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Abstract

We propose a model of card shuffling where a pack of cards, spread as points on a square table, are
repeatedly gathered locally at random spots and then spread towards a random direction. A shuffling of
the cards is then obtained by arranging the cards by their increasing x-coordinate values. When there are
m cards on the table we show that this random ordering gets mixed in time O (log m). Explicit constants
are evaluated in a diffusion limit when the position of m cards evolves as an interesting 2m-dimensional
non-reversible reflected jump diffusion in time. Our main technique involves the use of multidimensional
Skorokhod maps for double reflections in [0, 1]2 in taking the discrete to continuous limit. The limiting
computations are then based on the planar Brownian motion and properties of Bessel processes.
© 2022 Elsevier B.V. All rights reserved.
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1. Introduction

1.1. The gather-and-spread model of spatial shuffling

Let D = [0, 1]2 represent a square table. Imagine m labeled cards spread on this table. We
will ignore the dimensions of the cards and represent them as particles with spatial positions
in [0, 1]2. Suppose at each discrete time step an agent selects a spot uniformly at random in D.

I This research is partially supported by National Science Foundation, United States of America grants
DMS-1208775, DMS-1308340 and DMS-1612483.

⇤ Corresponding author.
E-mail addresses: diaconis@math.stanford.edu (P. Diaconis), soumik@uw.edu (S. Pal).

https://doi.org/10.1016/j.spa.2022.06.023
0304-4149/© 2022 Elsevier B.V. All rights reserved.

http://www.elsevier.com/locate/spa
https://doi.org/10.1016/j.spa.2022.06.023
http://www.elsevier.com/locate/spa
http://crossmark.crossref.org/dialog/?doi=10.1016/j.spa.2022.06.023&domain=pdf
mailto:diaconis@math.stanford.edu
mailto:soumik@uw.edu
https://doi.org/10.1016/j.spa.2022.06.023


P. Diaconis and S. Pal Stochastic Processes and their Applications 152 (2022) 149–176

Consider all cards whose current position lies in a disc of radius � > 0 centered at that point.
She gathers all such cards to the center of the disc in a single heap, randomly selects a direction,
tosses an independent coin for each card in that heap, and, for those cards whose coins turn
up heads, pushes the cards in that direction for a fixed, bounded distance while keeping them
within the boundaries of the table. Other cards, including those whose coins turn up tails, are
not moved. She does this independently at each time step. After T steps the cards are projected
on the x-axis and arranged in a line in the increasing order of the x-coordinate values. We are
interested in the resulting random permutation of the set [m] := {1, 2, . . . , m}, especially in
estimating T that guarantees that this terminal random permutation is approximately uniform in
total variation distance, irrespective of the initial positions of the cards. The model is designed
to mimic a popular way to mix cards (called smooshing) by gathering cards locally using both
palms and then spreading the cards by dragging them under the palm.

We now give a more formal definition. Let U be the closed disc of radius � centered at the
origin. For any z 2 R2, the set z + U will denote the disc centered at z. Colloquially we will
refer to U as the “palm” of the agent put at the point z.

We now describe the “gather” operation. Consider a point z0 = (x0, y0) 2 D. Let Gz0 :
D ! D denote the map

Gz0 (z) := z01 {z 2 z0 + U } + z1 {z /2 z0 + U } , z = (x, y) 2 D.

That is, points under the palm are gathered to the center. If z is close to the boundary of D,
there are fewer points to which it can be gathered. For tractability of our stochastic processes
we will require some spatial homogeneity. This inspires the following extended definition.

Let D denote the Minkowski sum of the two sets D and U . That is D = [z2D {z + U }. For
x 2 R, let

ex := max(min(x, 1), 0) =

8
><

>:

0, if x < 0.
x, if 0  x  1.
1, if x > 1.

For z0 = (x0, y0) 2 D\D, define ez0 := (ex0, ey0) and

Gz0 (z) =ez01 {z 2 z0 + U } + z1 {z /2 z0 + U } , z 2 D.

That is, points under the palm are gathered to a boundary point in case the center is outside
D. See Fig. 1 where the point z is outside the unit square and the corresponding z̃ is on the
boundary. Hence if the palm is placed such that the center is on z, all cards under the palm
will be gathered at z̃.

We now define the “spread” operation. Fix s0 > 0, a ✓ 2 [0, 2⇡ ], and a point z0 = (x0, y0) 2
D. For z = (x, y) 2 D such that z 2 z0 + U , let x1 = x + s0 cos(✓ ) and y1 = y + s0 sin(✓ ).
Define the map f z0,✓

s0 : D ! D, by

f z0,✓
s0

(z) =
(

(ex1, ey1) , if z 2 {z0 + U } \ D.

z, otherwise.
(1)

Thus, for z 2 {z0 +U }\ [0, 1]2 (“cards under the palm”) we move z linearly in the direction ✓
for distance s0 until we hit the boundary of the table and stop moving the coordinate that is at
the boundary. Nothing else is touched. Again, see Fig. 1 where the point (x, y), under the palm,
is dragged until the x-coordinate hits one and does not increase any more. The y-coordinate,
however, continues to decrease. (x1, y1) represents the position of the particle had there been no
boundary. The actual position is given by the coordinates (ex1, ey1), where ex1 = 1 since x1 > 1.
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Fig. 1. The effect of the boundary. On the left, the palm is centered at z which is outside the table. All cards in
the shaded area inside the square will then be gathered at ez. On the right we see spread (without gather). (x, y) is
a point under the palm which is not gathered at the center. The palm drags the card at (x, y) along a straight line
until the x-coordinate hits the boundary. The x-coordinate freezes while the y-coordinate continues to decrease.

If two or more cards occupy the same position (say due to gathering) we need additional
randomization to break the ties. Fix 0 < p < 1. Every time a card is about to be spread, it
tosses an independent coin with probability p of turning up heads. If it turns up heads, the card
follows the palm in the chosen direction. Otherwise it does not move. We define this process
formally below.

Fix � > 0. For mathematical convenience we consider continuous time and model the
random selection of spots by the agent as a Poisson point process (PPP) on (0, 1) ⇥ D
of constant rate � with respect to the product Lebesgue measure. Since D is bounded, it is
possible to enumerate the atoms of this point process in a sequence {(ti , wi ) , i 2 N} such that
t1 < t2 < t3 < · · · , and each wi 2 D. One can obtain a discrete time model by discarding ti s
and considering the sequence (wi , i 2 N) of i.i.d. uniformly chosen points in D at discrete
time points i 2 N.

Let ⌫0 be any probability distribution on [0, 2⇡ ] that satisfies the following unbiasedness
assumption. Here and throughout, ⌫( f (·)) for a probability measure ⌫ and a function f , suitably
measurable, will denote the expectation of f under ⌫.

Assumption 1. Assume that ⌫0 (cos(·)) = ⌫0(sin(·)) = ⌫0 (sin(·) cos(·)) = 0 and that
⌫0

�
cos2(·)

�
= ⌫0

�
sin2(·)

�
= � 2, for some � > 0.

Examples of ⌫0 include the uniform distribution over [0, 2⇡ ] and the discrete uniform
distribution over the set {0,⇡/2,⇡, 3⇡/2} with � 2 = 1/2 in both cases.

Generate an i.i.d. sequence (✓i , i 2 N) sampled from ⌫0 and consider the sequence of
functions

⇣
f wi ,✓i
s0 , i 2 N

⌘
. Fix m 2 N. Let 0 < p < 1 be fixed as before.

Definition 1 (m Point Motion Under Gather-and-Spread). Let Z j (0) = z j 2 D, j 2 [m],
denote the initial positions of m cards. Generate an i.i.d. array

�
Hj (i), j 2 [m], i 2 N

�
of

Bernoulli(p) random variables. Define sequentially, for i 2 N, j 2 [m], starting with t0 = 0,

Z0
j (ti ) := Gwi

�
Z j (ti�1)

�
, (gather) and

Z j (ti ) := Hj (i) f wi ,✓i
s0

�
Z0

j (ti )
�
+

�
1 � Hj (i)

�
Z0

j (ti ), (spread).
(2)
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Extend the sequence
�
Z j (ti ), j 2 [m], i = 0, 1, 2, . . .

�
to all t 2 [0, 1) by defining

Z j (t) = Z j (ti�1), ti�1  t < ti , i 2 N, j 2 [m]. (3)

The resulting continuous time Markov chain
�
Z j (t), j 2 [m], t � 0

�
on the state space Dm

will be called the m point motion under the gather-and-spread model.

Remark 1. As before we choose to work with D instead of D for technical reasons. For a
PPP on (0, 1) ⇥ D of constant rate �, the cards near the boundary move less frequently than
those near the center of the table, affecting spatial homogeneity. Intuitively, the two models are
not too different if U is small compared to D.

Many natural variations of this model can be analyzed by the methods of this paper. For
example, instead of gathering all the cards under the palm at the center one can choose a new
independent, uniformly at random, position under the palm for each card. This is an example
of local mixing. It is also possible to change the spread by selecting a probability distribution
on [0, 1) and deciding the spread s0 of each gathered card by sampling independently from
it. For all such models the analysis in the paper remains similar.

We now describe what we mean by shuffling using this spatial motion. Let Sm denote the
group of permutations of m labels. Consider an m-tuple of real numbers (x1, . . . , xm). Define
the rank-to-index permutation corresponding to this set in the following way. If every coordinate
is distinct, then one can arrange the coordinates in increasing order x(1) < x(2) < · · · < x(m),
for a unique element � 2 Sm such that x�i = x(i). Say that the rank of x�i is i while the
index of x�i is �i . When all coordinates are not distinct, the rank-to-index will refer to a
random variable taking values in Sm which is obtained by “resolving the ties at random”. To
do this rigorously, generate i.i.d. uniform [0, 1] random variables {U1, . . . , Um}. Consider the
set of pairs {(x1, U1) , . . . , (xm, Um)}. Rank the above sequence in the increasing dictionary
order. That is (xi , Ui ) <

�
x j , U j

�
if, either xi < x j or {xi = x j } \ {Ui < U j }. It is clear

that, almost surely, this gives us a totally ordered sequence with no equalities. As before, let
� 2 Sm be the unique element such that

�
x�i , U�i

�
is the i th smallest element in the above

ordering. Then � will be called the rank-to-index permutation corresponding to (x1, . . . , xm).
This also works when one replaces (x1, . . . , xm) by a random vector (X1, . . . , Xm) by first
obtaining the rank-to-index permutation conditioned on a realization of (X1, . . . , Xm) and then
integrating with respect to the law of the conditioned random vector. For example, if m = 4
and x1 = 1, x2 = 2, x3 = 1, x4 = 3 then resolve the tie between x1 and x3 by generating
i.i.d. Uni(0, 1) random variables U1, U3. Depending on whether U1 < U3 or U1 > U3, the
rank-to-index permutation would be either of the following (equally likely)

✓
1 2 3 4
1 3 2 4

◆
or

✓
1 2 3 4
3 1 2 4

◆
.

Consider the Markov chain Z j (·) =
�
X j (·), Y j (·)

�
, j 2 [m], from Definition 1. For any time

t � 0, let � (t) denote the rank-to-index permutation corresponding to the set of x-coordinates
of the m points, {X1(t), . . . , Xm(t)}. Let k� (t) � UnikTV denote the total variation distance
between the law of � (t) and the uniform distribution on Sm . By “mixing time of shuffling” we
refer to the first time tmix(✏) when this total variation distance is smaller than a given ✏ > 0,
say 1/4, irrespective of the vector of initial positions

�
Z j (0) = z j , j 2 [m]

�
.

In Section 2.2 we provide an O(log m) mixing time bound for this Markov chain by
developing a general scheme for all such problems. However, precise calculations of constants
are not easy to derive for the discrete model. This difficulty is partly due to the existence of the
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boundary of D. Of course, projection of Z j ’s on the x-axis is arbitrarily chosen. By symmetry,
the same bound holds for projection on the y-axis. Whether the problem of the boundary gets
simplified by a more judicious choice of curve for projection is an interesting problem that is
not answered here.

In Section 3 the problem is simplified under a jump-diffusion limit as follows. First we will
consider the parameter � ! 1 and s0 = 1/

p
� ! 0 while keeping D, U , and ⌫0 fixed. This

means that we will make a lot of short spread moves. Furthermore, we will make gatherings
rare by defining a lazy gathering model. For each ti of the PPP in Definition 1 we will toss an
independent coin with a probability of heads given by 1/�. If the coin turns heads, we perform
both gather and spread steps in (2); otherwise we skip the gather step in (2) and only do the
spread (with notations from (2)),

Z j (ti ) := Hj (i) f wi ,✓i
s0

�
Z j (ti�1)

�
+

�
1 � Hj (i)

�
Z j (ti�1), i 2 N, j 2 [m]. (4)

Informally, per unit amount of time, we spread cards about � many times, each time by distance
O(1/

p
�), before gathering once. In fact, we gather at the jumps of a Poisson process of rate

one. In between these jumps the Markov chain of m point motion converges in law to a 2m
dimensional diffusion with state space Dm and reflected at the boundary. Thus the process
evolves as a reflected diffusion that jumps according to a kernel at the points given by a Poisson
process of rate one. This jump-diffusion is non-reversible and has reflections at the boundary of
the non-smooth domain D. Hence information regarding its stationary distribution and rate of
convergence cannot be inferred by standard methods. Nevertheless, we can bound the mixing
time of shuffling thanks to our coupling scheme.

Theorem 1. Under Assumption 1, for all m � 2, the m-point motion under the lazy gathering
model converges weakly in the Skorokhod space to a 2m-dimensional reflected jump-diffusion
model with state space [0, 1]2m satisfying a stochastic differential equation described below in
(12).

The mixing time of shuffling m cards in this jump-diffusion model, tmix(✏), is bounded above
by 1

p log(m/✏), where 0 < p < 1 is given by

p := �2

2p⇡� 2(1 + 2�)2 K0

 p
2 + 2�

��
p
⇡p(1 � p)

!

. (5)

Here K0 is the modified Bessel function of the second kind.

Details about the modified Bessel function K0 can be found in [1, Section 9.6]. Notably,
for a real argument z, the following asymptotics hold: K0(z) ⇠ � log(z) as z ! 0, and
K0(z) ⇠ p

⇡/(2z) exp(�z), as z ! 1.
The constant in (5) is an increasing function of �, for a fixed choice of p and � 2. However, it

is rather small and the bound is far from optimal. For example, suppose the palm is large enough
to cover the entire table if placed at the center. That is, 2� >

p
2. Then, after an exponential

amount of time, the palm will gather all points under it which are then automatically uniformly
shuffled by our tie-breaking rule. But, of course, this bound will not work for moderate to small
�. On the other hand, for a choice of a moderate � = 0.3 we get a minuscule p ⇡ 1.88⇥10�7!
Theorem 1 should be interpreted as simply an upper bound that is logarithmic in the number
of cards with a large, but known, constant.

As mentioned before, gathering is a local mixing strategy. For example, imagine a viscous
fluid (say, cake batter). We take a beater, randomly choose spots in the batter, and vigorously
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mix the location. If there are particles on the batter in that specific location, they will be so
vigorously mixed as to be exchangeable in their future evolution. Our results are valid for
all such local mixing procedures. The spread, on the other hand is an “advection–diffusion”
where we imagine a rod dipped in the fluid being dragged in a direction and creating a shear in
its wake. Now, for best mixing practices in the non-stochastic setting it is intuitive to desire a
chaotic system. This is usually achieved by repeating two perpendicular directions of shear with
self-crossing trajectories (see Aref [3]) such as a repeated figure eight movement through the
fluid. This, along with diffusion in the fluid, cause mixing. In this sense, our gather-and-spread
moves have been designed to study the effect of local mixing and a stochastic advection on
particles in an underlying fluid.

The analogy, however, breaks down in the meaning of the word “mixing”, which is used in
a different sense in fluid mixing. In that context, the points are unlabeled and we are interested
in the difference between the empirical distribution of the points from the uniform distribution.
This is not the case here. In fact, as shown in Fig. 2, there will always be clumps of points. In
fact, it is not hard to see from our diffusion analysis that even for a single point, the uniform
distribution is not the stationary distribution since the corners will have slightly more mass
than the rest. Nevertheless we find this analogy motivating to further study both subjects.

1.2. Review of literature

The mathematical study of shuffling cards has a long history going back to Poincaré [36].
We recommend the book [31] for an introduction and [39,40] for a comprehensive overview.
Spatial mixing is one of three standard ways in which playing cards are shuffled, and the least
investigated so far. The other two, riffle shuffle and the overhand shuffle have had substantial
theoretical development and sharp rates of convergence under a variety of models are available.
For riffle shuffling, the original work of Bayer and Diaconis [6] shows that n cards repeatedly
mixed show a sharp cutoff in total variation convergence to the uniform distribution after
(3/2) log2(n) + c shuffles. This is accompanied by explicit determination of the eigenvalues
and eigenvectors [14] and similarly sharp rates for functions of the current arrangement [4].
The attendant connection with random walk on the chambers of the braid arrangement [9,12,34]
blends this shuffling scheme with a healthy part of geometry and algebra. For overhand
shuffling, work of Pemantle [34] and Jonasson [25] shows that order n2 log n overhand shuffles
are necessary and sufficient for mixing (cutoff is an open problem at this time).

There are other well-studied Markov chains for card-shuffling such as the random adjacent
transposition chains that come with a spatial flavor. Picture n labeled cards in a line, originally
in order 1, 2, . . . , n. At each step an adjacent pair of cards is chosen at random and the two
cards are transposed. Results of Diaconis and Saloff-Coste [15] followed by Wilson [45] show
that order n3 log n steps are necessary and sufficient for convergence. Recently Lacoin [28]
sharpened this to show that there is a total variation cut-off at n3 log n/(2⇡2). One can extend
the analysis to higher dimensions. For example, in two dimensions cards can be arranged on
the vertices of a

p
n ⇥p

n grid. At each step an edge is chosen at random and the two cards at
the vertices of this edge are transposed. This takes order n2 log n to mix [15]. These problems
have become of recent interest as the ‘interchange process’ because of their connections to
suggestions of Dirac and Feynman in quantum mechanics. See [32] for a tutorial and articles
by Alon and Kozma [2] and Berestycki and Kozma [7] for interesting results. A related ‘mean-
field’ walk is the ‘random-to-random’ walk. A randomly chosen card is removed and reinserted
in a random position. In [15] order n log n steps are shown to be necessary and sufficient. In
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Fig. 2. Configuration of 250 cards after 3000 steps of gather-and-spread. Table is [0, 5]2, � = 0.5, s0 = 1, p = 0.5.
Initially all cards are at the center shown on the left. At the terminal step, shown on the right, there are 68 clusters
of cards which are colored by the number of points in the cluster relative to the maximum. Singleton clusters are
colored blue while the largest clusters are in bright red. There are 23 clusters on the boundary.
Source: Figure produced by Yuqi Huang.

a tour-de-force [16] Dieker and Saliola determine all the eigenvalues and eigenvectors of this
chain. A sharp cut-off has been recently established by Bernstein and Nestoridi in [8]. A more
overtly spatial walk is studied by Pemantle [35]. He considers n2 cards at the vertices of an
n ⇥ n array. At each step an element x of the array is chosen uniformly at random. Then with
probability 1/2 the rectangle of cards above and to the left of x is rotated 180� degrees, and with
probability 1/2 the rectangle of cards below and to the right of x is rotated 180� degrees. While
this is not a particularly natural model, it does have fascinating mixing properties. Pemantle
shows that order ⇥(n2) steps are necessary and sufficient to mix all n2 cards. However, for a
fixed set of k cards, c(k)n steps suffice. Here, c(k) is of order k3 (log k)2.

In contrast, there has been virtually no analysis of true spatial mixing of cards. This is
despite this method being widely used in casino games such as Baccarat and in California
Poker. The problems involved need a different kind of analysis. Spatial mixing is inherently
a continuous process and fluid type models are needed. Although mixing of fluids has been
studied in deterministic contexts [18–20,33,43], the literature does not cover random fluid
mixing. The present paper presents a completely new model and analysis approach which gives
a reasonable indication of the time to mixing. The model and analysis can be varied to handle
natural variations and applications to mixing of things like dominoes and mahjong tiles. The
mathematical details involve a substantial excursion into stochastic calculus and a novel jump
diffusion approximation which we hope will be of independent interest. Note that a distinction
between the above literature and our model is that the stochastic process of permutations given
by the x-coordinates of the cards in our model is not a Markov process by itself, but a function
of an underlying Markov process given by the spatial positions of the cards.

We conclude this review by reporting that we have also undertaken both simulations and a
study of real world smooshing. Simulations on the gather-and-spread and related models were
done by students at the University of Washington. The full report can be found at [17], from
which Fig. 2 is taken. At Stanford, a group of students smooshed for various times (60 s, 30
s, 15 s) with 52 cards and 100 repetitions for each time (so 100 permutations for each of three
times). A collection of ad-hoc test statistics were studied: position of original top (bottom) card,
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number of originally adjacent cards remaining adjacent, distance to the starting order in various
metrics, length of the longest increasing subsequence, etc. The results suggest that randomness
sets in after 30 s or so while 15 s was far from random. Since this kind of shuffling is used
in both poker tournaments and Monte Carlo (see Diaconis et al. [13] for more on this), further
study is of interest.

Outline of the argument

Our argument has three main steps. The first, in Section 2.2, is a coupling argument that
gives O(log m) bound for the mixing time. The second derives a scaling limit of the gather-and-
spread model to a jump diffusion. This is achieved in Section 3 via a method that originated
from queueing theory. The idea is to the view the “constrained” discrete process as the result of
applying a deterministic Skorokhod map to a discrete “non-constrained” martingale and then
take weak limits of the martingale sequence. The martingale sequence converges to Brownian
motion or a related process and the limit of the constrained process is then given by the
Skorokhod map applied to the limiting Brownian motion. The third step bounds the constant in
the O(log m) bound by using stochastic calculus. This is done in Section 4. The idea is that the
specific properties of the reflected diffusion reduces the problem to a calculation involving the
paths of a time-changed two-dimensional Bessel process (see (27)). Since the two-dimensional
Bessel process is also the norm of a planar Brownian motion, the relevant quantities can all be
explicitly calculated or bounded above. This gives Theorem 1.

2. Dimension consistency

2.1. A toy one-dimensional model

Before we employ our coupling scheme in the general setting, it is instructive to use the
same strategy in a simpler model. Fix arbitrary positive integers m, N . Consider m labeled
particles (representing cards) on a line. The position of each card can be one of the N positive
integers [N ] := {1, 2, . . . , N }.

At time zero, the position of each particle is fixed, say, Xi (0), i 2 [m]. Time is discrete:
t = 0, 1, 2, 3, . . .. At each time t , pick a uniform random site, i.e., a random integer k from the
set [N ]. Toss a fair coin to decide left or right. For each card that is currently at site k (there
may not be any), toss an independent coin with probability p of turning up heads.

• If we decided left, move all cards whose coins turn heads to the left by one, if possible.
That is, if Xi (t) = k and the coin for i turned heads, then Xi (t + 1) = (k � 1), unless
Xi (t) = 1, in which case Xi (t + 1) = 1.

• If we decided right, move all cards whose coins turn heads to the right by one, if possible.
That is, if Xi (t) = k and the coin for i turned heads, then Xi (t + 1) = Xi (t) + 1, unless
Xi (t) = N , in which case Xi (t + 1) = N .

• For all other cards X j (t + 1) = X j (t).

That is, imagine cards in boxes on a line, where Xi (t) is the box of the i th card at
time t , and cards pile on top of existing cards when they jump. But these details are not
important mathematically. Repeat the above procedure by sampling a random site and the
coin tosses at every time independent of the past. This gives us a stochastic process X (t) :=
(X1(t), X2(t), . . . , Xm(t)), t = 0, 1, 2, . . ., which is the m point motion on the line. At the end
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of time T , if we gather cards from left to right (breaking ties in any order), we get a shuffling
of m cards. We will estimate the mixing time of this shuffle using coupling.

Consider another pack of cards whose positions will be denoted by X 0
i (·), i = 1, 2, . . . , m.

Critically, assume that the joint distribution of the random vector X 0(0) is exchangeable. This is
true, for example, if X 0(0) is distributed according to the stationary distribution for the Markov
chain of the motion of m labeled particles described above. However, we do not need to assume
that X 0(0) is distributed according to a stationary distribution for the following argument to
hold. This is also true, for example, if the indices of the process X 0(0) are assigned, uniformly
at random, independent of their starting positions. What is important is that, at any future point
in time t , its rank-to-index permutation process � 0(t) remains uniformly distributed over Sm .
This is guaranteed when the initial positions of X 0 are exchangeable since the motion of the
m coordinates of X 0 is symmetric.

Let Qm(x) denote the law of the process X starting from X (0) = x and let Qm denote the
law of the process X 0 (under randomized indices). Now consider 2m cards whose positions
will be denoted by

�
X1, . . . , Xm, X 0

1, . . . , X 0
m
�
. All 2m cards will now move according to the

same choices of site selection and the direction to move. That is, both X and X 0 run using the
same “noise”, i.e., by the same realizations of uniform pick of random sites as well as the coin
tosses to decide left or right.

Let ⌧i denote the first time t such that Xi (t) = X 0
i (t). Couple the two processes for all

subsequent times by defining Xi (t) = X 0
i (t) for all t � ⌧i . Note that, for the individual coin

tosses for the cards in order to decide if it should move or not, we use independent tosses until
any ⌧i , after which Xi and X 0

i are identified and will use the same coin toss.
The crucial observation is that the marginal distribution of the m-dimensional process

(X1, . . . , Xm) is still Qm(X (0)), as if the other m coordinates (X 0
1, . . . , X 0

m) do not exist.
Similarly, the law of the other m-dimensional process (X 0

1, . . . , X 0
m) is Qm . We will call this

property dimension consistency and will be shared by all the models in this paper. This property
is a consequence of the fact that our models are point motions of stochastic flows of kernels
that arose from the article by Harris [21]. See [5,10,23,29,30] for subsequent developments
in this theory. Hence, if we let ⌧ ⇤ = maxi ⌧i , then it follows that the total variation distance
between X (t) and X 0(t) is bounded above by P(⌧ ⇤ > t). Thus, it suffices to estimate the tails
of ⌧ ⇤.

Consider again a system of 2m cards where two of them, say X1 and X 0
1, are initially at

position x and y, respectively. Let ⌧xy denote the coupling time of these two cards. It follows
from dimension consistency that the law of ⌧xy , under any initial positions of the 2m cards
such that X1(0) = x, X 0

1(0) = y, is equal to its law under Q2(x, y).
Suppose that there is a random variable ⇣ such that every ⌧xy is stochastically dominated

by ⇣ , irrespective of x and y. In the above example, suppose 1  X1(0) = x  X 0
1(0) = y

without loss of generality. Both X1 and X 0
1 are lazy reflected random walks that jump at each

turn with probability p/N (probability 1/N for its site to be chosen and p for its coin to turn
up heads). Thus, irrespective of x, y, ⌧xy is bounded by ⇣ ⇤ which is the hitting time of 1 for
a lazy reflected random walk starting at N . The distribution of ⇣ ⇤ can be found explicitly, but
what is more important for our purpose is that there is another (possibly a different choice)
random variable ⇣ such that every ⌧xy is stochastically dominated by ⇣ , and ⇣ has geometric
tails. To see this note by the Markov property,

Q2(x, y)
�
⌧xy > t + s | ⌧xy > t, X1(t) = x 0, X 0

1(t) = y0�

= Q2(x 0, y0)
�
⌧x 0 y0 > s

�
 P(⇣ ⇤ > s).
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Thus, Q2(x, y)
�
⌧xy > t + s | ⌧xy > t

�
 P(⇣ ⇤ > s), and, hence

Q2(x, y)
�
⌧xy > t + s

�
 Q2(x, y)

�
⌧xy > t

�
P(⇣ ⇤ > s)  P(⇣ ⇤ > t)P(⇣ ⇤ > s).

Choose an s such that P(⇣ ⇤ > s)  1/2. Then, by iterating the above argument

Q2(x, y)
�
⌧xy > t + ks

�
 Q2(x, y)

�
⌧xy > t

� �
P(⇣ ⇤ > s)

�k  1
2k .

Thus, there exists a constant C , depending on s (say C = 2s), such that

Q2(x, y)(⌧xy > t)  C2�t , for all t > 0,

where we have chosen the parameter t to be continuous for convenience.
Now return to the scenario of 2m cards, m of which have randomized indices. Recall that

⌧ ⇤ = maxi ⌧i . By a union bound, for any t > 1,

P
�
⌧ ⇤ > t log2 m

�
 P

�
[m

i=1{⌧i > t log2 m}
�

 Cm2�t log2 m  Cm�t+1.

This gives an upper bound on the total variation distance between random vectors X (t) and
X 0(t).

Consider from Section 1 the rank-to-index permutation process � (t) corresponding to X (t),
and � 0(t) corresponding to X 0(t). Recall that � 0(t), for each t , is distributed uniformly over Sm .
It follows (e.g. by choosing the same set of uniform random variables to break ranks) that the
total variation distance between � (t) and � 0(t) cannot be larger than that of X (t) and X 0(t).
Thus k� (t) � UnikTV  Cm�t+1. It is easy to see that the right side of the above inequality is
✏ if we choose t = O(log m). Thus the mixing time of shuffling tmix = O(log m).

We wish to repeat the fact that it is unimportant for this argument to assume that X 0 is
distributed according to the stationary distribution of the m-point motion. This is because we are
only interested in the mixing time of shuffling which depends on the rank-to-index permutations
and not on the spatial locations. However, this saves us the trouble of proving the existence of
a stationary distribution for more complex models.

2.2. A general bound for a triangular array of multidimensional models

Although the gather-and-spread model is a two-dimensional model, all such fluid-dynamical
models, irrespective of dimension, can be studied by a key consistency property that is
described below.

Throughout this paper, RCLL will refer to functions from [0, 1) ! Rd that are right
continuous on [0, 1) and admit left limit at every point in (0, 1). For every m 2 N, suppose
that on a right-continuous and complete filtered probability space we have a strong Markov
process Z (m)(t) =

⇣
Z (m)

1 (t), . . . , Z (m)
m (t)

⌘
, t � 0, where each component process has state space

Rd , for some d � 1, and RCLL paths. In particular, we allow discrete time Markov processes
by extending them to continuous time by piecewise constant interpolation. Let Qm(z1, . . . , zm)
denote the process law starting from the initial vector (z1, . . . , zm). At time t extract the “x-
coordinates” (which can be any of the d coordinates) X (m)

1 (t), . . . , X (m)
m (t) and consider the

rank-to-index permutation � (m)(t). We are interested in the mixing time of shuffling for this
permutation.

Assumption 2 (Dimension Consistency). We say that the family of models Qm , m 2 N,
satisfies the dimension consistency property if the following holds true. For any m 2 N, let
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Z (m) be distributed according to Qm(z1, . . . , zm). Then, the marginal distribution of the process⇣
Z (m)

i , Z (m)
j

⌘
, for any i 6= j , is Q2(zi , z j ).

Note that the m point motion under the gather-and-spread model in Definition 1 satisfy this
property. In fact, recall the comment on the structural similarities between a fluid mechanics
model and our card shuffling model as remarked in Section 1.2. Assumption 2 will be valid
for all such models.

For x, y 2 Rd , let ⌧ (m)
x,y denote the stopping time

⌧ (m)
x,y = inf

n
t � 0 : Z (m)

i (t) = Z (m)
j (t)

o
, Z (m)

i (0) = x, Z (m)
j (0) = y. (6)

Note that ⌧ (m)
x,y is indeed a stopping time due to our assumptions on the filtration. By

Assumption 2, its distribution under Qm(z1, . . . , zm) does not depend on m or zk , k /2 {i, j},
and we will drop the m from its notation and denote it by ⌧ x,y .

Assumption 3. There is a positive random variable ⇣ ⇤ such that ⌧ x,y is stochastically
dominated by ⇣ ⇤ irrespective of x, y.

Theorem 2. Suppose Assumptions 2 and 3 hold. Then, there exists a positive constant C such
that for all x, y 2 Rd ,

P
�
⌧ x,y > t

�
 C2�t , for all t � 0. (7)

Moreover, if there is an ↵ > 0 such that

lim inf
u!0+

1
u

P
�
⇣ ⇤  u

�
� ↵, (8)

e.g. when ⇣ ⇤ has a continuous density at zero that is positive, then every ⌧ x,y is stochastically
dominated by an exponential random variable with rate ↵. The mixing time for shuffling is
O(log m) as m ! 1, in particular, when (8) holds, tmix(✏)  1

↵
log(m/✏).

Proof. Fix m. Let G(t) = P (⇣ ⇤ > t) = 1 � P(⇣ ⇤  t). As in Section 2, proceed by applying
the strong Markov property: for any t, s > 0,

P
�
⌧ x,y > t + s

�
 P

�
⌧ x,y > t

�
G(s)  G(t)G(s).

Exactly as before (7) follows. For the stronger conclusion (8), note that for a rational t = k/n,
iterating the above gives us

P
�
⌧ x,y > k/n

�
 (G(1/n))k =

�
1 � P(⇣ ⇤  1/n)

�nt
.

For any 0 < � < ↵, if n is taken large enough, by (8), P(⇣ ⇤  1/n) � (↵ � �)/n. Thus

P
�
⌧ x,y > t

�


✓
1 � ↵ � �

n

◆nt

! e�(↵��)t ,

as n ! 1. Now take � ! 0+ to get P
�
⌧ x,y > t

�
 exp (�↵t) for all rational t > 0. For

irrational t , the inequality follows by right-continuity of the distribution function of ⌧ x,y . This
proves that ⌧ x,y is dominated by an exponential(↵) random variable.

The claim about mixing time of shuffling being O(log m) follows as before. Let us argue the
special case when (8) holds. In that, by stochastic domination by an exponential(↵) variable,
we have Q2(x, y)

�
⌧xy > t

�
 e�↵t .
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Hence, as in the case of the toy one-dimensional model described in the last subsection,
start now with 2m cards (X, X 0) where the indices of X 0 are assigned uniformly at random,
independent of the rest. Let ⌧i be the coupling time of cards Xi and X 0

i , and, let ⌧ ⇤ =
maxi2[m] ⌧i . One gets from the union bound

��X (t) � X 0(t)
��

TV  P
�
⌧ ⇤ > t

�
 me�↵t .

By equating the RHS to be ✏ and considering the pushforward to the rank-to-index permutations
of both processes, as before, we get tmix(✏)  1

↵
log(m/✏). ⇤

The mixing time of shuffling for the m point motion under the gather-and-spread model
would be O(log m) if a ⇣ ⇤ exists. The difficulty in estimating the exact constant ↵ is the
boundary of the square table. The longer the cards stay at the boundary, the slower is the
mixing. To do a finer analysis and working towards an invariance principle, we take a diffusion
limit of the m-point motion. The jumps in the gathering are made rare and the spreads are made
small and frequent. As we show in the next section, the sequence of processes converges to a
jump-diffusion limit. This jump-diffusion spends a negligible amount of time at the boundary
(a Lebesgue null set), and allows us to do a more precise estimate of the constants.

3. The jump-diffusion limit of the gather-and-spread model

It is hard to get a precise estimate on the missing constant in the O(log m) mixing time bound
above. In this section we treat a continuum jump-diffusion limit on the m point motion of the
lazy gather-and-spread model (4) to estimate that constant by explicit computations facilitated
by stochastic calculus.

Consider a sequence of discrete gather-and-spread models with a corresponding sequence
of parameters �(n) = n and s(n)

0 = 1/
p

n, as n 2 N tends to infinity while keeping every other
parameter (U , ⌫0, 0 < p < 1, initial values etc.) fixed.

Recall the modification to Definition 1 as given in (4). Let (ti , ✓i , wi , i 2 N) and�
Hj (i), j 2 [m], i 2 N

�
be as in Definition 1. Starting with t0 = 0, at each ti , toss a coin

with probability of heads given by 1/� = 1/n. If the coin turns heads, define Z (n)
j (ti ) for every

j 2 [m] according to (2). Otherwise, define

Z (n)
j (ti ) := Hj (i) f wi ,✓i

1/
p

n

⇣
Z (n)

j (ti�1)
⌘

+
�
1 � Hj (i)

�
Z (n)

j (ti�1), i 2 N, j 2 [m]. (9)

Extending to all time periods as in (3) gives us a sequence of m point motions

Z (n) :=
⇣

Z (n)
j (t) =

⇣
X (n)

j (t), Y (n)
j (t)

⌘
, j 2 [m], t � 0

⌘
,

We are interested in the limit of this process as n tends to infinity.
Let %(n) denote the first time we gather, i.e., the first time a coin with probability 1/n turns

up heads. By the Poisson thinning property, this is distributed as a rate one exponential random
variable (irrespective of n) and is independent of the process Z (n)(t), 0  t < %(n).

Consider the joint law of %(n) and Z (n)(t), 0  t < %(n). As n ! 1, we will show that the
process Z (n) converges in law in the usual Skorokhod space to a continuous diffusion which is
strong Markov, stopped at an independent exponential one time. This is enough for our purpose
since by restarting the diffusion from a different initial condition (as dictated by the gather) at
this random time gives us a limiting jump-diffusion.

In order to describe the limiting (unstopped) diffusion we abuse our notations and assume
that Z (n) is updated at every time ti by (9) (without the gather) and take a diffusion limit. By
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an abuse of notation we continue to refer to this process (without the gather) in this section by
Z (n) while keeping in mind that the process is observed only till an independent exponential
time.

Notice the following properties of the trajectories of cards under the spread moves (and
no gather). Because of Assumption 1, the increments of every card has mean zero, if it stays
within the interior of the table after the spread. Also, if two cards are under the palm and they
both decide to move with the palm, then their increments are positively correlated. However,
if they are not under the palm, then the increment in one is independent of the other. This is
captured by the fact that the limiting diffusion has zero drift (in the interior of the square) and
a diffusion matrix given below.

Define the 2 ⇥ 2 positive-definite matrix

⌃ =

� 2 0
0 � 2

�
=


⌫0

�
sin2(✓ )

�
⌫0 (sin(✓ ) cos(✓ ))

⌫0 (sin(✓ ) cos(✓ )) ⌫0
�
cos2(✓ )

�
�

.

Note Area (U ) = ⇡�2. Let F be the m ⇥ m symmetric, positive definite matrix given by

Fi j (z1, . . . , zm) =
(

p2Area
�
{zi + U } \ {z j + U }

�
, i, j 2 [m], i 6= j.

pArea ({zi + U }) = p⇡�2, i = j 2 [m].
(10)

We skip the proof of the following elementary fact.

Lemma 3. Let z1, z2 be two arbitrary points on the plane. Then

Area ({z1 + U } \ {z2 + U }) = ' (kz1 � z2k)
where ' : [0, 1) ! [0, 1) is given by

'(r ) :=
(

2�2 arccos
⇣ r

2�

⌘
� r

2

p
4�2 � r2, for r  2�,

0, otherwise.

In particular, ' is a decreasing convex function on (0, 1).

Let B(z1, . . . , zm) be the 2m ⇥ 2m matrix Kronecker product F ⌦ ⌃ . See [22, Definition
4.2.1] for the definition. Here and throughout we label the rows (and columns) of the diffusion
matrix by assigning the (2i�1)th row to xi and 2i th row to yi , successively for i = 1, 2, . . . , m.
In particular, the block of B corresponding to zi = (xi , yi ) is a 2 ⇥ 2 matrix given by p⇡�2⌃ ;
the block corresponding to (zi = (xi , yi ), z j = (x j , y j ))th is a 4 ⇥ 4 matrix given by

2

664

p⇡�2� 2 0 Fi j�
2 0

0 p⇡�2� 2 0 Fi j�
2

Fi j�
2 0 p⇡�2� 2 0

0 Fi j�
2 0 p⇡�2� 2

3

775 . (11)

By [22, Theorem 4.2.12], the eigenvalues of B are pairwise products of those of F and ⌃ .
Hence, B(z1, . . . , zm), which is symmetric, is also nonnegative definite for any (z1, . . . , zm).
We show later in Lemma 8 that this matrix is uniformly positive definite. Let A(z1, . . . , zm)
denote the unique positive definite square-root of B(z1, . . . , zm). Let AX j (z1, . . . , zm) and
AY j (z1, . . . , zm) denote the row of A(z1, . . . , zm) corresponding to coordinate x j and y j ,
respectively, for j 2 [m]. Thus, according to our convention, AX j is the (2 j � 1)th row and
AY j is the (2 j)th row of A.
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Definition 2. Fix points z j = (x j , y j ) 2 [0, 1]2, j 2 [m]. Let Rm(z1, . . . , zm) denote the law of
a time-homogeneous diffusion in [0, 1]2m with zero drift, diffusion matrix B, normal reflection
at the boundary, and initial conditions Z j (0) = z j = (x j , y j ), j 2 [m]. The multidimensional
vector-valued process

�
Z j (·) = (X j (·), Y j (·))

�
, j 2 [m], satisfies the stochastic differential

equation (SDE):

X j (t) = x j +
Z t

0
AX j (Z1(s), . . . , Zm(s)) · d�(s) + L X,0

j (t) � L X,1
j (t),

Y j (t) = y j +
Z t

0
AY j (Z1(s), . . . , Zm(s)) · d�(s) + LY,0

j (t) � LY,1
j (t).

(12)

Here � = (�1, . . . ,�2m) is a 2m dimensional Brownian motion. The symbol
R

A· · d� refers
to the multidimensional Itô stochastic integral with respect to the Brownian motion �. The
processes L X,0

j (·) and L X,1
j (·) are the accumulated local times for the process X j at zero and

one, respectively. The processes LY,0
j (·) and LY,1

j (·) are similarly defined. See [26, Section 3.7]
for the normalization factor of local times.

We show in Theorem 7 that, for 0 < p < 1, the SDE (12) has a pathwise unique strong
solution which is strong Markov. In particular, there is uniqueness in law and every solution is
strong. The following is our main convergence result. Let D(2m)[0, 1) be the usual Skorokhod
space of RCLL paths from [0, 1) to R2m . Unless otherwise mentioned, we work with the
stronger locally uniform topology on this space. See [11, Section 15 and 16] for details on the
Skorokhod space and the locally uniform and other topologies on it. This is for convenience.
Since our limiting processes are continuous almost surely, the convergence with respect to the
usual Skorokhod topology is equivalent to convergence in the locally uniform topology.

Theorem 4 (Without Gather). Fix U, p 2 (0, 1), and ⌫0. Fix an arbitrary set
�
z j , j 2 [m]

 

in [0, 1]2. Let
⇣

Z (n)
j (·), j 2 [m]

⌘
denote the m-point motion given in (9) when �(n) = n and

s(n)
0 = 1/

p
n starting with Z (n)

j (0) = z j for j 2 [m]. Then, as n tends to infinity, the sequence⇣
Z (n)

j (t), t � 0, j 2 [m]
⌘

, n 2 N, converges in law in D(2m)[0, 1) in the locally uniform
topology to

�
Z j (t), t � 0, j 2 [m]

�
that is a solution of (12).

That the limiting process should have zero drift and diffusion coefficients given by the matrix
B is easy to guess by computing the mean and the covariance of the increments of the discrete
model. The appearance of local time is the consequence of the boundary behavior of our model
and this is where it is critical that we use the x 7! ex function in definition (1).

Theorem 4 is proved in several steps below. We start with m = 1.

Lemma 5. Let Z (n)
1 (t) =

⇣
X (n)

1 (t), Y (n)
1 (t)

⌘
, t � 0, denote the one point motion given in

(9) (without gather) with �(n) = n and s(n)
0 = 1/

p
n and given initial condition Z (n)

1 (0) =
(x, y) 2 [0, 1]2. Then, as n ! 1,

⇣⇣
X (n)

1 (t), Y (n)
1 (t)

⌘
, t � 0

⌘
converges in law to a pair

((X1(t), Y1(t)), t � 0) of independent doubly reflected Brownian motion (RBM) in the interval
[0, 1] with zero drift and constant diffusion coefficient p⇡�2� 2, starting at (x, y). In other
words, (X1, Y1) satisfies the SDE

X1(t) = x1 + ��
p

p⇡W1(t) + L X,0
1 (t) � L X,1

1 (t),

Y1(t) = y1 + ��
p

p⇡W2(t) + LY,0
1 (t) � LY,1

1 (t),
(13)
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where (W1, W2) is a pair of independent standard one-dimensional Brownian motions, L X,0
1 (t),

L X,1
1 (t) are the accumulated local times at zero and one, respectively, till time t for the

semimartingale X1, and LY,0
1 (t), LY,1

1 (t) are similarly defined.

The existence, uniqueness of reflected process and corresponding discrete to continuum
convergence problems are best handled by the established tools of Skorokhod problems and
Skorokhod maps. Skorokhod maps transform an “un-reflected” (or unconstrained) process to
a “reflected” (or constrained) one inside a domain via a deterministic transform on the RCLL
path-space. The existence of such a deterministic transform is called a Skorokhod problem.
Once it is established that such a map exists, i.e. the Skorokhod problem has a solution,
then existence, uniqueness, convergence problems can be handled “pre-reflection” by the usual
martingale methods, and let the deterministic transform take care of the rest. See the exposition
in [27] where the reader can find more details.

To simplify the notation denote D(1)[0, 1), the Skorokhod space of RCLL functions from
[0, 1) to R, by D[0, 1). Let BV[0, 1) and I[0, 1) denote the subsets of D[0, 1) comprised
of functions of bounded variations and nondecreasing functions, respectively.

Definition 3 (Skorokhod Map on [0, 1]). Given  2 D[0, 1), there exists a unique pair of
functions

�
�̄, ⌘̄

�
2 D[0, 1) ⇥ BV[0, 1) that satisfy the following two properties:

(i) For every t � 0, �̄(t) =  (t) + ⌘̄(t) 2 [0, 1].
(ii) ⌘̄(0�) = 0 and ⌘̄ has the decomposition ⌘̄ = ⌘̄l � ⌘̄u as the difference of functions

⌘̄l , ⌘̄u 2 I[0, 1) satisfying the so-called complementarity conditions:
Z 1

0
1
�
�̄(s) > 0

 
d⌘̄l(s) = 0 and

Z 1

0
1
�
�̄(s) < 1

 
d⌘̄u(s) = 0. (14)

Here ⌘̄(0�) = 0 means that, if ⌘̄(0) > 0, then d⌘̄ has an atom at zero. We refer to the map
�0,1 : D[0, 1) ! D[0, 1) that takes  to �̄ as the Skorokhod map on [0, 1]. The pair

�
�̄, ⌘̄

�

is said to solve the Skorokhod problem on [0, 1] with input  .

The existence and uniqueness of Skorokhod map over general domains is a classical topic.
See, for example, Tanaka [44]. Let x+ = max(x, 0) for x 2 R. On [0, 1] the map has an explicit
solution. In Theorem 1.4 of [27] it is shown that �0,1 = ⇤1 � �0, where

�0( )(t) =  (t) + sup
0st

[� (s)]+ and

⇤1(�)(t) = �(t) � sup
0st


(�(s) � 1)+ ^ inf

sut
�(u)

�
.

(15)

In particular, both �0 and �0,1 are Lipschitz with respect to the (locally) uniform and the
Skorokhod J1 metric on D[0, 1).

Proof of Lemma 5. Fix n 2 N. Let � denote a PPP on (0, 1)⇥ D with rate �(n) = n. Evaluate
the atoms of the PPP as a sequence {(ti , wi ), i 2 N} where ti is increasing with i . Recall the
i.i.d. sequence (✓i , i 2 N) sampled from ⌫0 and an independent i.i.d. sequence of Bernoulli(p)
random variables (Hi , i 2 N) from Definition 1 (where we have substituted the notation Hi

for H1(i)). Define Z (n)
1 (·) as in (9).
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For t � 0, let

N (t) :=
Z

[0,t]⇥D
1
n

Z (n)
1 (s�) 2 w + U

o
d� (s, w)

=
X

j : t j t

1
n���Z (n)

1 (t j�) � w j

���  �
o

.

Then N (t) counts the number of times the point Z (n)
1 (·�) is “under the palm” during time

interval [0, t]. By the symmetry of the norm k·k and the spatial homogeneity of the PPP,
if the current position of the card is z(n)

1 , the first time when it is under the palm is an
exponential random variable with rate nArea

⇣
z(n)

1 + U
⌘

= n⇡�2, independent of the past.
Thus, (N (t), t � 0) is a Poisson process with rate n⇡�2.

Mark each jump time ti of N with the corresponding ✓i and Hi . For j 2 N, define

M X,n(t j ) = 1p
n

jX

i=1

Hi cos(✓i ). (16)

Extend to other values of t by defining that if t j�1  t < t j for some j 2 N, then

M X,n(t) = M X,n(t j�1). (17)

Note that M X,n is a martingale since ⌫0(cos(✓ )) = 0 and Hi is independent of ✓i .
Now suppose that cos(✓ j )  0. Then the difference X (n)

1 (t j ) � X (n)
1 (t j�1) is given by

8
>><

>>:

1p
n

Hj cos(✓ j ), if X (n)
1 (t j�1) + 1p

n
Hj cos(✓ j ) > 0,

�X (n)
1 (t j�1), if X (n)

1 (t j�1) + 1p
n

Hj cos(✓ j )  0.

We can express this differently as

X (n)
1 (t j ) � X (n)

1 (t j�1) = 1p
n

Hj cos(✓ j ) +
✓

X (n)
1 (t j�1) + 1p

n
Hj cos(✓ j )

◆�
,

where x� := max(�x, 0) � 0.
Similarly, when cos(✓ j ) > 0, X (n)

1 (t j ) � X (n)
1 (t j�1) is given by

8
>><

>>:

1p
n

Hj cos(✓ j ), if X (n)
1 (t j�1) + 1p

n
Hj cos(✓ j ) < 1,

1 � X (n)
1 (t j�1), if X (n)

1 (t j�1) + 1p
n

Hj cos(✓ j ) � 1.

Hence,

X (n)
1 (t j ) � X (n)

1 (t j�1) = 1p
n

Hj cos(✓ j ) �
✓

1 � X (n)
1 (t j�1) � 1p

n
Hj cos(✓ j )

◆�
.

Combining the two cases note that we can always write

X (n)
1 (t j ) � X (n)

1 (t j�1) = 1p
n

Hj cos(✓ j )

+
✓

X (n)
1 (t j�1) + 1p

n
Hj cos(✓ j )

◆�
�

✓
1 � X (n)

1 (t j�1) � 1p
n

Hj cos(✓ j )
◆�

.
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Define the following pair of increasing functions, both starting at zero:

I X,0,n(t j ) = I X,0,n(t j�1) +
✓

X (n)
1 (t j�1) + 1p

n
Hj cos(✓ j )

◆�

I X,1,n(t j ) = I X,1,n(t j�1) +
✓

1 � X (n)
1 (t j�1) � 1p

n
Hj cos(✓ j )

◆�
.

(18)

Extend them to all values of t 2 [0, 1) by defining I X,0,n(t) = I X,0,n(t j�1) and I X,1,n(t) =
I X,1,n(t j�1), for all t 2 [t j�1, t j ). Note that the jumps of the process I X,0,n occur at those t j

such that X (n)
1 (t j ) = 0 and cos(✓ j ) < 0, Hj = 1 while the jumps of I X,1,n occur at those t j

such that X (n)
1 (t j ) = 1 and cos(✓ j ) > 0, Hj = 1.

Recall the martingale M X,n from (16). From here it is not hard to see that X (n)
1 (·) is the

solution of the following system of pathwise Eqs. (18) and

X (n)
1 (t) = x1 + M X,n (t)

+
Z t

0
1
n

X (n)
1 (s) = 0

o
d I X,0,n (s) �

Z t

0
1
n

X (n)
1 (s) = 1

o
d I X,1,n (s) .

This is an expression that satisfies the Skorokhod problem decomposition given in Definition 3.
The process X (n)

1 is constrained to stay in [0, 1], M X,n is RCLL, while

⌘̄l :=
Z t

0
1
n

X (n)
1 (s) = 0

o
d I X,0,n (s) , ⌘̄u :=

Z t

0
1
n

X (n)
1 (s) = 1

o
d I X,1,n (s)

are increasing and obviously satisfy the complementarity conditions (14). Hence
⇣

X (n)
1 , I X,0,n � I X,1,n

⌘

is the unique solution of the Skorokhod problem on [0, 1] with input x + M X,n(·).
Now take limits as n tends to infinity. It follows from Donsker’s invariance principle that the

continuous time martingale M X,n converges to ��pp⇡W1, where W1 is a standard Brownian
motion. This is because M X,n is a continuous time centered random walk that jumps at
rate n⇡�2 and the variance of its increments is p� 2/n. By the Lipschitz continuity of the
deterministic Skorokhod map, it immediately follows that the vector of processes

⇣
M X,n, X (n)

1 , I X,0,n, I X,1,n
⌘

jointly converges in law to the vector of ��pp⇡W1 and the corresponding terms in the solution
of the Skorokhod problem in [0, 1] with input x1 + ��

p
p⇡W1.

Let us now identify the limit as reflecting Brownian motion in the interval [0, 1] with
constant diffusion coefficient � 2 p⇡�2. The limit, say X1, satisfies the SDE given by the
Skorokhod equation:

X1(t) = x1 + ��
p

p⇡W1(t) + L X,0(t) � L X,1(t),

where L X,1 and L X,0 are outputs from the Skorokhod problem with input x + ��
p

p⇡W1(t).
To identify L X,1 and L X,0 with the local time of the process X1 at the boundary zero and one,
respectively, we apply the Tanaka ([26, page 220]) formula to the semimartingale X1 for the
functions x 7! x+ and x 7! (1 � x)+.
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For the y-coordinate process repeat the above argument except that cos(✓ j ) will be replaced
by sin(✓ j ). That is, define

MY,n(t j ) = 1p
n

jX

i=1

Hi sin(✓i ). (19)

Extend to other values of t by keeping the process constant in each interval [t j�1, t j ), j 2 N.
MY,n is also a martingale since ⌫0(sin(✓ )) = 0.

The naturally defined corresponding processes for the y-coordinate
⇣

MY,n, Y (n)
1 , I Y,0,n, I Y,1,n

⌘

jointly converges in law to the vector of a Brownian motion ��pp⇡W2 and the corresponding
terms in the solution of the Skorokhod problem in [0, 1] with input y + ��

p
p⇡W2. We need

to argue joint convergence of the vector
⇣

M X,n, X (n)
1 , I X,0,n, I X,1,n, MY,n, Y (n)

1 , I Y,0,n, I Y,1,n
⌘

.

However, this will follow from the joint convergence of the pair
�
M X,n, MY,n

�
since everything

else is a deterministic Lipschitz function applied to this pair of processes.
We first claim that

�
M X,n(t)MY,n(t), t � 0

�
is also a martingale. Since each process

individually is a process of identically distributed independent increments, it suffices to check
that the increments are uncorrelated. However, that is guaranteed by Assumption 1 that
⌫0 (cos(✓ ) sin(✓ )) = 0.

Now, by marginal convergence, it follows that the sequence of laws of the pair of processes�
(p⇡� 2�2)�1/2 M X,n, (p⇡� 2�2)�1/2 MY,n

�
in D(2)[0, 1) is tight in the locally uniform metric

and that any limiting processes W1, W2 are marginally Brownian motions that additionally
satisfy W1W2 is a local martingale. It follows by Knight’s theorem (see [26, page 179]) that
W1, W2 must be a pair of independent Brownian motions. Since X1 and Y1 are outputs of the
deterministic Skorokhod map applied to W1 and W2, they too are independent. This completes
the proof. ⇤

Proof of Theorem 4. This proof is a generalization of the proof of Lemma 5. As in that proof,
for every n 2 N, j 2 [m], and i 2 {0, 1}, define the quantities

X (n)
j , Y (n)

j , M X,n
j , MY,n

j , I X,i,n
j , I Y,i,n

j .

Then, for each j 2 [m], the vector
⇣

X (n)
j , Y (n)

j

⌘
can be expressed as the solution of a system

of Skorokhod equations in [0, 1] with given inputs

x j + M X,n
j and y j + MY,n

j (·) , respectively. (20)

The strategy is now the following. Consider the vector of 4m many processes obtained by
concatenating

⇣
X (n)

j , Y (n)
j , j 2 [m]

⌘
with the 2m many inputs in (20). Each coordinate process

is tight by Lemma 5 and has an almost sure continuous limit. Hence the joint law of these
4m processes is tight in D(4m)[0, 1), with the locally uniform metric, and any weak limit is
a probability measure on C(4m)[0, 1). The latter is the space of all continuous functions from
[0, 1) to R4m equipped with the locally uniform metric.
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Let the 4m dimensional vector
�
X j , Y j , x j + M X

j , y j + MY
j , j 2 [m]

�
(21)

denote a process whose law is any weak limit of the sequence of processes
⇣

X (n)
j , Y (n)

j , x j + M X,n
j , y j + MY,n

j , j 2 [m]
⌘

, n 2 N. (22)

To prove the existence of the limiting SDE representation, it is therefore enough to argue
that the vector of martingales

⇣
M X

j , MY
j , j 2 [m]

⌘
has a stochastic integral representation as

the local martingale component in (12). Once this is achieved, using the uniqueness in law of
a process satisfying SDE (12) proved in Theorem 7, every weak limit must be the same and
given by the solution of (12).

To carry this out carefully, start be expressing the processes M X,n
j , MY,n

j , j 2 [m], as
martingales with respect to natural filtrations. Fix n 2 N. Recall the PPP � on (0, 1) ⇥ D
from the beginning of the proof of Lemma 5. Extend the PPP by decorating each atom of
� by an independent vector of length (m + 1), (✓, H1, . . . , Hm) where we sample ✓ ⇠ ⌫0,
and

�
Hj , j 2 [m]

�
are i.i.d. Bernoulli(p) picks, independent of ✓ . This produces a PPP �

on [0, 1) ⇥ D ⇥ [0, 2⇡ ] ⇥ {0, 1}m . Choose a suitable probability space (⌦ ,F1,P) that
supports � . Let (Ft , t � 0) be the natural right continuous filtration generated by the process�
� t , t � 0

�
where � t is the restriction of � to [0, t] ⇥ D ⇥ [0, 2⇡ ] ⇥ {0, 1}m . Note that, as

opposed to Definition 1, in this proof we attach the random angle and Bernoulli variables
whether or not there are cards “under the palm”. They simply do not influence the motion of
the cards unless the cards are under the palm. Enumerate the countably many atoms of � by
((ti , wi , ✓i , H1(i), . . . , Hm(i)), i 2 N) where t1 < t2 < · · · . Then, on our sample space above
we have the following expressions:

M X,n
j (t) = 1p

n

X

i :ti t

Hj (i) cos(✓i )1
n���Z (n)

j (ti�) � wi

���  �
o

,

MY,n
j (t) = 1p

n

X

i :ti t

Hj (i) sin(✓i )1
n���Z (n)

j (ti�) � wi

���  �
o

.

Here, as before, Z (n)
j =

⇣
X (n)

j , Y (n)
j

⌘
.

Let Z (n) denote the 2m dimensional vector of
⇣

Z (n)
j , j 2 [m]

⌘
. Recall the 2m ⇥ 2m

dimensional matrix B(z1, . . . , zm) from (12). For z = (z1 = (x1, y1), . . . , zm = (xm, ym)) 2
R2m , label the elements of B by Bx j ,xk (z), Bx j ,yk (z), or By j ,yk (z), for j, k 2 [m], by a natural
correspondence.

Lemma 6. In the filtered probability space described above each M X,n
j and MY,n

j is an (Ft )

martingale. Moreover, for all ( j, k) 2 [m]2, the following processes are also (Ft ) martingales:

⇠ X,X,n
j,k (t) := M X,n

j (t)M X,n
k (t) �

Z t

0
Bx j ,xk

�
Z (n)(s)

�
ds.

⇠ X,Y,n
j,k (t) := M X,n

j (t)MY,n
k (t) �

Z t

0
Bx j ,yk

�
Z (n)(s)

�
ds.

⇠Y,Y,n
j,k (t) := MY,n

j (t)MY,n
k (t) �

Z t

0
By j ,yk

�
Z (n)(s)

�
ds.

(23)
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Proof of Lemma 6. We start by arguing that M X,n
j and MY,n

j are martingales. For every ! 2 ⌦ ,
the processes M X,n

j and MY,n
j are stochastic integrals of predictable integrands: for ✓ 2 [0, 2⇡ ]

and h j 2 {0, 1}, j 2 [m],

gX,n
j (t,!) = 1p

n
h j cos(✓ )1

n���Z (n)
j (t�) � w

���  �
o

and

gY,n
j (t,!) = 1p

n
h j sin(✓ )1

n���Z (n)
j (t�) � w

���  �
o

, ! 2 ⌦ ,

with respect to the Poisson random measure � (see [24, Chapter II, Section 1]). Then, the
claim follows from [24, Chapter II, Lemma 1.21], since, the predictable compensator of the
processes are given by (respectively)

1p
n

Z t

0
np⌫0 (cos(✓ )) Area

⇣
Z (n)

j (s�) + U
⌘

ds and

1p
n

Z t

0
np⌫0 (sin(✓ )) Area

⇣
Z (n)

j (s�) + U
⌘

ds.

Both expressions above are zero since ⌫0(cos ✓ ) = 0 = ⌫0(sin ✓ ).
For the reader who might be uncomfortable with the stochastic calculus for Poisson

processes, simply replace the Poisson process by a discrete time process with independent
increments to derive the above conclusion “by hand”. This is true for the argument below as
well.

For the processes listed in (23), let us argue the martingale property of the first process in the
display and leave the rest of the similar arguments for the reader. Consider the process ⇠ X,X,n

j,k .
Since M X,n

j (t) and M X,n
k (t) are both martingales, we simply need to argue that the predictable

compensator for the product of the two process at time t is exactly
R t

0 Bx j ,xk

�
Z (n)(s)

�
ds.

However, since M X,n
j (t) and M X,n

k (t) are both stochastic integrals of predictable integrands
with respect to a Poisson random measure, the predictable compensator up to time t is given
by the integral of the product of the integrands with respect to the intensity measure:

Z t

0

�
p1{ j = k} + p21{ j 6= k}

�
� 2Area

⇣n
Z (n)

j (s�) + U
o

\
n

Z (n)
k (s�) + U

o⌘
ds.

The above is, of course, exactly equal to
R t

0 Bx j ,xk

�
Z (n)(s)

�
ds. ⇤

Returning to the proof of Theorem 4, recall that C(4m)[0, 1), the space of continuous
functions from [0, 1) to R4m . Endow the space with a right-continuous natural filtration. We
will use this as our sample space. Consider this sample space along with a probability measure
that is any weak limit obtained from the joint weak convergence of the vector of processes
in (22) to the processes in (21). Since the limit is continuous, we may assume that the weak
convergence holds in the locally uniform norm on C(4m)[0, 1).

Since each M X,n
j is a stochastic integral of a mean-zero bounded predictable integrand with

respect to a Poisson random measure, it is a martingale and any weak limit is necessarily also
a continuous local martingale. We have already argued continuity above and the martingale
property follows from weak convergence and boundedness of integrands. Furthermore, from
(23) each of the following is a continuous stochastic process and a weak limit of a sequence
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of martingales.

⇠ X,X
j,k (t) := M X

j (t)M X
k (t) �

Z t

0
Bx j ,xk (Z (s)) ds.

⇠ X,Y
j,k (t) := M X

j (t)MY
k (t) �

Z t

0
Bx j ,yk (Z (s)) ds.

⇠Y,Y
j,k (t) := MY

j (t)MY
k (t) �

Z t

0
By j ,yk (Z (s)) ds.

Here Z j (·) =
�
X j (·), Y j (·)

�
and Z (·) = (Z1(·), . . . , Zm(·)). By a usual localization argument

and the continuity of B· they can all be seen as continuous local martingales. To wit, consider
the convergence of ⇠ X,X,n

j,k to ⇠ X,X
j,k , and consider a sequence of stopping times T` that stops the

process when its absolute value exceeds `. Weak convergence and boundedness shows that each
stopped process ⇠ X,X

j,k (min(·, T`)) is a martingale. Take ` ! 1 to establish the local martingale
property.

We now use [26, Chapter 3, Theorem 4.2] on the representation of continuous local
martingales as stochastic integrals. According to this result, on a possibly extended probability
space, one can find a 2m dimensional Brownian motion (�1, . . . ,�2m) such that for each
j 2 [m] we have

M X
j (t) =

Z t

0
AX j (Z1(s), . . . , Zm(s)) · d�(s) and

MY
j (t) =

Z t

0
AY j (Z1(s), . . . , Zm(s)) · d�(s).

This settles the local martingale component in the SDE representation (12). That the finite
variation components are given by local times follow from Lemma 5. Finally, uniqueness in
law from Theorem 7 completes the proof. ⇤

Theorem 7. Fix arbitrary initial points z1, . . . , zm in [0, 1]2. Under Assumption 1 and when
p 2 (0, 1), for any m � 1, there is a pathwise unique strong solution to the stochastic
differential Eq. (12), starting at (z1, . . . , zm), under which the process is strong Markov. In
particular, the law of such a solution is unique.

The proof requires the following lemma.

Lemma 8. The diffusion matrix B(z1, . . . , zm) is uniformly elliptic over [0, 1]2m.

Proof. Since B = F ⌦ ⌃ is the Kronecker product of F and ⌃ , the 2m eigenvalues of B
are the pairwise product of the m eigenvalues of F and the two eigenvalues of ⌃ . Since the
eigenvalues of ⌃ are both � 2, they are both positive by Assumption 1. Therefore, to prove the
lemma, it suffices to show uniform ellipticity for the matrix F(z1, . . . , zm).
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Consider any ⇠ = (⇠1, . . . , ⇠m) 2 Rm and note that

⇠ 0F(z1, . . . , zm)⇠

=
X

i2[m]

X

j2[m]

p2⇠i⇠ j Area
�
{zi + U } \ {z j + U }

�
+ (p � p2)⇡�2

X

i2[m]

⇠ 2
i

= p2
Z

R2

2

4
mX

i=1

mX

j=1

⇠i⇠ j 1{v 2 zi + U }1{v 2 z j + U }

3

5 dv + p(1 � p)⇡�2 k⇠k2

= p2
Z

R2

0

@
mX

j=1

⇠ j 1{v 2 z j + U }

1

A
2

dv + p(1 � p)⇡�2 k⇠k2 � p(1 � p)⇡�2 k⇠k2 .

Since p(1 � p) > 0 this proves uniform ellipticity. ⇤

Proof of Theorem 7. We verify the assumptions of [37, Theorem 4.3] which has been proved
for the so-called Extended Skorokhod Problem (ESP). In particular, it holds for the case of
Skorokhod problems.

Our Skorokhod map is coordinatewise given by (15). Therefore, it is well-defined and
Lipschitz. Therefore, it suffices to check Assumption 4.1 (1) in [37]. Since the drift is zero, we
need to only check that the map (z1, . . . , zm) 7! A (z1, . . . , zm), as a function on [0, 1]2m , is
Lipschitz. By [41, Lemma 21.10] and the uniform ellipticity condition from Lemma 8 it suffices
to check that the map (z1, . . . , zm) 7! B(z1, . . . , zm) is Lipschitz. This, in turn, follows from
checking via Lemma 3 that the map (z1, . . . , zm) 7! Fi j (z1, . . . , zm) for each (i, j) pair is
Lipschitz which follows from the convexity of the function '. ⇤

4. Estimates on mixing time of shuffling for the jump diffusion

We now define the limiting lazy gather-and-spread model. Let us recall the diffusion model
from Section 3. Consider a suitable probability space

�
⌦ , (Ft )t�0, P

�
with the usual filtration

that supports 2m many standard linear Brownian motions
�
�1, . . . ,�2m

�
and an independent

PPP on (0, 1)⇥D with rate given by the product Lebesgue measure on (0, 1) and the uniform
probability distribution on D. That is the atoms of the PPP can be arranged as (ti , wi ), i 2 N,
where 0 < t1 < t2 < · · · are the jumps of a Poisson process of rate one and the sequence
(wi , i 2 N) is i.i.d., sampled uniformly from D, independently of (ti , i 2 N).

Suppose the initial values z1 = (x1, y1), . . . , zm = (xm, ym). Let t0 = 0 and define
Z (t) = (Z1(t), . . . , Zm(t)), t 2 [0, t1), as the solution of SDE (12) with initial conditions
X j (0) = x j and Y j (0) = y j , j 2 [m], and the Brownian motions given by � j , j 2 [2m]. Then,
inductively, for i = 1, 2, . . ., on [ti , ti+1), condition on Fti , define initial conditions

z j (ti ) := Gwi
�
Z j (ti�)

�
, j 2 [m],

and let Z (t + ti ), t 2 [0, ti+1 � ti ) be the solution of SDE (12) with initial points z j (ti ), j 2 [m],
and the Brownian motions given by � (i)

j (t) = � j (ti + t)�� j (ti ). This gives us a jump-diffusion
process Z (t) = (Z1(t), . . . , Zm(t)), t 2 [0, 1) with RCLL paths adapted to

�
⌦ , (Ft )t�0, P

�
.

The process is clearly strong Markov. Let Pm(z1, . . . , zm) denote the law of the jump-diffusion
process described above starting from the initial points (z1, . . . , zm) 2 Dm .

Lemma 9. Assumption 2 in Section 2.2 holds for the jump-diffusion process Z.
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Proof. Assumption 2 is clearly true for the discrete gather-and-spread model without gathering
as in the beginning of Section 3. Hence, by taking a weak limit, it is true for the diffusion
satisfying (12). Stopping the diffusion at an independent exponential time and gathering at an
independently chosen point in D preserves the property. Now, by iterating the argument, the
statement is true for all intervals [ti , ti+1), i 2 N, and, therefore, over the entire [0, 1). ⇤

Proof of Theorem 1. In order to employ Theorem 2, it suffices to find a ⇣ ⇤ that stochastically
dominates ⌧ xy = ⌧m

xy from (6) for any x 6= y. Without loss of generality, take m = 2.
The strategy is the following. Consider kZ1(t) � Z2(t)k during [0, t1). Ignore the possibility

that this norm hits zero during this interval. Consider

{Z1(t1�) + U } \ {Z2(t1�) + U } .

The area of this set is given by Lemma 3. Z1(t1) = Z2(t1) if the random point w1 lies in this set
(since the gathering will place both cards at w1). In this event we get ⌧ 12  t1, otherwise we
restart. Hence, at each ti we toss a coin that indicates if wi 2 {Z1(ti�) + U } \ {Z2(ti�) + U }.
Suppose we bound this probability from below by p > 0 (say), irrespective of z1, z2. Then,
by the strong Markov property, each such coin toss is independent, and ⌧ 12 is stochastically
dominated by tJ , where J is a geometric random variable with rate p. tJ is the sum of a random
number of exponential one random variables. Such a random variable has a density everywhere
on [0, 1), in particular, condition (8) is satisfied where ↵ is simply the density at zero. Now,
given J = j , tJ is a gamma random variable with mean j and scale 1. For all j � 2, this
random variable has density zero at the origin. Given J = 1, tJ is exponential with rate one,
which has a density one at the origin. Thus, the density at the origin of tJ is 1 · P(J = 1) = p.
Thus, we can take ↵ = p in (8). Hence, by Theorem 2, tmix(✏) = 1

p log(m/✏).
What remains is to find such a p. This is done in the rest of this article. ⇤
Consider any of the intervals [ti , ti+1), condition on Fti and shift time t 7! t � ti , for

t 2 [ti , ti+1). During this interval the jump-diffusion Z is simply a diffusion stopped at an
independent rate one exponential time % := ti+1 � ti . Thus, by the strong Markov property, we
can assume that i = 0 = ti and % := t1 is an exponential one random variable, independent of
the diffusion Z (t), t 2 [0, %).

Express this stopped diffusion Z (·) = (Z1(·), Z2(·)), where Z1 = (X1, Y1), Z2 = (X2, Y2),
which is a solution of (12), in the following way:

X1(t) = W1(t) + L X,0
1 (t) � L X,1

1 (t),
Y1(t) = B1(t) + LY,0

1 (t) � LY,1
1 (t),

X2(t) = W2(t) + L X,0
2 (t) � L X,1

2 (t),
Y2(t) = B2(t) + LY,0

2 (t) � LY,1
2 (t).

Here (W1, B1, W2, B2) is a four-dimensional continuous semimartingale process such that each
coordinate process is marginally distributed as a Brownian motion with constant diffusion coef-
ficients p⇡�2� 2 and initial values x1, y1, x2, y2, respectively. But they are not all independent.
This is because, in the discrete model, the cards that are under the palm tend to move together
during the spread moves leading to a positive correlation between their increments, as compared
to zero correlation when not under the palm.

Consider the two processes

�0
1 (t) := W1(t) � W2(t), �0

2 (t) := B1(t) � B2(t).
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Let [X, Y ] (t) denote the mutual covariation between two continuous semimartingales X and
Y over the time interval [0, t]. By (11),

[�0
1 ,�0

2 ](t) = 0, [�0
1 ,�0

1 ](t) = [�0
2 ,�0

2 ](t) = 2� 2
Z t

0

�
p⇡�2 � F12 (Z1(s), Z2(s))

�
ds.

Let

� (t) = 2� 2
Z t

0

�
p⇡�2 � F12 (Z1(s), Z2(s))

�
ds.

Since 0  F12 (z1, z2)  p2Area (U ) = p2⇡�2 for all (z1, z2) 2 D2, then

2� 2 p⇡�2 � � 0(t) � 2� 2 p(1 � p)⇡�2 > 0, and � (t) � 2� 2 p(1 � p)⇡�2t. (24)

Hence � is strictly increasing and limt!1 � (t) = 1 almost surely. By Knight’s Theorem
(see [26, page 179]), on the same probability space, there exists a pair of independent standard
Brownian motions �1,�2 such that

�0
1 (t) = �1 (� (t)) , �0

2 (t) = �2 (� (t)) .

Let R(t) =
q
�2

1 (t) + �2
2 (t). Then R is a 2-dimensional Bessel process starting from

kz1 � z2k. Now, X1 and X2 are doubly reflected Brownian motions with continuous noises
W1 and W2, respectively (as in Definition 3). The maps W1 7! X1 and W2 7! X2 are
Lipschitz in the locally uniform metric on C[0, 1). See [38, Remark 4.2 (ii)]. Therefore
(X1(t) � X2(t))2  (W1(t) � W2(t))2. Similarly (Y1(t) � Y2(t))2  (B1(t) � B2(t))2. Hence

kZ1(t) � Z2(t)k 
q�
�0

1 (t)
�2 +

�
�0

2 (t)
�2 = R (� (t)) , 0  t < %,

where % is the independent exponential one random variable.
At % pick w uniformly from D independently of the process Z (t), t 2 [0, %), and % itself.

Recall that U is the closed disc of radius � around the origin. Consider the Bernoulli random
variable

�1 := 1 {w 2 {Z1(%�) + U } \ {Z2(%�) + U }} . (25)

Given Z (t), t 2 [0, %), the probability that {�1 = 1} is given by
1

Area
�
D
�Area ({Z1(%�) + U } \ {Z2(%�) + U }) = 1

Area
�
D
�' (kZ1(%�) � Z2(%�)k) ,

by Lemma 3. Since ', defined in Lemma 3, is decreasing the above expressions are bounded
below by

1
Area

�
D
�' (R(� (%))) . (26)

Hence, integrating with respect to the law of Z (t), t 2 [0, %), and %, we get

Area
�
D
�

E (�1) � E
Z 1

0
e�t' (R(� (t))) dt

�

= E
Z 1

0
e���1(u)' (R(u))

�
��1(u)

�0 du
�

, u = � (t).

From the bounds in (24) we get
1

2� 2 p(1 � p)⇡�2 �
�
��1(u)

�0 � 1
2� 2 p⇡�2 , and ��1(u)  u

2� 2 p(1 � p)⇡�2 .
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Hence

Area
�
D
�

E (�1) � 1
2� 2 p⇡�2 E

Z 1

0
e�cu'(R(u))du

�
, c = 1

2� 2 p(1 � p)⇡�2 ,

= 1
2� 2 p⇡�2

Z 1

0
e�cuE ['(R(u))] du

= 1
2� 2 p⇡�2

Z 1

0
e�cu Q2

kz1�z2k ['(R(u))] du,

where Q2
x is the law of a two dimensional Bessel process starting from x .

Now kz1 � z2k 
p

2, the diameter of D. It follows from additivity of squared Bessel
processes (see [42]) that the law of R(u), under Q2

kz1�z2k, is stochastically dominated by the
law of R(u), under Q2p

2
. Using the fact that ' is decreasing we get

Q2
kz1�z2k [' (R(u))] � Q2p

2 [' (R(u))] .

Combining all the bounds and noting that Area
�
D
�

 (1 + 2�)2, we get

E (�1) � 1
2� 2 p⇡�2(1 + 2�)2

Z 1

0
exp

✓
� u

2� 2 p(1 � p)⇡�2

◆
Q2p

2 [' (R(u))] du. (27)

Notice that this is a lower bound that is independent of the starting position of the diffusion.
To estimate the last expression we express it back in terms of planar Brownian motion. Let

v = (v1, v2) 2 R2 be arbitrary and, as before, let c =
�
2� 2 p(1 � p)⇡�2��1. Let V = (V1, V2)

be a planar Brownian motion, starting from v = (v1, v2). Then
Z 1

0
exp

✓
� u

2� 2 p(1 � p)⇡�2

◆
Q2

kvk [' (R(u))] du =
Z 1

0
e�cuEv [' (kV k (u))] du.

The last expression is the c resolvent (sometimes called the c potential) operator for the
generator of planar Brownian motion and is known explicitly. See [41, page 93]:

Z 1

0
e�cuEv [' (kV k (u))] du. = 1

⇡

Z

R2
K0

⇣p
2c kyk

⌘
'(kv � yk)dy

= 1
⇡

Z

z:kzk<2�
K0

⇣p
2c kv � zk

⌘
'(kzk)dz,

where K0 is the modified Bessel function of the second kind. The second equality above is
due to the fact that '(r ) = 0 for r � 2�.

Now K0 is a decreasing function of its argument (see [1, page 374]). Thus
1
⇡

Z

z:kzk<2�
K0

⇣p
2c kv � zk

⌘
'(kzk)dz � K0

⇣p
2c(kvk + 2�)

⌘ 1
⇡

Z

z:kzk<2�
'(kzk)dz.

We now put kvk =
p

2 and evaluate the following integral:

1
⇡

Z

z:kzk<2�
'(kzk)dz = 2

Z 2�

0
r'(r )dr

= 4�2
Z 2�

0
r arccos

⇣ r
2�

⌘
dr �

Z 2�

0
r2
p

4�2 � r2dr

= 16�4
Z 1

0
s arccos (s) ds �

Z 1

0
s2
p

1 � s2ds
�

, s = r
2�

,

= 16�4
h⇡

8
� ⇡

16

i
= ⇡�4.
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Combining all the bounds,

E (�1) � p := �2

2p⇡� 2(1 + 2�)2 K0

 p
2 + 2�

��
p
⇡p(1 � p)

!

. (28)

Therefore, at % = t1, the probability that we gather cards 1 and 2 is at least p, irrespective
of the starting positions of the two cards. This gives an upper bound on p and completes the
proof of Theorem 1.
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