random variable living in a discrete sample space that takes values −1 and +1, with probability

P (ξ = −1) = λd , and hence P (ξ = +1) = 1 − λd . The configuration ξ = −1 is used to denote

that the initial particle velocity is down, while ξ = +1 denotes that it is up. The nondimensional

residence time for the ith particle, Ti, is then specified by the model to be

Ti =

Nt
∑

j=0

β( j, ξ )ρ ( j)
e + ρb (7)

where β( j = 0, ξ = −1) = 0, β( j = 0, ξ = +1) = 1/2, and β( j, ξ ) = 1 ∀ j > 0, ξ , with Nt being

the total number of elevator trips taken by the particle before it falls out. The quantity ρ
( j)
e simply
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denotes the value of ρe at the jth step of the iteration. It is worth emphasizing that the values of

ρe and ρb are drawn from the full distribution obtained in the DNS. While the use of mean values

would be simpler, it would prevent us from replicating the full residence PDF, as there would only

be residence times at integer multiples of ρe.

In order for this new model to be fully closed and predictive, the statistical quantities summarized

above would have to be modeled. However, as a first step we simply specify them using the

DNS data. The advantage of doing this is that it allows the simple conceptual idea underlying the

stochastic model to be tested. We intend to show that, given full knowledge of these few essential

parameters, the framework is sufficient to replicate the DNS results. Given the complexity of particle

motion in turbulent Rayleigh-Bénard flow, it is not at all obvious a priori that our simple conceptual

framework is sufficiently detailed to quantitatively capture the particle residence times in the flow.

Once the accuracy of this conceptual modeling framework has been established, it will then make

sense to try to model the input statistics and so derive a fully closed, fully predictive model. While

there is some discussion of potential simplifying assumptions in the conclusion, the development of

a fully closed model is left to future work.

III. RESULTS

Here we discuss the particle residence time behavior observed in the DNS, as well as the

performance of the model as St and Vs are varied. The varying of St and Vs follows two different

strategies. In the first, Vs and St are inherently coupled, as they would be in a physical experiment

where the acceleration of gravity felt by the particles gp would equal that responsible for the

buoyancy forcing g. While this is consistent with physical experiments, it does not allow for the

effects of gravity and inertia to be untangled, which can hinder an understanding of the problem.

To explore this, we therefore also consider cases where Vs is held constant (by varying gp) while

varying St, allowing us to distinguish the effects of gravitational settling from particle inertia on the

particle residence times.

A. Coupled St and Vs

For the coupled case, we consider particles with a range of Stokes numbers St = [10−6, 10−1],

which, since the flow and particles experience the same gravitational acceleration, implies the range

Vs = [10−3, 102]. For reference, a 0.5 micron salt aerosol in the Pi Chamber has St ∼ O(10−6) and

Vs ∼ O(10−3), and a 20 micron cloud water droplet has St ∼ O(10−3) and Vs ∼ O(100). While our

range encompasses realistic values, we are also intentionally considering a wider range in order to

more comprehensively understand the problem and test the model.

The four statistical quantities required for the model are shown in Fig. 3, as measured by the DNS

and used in the model results of Figs. 4 and 5. For both distributions, a discrete PDF is generated

directly from the DNS data and then fit with cubic splines in order to create a continuous cumulative

distribution function (CDF). The model then uses inverse transform sampling by pulling from this

CDF to generate pseudorandom numbers that adhere to the probability distribution of our choice.

The PDF of period residence times, P(ρe), seen in Fig. 3(a), clearly shows that for this range of

properties, the majority of particles complete an elevator trip in accordance with the convective time

(tc). Note that there are no data for the largest St, as at this size no particles completed an elevator

trip. The distribution of times for a particle to traverse from the midplane to the bottom boundary,

P(ρb), seen in Fig. 3(b), however, is strongly correlated with St, with smaller times being associated

with larger particles. This is because the increased settling velocity and inertia of the particles lead

to a larger terminal velocity and increasingly negligible effects of the flow. The chance of having

an initial downward velocity, λd , is approximately 50% for the smaller St, but rises to 100% for the

largest. Since there is no mean vertical fluid velocity at the midplane, we would expect minimally

inertial particles initialized there (with no initial velocity) to have an equal chance of being carried

up or down. Similarly, the percent chance of falling out during an elevator trip, λ f , starts below 10%
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FIG. 3. The four input parameters from the coupled St and Vs case: the distribution of elevator trips as

defined in the model description, ρe (a), the distribution of the time to pass from the midplane to bottom

boundary, ρb (b), as well as the chance of an initial downward velocity, λd , and the chance of falling out after

an elevator trip, λ f (c), expressed as probabilities.

FIG. 4. For each order of magnitude considered in the coupled St and Vs case [(a)–(e)], the model has been

tested by comparing the full distributions of nondimensional residence times (T ) to the DNS results.

FIG. 5. The results of the coupled St and Vs case as shown by the comparison of mean nondimensional

residence times (Ti), with a reference slope included for comparison to the power law relationship predicted by

Stokes drag (a). The same results are also plotted where the mean residence time is instead nondimensionalized

by the settling time of a given particle in quiescent flow (τw,i) (b).
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but rises to 100% for the larger St, meaning all particles of that size are unable to complete a full

elevator trip due to their inertia and gravitational settling..

With these four inputs, Fig. 4 compares the PDFs of residence times as measured in the DNS to

those generated by the model. Figure 5 compares the mean residence times predicted by DNS and

the model as a function of St. We see that the model captures nearly all relevant features of the DNS

PDF, including the peaks at low tc, and is quantitatively accurate for all ranges of St. Unsurprisingly,

we see that the larger particles, those with both high St and Vs values, on average fall out faster

than their smaller counterparts. Recalling that the residence times in Figs. 4 and 5(a) have been

normalized by the convective time scale of the flow, we see the two expected peaks around 1/4

and 3/4 periods. Beyond those peaks, the linear nature of the log-scale PDFs suggests qualitative

agreement with the results of Patočka et al. [3], who demonstrated that the number of suspended

particles in a system could be robustly modeled with an exponential decay relationship dependent

on the settling velocity and flow properties. In Fig. 5, we see that for St < 10−4, the particles all take

an average of ten elevator trips before falling out. In this regime, the assumption made in Saito et al.

[23] that lifetime is independent of particle properties may be sufficient. It appears that the trajectory

is dominated by convection, and the slight nonzero slope is only caused by the different distributions

of ρb (as ρe, λd , and λ f remain largely unchanged). These results are qualitatively similar to what

was seen by Patočka et al. [3], which also identified a regime of slow sedimentation dominated by

large-scale circulation. The number of trips continues to decrease, until beyond St = 10−3 we see

that the residence time is on average less than one convective time scale. This decrease in residence

times is a result of the higher chance of falling out after each elevator trip, and the decreased time to

pass from the midplane to the bottom boundary. It is also in this regime that we see agreement with

the simplification made in Krueger [22], which assumed that settling rate follows Stokes law and that

the mean lifetime is therefore proportional to 1/St [shown by the reference slope in Fig. 5(a)]. This

trend is perhaps more obvious in Fig. 5(b). It shows the mean residence time nondimensionalized

by τw, which is the amount of time a given particle will take to settle in quiescent flow, defined

as τw = 0.5Lz/(τpgp). In this context, it is evident that particles with St > 10−2 fall out at the rate

predicted by Stokes law. Considering these results, it is evident that the transition that occurs around

St = 10−4 in Fig. 5 is a result of the relative importance of the convective and settling time scales.

For particles with St < 10−4, the vast majority of the residence time is a result of the elevator trips,

which are a function of flow properties, and not their settling through the viscous boundary layer.

When St > 10−4, the elevator trips make up an increasingly smaller percentage of the residence

time, as reflected in the sharp increase in λ f that also occurs around St = 10−4 [see Fig. 3(c)]. Once

St > 10−2, particle residence times are almost entirely determined by the particle’s Stokes drag

[see Fig. 5(b)]. However, since St and Vs are still linked, it is still unclear whether this transition

is associated with inertia (via St) or gravity (via Vs). In the next section, we will attempt to clarify

those effects.

B. Fixed Vs, varying St

For this portion of the analysis, we choose three constant values of Vs = [0.1, 1.0, 10]. In the

previous case, we were limited in how high of an St value we could consider because a correspond-

ing Vs greater than 102 results in the particle falling out almost immediately. Here, however, we

shift the range of values to St = [10−3, 102] to encompass the transition between low to substantial

inertial effects. Figure 6 shows the resulting residence PDFs for the full range of St along with some

representative trajectories measured in the DNS.

As expected, it can be seen that for the same range of Stokes numbers, increasing the settling

velocity decreases the residence time on average. Also of note is that by Vs = 10, none of the

particles are able to complete an elevator trip as the flow is unable to carry them above the midplane

due to their large settling velocity. It seems that in this regime, residence time is better parametrized

by the particle’s inertia and terminal speed as opposed to a convective scale. Of more interest,

however, is how the residence times vary as a function of St given a constant Vs. These results are
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FIG. 6. DNS results from the constant Vs cases, for all particles over the range St = [10−3, 102]: residence

PDFs (a) and representative trajectories [(b)–(d)].

presented in Fig. 7, which shows that for low Stokes numbers (<10−1), the residence time remains

solely a function of Vs. As St increases, particle residence times initially decrease, but past St ≈ 10

they begin to increase again.

Figure 8 compares the PDFs for both the DNS and the model given the sample case of Vs =

1.0. We see that the model is again able to quantitatively replicate the PDF for the entire range of

St, especially for the lower orders of magnitude. We believe that the discrepancy for the highest

orders is a result of obtaining fewer data points for ρe due to the differences in the elevator trips

that will be highlighted momentarily. In contrast to the case where St and Vs are linked, Fig. 9

shows that at a fixed settling velocity, St can change the distributions of ρe and ρb. For the largest

particles (St > 10), we see an increase in the mean residence time in Fig. 7. The two main causes

for this can be found in Fig. 9. First, we see that the time to complete an elevator trip (ρe) increases

substantially, due to their delayed response to turbulence combined with the tendency to filter out

small-scale motions. Secondly, the higher inertia also implies that they take longer to approach their

terminal velocity, as evidenced by the increased time to travel from the midplane to the bottom

boundary (ρb).

The other two model input parameters can be found in Fig. 10 for all three constant Vs values

over the entire considered range of St. We can clearly see that λd is solely a function of Vs. We

also notice that λ f begins to increase once St is greater than 10−1. This happens when particles are

beginning to depart from streamlines, and are therefore flung towards the bottom boundary where

FIG. 7. Summary of the mean nondimensional residence times (T ) over the range St = [10−3, 102] for each

constant Vs.
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FIG. 8. The results of the fixed Vs, varying St cases as shown by the comparison of residence time

distributions for the DNS and the model. For clarity, each order of magnitude of St is compared indivi-

dually [(a)–(e)].

FIG. 9. For the sample case of Vs = 1.0, distributions for the time to complete and elevator trip, ρe (a), and

the time to travel from the midplane to the bottom boundary, ρb (b).

FIG. 10. For all three constant Vs cases, the percent chance of the particle initially having a downward

velocity, λd (a), and the percent chance of falling out after each elevator trip, λ f (b).
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FIG. 11. Validation of the model results, shown by the mean nondimensional residence times (T ) across

the entire range of St for each constant Vs value.

they fall out. This would account for the initial dip in residence times that is seen in Fig. 7. At even

higher St, the chance of falling out continues to approach 100% as St increases. This is because,

as St continues to increase, the drag force on the particle becomes negligible compared with that

produced by gravity, which pulls it towards the bottom boundary.

Figures 9 and 10 can be summarized in the following way. For small St (<10−1), all particles

are subject to the same turbulence-based convective time scale during their elevator trips, and the

percent chance of falling out remains constant, leading to little change in their overall residence

times. As St begins to increase (10−1 < St < 101), elevator trips are still governed by the flow

convective time scale, but the percent chance of falling out begins to increase due to the particles

departing from streamlines, leading to a decrease in residence times. Once St becomes very large

(>101), the particles have enough inertia to strongly resist the effects of the flow, and the elevator

trips themselves become longer since they are experiencing a low-pass-filtered version of the

surrounding turbulence. Even in the Vs = 10 case where particles rarely complete elevator trips,

their high inertia prevents them from reaching their Stokes terminal velocity. This results in an

increase in residence times, and we would expect the residence times to continue to increase along

with St. Figure 11 shows how the model is able to match this behavior that was already demonstrated

in the DNS results.

IV. DISCUSSION AND CONCLUSION

In this paper, we have proposed a stochastic model that reduces the complexities of particle-

laden turbulent Rayleigh-Bénard flow to a simple conceptual picture. Motivated by the Pi Chamber

experimental facility [4], we used one-way coupled DNS with Lagrangian particles to model their

behavior and record statistics associated with their residence times. We focused in particular on the

independent roles of St and Vs in dictating particle residence times in the flow.

In order to simplify the complex motion of the particles in the flow, we introduced the idea of

an elevator trip which is the approximately sinusoidal motion generated by the convective Bénard

cells. The four important statistics to describe this motion are the chance of a particle having an

initial downward velocity, the time it takes to complete an elevator trip, the chance of falling out

after an elevator trip, and the time it took to fall from the midplane to the bottom boundary. We have

demonstrated that when these input statistics for the model are prescribed using DNS data, then the

model predictions for the residence times accurately replicate the DNS results. That it should do so

is not at all trivial given the complexity of particle motion in turbulent Rayleigh-Bénard flow, and

the simplicity of the approximations underlying the model. This test accomplishes two things. First,

it demonstrates that with perfect knowledge of the inputs, the stochastic model provides a very good

approximation of both the mean and full distribution of residence times. Secondly, it shows that this
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FIG. 12. Summary of the potential simplifying assumptions in various regimes of St and Vs for both the

coupled (a) and uncoupled (b) case.

simple conceptual framework provides insight into the physical phenomena governing the particle

residence times in this system.

When St and Vs are coupled, as they would in experimental conditions, we saw that the amount

of time to complete an elevator trip remained constant, but as St increased more particles had an

initial downward velocity, and they were more likely to fall out after a given elevator trip. This

unsurprisingly results in larger particles having shorter residence times. To clarify the independent

roles of St and Vs, we chose three constant, representative values of Vs and varied St for each to

isolate the effects of inertia. In these runs, we saw that for small St, residence times are solely a

function of Vs since the lifetime is ultimately dictated by the particles settling through the boundary

layer, which is not aided by particle inertia when St is small. However, as St begins to increase,

so does the chance of falling out after each elevator trip, leading to an initial decrease in residence

times. This corresponds to particles departing from streamlines and being flung out of the turbulent

core of the domain. For the largest St, the increased inertia leads to longer elevator trips and slow

relaxation to their Stokes terminal velocity, resulting in a reversion towards longer residence times.

Using this knowledge, we can look at our coupled St and Vs results in a new light. For particles with

St < 10−4, motion is dominated by the flow properties that determine the number of elevator trips.

In contrast, the residence time of particles with St < 10−4 is increasingly more dependent on the

particle’s settling rate in quiescent flow.

In the end, we demonstrated that the simple conceptual framework underlying the stochastic

model provides a helpful way to understand the behavior of the particles in the flow, and if the input

statistics are perfectly described, then it also provides accurate approximations for both the mean

residence times and their complete probability distributions. At the moment, the model relies on

DNS data to prescribe the input statistics. In future work, a key point will be to develop models for

the four statistical inputs themselves, so that the stochastic model for the particle residence times

is fully closed. From the results we can already see that the convective time scale (tc) is helpful in

predicting the average time it takes to complete an elevator trip. While it is beyond the scope of this

paper, there is promise in finding similar relationships for the other inputs.

To support this effort, Fig. 12 provides a summary of the simplifying assumptions that can be

made in various regimes. Figure 12(a) summarizes the coupled results, in which the limit cases are

apparent. For very small particles (St � 10−6) that nearly behave like fluid tracers, the average

elevator trip is approximately the eddy turnover time (ρe ≈ τe), the particles are carried to the

bottom boundary by the flow (ρb ≈ τe/4), there is an equal chance of an initial upward or downward

velocity when initialized at the midplane (λd ≈ 0.5), and the chance of falling out after each elevator

trip tends towards zero (λ f → 0). For the largest particles (St � 10−1), the particles are driven to
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the bottom boundary by their settling velocity (ρb ≈ τw), and particles nearly always have an initial

downward velocity (λd ≈ 1.0) and fall out of the flow at the first opportunity (λ f ≈ 1.0).

Figure 12(b) shows the simplifying assumptions that can be made in light of the uncoupled case.

Over the entire range of St, when Vs � 0.1 the mean vertical fluid velocity determines the chance

of an initial downward velocity (λd ≈ 0.5), and when Vs � 10, the particles nearly always have an

initial downward velocity (λd ≈ 1.0) and fall out of the flow at the first opportunity (λ f ≈ 1.0).

We also observed that the chance of falling out after each elevator trip was solely a function of

the settling velocity [λ f = f (Vs)] until St � 10−1, at which point inertia begins to play a role. The

assumption that the mean time to complete an elevator trip is approximately equal to the eddy

turnover time (τe) holds as long as St � 1 and Vs � 1, beyond which the inertia and gravitational

settling become a contributing factor.

This demonstrates that, in certain regimes, many of the components of the model proposed here

can be simplified, reducing the dependence on the DNS. For instance, the salt aerosols often injected

into the Pi Chamber are on the order of St ∼ O(10−6), which allows us to make assumptions about

all four input parameters. It is also worth noting that since the length of each elevator trip is decided

independently of the others, we are free to vary particle properties after each trip. If the particle

size were to be updated based on the relative humidity encountered, this model could potentially

be extended to evaporating particles. In conjunction with a number of the potential simplifying

assumptions, this could provide a model with even more direct applications to the Pi Chamber.
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