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In Praise (and Search) of J. V. Uspensky
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Abstract. The two of us have shared a fascination with James Victor Us-
pensky’s 1937 textbook Introduction to Mathematical Probability ever since
our graduate student days: it contains many interesting results not found in
other books on the same subject in the English language, together with many
non-trivial examples, all clearly stated with careful proofs. We present some
of Uspensky’s gems to a modern audience hoping to tempt others to read Us-
pensky for themselves, as well as report on a few of the other mathematical
topics he also wrote about (e.g., his book on number theory contains early
results about perfect shuffles).

Uspensky led an interesting life: a member of the Russian Academy of
Sciences, he spoke at the 1924 International Congress of Mathematicians in
Toronto before leaving Russia in 1929 and coming to the US and Stanford.
Comparatively little has been written about him in English; the second half
of this paper attempts to remedy this.

Key words and phrases: J. V. Uspensky, A. A. Markov, probability theory,
Markov’s method of continued fractions, Bernoulli’s theorem, Lexis ratio,
card shuffling, Russian mathematics, Stanford Mathematics Department.

1. INTRODUCTION

In 1927, when Harald Cramér visited England and men-
tioned to G. H. Hardy (his friend and former teacher)
he had become interested in probability theory, Hardy
replied “there was no mathematically satisfactory book
in English on this subject, and encouraged me to write
one” (Cramér, 1976, p. 561). Ten years later, J. V. Us-
pensky’s book Introduction to Mathematical Probability
(1937) filled this vacuum: “his mathematically demand-
ing book was the standard text on probability theory in
[the US] until the appearance” of Feller’s 1950 classic,
Introduction to Probability Theory and its Applications
(Reeds, Diffie and Field, 2015, p. 588).1
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1See also Seneta (2006, p. 6) (“Uspensky’s book seems to have
brought analytical probability, in the St. Petersburg tradition, to the
United States, where it remained a primary probabilistic source until
the appearance of W. Feller’s An Introduction to Probability Theory
and Its Applications in 1951”); Bhatia (2008, p. 26), quoting S. R. S.
Varadhan (“There were not too many books available at that time [the
mid-1950s]. Feller’s book had just come out. Before that there was a
book by Uspensky. These were the only books on Probability”). For a
contemporary reference, see Munroe (1951, p. 2).

Who was the author of this important book? J. V.
(James Victor) Uspensky (born Yakov Viktorovich Us-
pensky, ! k o v V i k t o r o v i q U s p e n s k i ",
1883–1947) entered the Saint Petersburg Imperial Univer-
sity in 1903, received his undergraduate degree there in
1906 as well as his graduate degree in 1911, studying un-
der the great Andrei Andreievich Markov (1856–1922). In
1915, he became a Professor at Petrograd (the new name
for Saint Petersburg) University, and in 1921 elected a
member of the Russian Academy of Sciences. He gave
a talk at the 1924 International Congress of Mathemati-
cians, and traveled to the United States several times dur-
ing this period: 1924, 1926–1927 (when he taught at Car-
leton College in Minnesota), and 1929, when he moved
permanently to the US and Stanford. Initially appointed
an acting Professor of Mathematics (1929–1931), he be-
came a permanent member of Stanford’s mathematics de-
partment in 1931 and remained there until his death in
1947. He is best known today for three textbooks he wrote
during his time at Stanford although, as we shall see, he
was much more active than just this.

In the following, we focus on Uspensky’s three text-
books (1937, 1939, 1948), primarily the one on mathe-
matical probability, but then circle back and take a closer
look at this very interesting person. While this paper is
intended primarily as a contribution to the history of our
subject, it is worth mentioning that we have used some of
the topics discussed below as course material in both in-
troductory and graduate courses. Historical material often
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brings a course to life for students. The current proofs in
textbooks are frequently so streamlined it can be easy to
forget just how challenging the initial proofs were. Some
of the material in the sections below can be used directly
as part of a lecture, or the basis of a challenging problem
set, or as reading in conjunction with a student project.

2. INTRODUCTION TO MATHEMATICAL
PROBABILITY

In the preface to his book, Uspensky briefly explained
its origin. It grew out of a course on mathematical prob-
ability Uspensky had taught at Stanford for a number of
years. At first he prepared a short mimeographed book
covering only the elementary aspects of the subject, but
over time the scope of the course enlarged and in the end
“a rather large manuscript” covering the most important
parts of the theory emerged. Originally, Uspensky did not
intend to publish this, but did so after the urging of stu-
dents and other readers.

Uspensky himself saw the book as dividing naturally
into two parts: the first, “consisting of Chapters I to XII in-
clusive, is accessible to a person without advanced mathe-
matical knowledge”; Chapters XIII through XVI, in con-
trast, “incorporate the results of modern investigations,”
and as a result were necessarily “more complex” and re-
quired “more mature mathematical preparation” (cover-
ing distribution theory, rigorous proof of the central limit
theorem, and mathematical statistics).

There were, of course, other expositions of the math-
ematical theory then available in English, notably Fisher
(1922) and Fry (1965). Both of these however were very
different from Uspensky’s in both their aim and scope.
Arne Fisher (1887–1944) was an applied statistician who
worked first at Prudential Insurance and then Western
Union Telegraph. Although interested in the philosophi-
cal underpinnings of mathematical probability, the great
strength of his book lies in its discussion of the Lexis ra-
tio and the work of the Scandinavian school of statistics.2

Thornton Carl Fry (1882–1991) likewise came from an
applied background, working at Western Electric and Bell
Telephone. His book is very interesting, but much of it is
devoted to applied probability and it does not approach
Uspensky’s in either mathematical depth or breadth.3

Uspensky’s book was well received.4 One of its great
strengths was its making available in English for the first

2“[Arne] Fisher’s greatest contribution was calling to the attention of
American mathematicians the work of the great Scandinavian statisti-
cians. Gram, Thiele, Westergaard, Charlier, were mere names to us
before the publication of Fisher’s The Mathematical Theory of Proba-
bilities in 1922” (Molina, 1944, p. 251)

3Two other textbooks then available were Coolidge (1925) and
Burnside (1928). Both were much inferior to Uspensky’s.

4David (1938), for example, in her review of it in Biometrika wrote
“This book is so good that it should remain a classic in the literature of
the theory of probability for many years”.

time a substantial fraction of the Russian literature on
probability. In the following, we discuss a few particularly
interesting examples.

2.1 Computing Binomial Tail Probabilities

Suppose Sn is the number of heads in n independent
tosses of a p-coin. If n = 9000 and p = 1/3, the nor-
mal approximation tells us that P(S9000 > 3090) is about
0.02209. The R statistical software package tells us the
exact value to five places is 0.02170, so the normal ap-
proximation here is accurate to three places. But how can
we tell this without R? Estimating the error in the normal
approximation or doing better by adding correction terms
to it can be tricky. It turns out there is a very clever way
of tackling the twin issues of better approximation and er-
ror estimation without appealing at all to the central limit
theorem (or brute force calculation).

In Chapter 3, Section 8 of his book, Uspensky notes that
although there are asymptotic formulas for estimating in-
terval binomial probabilities of the form P(a < Sn < b),
“less known is the ingenious use by Markoff of contin-
ued fractions for that purpose.” In the following we give
(1) Markov’s method as described by Uspensky, together
with a proof of the key inequalities; (2) a discussion of
the method, including an important forward recursion the
convergents satisfy permitting their efficient computation
and (3) brief comments on some later literature.

2.1.1 Markov’s method of continued fractions. Let
b(k;n,p) be the binomial probability of k successes in n

trials with success probability p, let l be an integer greater
than np, and consider the right binomial tail probability

P(l) := P(Sn > l).

Then a trite calculation yields

P(l) = b(l + 1;n,p)S

where

S = 1 + n − l − 1
l + 2

p

q

+ (n − l − 1)(n − l − 2)

(l + 2)(l + 3)

(
p

q

)2
+ · · · .

The sum S is a special case of the hypergeometric series

F(α,β,γ , x)

= 1 + αβ

1 · γ x + α(α + 1)β(β + 1)

1 · 2γ (γ + 1)
x2 + · · · ;

namely

F

(
−n + l + 1,1, l + 2,−p

q

)
.
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A hypergeometric series of this type has a continued
fraction expansion that is a special case of Gauss’s con-
tinued fraction for a ratio of two hypergeometric functions
(for the latter, see Wall, 1948). In this particular case, if

ck = (n − k − l)(l + k)

(l + 2k − 1)(l + 2k)

p

q
,

dk = k(n + k)

(l + 2k)(l + 2k + 1)

p

q
,

then the resulting expansion is

S = 1
1 − c1

1+ d1

1− c2

1 +
. . .

− cn−l−1

1+ dn−l−1
1

.

For each k ≥ 1, let

Ck = 1
1 − c1

1+ d1

1 −
. . .

− ck

and

Dk = 1
1 − c1

1+ d1

1 −
. . .

− ck
1+dk

.

We will refer to the Ck and Dk as “C-convergents”
and “D-convergents.” It is not hard to see that the
Markov method brackets S by a C-convergent and a D-
convergent. In particular, it is not hard to show the con-
vergents exhibit a two-step ping-pong type of behavior,
satisfying the successive sequence of inequalities

C2 < D2 < C4 < D4 < · · · < S

< · · · < D3 < C3 < D1 < C1

(until k = n − l − 1, when Dk = S).
Because it is surprisingly hard to find an actual proof

of the alternating behavior of the convergents in the liter-
ature, we give the details here.

PROOF. Because l > np, is easy to see that

1 > c1 > · · · > ck > · · · > cn−l = 0.

Let

ωk := ck

1 + dk

1− ck+1

1+
...

Note that by definition one has that

S = 1
1 − ω1

,

as well as the recursive relation

ωk = ck

1 + dk
1−ωk+1

.

Furthermore, it is easily seen that 0 < ωk < ck for k <

n − l.
The proof proceeds by exploiting the recursive nature

of the ωk . Note that for 0 < α < β ,

ck

1 + dk
1−β

<
ck

1 + dk
1−α

.

Call this the basic inequality. Because 0 < ωk+1 < ck+1,
it follows from the basic inequality and the ωk recursion
that

ck

1 + dk
1−ck+1

< ωk <
ck

1 + dk
< ck.

If one then continues this process, thus extending the con-
tinued fraction back by the additional two terms ck−1 and
dk−1, the result is a new set of inequalities with the di-
rection reversed. (Note this is an immediate consequence
of now applying the basic inequality three times.) Con-
tinuing this a total of k times, going all the way to c1, d1
and then finally passing from bounds for ω1 to bounds for
S = 1/(1 − ω1) (note this last step does not reverse the
inequalities), one ends up with

(1) (−1)kCk+1 < S < (−1)kDk < (−1)kCk.

Furthermore, since

ck+1

1 + dk+1
1−ck+2

> 0,

once again invoking the basic inequality and arguing as
before, one has

(2) (−1)k+2Ck+2 < (−1)kDk.

It follows from (1) and (2) that the convergents satisfy the
indicated sequence of inequalities. !

Uspensky illustrates this computational process in de-
tail for the case when n = 9000,p = 1/3 and l = 3090,
and starting at ω6 obtains the bounds

0.02161 < P(S9000 > 3090) < 0.02175.

As noted earlier, the exact answer to five places is
0.02170, so in this example the continued fraction ap-
proximation is accurate to three places.
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2.1.2 Discussion. Although Markov’s method is at
once both elegant and useful, there are some puzzling
aspects to Uspensky’s presentation. First, Uspensky com-
putes the convergents of the continued fraction “from the
bottom up.” This is fine as far as it goes, but inefficient if
one then decides to compute further out in the continued
fraction because you have to start over from scratch.

Following the notation in Dudley (1987), consider the
interweaved set of convergents Q1 = 1 and

Q2k = Ck, Q2k+1 = Dk, k ≥ 1.

Let Qn = An/Bn (An and Bn relatively prime). The nu-
merators An and denominators Bn of the convergents of
an alternating continued fraction satisfy a simple two-step
linear recursion, which facilitates their computation; see
Dudley (1987, p. 589, Theorem 3.1). Here, the formula
for the recursion takes the form: if Xn represents either
the numerator An or the denominator Bn, then for k ≥ 1,

X2k = X2k−1 − ckX2k−2,

X2k+1 = X2k + dkX2k−1,

subject to the initial conditions A0 = 0,A1 = 1,B0 =
B1 = 1. One can thus readily compute successive conver-
gents using the recursive formula, knowing S is always
bounded by two successive convergents Dk,Ck+1 lying
on either side of S, stopping when a desired degree of
accuracy is reached. It is unclear why Uspensky does not
mention this, since he was certainly familiar with this phe-
nomenon; see page 359 of his own book.

For some reason, Uspensky does not give a specific
reference for Markov’s method. It in fact appears in
Markov’s 1900 book Ischislenie veroiatnostei (Calculus
of Probabilities), Section 24, pages 150–157; and Uspen-
sky’s treatment follows that of Markov’s very closely, in-
cluding the layout of the illustrative numerical example
(although Uspensky uses different values for n,p and l).
Markov does note (p. 153) the odd C-convergents are
greater than S and the even ones less, but does not men-
tion their monotonic nature and says nothing about the D-
convergents. It is hard to believe however he did not know
the full story. Perhaps, focusing on the computation for a
single value of k, he did not think it pedagogically desir-
able to go into such details. For discussion of Markov’s
treatment, see Dutka (1981, pp. 19–21), Seneta (2013, pp.
1105–1106).

The use of continued fractions in probability to perform
computations of the normal integral goes back to Laplace
(Hald, 1998, pp. 208–209). Chebyshev later used them
to study least squares interpolation (Hald, 1998, pp. 525–
527), as well as part of a theoretical attack on the moment
problem. Markov’s 1884 thesis (“On some applications of
algebraic continued fractions”), continued this work of his
advisor Chebyshev; see Uspensky (1937, Appendix II).
Markov also published a short book in French shortly af-
ter (Markov, 1888) in which he used continued fractions
to compute tables of the normal integral.

2.1.3 Later literature. Markov’s book went through
four editions (1900, 1908, 1913, 1924), but the section
on the method of continued fractions in the 1924 edition
(Section 18, pp. 104–114), is virtually identical to that in
the 1900 edition. The second edition is conveniently avail-
able in German translation (Liebmann, 1912); see Sec-
tion 25, pages 135–141 for the material on continued frac-
tions.

Uspensky appears initially to have been virtually the
sole source—perhaps the sole source—for discussion of
the method in the English literature. Bahadur (1960) in-
dependently came up with a closely related representation
of the tail as a product of the lead term and q times a dif-
ferent hypergeometric series,

P(Sn ≥ j) = [(n
j

)
pjqn−j ]

qF(n + 1,1; j + 1;p).

(The simple argument invokes a standard relation between
the binomial and negative binomial distributions.) Ba-
hadur then goes on to add:

Another method of using continued fractions
to obtain bounds on B , which is based [directly
on the tail sum] itself rather than [a series de-
rived using the negative binomial distribution],
is given in Uspensky ([2], pp. 52–56). This
method, which is attributed in [2] to Markov,
does not appear to be generally known, and
might therefore be described here.

Much of the subsequent literature on Markov’s method
is curiously terse when it comes to the monotonic na-
ture of the convergents. Bahadur says “it can then be
shown,” citing Uspensky, but gives no page reference and,
as discussed above, Uspensky is in fact silent on this
issue. Dudley (1987, p. 589) passes over both Bahadur
and Uspensky in silence and directly cites Markov (1924,
p. 108). He appears to have felt some frustration with
the discussion in the literature about the two-step alter-
nating nature of the convergents, for he says of it that it
is “known, at least in some cases,” citing both Markov
(1924, p. 108) and Peizer and Pratt (1968, p. 1452). He
says it “follows directly from” the generalized continued
fraction representation.

For a more general discussion of continued fraction ex-
pansions for hypergeometric series, see Borwein, Choi
and Pigulla (2005).

2.2 Bernoulli’s Theorem

Nowadays the weak law of large numbers for indepen-
dent and identically distributed trials is usually proven us-
ing Chebyshev’s proof. But this is not the one Uspensky
gives for Bernoulli trials. Instead he says:

Several proofs of this important theorem are
known which are shorter and simpler but less
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natural than Bernoulli’s original proof. It is his
remarkable proof that we shall reproduce here
in modernized form.

2.2.1 Bernoulli’s proof. The strategy underlying James
Bernoulli’s original proof is straightforward: divide the
range of the binomial tail probability into blocks, bound
the sum of the terms in each block by a corresponding
term in a geometric series, and then show the sum of the
resulting geometric series satisfies the requisite inequality
for all n sufficiently large. The actual tactical execution of
this however requires considerable skill. Here is an out-
line of the proof Uspensky gives using his notation.

We seek to show that if there are m heads in n tosses of
a p-coin, then for any ε,η > 0, one has

P

(∣∣∣∣
m

n
− p

∣∣∣∣ < ε

)
> 1 − η

for all n sufficiently large.
Here is the proof. Let λ = #np$,µ = #np + nε$ denote

respectively the ceiling of np and np + nε, respectively;
that is, the integers λ,µ such that

λ − 1 < np ≤ λ, µ − 1 < np + nε ≤ µ.

Let g := µ − λ (this will be the block size), let Tk be the
probability of k heads in n tosses of a p-coin, and set

A = Tλ + · · · + Tµ−1,

C = Tµ + · · · + Tn,

Aj = Tµ+(j−1)g + Tµ+(j−1)g+1

+ · · · + Tµ+jg−1, j ≥ 1.

so that

C = A1 + A2 + A3 + · · · .

The proof then breaks down into the following steps:

1. Bound the tail by a geometric series. For integers
b > a ≥ 0 and k > 0, a simple manipulation of inequali-
ties gives

Tb+k

Tb
<

Ta+k

Ta
;

and it is easily seen from this (setting A0 := A) that

Aj < Aj−1

(
Tµ

Tλ

)
, j ≥ 1

and, therefore,

C < A

[(
Tµ

Tλ

)
+

(
Tµ

Tλ

)2
+

(
Tµ

Tλ

)3
+ · · ·

]
.

2. Derive a bound for the common ratio of this se-
ries. For x ≥ λ ≥ np, it is easily seen that Tx+1/Tx < 1.
Expressing Tµ/Tλ as a telescoping product of g terms, re-
taining only the first α ≤ g of these terms (i.e., the length

of some subblock), invoking the first inequality in Part 1
above, and noting that

Tµ−α+1

Tµ−α
≤

(
n − µ + α

n − α + 1
p

q

)
,

gives

Tµ

Tλ
<

(
n − µ + α

n − α + 1
p

q

)α

.

3. Use the preceding to show the common ratio of the
series is bounded by η. So far α ≤ g can be any sub-block
size. Now choose α to be the least positive integer such
that

(
p

p + ε

)α

≤ η.

Further manipulation of inequalities shows that for

n ≥ α(1 + ε) − q

ε(p + ε)

one has both g ≥ α (so that the last inequality in the pre-
vious step holds) and

n − µ + α

n − α + 1
p

q
<

p

p + ε
.

It then follows immediately that

n ≥ α(1 + ε) − q

ε(p + ε)

and, therefore,

Tµ

Tλ
<

(
n − µ + α

n − α + 1
p

q

)α

<

(
p

p + ε

)α

≤ η.

4. Use this bound to show the tail probability C is
smaller than η. Putting this together gives

C < A
(
η + η2 + η3 + · · · ) = Aη

1 − η
<

(1 − C)η

1 − η
,

and so C < η.

Quod erat demonstrandum (as Bernoulli might have
said).

REMARK. It is interesting to see Bernoulli uses the
device of blocking terms, because this technique was later
used in the twentieth century to derive limit theorems for
sums of independent and identically distributed random
variables.

In short, Uspensky has provided a clear and complete
presentation of an interesting (and impressive) proof by
Bernoulli, one that could not be found in any of the text-
book literature of the time (at least in English).5

5In the 1924 edition of his book, Markov presented Bernoulli’s proof
but silently included improvements in it due to Nicholas Bernoulli
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2.2.2 Background. There is an interesting backstory to
Uspensky’s presentation of Bernoulli’s proof. The year
1913 was the bicentenary of the appearance of Bernoulli’s
Ars conjectandi, the famous book in which he gave his
proof. To mark the centenary, Markov arranged a meet-
ing of the St. Petersburg Mathematical Society, as well as
commissioning Uspensky (who had an excellent knowl-
edge of Latin) to write a Russian translation of Part 4 of
the Ars; see Bernoulli (1913) and for the meeting itself,
Seneta (2013). Uspensky thus had an intimate knowledge
of Bernoulli’s book and other material from it also appears
scattered throughout Uspensky’s book. (Uspensky in fact
owned a copy of the Ars conjectandi, which is now part
of the Stanford University Library Special Collections.6)

Good English translations of the Ars are now available;
see particularly Sylla (2006), and also Sheynin (2005).
Stigler (1986, pp. 63–70) gives an excellent historical ac-
count of Bernoulli’s theorem and his proof of it.

2.2.3 Other good material in this chapter. Since our
goal is to focus on the most distinctive and interesting
topics in Uspensky, we are not going to go through his
book, chapter-by-chapter, in a systematic way. But to
give a sense of the richness of the book, here are some
other highlights of just this chapter. For example, imme-
diately after his treatment of Bernoulli’s theorem, Uspen-
sky states and proves Cantelli’s theorem, something rarely
found outside of graduate texts (and often not even then).

THEOREM 2.1. For ε < 1,η < 1 let N be an integer
satisfying the inequality

N >
2
ε2 log

4
ε2η

+ 2.

The probability that the relative frequencies of an event
E will differ from p by less than ε in the N th and all the
following trials is greater than 1 − η.

Other highlights of the chapter include:

• A lengthy translation from the Ars conjectandi.
• A survey of experimental verifications of Bernoulli’s

theorem.
• A discussion of the Buffon needle problem.7

(providing better bounds on the tail probability), as well as a “modern-
ized” version of the proof, which dispensed with unnecessary restric-
tions (on n, p and ε). Strictly speaking, it is Markov’s improved and
modernized version that Uspensky gives, together with an improve-
ment of his own (a lower bound on n that no longer depended on p).
Hald (1990, Chapter 16) gives a detailed analysis of Bernoulli’s origi-
nal proof, as well as discussing the contributions of Nicholas Bernoulli,
Markov, and Uspensky.

6But only recently—Steve Stigler was still able to check this out
from the main library stacks in 1972.

7Including an extension of it to the case of a triple grid; see Perlman
and Wichura (1975, pp. 159–162) for a discussion of the statistical
aspect of estimating π in this case.

• The standard Chebyshev proof of the weak law of large
numbers given as a three-part exercise.

• The proof of the Weierstrass approximation theorem,
using Bernoulli’s theorem to show the Bernstein poly-
nomials are dense in the continuous functions on a
closed and bounded interval [a, b], is sketched in an
exercise.

2.3 The Lexis Ratio

The middle of the nineteenth century saw an increasing
interest in the apparent stability of statistical ratios (say
the yearly suicide rates in Paris and Marseilles). An im-
portant issue that arose out of this was whether different
sets of frequency data from different populations could be
legitimately combined: that is, whether they represented
trials of the same or different phenomena. Suppose one
has n independent series of s independent Bernoulli trials
each. Let m1, . . . ,mn denote the number of successes in
each of the n series of s trials, and let p denote the mean
probability of success in all N := ns trials. In 1876, the
German statistician Wilhelm Lexis (1837–1914) defined
the coefficient of dispersion

Q :=
∑n

i=1(mi − sp)2

Np(1 − p)
.

Let pij be the probability in the ith series that the j th
outcome is a success. Then the mean probability in the
ith series is

pi := pi1 + p2i + · · · + pis

s

and the overall mean probability is

p = p1 + p2 + · · · + pn

n
.

If D := E(Q), then one can show that D equals

1 + s − 1
np(1 − p)

s∑

i=1

(p − pi)
2

− 1
Np(1 − p)

n∑

i=1

s∑

j=1

(pi − pij )
2.

There are three natural special cases here:

1. The Bernoulli case: the pij have the same value p.
In this case, D = 1 (“normal dispersion”).

2. The Lexis case: the pij are constant within strata;
pij = pi . In this case, the third term in D vanishes but not
the second and D > 1 (“supernormal dispersion”).

3. The Poisson case: the pij vary within a stratum but
in the same way from one stratum to another; pi1j = pi2j .
In this case, the second term in D vanishes but not the
third and D < 1 (“subnormal dispersion”).
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There was a substantial literature available in English
about this in 1937 (see, e.g., Fisher, 1922, Chapter 10;
Forsyth, 1925; Rietz, 1924, Chapter 6; Coolidge, 1925,
Section 4.2), but Uspensky’s treatment introduced contri-
butions by Markov and Chuprov that were unknown in the
English literature of the time.8

Markov considered an empirical version Q̂ of the dis-
persion coefficient Q replacing the unknown theoretical
probabilities by ones estimated from the data: if M =∑

i mi , then

Q̂ = n(N − 1)

(n − 1)

∑n
i=1(mi − s M

N )2

M(N − M)
.

(If M = 0 or M = N , then Q̂ = 1 by definition.) Chuprov
and Markov were then able to establish the following ex-
act expressions for E(Q̂) and Var(Q̂).

THEOREM 2.2. In the Bernoulli case E(Q̂) = 1 and

Var(Q̂) = 2N(N − n)

(n − 1)(N − 2)(N − 3)

·
N−1∑

M=1

N − M − 1
N − M

(
M
N

)
pM(1 − p)N−M.

This immediately gives a simple bound for the variance

Var(Q̂) <
2N(N − n)

(n − 1)(N − 2)(N − 3)
;

and, for n ≥ 5 the even simpler bound

Var(Q̂) <
2

n − 1
.

For excellent historical accounts of the Lexis ratio and
the contributions of Markov and Chuprov, see Heyde
and Seneta (1977, Section 3.4), Ondar (1981) and Stigler
(1986, Chapter 6).

2.3.1 Ships passing in the night. There was an interest-
ing disconnect between the English and Continental liter-
atures on statistics during the nineteenth and early twen-
tieth centuries. One simple example is the distribution of
S2, the sample variance, in the case of sampling from a
normal population: Helmert had already worked this out
in 1876, but this was overlooked in England and indepen-
dently rediscovered by Student in his famous 1908 pa-
per on the t-statistic (see Zabell (2008, Section 2.3.1)).
Indeed, Helmert’s priority was only recognized and ac-
knowledged in the English literature much later (by Karl
Pearson, 1931).

A similar situation held in the case of the Lexis ratio:
although effectively the same as the chi-squared statistic,
it was only in 1925 that R. A. Fisher observed:

8Julian Lowell Coolidge (1873–1954) was a mathematician at Har-
vard University who wrote a number of books on mathematics and the
history of mathematics. His 1925 book was a substantial (if inferior to
Uspensky’s) book in English at the time on mathematical probability.

It is of interest to note that the measure of
dispersion, φ2, introduced by the German
economist Lexis is, if accurately calculated,
equivalent to χ2/n of our notation [Fisher,
1925, p. 79].

Thus, much like Moliere’s bourgeois gentilhomme who
(as the Wikipedia puts it) was “surprised and delighted to
learn that he has been speaking prose all his life without
knowing it,” both groups of statisticians had been talking
about the same thing without realizing it; and one could
still find papers in Biometrika in the 1930s and 1940s
computing the exact expectation of the chi-squared statis-
tic, in ignorance of the earlier contributions of Markov
and Chuprov.

But—surprisingly—even Uspensky himself was not
immune to this breakdown in communication. After dis-
cussing the exact expectation and variance of Q̂, Uspen-
sky went on to write (p. 219):

It would be greatly desirable to have a good
approximate expression for the probability of
either one of the inequalities

Q̂ ≥ 1 + ε or Q̂ ≤ 1 − ε.

But this important and difficult problem has
not yet been solved.

This curiously overlooks not only the work of R. A. Fisher
(with which Uspensky was in fact well acquainted), but
also Markov (who had worked out the limiting distribu-
tion of Q̂ in 1920).

2.3.2 Uspensky on error estimation and robustness.
When later discussing the closely related case of Pear-
son’s chi-squared test for the goodness-of-fit of a vector
of observed frequencies to a prescribed vector of multino-
mial probabilities, Uspensky argued (p. 327) that because
“the degree of approximation [for the test] remains un-
known,” the “lack of information as to the error incurred
by using an approximate expression . . . renders the appli-
cation of this “χ2-test” devised by Pearson somewhat du-
bious.” (This issue was later addressed in part by Cochran,
1952, among others.) Of course, similar concerns can also
be raised about the use of t-statistics and the other ele-
ments of normal sampling theory, and here too Uspensky
expressed (p. 345) reservations about their use:

The various distributions dealt with in this
chapter are undoubtedly of great value when
applied to variables, which have normal or
nearly normal distribution. Whether they are
always used legitimately can be doubted. At
least the “onus probandi” that the “popula-
tions” which they deal with are even approx-
imately normal rests with the statisticians.
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Such robustness issues had been raised earlier by Egon
Pearson in his 1929 review in Nature of the second
(1928) edition of R. A. Fisher’s Statistical Methods for
Research Workers; see Pearson (1990, pp. 95–101) and
Zabell (2008, p. 4). Nowadays there is a general consen-
sus that this is less of a concern in the case of estimates or
tests for means, but much more so in the case of variances.

In general, Uspensky is typically interested not just in
limit theorems as approximations, but also providing an
estimate of the magnitude of the error (as in Markov’s
method of continued fractions).

2.4 Some Other Interesting Gems

There are many other interesting topics in Uspensky
rarely found in other books, even today. These include:

• The use of difference equations in solving problems
(Chapter 5).

• An analysis of the error in the normal approximation to
the binomial (Chapter 7).9

• A bound on the error for the Poisson approximation to
the binomial (Chapter 7, Exercise 9, pp. 135–136).

• Gambler’s ruin with unequal stakes (Chapter 8, pp.
143–146).

• De Moivre’s simple formula for the mean absolute
deviation of the binomial (Chapter 9, p. 176, Exer-
cise 1).10

• Bernstein’s inequality (Chapter 10, pp. 204–205, Exer-
cises 12–15).

• Moment inequalities (Chapter 13, p. 278, Exercise 3).
• A detailed reconstruction of Liapounov’s proof of the

Liapounov central limit theorem (Chapter 13, pp. 284–
296).11

• A central limit theorem for two-state Markov chains
(Chapter 13, pp. 297–302).

• A crash course in mathematical statistics (Chapter
16).12

9Dutka (1981, p. 16) describes this as a “very sophisticated version
of Laplace’s analysis,” and notes the “considerable technical difficul-
ties” involved in its proof. See Seneta (2013, pp. 1112–1114) for his-
torical context and discusion. Interestingly, Littlewood late in life be-
came interested in this problem, although his 1969 paper on it contains
several (fixable) errors; see McKay (1989).

10See Diaconis and Zabell (1991) for the history of this most interest-
ing result. As noted there, the formula was independently rediscovered
several times, including twice after Uspensky’s book appeared.

11See (Siegmund-Schultze, 2006) for a critique and connections with
the later work of von Mises.

12Uspensky gives detailed mathematical derivations of the distribu-
tions of χ2, S2, t, r and tanh(r) for samples from a normal population.
This appears to be have been the first textbook in English to do so. Al-
though all of these were of course available in the research literature,
a similar exposition two years earlier in The American Mathematical
Monthly (Jackson, 1935) justified itself on the grounds of “bringing to-
gether items that are scattered through a variety of books and journals,
and in supplying explanations which in one account or another may

• Stirling’s formula with bounds and the evaluation of
definite integrals (Appendix 1).13

• The method of moments and its applications (Ap-
pendix 2).14

• Kuzmin’s solution to Gauss’s continued fraction prob-
lem (Appendix 3).

Several of these topics warrant brief mention because
they crop up in later literature.

2.4.1 The problem of runs. One illustration of the use
of difference equations Uspensky gives is to solve the
problems of runs (Sections 3–8, pp. 77–84): to find the
probability yn of at least r consecutive successes in n
tosses of a p-coin. The yn are easily seen to satisfy the
recursion

yn+1 = yn + (1 − yn−r )qp
r .

If we let zn := 1 − yn, this gives us the recursion

zn+1 − zn + qprzn−r = 0,

and this in turn enables us to find the generating function
of the zn. Uspensky (pp. 78–79) gives the detailed argu-
ment, finding the generating function of the zn to be

φ(ξ) = 1 − prξ r

1 − ξ + qprξ r+1 ,

which can be expressed as a power series in ξ “according
to the known rules.” The zn are the coefficients of this
power series.

Of course, for this to be useful one wants a formula for
the coefficients. If one sets

βn,r :=
& n

r+1 '∑

k=0

(−1)k
(

k
n − kr

)(
qpr)k,

Uspensky says one can show “without any difficulty” that

zn = βn,r − prβn−r,r .

For the details of this last calculation, see Ethier (2010,
p. 41). Although the generating function for the zn was
known long before, going back to Laplace, see Todhunter
(1865, pp. 539–541) and Hald (1990, pp. 417–421), Us-
pensky’s formula for its coefficients may originate with
him.

Obviously, this formula for zn can be challenging to
compute for large n, and Uspensky devotes several pages

have to be read between the lines.” But even here Uspensky played a
role: in his acknowledgements at the beginning of his paper, Jackson
wrote: “In preparing the paper for publication the author has derived
profit from remarks made by Professors Hotelling and Uspensky in the
discussion following the oral presentation.”

13The log convexity argument in Section 3 goes back to Bohr and
Mollerup (1922, pp. 149–164).

14This is a difficult topic, with very few expository presentations for
nonexperts. We do not know of anything comparable.
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(79–84) giving approximate formulas for zn when n is
large, drawing on the results in an earlier (but uncited)
paper of his (Uspensky, 1932).

The problem of runs was first solved by de Moivre
(1738, Problem 88, pp. 243–248; 1756, Problem 74, pp.
254–259). De Moivre gave the following algorithm to
compute the probability of a run: if q = 1 − p and c =
p/q , then expanding

pr

1 − q − cq2 − c2q3 · · · − cr−1qr

in powers of q and taking the sum of the first n − r +
1 terms “will express the probability required.”15 De
Moivre did not explain where his formula came from,
but Todhunter (1865, Section 325, pp. 184–186) helpfully
sketched a derivation.

2.4.2 Gambler’s ruin with unequal stakes. Uspen-
sky’s Chapter 8 (“Further Considerations on Games of
Chance”) begins with a discussion of the standard topic
of computing the absorption probabilities for gambler’s
ruin with equal stakes, but then (p. 143) turns to the non-
standard question of what happens when the stakes are
unequal:

Two players A and B play a series of games,
the probability of winning a single game being
p for A and q for B , and each game ends with
a loss for one of them. . . . [If] the stakes for
A and B measured in a convenient unit are α
and β and their respective fortunes are a and b,
find the probabilities for A and B to be ruined
in the sense that at a certain stage the capital of
A become less than α or that of B less than β .

If ya is the probability of ruin for A, Uspensky (pp.
143–146) shows in the case of a fair game (i.e., pβ = qα)
that ya satisfies the inequalities

b − β + 1
a + b − β + 1

≤ ya ≤ b

a + b − α + 1
,

as well as a slightly more complicated set of inequalities
in the unfair case.

Here, once again, Uspensky is drawing on “an in-
genious method developed by Markov” (see Markov,
1900, pp. 142–146 of the 1912 edition). The problem had
been studied earlier by Rouché (1888) and discussed in
Bertrand (1888), the crucial expression being the equation

pzα+β − zα + q = 0.

Markov, in an obscure paper in 1903,16 showed that all the
roots to this equation contribute to the probability of ruin

15As Todhunter notes, De Moivre gives an erroneous value for c in
his algorithm, but the actual computations in his examples are correct.

16“On the question of the ruin of players” (K voprosu o razorenii
igrokov), Izv. fiz.-mat. obshch. pri Kaz. univ., 1903; see Markov (1900,
p. 211 of the 4th, 1924 ed.).

and derived the inequalities Uspensky gives. Markov’s
method also appears briefly in Feller (p. 366 of the 1968
edition).

Since Uspensky the problem has continued to gener-
ate a modest literature. Feller generalized Uspensky’s re-
sult in 1950 (see p. 366 of the 1968 edition of his book).
Seal (1966) traces the history on this up to 1957. Later
literature includes Ethier and Khoshnevisan (2002) and
Gilliland, Levental and Xiao (2007), the second giving ex-
act formulas in terms of the roots of pzα+β − zα + q = 0.
Ethier (2010, Sections 7.2–3) discusses these generaliza-
tions at length and reviews their history (pp. 273–274).

2.4.3 Bernstein’s inequality. Let X1,X2, . . . ,Xn be
independent random variables such that EXj = 0 and
σ 2

j := VarXj < ∞ for j = 1, . . . , n. Bernstein’s inequal-
ity states that if Sn := X1 + · · ·+Xn,B

2
n = VarSn and for

some c > 0 one has

E
[∣∣Xk

j

∣∣] ≤ k!
σ 2

j

2
ck−2

for j = 1, . . . , n and k > 2, then

P
(|Sn| > t

)
< 2 exp

(
− t2

2Bn + 2ct

)
.

In particular, if the Xj are uniformly bounded, that is,
|Xj | ≤ M for some M > 0, then one can take c = M/3.
This is (like a number of other interesting results in Us-
pensky) established via a sequence of exercises; see Us-
pensky (1937, pp. 204–205, Problems 12–15). Nowadays
better results are available, but Bernstein’s inequality re-
mains a simple and useful upper bound.

The inequality was proved by Sergei Natanovich Bern-
stein (1880–1968), and appears in his 1927 book Theory
of Probability (as well as an earlier 1924 paper), but even
in 1962 these were hard to find in the US. (Bennett, 1962,
listing previous references to the inequality in the En-
glish literature, described them as being “unobtainable.”)
Uspensky’s account in his book—with one exception—
remained the sole source in English for the inequality for
many years. Bennett (1962, p. 35), discussing the inequal-
ity a quarter of a century later, could only find six previous
instances where it was mentioned in the English litera-
ture; only one of these, Craig (1933), predates Uspensky’s
book or gives a derivation. But this turns out to be the ex-
ception that proves the rule. In his paper on the inequality
Craig says (p. 94):

Another interesting and important attempt in
this direction [i.e., Chebychev’s inequality for
a sum of independent random variables] due
to S. Bernstein seems to have generally es-
caped attention in the English-speaking world,
at least, since it has been published only in
Russian.
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How then did Craig learn of it? He tells us in a footnote:
“The present account of this work of Bernstein is taken
from a lecture of Professor J. V. Uspensky”!

For other citations of Bernstein via Uspensky, see
Blackwell (1954, p. 397) and Bahadur (1966, pp. 578–
580).17

3. USPENSKY’S TWO OTHER TEXTBOOKS

Uspensky wrote two other textbooks during his time at
Stanford, one on number theory (Uspensky and Heaslet,
1939) and one on the theory of equations (Uspensky,
1948). While our primary focus has been on Uspensky’s
book on mathematical probability, his other two textbooks
are not without interest, so we briefly comment on them.

3.1 Elementary Number Theory

Uspensky was first and foremost a number theorist (an
interest he shared with his advisor Markov). So not sur-
prisingly his book on number theory also contains many
interesting examples and topics. Here are a few:

• Lamé’s theorem (the number of divisions needed to find
the gcd of two numbers is at most five times the number
of digits in the smaller number, pp. 43–45).

• Bonse’s inequality (if pn is the nth prime, then p2
n+1 <

p1p2 . . . pn, n ≥ 4, pp. 86–89).
• Meissel’s formula for computing the number of primes

less than a given number (pp. 120–124).
• Kummer’s proof of the law of quadratic reciprocity (pp.

375–379).
• Dickson’s proof of Lagrange’s four-square theorem

(pp. 379–386).
• Chapters on the Bernoulli numbers, including the

Voronoi congruences (Chapter 9) and Liouville’s meth-
ods for deriving properties of arithmetical functions,
culminating in an elementary proof of Gauss’s theorem
characterizing integers expressible as a sum of three
squares (Chapter 13).

• Appendices on magic squares (pp. 159–172), calendar
problems (pp. 206–221), and card shuffling (pp. 244–
248).

We cannot resist briefly discussing this last topic.

3.1.1 Card shuffling. Uspensky and Heaslet (1939, pp.
244–248) is in effect a standalone article on shuffling
cards. They treat perfect shuffles and the “Monge” or
“over-under” shuffle. Consider a deck of 2n cards (e.g.,
2n = 52) in order 1,2, . . . ,2n from the top down. The

17In a note added in proof, Blackwell reports Ted Harris had drawn
his attention to the Bernstein inequality, cites Uspensky, and notes that
using it would yield his geometric rate of decay result under weaker
conditions and with a slightly better rate. Bahadur told a colleague that
he would not have been able to write his 1966 paper if he had not
known of the result in Uspensky.

TABLE 1
Number of shuffles r required for a deck of size 2n

2n = 2 4 6 8 10 12 14 16 18 20 22
r = 2 4 3 6 10 12 4 8 18 6 11

2n = 24 26 28 30 32 34 36 38 40 42
r = 20 18 28 5 10 12 36 12 20 14

2n = 44 46 48 50 52
r = 12 23 21 8 52

deck is cut exactly in half and then the two halves riffle
shuffled together as follows: if the cards in order are

1,2,3,4,5,6,7,8,9,10,

the deck is divided into two,

1,2,3,4,5 and 6,7,8,9,10,

and then interleaved:

6,1,7,2,8,3,9,4,10,5.

This is a perfect “in shuffle,” practiced by gamblers and
found in magazines since (at least) 1743.

The question is, how many perfect shuffles (r) are re-
quired to recycle the cards—that is, to bring them back
to their original order? When one of us was quite young
(PD), we figured this out “the long way,” by actually shuf-
fling the cards until they returned to their original order.
Some of the data is given in Table 1.

In their book, Uspensky and Heaslet prove that after a
single shuffle card i moves to position 2i (mod 2n + 1),
so after k shuffles a card in position i moves to position
2ki (mod 2n + 1). It follows the deck returns to its orig-
inal order the first time 2k ≡ 1 (mod 2n + 1). Suppose
2n + 1 is prime (e.g., when 2n = 52). Observe that in this
case 2n shuffles are sometimes required before the deck
returns to its original order. Does this happen infinitely
often? Nobody knows—this is a special case of the Artin
conjecture (that 2 is a primitive root for infinitely many
p). The conjecture is known to be true on the generalized
Riemann hypothesis but this is a million dollar problem.

As far as we know, Uspensky and Heaslet were the first
to discover and prove that the number of shuffles required
to return the deck to its original configuration is the or-
der of two. For the history of perfect shuffles and their
applications, see Diaconis, Graham and Kantor (1983),
Diaconis and Graham (2012). Uspensky and Heaslet’s
Appendix (pp. 245–248) also treats the “Monge shuffle”
with similar results. This particular shuffle was first ana-
lyzed by the French mathematician, Gaspard Monge, in
1783.

Chapter 13 (“Liouville’s Methods”) was a bit of an in-
dulgence on Uspensky’s part, because it discussed a ma-
jor research interest of his, the results being “elementary”
only in terms of the methods used. The chapter derived
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a variety of very general arithmetical identities using ba-
sic number theory arguments rather than appealing to the
theory of elliptical functions. Uspensky then used special
cases of these identities to derive the Gauss and Jacobi
theorems on the representation of an integer as a sum of
three or four squares.

Of course, Uspensky’s book did not touch on most of
his research (it was, after all, on elementary number the-
ory), but before leaving it, we discuss one other number
theoretic result of Uspensky’s, one not treated in his book
but which remains surprisingly fresh even today.

3.1.2 A game. For α a positive real number, define the
spectrum of α to be the sequence of integers

αn := {&nα' : n = 1,2,3, . . .
}
,

where &x' is the floor of x. Such sequences are termed
Beatty sequences (named after Samuel Beatty, 1881–
1970). A classical theorem attributed to Beatty says that
if α,β > 1 are a pair of irrational numbers such that
1/α + 1/β = 1, then the spectra of α and β are dis-
joint and cover the natural numbers. (This appears on p.
98 of Uspensky and Heaslet as Exercise 9.) It is natural
to ask about a similar triple α,β,γ (or more). Uspensky
(1927) proved coverage with disjoint spectra only occurs
in the case of two spectra. His proof is involved, us-
ing Kronecker’s approximation theorem. An elementary
proof due to Graham (1963) led to fascinating further the-
ory and many still open problems; see Graham, Lin and
Lin (1978), Graham and O’Bryant (2005).

Curiously, even before Beatty the result was stated
by Lord Rayleigh (John William Strutt). Lord Rayleigh
(Strutt, 1894, p. 123) says:

Thus, if x be an incommensurable number
less than unity, one of the series of quantities
m/x,m/(1 − x), where m is a whole number,
can be found which shall lie between any given
consecutive integers, and but one such quantity
can be found.

Rayleigh did not provide a proof. Beatty (1926) posed it
as a problem in the American Mathematical Monthly, and
solutions were submitted by several contributors (Beatty
et al., 1927). Apparently independently, Willem Abraham
Wythoff (1865–1939) proposed in 1907 a modification
of the game Nim in which the “cold” (losing) positions
are parametrized by the pair of complementary Beatty se-
quences generated by φ and φ2, where φ is the golden ra-
tio (1 +

√
5)/2. (Uspensky discusses Nim at some length

in his book, pp. 16–19, but does not note this connection.)

3.2 The Theory of Equations

Uspensky’s last book, Theory of Equations, appeared
posthumously. Sent to the publisher in December 1946,
only a month before he died (on January 27, 1947), the

manuscript was seen through the press by Uspensky’s for-
mer students Max Heaslet and Carl Olds, and appeared in
1948. It is less distinctive than the other books: it was, as
Uspensky notes in the preface, “elementary in nature and,
with few exceptions, contains only material customarily
included in texts of this kind.” It was longer than other
texts on the subject then currently in use, being designed
for self-study if desired.

But—Uspensky being Uspensky—there were still el-
ements of novelty, ones in which “the exposition dif-
fers considerably from custom.” In Chapter 1, on com-
plex numbers, “the superficial approach so common in
many books” was replaced by the rigorous definition of
a complex number as an ordered pair (a, b) of real num-
bers. In Chapter 6, a method for separating real roots was
given based on Vincent’s theorem.18 In Chapter 7, on
the approximate evaluation of roots that had been sepa-
rated, Sections 2–7 were devoted to the original form of
Horner’s method, “which unfortunately has disappeared
from American texts.” In Chapter 9, determinants were
introduced using Weierstrass’s approach, based on their
“characteristic properties” rather than “formal definition.”
(This is similar to Artin’s axiomatic development of them,
which can be found in some editions of Lang’s calculus
and linear algebra textbooks.) And in an Appendix, Us-
pensky gave Gauss’s fourth proof of the fundamental the-
orem of algebra.

***
All of Uspensky’s books are marked by an exemplary

intellectual sharpness: the presentation is easy to follow,
the proofs are complete, readable and coherent, in some
cases the results are given in greater generality than is
ordinarily the case. The writing, thinking through of the
material, order of presentation and choice of examples
is both engaging and natural.19 The references given to
the prior literature are invariably to the masters, not the

18Vincent’s theorem, named after Alexandre Vincent (1797–1868)
and published by him in 1834, appears to have been entirely forgotten
until Uspensky’s discussion of it in his book (see Chapter 6, Section 12
and Appendix 2). Uspensky describes the method as “very efficient”
and “much superior in practice to that based on Sturm’s theorem,”
adding he “believes that no other book mentions this method, which
he invented many years ago and has been teaching to his students for
a number of years” (p. v). Uspensky’s Appendix 2 gave a sharper ver-
sion of Vincent’s result, providing a bound on the number of steps
in the algorithm. Shortly after, Ostrowski (1950) was able to improve
Uspensky’s bound (in a paper which was itself however overlooked
for many years). Ostrowski notes in passing (p. 702, footnote 4) a ty-
pographical error in one of Uspensky’s conditions, where a 2 appears
instead of a 1/2, something a later, less perceptive reader mistook for
an actual error in Uspensky’s proof. For later literature, see Krandick
and Mehlhorn (2006).

19“As a teacher, he followed the classical style and ideals. His pre-
sentation, whether oral or in writing, was clear, simple, logical and el-
egant. He was able to present the simplest ideas in a fascinating way”
(Pólya, Szegő and Young, 1947, p. 2).
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pupils; books and papers are not just cited for show but
are ones Uspensky has both read and mastered.

Uspensky grew up in the classical Russian tradition;
and—perhaps as a result—he exhibits an impressively
broad mathematical culture. This suggests some natural
questions: who was he, what was his mathematical back-
ground, how did he come to the US?

4. A CLOSER LOOK AT USPENSKY

Detailed information about Uspensky is not easy to find
in English, so in this section we discuss his life, based
in part on family records, unpublished material in the
Stanford archives, material available only in Russian and
many passing references to him throughout the English
literature.

4.1 Uspensky in Russia

Yakov Viktorovich Uspenskii was born on April 29,
1883, the fourth of five children, in Urga, Mongolia.20

(His father Viktor Matveevich Uspenskii, 1845–1901,—a
career diplomat—was the Russian consul there.21) When
Uspensky was seven, his mother and her children moved
to St. Petersburg to enable the children to receive a proper
Western education, while his father (then in the Chi-
nese province of Sinkiang where he was Russian consul-
general for Western China) remained at his diplomatic
post except when on vacation in Russia.

Uspensky attended a classical gymnasium in St. Peters-
burg; it was here he learned both Greek and Latin, knowl-
edge which was to prove useful later in his historical stud-
ies. Although initially interested in astronomy, early on he
became interested in mathematics; by the time he gradu-
ated, he had an excellent grounding in the differential and
integral calculus, and was able to read books on astron-
omy and theoretical physics. He graduated from the gym-
nasium in 1902 with distinction, receiving a gold medal
in recognition of his achievements.

4.1.1 The Russian university system. In order to under-
stand Uspensky’s university career, a few words about the
Russian system then in place may be helpful. Starting at
the beginning of the nineteenth century, there were three
academic degrees: the kandidat, magister and doktorat.
The kandidat (later the diplom) was a bachelor’s degree,

20Uspensky almost invariably signed his books and papers in English
as “J. V. Uspensky.” The sole exception is his Annals of Mathemat-
ics paper of 1927, in which he uses the name “James V. Uspensky.”
His Declaration of Intention for naturalization, dated March 24, 1930,
gives his full name as “James Viktorovitch Uspensky”; but his 1942
Registration Card for the draft shortened this to “James Victor Uspen-
sky.”

21See ru.wikipedia.org/wiki/Uspenski",_Viktor_Matveeviq
(accessed on March 8, 2020) for further information about Uspensky’s
father.

awarded after completing one’s studies and passing a set
of examinations; the magister and doktorat were gradu-
ate degrees, awarded after writing and publishing a thesis,
which then had to be defended in a public oral examina-
tion (in the case of the magister, one also had to take and
pass a set of examinations prior to the writing of the the-
sis); see generally Sanders (1993).

The magister (Latin for “master” or “teacher,” as in
Magister Ludi) was the equivalent of today’s Ph.D., and
required in order to teach as a privat dozent, that is, an
instructor who took private pay students.22 The doktorat
was a second doctoral decree, required the writing of a
second thesis, and was usually necessary in order to be-
come a professor at a university. There were finally in turn
two grades of professorship, termed “extraordinary” and
“ordinary,” roughly equivalent to being an Associate and
Full Professor, respectively.23

4.1.2 Uspensky’s university career. Uspensky spent
his entire academic career in Russia at the university in
what was then St. Petersburg.24 He was an undergradu-
ate there from 1903–1906, years which overlapped the
first Russian revolution of 1905 and saw a considerable
disruption of Russian academic life. But unlike many of
his fellow students he did not become involved in politics
and devoted himself entirely to his studies. (His apoliti-
cal nature may in part explain his escaping relatively un-
scathed during the upheavals of the 1920s.) Even at this
early stage his talent was evident: while still an under-
graduate he wrote his first paper, the first rigorous proof
that the cyclotomic ring Z[ζ5] (ζ5 a primitive 5th root of
unity) was Euclidean (Uspensky, 1906); this work was re-
garded as sufficiently important that a reworked version

22The magister is sometimes referred to as a master’s degree, but this
is misleading given the current academic status of the master’s degree
relative to the doctorate. In contrast, in the medieval universities of
Europe the titles Master and Doctor were effectively synonymous, and
which degree was conferred depended on both the university and the
faculty within it (arts, law, theology, medicine); see Rashdall (1895,
pp. 21–22) and Verger (2003, p. 146).

23The terminology derives from the Latin words extraordinarius and
ordinarius, where the “extra” connotes difference or separateness (as
in extralegal or extraterrestrial) rather than superiority. The system was
similar to the German one at that time, where the two ranks were
außerordentlicher and ordentlicher Professor, professorships without
and with a chair, respectively.

24The university underwent several name changes during the period
we will be discussing: Saint Petersburg Imperial University (1821–
1914), Petrograd Imperial University (1914–18), Petrograd State Uni-
versity (1918–24), and Leningrad State University (1924–91). The
city of St. Petersburg was renamed Petrograd immediately after the
outbreak of war because both the “Sankt” and the “burg” in “Sankt-
Peterburg” were German words. The second name change followed
the overthrow of the Czarist regime in 1917, and the third reflected the
change of the name of the city from Petrograd to Leningrad five days
after Lenin died on January 21, 1924.

ru.wikipedia.org/wiki/ru.wikipedia.org/wiki/%D0%A3%D1%81%D0%BF%D0%B5%D0%BD%D1%81%D0%BA%D0%B8%D0%B9%20%D0%92%D0%B8%D0%BA%D1%82%D0%BE%D1%80%20%D0%9C%D0%B0%D1%82%D0%B2%D0%B5%D0%B5%D0%B2%D0%B8%D1%87
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of it written in French was published in the Mathema-
tische Annalen in 1909. In 1906, Uspensky graduated,
receiving a diplom of the first degree (i.e., with honors),
was awarded a scholarship, and immediately began his
graduate studies. By 1908, he completed his course work,
passed his examinations and began working on his thesis
under the direction of Markov. The thesis (“Some appli-
cations of continuous parameters to number theory”) was
completed, approved and published in 1910; after pass-
ing his oral examination the next year in 1911, Uspensky
was then formally awarded the degree of Magister of Pure
Mathematics.25

With his magister in hand, Uspensky became a privat-
dozent at St. Petersburg in 1912 (although he also supple-
mented his income during this period by teaching at other
institutions: the Institute of Railway Engineers, 1907–29,
the Higher Women’s Courses, 1911–17). In 1915, he be-
came an extraordinary professor at Petrograd Imperial
University; this was unusual because he had not yet been
awarded his doktorat, but presumably reflected both his
ability and a wartime shortage of personnel. He was in
turn rapidly promoted to ordinary professor in 1917; this
again reflected his ability but the abolition of the doktorat
around this time may also have played some role as well.

In 1921, Uspensky was elected to the Russian Academy
of Sciences (as a replacement for Liapunov, who had died
in 1918), his election supported by Markov, Steklov and
Krylov (1921). Their report, besides giving a complete
bibliography up to that time, cited several of his papers
as justifying this honor, in particular (Uspensky, 1920), a
paper in which Uspensky had derived (independently of
Hardy and Ramanujan, 1918) the asymptotic formula for
the number of partitions of an integer,

p(n) ∼ 1

4n
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as well as an estimate for the error.26 (Because of wartime
and revolutionary conditions, the Hardy and Ramanujan
paper was unknown in Russia, even in 1921.)

25Most sources say Uspensky received his Ph.D. or doctorate in 1910;
although essentially correct, the actual title and year the degree was
awarded are as indicated.

26Although Uspensky did not derive the full divergent series expan-
sion for p(n) that Hardy and Ramanujan found using their celebrated
“circle method,” he arrived at the simpler formula displayed above by
deriving the first term in the expansion together with an estimate of the
error, namely
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where the ρn are bounded (Uspensky, 1920, p. 209, but correcting a ty-
pographical error in Uspensky’s formula where a

√
π appears instead

of a π ). This corresponds to Hardy and Ramanujan’s equation (1.55)
on page 82. As they noted, this “is an asymptotic formula of a type far
more precise” than the simpler one, and it was “with considerable sur-
prise that we found what exceedingly good results the formula gives for

4.2 From Petrograd to Palo Alto

Thus by 1921 Uspensky was a Professor at the Pet-
rograd State University and a member of the Russian
Academy of Sciences, an established and senior member
of the Russian mathematical community. And yet eight
years later he chose to emigrate to the US. It is natu-
ral to suppose that this was connected with the Russian
Revolution—and this was indeed the case—but why did
it take so long? There are some complexities here.

In 1918, Sovnarkom (the Council of People’s Commis-
sars, that is, the newly established Bolshevik government)
began to pass decrees designed to ensure new educational
opportunities for workers and peasants. These measures
were resisted by some university faculty concerned that
unqualified students might be admitted. Uspensky, for ex-
ample, wrote that

[Since] to succeed at the university, a student
should be adequately trained, prospective stu-
dents must be admitted at the university in
virtue of their knowledge, not their class affili-
ation or political commitment.27

The response of the Bolshevik government was pre-
dictable: measures were swiftly enacted to “reeducate
the bourgeois professors” as well as punitive measures
such as preventive detention, exile and even execution
(Nazarov and Sinkevich, 2019, p. 50).

These measures were not confined to university profes-
sors. In the summer of 1922, a list of 217 perceived anti-
Soviet intellectuals (writers, professors, scientists, etc.)
was drawn up and the GPU (Gosudarstvennoye politich-
eskoye upravlenie, the State Political Directorate) pro-
ceeded to arrest them beginning on the night of August
16–17.28 Many of those detained were then exiled; at least
160 of these by ship from Petrograd to Stettin (today the
Polish city of Szczecin) on the German ships Oberbürger-
meister Hacken on September 2 and Preussen on Novem-
ber 15. Despite his initially voicing opposition to So-
viet university reorganization, Uspensky was not included
among these, perhaps in part because he was perceived as
being apolitical, perhaps in part because of his abstruse
field (as opposed to history, literature, politics and philos-
ophy), and perhaps because of the prestige accruing from
his membership in the Russian Academy of Sciences. But

fairly large values of n.” (Uspensky’s bound on the error is less precise
than Hardy and Ramanujan’s, however, since in fact ρn = O(1/n); see
generally DeSalvo, 2021.)

27Central State Historical Archives of St. Petersburg. F. 7240, Sched-
ule 14, No. 16, L. 185 recto; cited in Nazarov and Sinkevich (2019, p.
6).

28The GPU was the successor of the Cheka (the first Soviet secret
police, headed by the sinister Felix Edmundovich Dzerzhinsky, 1877–
1926), and combined both internal security and foreign intelligence
functions.
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a chilling message had been sent as to the possible limits
of dissent.29

In 1924, Uspensky attended the International Congress
of Mathematics in Toronto and spoke there about work
with his student, Boris Venkov (Uspensky and Venkov,
1928); This may have been Uspensky’s first trip outside
Russia, and he took advantage of the opportunity by af-
terwards visiting the University of Chicago and the Uni-
versity of Michigan, lecturing on Russian contributions to
number theory before returning home. Either because he
felt after this trip that publishing his work almost exclu-
sively in Russian had limited its impact in the West, or
because he had already begun to contemplate emigrating
to the US, from this point on there was a marked shift in
how and where Uspensky chose to publish his work. Al-
though he continued to submit papers to the Bulletin of
the Academy of Sciences of the USSR during the next two
years (1925–1926), all but one of the nine—a memorial
notice about Steklov primarily of interest to his Russian
readers—now appeared in French.30

Uspensky seems to have liked what he saw in the
United States, because he returned two years later, teach-
ing at Carleton College in Minnesota during the aca-
demic year 1926–1927, followed by short lecture courses
at Berkeley and Stanford. His time at Carleton marks the
point at which he first started to publish in English and
in US journals (fifteen papers between 1927 and 1935).
During this trip, he also met his future wife, Lucile Zan-
der, who was working in the Carleton publicity depart-
ment; they married on October 13, 1927, and left for Rus-
sia shortly after.

A chat with the OGPU. When he returned to what was
now Leningrad, Uspensky was interrogated by the OGPU
(the Joint State Political Directorate, the successor to the
GPU after the formation of the USSR in late 1922).31

29For further information about the 1922 expulsions, see Finkel
(2003) and Chamberlain (2006). Inevitably, some of the younger
Russian mathematicians began to leave of their own accord, in-
cluding three of Uspensky’s Petrograd/Leningrad colleagues: James
Alexander Shohat (1886–1944), in 1923, and Jacob David Tarmarkin
(1888–1945) and Abram Samoilovitch Besicovitch (1891–1970) in
1924/1925. It is possible this may have had some influence on Us-
pensky’s own decision. It is plausible Uspensky kept in contact with
one or more of these after he emigrated (on p. 160 of his Introduction
to Mathematical Probability he thanks Besicovitch for a proof), but to
precisely what extent is a matter for conjecture.

30The Russian Academy of Sciences became the Academy of Sci-
ences of the USSR in 1925, and the name of its Bulletin changed ac-
cordingly.

31Royden, who reports this incident, identifies Uspensky’s interroga-
tor as a member of the NKVD (the People’s Commisariat for Inter-
nal Affairs), saying it was a predecessor of the KGB, but this is an
anachronism: the NKVD only acquired the secret police and foreign
intelligence functions of the OGPU in 1934. (In general, the study of
the Soviet security apparatus is complicated by its numerous reorgani-

[He was asked] how he liked America. Us-
pensky disarmed his interviewer by saying,
“I loved it. It is a place of great opportunity,
and if only I were a young man I would em-
igrate. But I am a member of the Academy
of Science, and my career is established here.
I am too old to start over again.” The NKVD
agent evidently reported that Uspensky was re-
liable and sound in his views. Thus, when Us-
pensky did decide to come to America a few
years later, he came in style on a Soviet ship
with his passage paid for by the government.
[Royden (1989, p. 243)]

(Uspensky’s response would have been most ill-advised a
decade later at the height of the Great Terror.)

But given his entirely plausible answer to the OGPU—
for Uspensky certainly was an established figure in Rus-
sian mathematics—why did he leave Russia just a year
and a half later? There are said to have been a number
of contributing factors. The Russian historian, Natalia Er-
molaeva (1997), reports:

Returning to the USSR, Uspensky resumed his
numerous duties. However, in the summer of
1929 when he again went on a business trip
to the USA, he did not return to his home-
land. The decision to emigrate was caused by
various reasons. One of them was that dur-
ing his second trip to America, U. married,
and his wife categorically refused to live in
the USSR. At the same time, the situation in
the mathematical life of the country deterio-
rated sharply—there was an intensive intro-
duction of Marxism into mathematics accom-
panied by persecution of scientists, including
Nikolai Maximovich Günter [a close colleague
of Uspensky].

The final straw appears to have been a tumultuous meet-
ing of the Leningrad Mathematical Society (LMO): G. G.
Lorentz (who was an eyewitness) reports that

Arriving at the lecture, I found the entire math-
ematical Leningrad present. Uspensky, on the
podium, was pointed out to me. After the lec-
ture, Günter, presiding, invited the audience to
pose questions. Suddenly Leifert [a Bolshe-
vik, himself later a victim of the Great Ter-
ror] climbed on the podium yelling insults
at the LMO and Günter. Many students ap-
plauded Leifert and shouted. The meeting was

zations and consequent name changes that took place during the period
from 1917 to 1995: the Cheka, GPU, OGPU, NKVD, NKGB, MVD,
MGB, KGB, and (after the fall of the Soviet Union) the FSB and SVR.)
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dissolved. In the wake of this disastrous event,
using their still valid visas, Uspensky and his
wife left for the United States.32

Or maybe not; perhaps Uspensky had in fact already
made up his mind. An obituary for Uspensky in The She-
boygan Press (in Wisconsin, where Uspensky’s father-in-
law Otto Zander had been the editor) states:

When it came time for Mr. Uspensky to re-
turn to Russia [after his year at Carleton], with
his exchange period expired, his wife returned
there with him and they lived for a year in Rus-
sia, during which time he completed arrange-
ments to return to America, leaving his native
land to take up citizenship in the new country
he had adopted. [February 3, 1947, p. 8; em-
phasis added.]

If this is accurate—and inasmuch as the information in the
obituary clearly came from the family there is no reason
to doubt it—Uspensky had already decided to emigrate to
the US before he returned to Russia. (Of course, the dete-
riorating conditions he encountered there on his return, as
Stalin increased his grip on the country, would not have
helped.) Indeed, one can be forgiven for conjecturing that
Uspensky had even earlier still, when he arranged to visit
Carleton—a relatively obscure college from the perspec-
tive of a distinguished member of the USSR Academy
of Sciences—already contemplated leaving Russia for the
stability of the North American continent he had experi-
enced during his visit to the ICM in 1924.

There is one additional item of evidence one can ad-
vance to support this hypothesis. In the first of his two
papers in the Transactions of the AMS for 1928 (on the
representation of numbers by quadratic forms), referring
to his earlier work on this subject in a series of ten papers
in Russian journals that had appeared between 1913 and
1926, Uspensky says that he had published these earlier
investigations “so far as it was possible under the circum-
stances.” We take this to be an indirect but clear indica-
tion that when Uspensky left for Carleton he had already
found the working conditions in revolutionary Russia to
have significantly interfered with his ability to do mathe-
matics.

32Lorentz (2002, p. 189). Lorentz goes on to add: “where he accepted
a Stanford University professorship offered to him by Szegő.” Here,
Lorentz errs: Szegő only left Germany for the US in 1934 and only
arrived at Stanford in 1938. (Szegő may of course have played some
role from afar in facilitating Uspensky’s appointment.)

According to the passenger manifest, Uspensky left Hamburg for
the US on April 30, 1929, aboard the Hamburg–Amerika Linie transat-
lantic steam oceanliner Reliance, which arrived in New York via
Southhampton, Cherbourg and Cobh (Ireland). His wife Lucile seems
to have left earlier, because she is not listed on the manifest. Contrary
to what Royden (1989, p. 243) suggests, Uspensky did not come on a
Soviet ship and traveled second class.

4.3 Stanford

Uspensky spent the summer of 1929 teaching at Car-
leton,33 and then moved to Stanford that Fall. Initially ap-
pointed Acting Professor of Mathematics for the first two
years (1929–1931), he became a permanent member of
the faculty in 1931. This presumably came about thanks
to the efforts of the chair of the Department of Mathemat-
ics, Hans Frederik Blichfeldt (January 9, 1873–November
16, 1945).

Blichfeldt, who was born in Denmark but came to the
US in 1888 when his family emigrated, had impeccable
mathematical credentials: after graduating with an AB
from Stanford in 1896, he—like many US mathemati-
cians at the time—went to Europe for his doctorate, study-
ing at the University of Leipzig under the great Sophus
Lie and receiving his Ph.D. there in 1898.34 He then re-
turned to Stanford, where he remained for the rest of his
professional life, becoming a Full Professor in 1913, a
member of the National Academy of Sciences in 1920,
and Department Chair from 1927 to 1938. He did impor-
tant work in group theory and number theory (including
coauthoring a book with Dickson). For further informa-
tion about Blichfeldt, see his obituary in the Bulletin of the
AMS by Dickson (1947), his National Academy of Sci-
ences biographical memoir by Eric Temple Bell (1951),
his entry in the Dictionary of Scientific Biography (Miller,
1970) and Roydan’s history of the Stanford Mathematics
Department (Royden, 1989, pp. 238–9).

Royden (p. 244) relates that after Blichfeldt became
chair in 1927, “the Stanford mathematics department had
a steady stream of major mathematicians as visiting fac-
ulty, mostly for the summer quarter.” (The Europeans
among these included Harald Bohr, Edmund Landau and
Gabor Szegő.) It was thus not surprising that he seized
the opportunity of hiring Uspensky when the latter moved
to the US. This was a major commitment at the time
because the Stanford Mathematics Department was then
quite small: Royden (p. 248) reports that in 1938, the
year Blichfeldt retired, the department had only three Full
Professors: Blichfeldt, Uspensky and W. A. Manning.35

(Szegő joined Stanford in 1938, Pólya in 1942.)
Up until 1935, Uspensky published a steady stream of

research papers, but then abruptly changed the form and

33Lecturing on number theory in the first term (June 18–July 27) and
recent advances in mathematical probability in the second (July 29–
August 31), as well supervising reading in advanced mathematics dur-
ing both; see Notes and News, The American Mathematical Monthly
36 (3), p. 421.

34The Mathematics Genealogy Project gives the year of Blichfeldt’s
doctorate as 1900, but this was actually the year his thesis was pub-
lished in the American Journal of Mathematics (Blichfeldt, 1900).

35William Albert Manning (1876–1972) was Stanford’s first Ph.D. in
Mathematics (1904), taught at Stanford for 40 years, and was the father
of Laurence Albert Manning (1923–2015), himself later a professor in
Stanford’s Department of Electrical Engineering for 40 years.
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direction of his work in several ways. First, he turned to
writing books instead of papers, his books on probabil-
ity, number theory and the theory of equations appearing
in 1937, 1939 and 1948 (the last finished in late 1946,
shortly before his death). At the same time, he developed
an interest in applied mathematics: in the last decade of
his life “he took an active part in Applied Mechanics
seminars and presented there many talks of great inter-
est” (Pólya, Szegő and Young, 1947, p. 2). His colleague
and fellow refugee, the engineer Timoshenko, who would
have participated in these, recounted shortly after Uspen-
sky’s death that

He participated in a seminar on applied me-
chanics and gave talks on various topics of ap-
plied mathematics, in such a way as to show
clearly to engineers the importance of mathe-
matics in treating engineering problems. The
students appreciated these talks very much,
and enjoyed also the informal discussions af-
ter seminar in which J. V. usually participated
by telling them stories and anecdotes from the
biographies and memoirs of famous scientists,
about whom he had a great fund of knowledge.
[Timoshenko (1947, p. 6)]36

In the last three years of his life, Uspensky also “un-
dertook the study of Spanish” (Pólya, Szegő and Young,
1947, p. 2) and published five papers in Spanish during
this period.

Toward the end of 1946, Uspensky suffered from ill
health and, although continuing to write and lecture,
planned to retire from Stanford at the end of the 1946–47
academic year. But he suffered a heart attack on Thursday,
January 23, 1947, and was taken to the Palo Alto Hospital,
where he died the next Monday at 2:30 in the afternoon.37

APPENDIX A: USPENSKY’S STUDENTS

A.1 Students in Russia

Despite his wide range of mathematical interests, Us-
pensky was first and foremost a number theorist. Of the
five leading number theorists in Leningrad in the 1920s
who did not leave Russia—Delone, Ivanov, Kuzmin,

36Thus an unpublished remembrance written shortly after Uspensky’s
death. Such talks were not always successful however from Timo-
shenko’s perspective: writing many years later (Timoshenko, 1968, p.
337), he remembered that when he asked Uspensky to lecture on par-
tial differential equations, the lectures were “purely theoretical” and
not what the engineering students needed.

37Some sources give the place of death as San Francisco, but the local
obituaries of the time all state he died at the Palo Alto Hospital. The
details of when he was stricken, and when and where he died, have
been drawn from these.

Venkov and Vinogradov (Demidov, 2015, p. 89)—three
were students of Uspensky.38

Ivan Matveevich Vinogradov (September 14, 1891–
March 20, 1983) was both Uspensky’s first and best-
known student. Vinogradov was a central figure in modern
analytic number theory, a member of the USSR Academy
of Sciences, the Director of the Steklov Institute of Math-
ematics in Moscow for half a century (from 1934 until
his death), and a Fellow of the Royal Society of London.
His best known result is that every sufficiently large odd
number is a sum of three primes. His Foundations of the
Theory of Numbers, first published in 1936, is still in print
today in an English translation of the 5th edition. He is too
well known to require discussion here; see his Royal So-
ciety biographical memoir (Cassels and Vaughan, 1985)
and Karatsuba (1981).39

We have already encountered Rodion Osievich Kuzmin
(October 9, 1891–March 24, 1949): his 1928 solution of
Gauss’s challenge problem to Laplace was given in the
third Appendix of Uspensky’s Introduction to Mathemati-
cal Probability. After completing his undergraduate stud-
ies at Petrograd State University in 1916, Kuzmin con-
tinued on to do graduate work there, but was forced to
leave in 1918 due to wartime conditions. It was during
this short period of time that he would have studied un-
der Uspensky. Like Vinogradov, Kuzmin moved to the
University of Perm, where he stayed until 1922, return-
ing then to Petrograd and its Polytechnic Institute, where
he remained for the rest of his life. In 1935, he received
his doktorat, shortly after this degree was reinstated by
the Soviet government.40 In addition to Gauss’s problem,

38The course of graduate study in Russia during the 1918–1934 pe-
riod is complicated. On October 1, 1918, the Council of People’s
Commissars abolished all academic ranks and advanced degrees. In-
stead, advanced training was initially supported by “professorial schol-
arships” for students preparing for an academic career. After 1925, the
process of selection and mentoring for such studies was formalized and
participants termed “aspirants” (aspirantov). By a decree of Septem-
ber 19, 1932, the standards for such programs were tightened and in
research institutes the writing of a dissertation became required after a
two- to three-year program of study. Finally, on January 13, 1934, aca-
demic ranks and advanced degrees were reinstated; see (DeWitt, 1961,
p. 422), on which the information in this paragraph is based.

39The Mathematical Genealogy Project entry for Vinogradov, while
listing Uspensky as his advisor, does not list a degree, year when it was
awarded or title of the dissertation. Presumably this was because of the
abolition of degrees noted in the preceding footnote.

40The Mathematics Genealogy Project states Kuzmin received the de-
gree of Doctor of Sciences in 1935 and identifies his advisor as Uspen-
sky, but the actual circumstances seem unclear: Kuzmin had already
been teaching for many years in 1935 and Uspensky had left Russia six
years earlier. The 1935 degree may have been awarded on the basis of
a dissertation drawing on prior work but only submitted after the rein-
statement of advanced degrees, but even so it seems highly improbable
that at the onset of the Great Terror an émigré who had resigned from
the USSR Academy of Sciences would have been listed as Kuzmin’s
advisor.
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Kuzmin proved in 1930 that if a is algebraic and b is a
real quadratic irrational, then ab is transcendental. This
answered a then open problem, the nature of the number
2
√

2 (the so-called Gelfond–Schneider constant). This was
a special case of the celebrated Gelfond–Schneider theo-
rem (proved in 1937), which assumes only that b is irra-
tional. Other notable work include his 1927 paper on the
Kuzmin–Landau inequality. For further information see,
Venkov and Natanson (1949), Sviderskaya (2002).

Boris Alekseevich Venkov (July 31, 1900–December 13,
1962) worked with Uspensky while still a student; their
work was later reported on in a joint paper presented to
the International Congress of Mathematicians in 1924.
Venkov graduated from the Leningrad State University in
1925 and became a professor there in 1935; he worked in
number theory. His contributions include an elementary
proof in 1928 of the Dirichlet formulas for several of the
classes of binary squared forms (Wenkov, 1931 is a later
version in German), a theory of reduction for positive-
definite quadratic forms (1940) and a characterization of
polyhedra (1954 and 1959). Venkov graphs are named af-
ter him. For further information, see Malyshev and Fad-
deev (1961).

A.2 Students at Stanford

Uspensky supervised the doctoral dissertations of five
students at Stanford. The first of these, Harold Maile Ba-
con (January 13, 1907–August 22, 1992), received his
Ph.D. from Stanford in 1933; his thesis (“An Extension
of Kronecker’s Theorem”) on a topic in number theory.
He spent his entire career at Stanford, primarily as a long-
time instructor of calculus courses, and was known to gen-
erations of Stanford undergraduates.

Bacon was a “hand-off” to Uspensky from Harald Bohr.
Years later Bacon related the following charming story as
to how this came to be:

Bohr was a very kind man. I remember my be-
ing in Professor Blichfeldt’s office shortly af-
ter I returned to Stanford in 1930 to continue
my graduate work after my master’s degree
and a year’s absence working for an insurance
company under the mistaken impression that I
wanted to become an actuary. Blichfeldt and
I were discussing my getting started on work
that might lead to a dissertation. Just then Bohr
came into the office. Blichfeldt turned to him
and, indicating me, said “Here’s a man who
is looking for a thesis topic. How would you
like to suggest one, and be his adviser?” Bohr
bowed, smiled and very courteously replied,
“I should be honored.” He generously acted as
my supervisor for the remainder of the year
he was at Stanford. When he left, I was most
fortunate to have Uspensky take over and see

me through to the completion of my work on
the dissertation. It was indeed a great privilege
to have two such inspiring men as my friends
and advisers at the beginning of my career.
[Royden (1989, pp. 245–246)]

Because Bacon was such a visible figure at Stan-
ford, a considerable amount has been written about him;
see Royden (1989, pp. 244–247), Royden et al. (1992),
Stanford (1992), Jellison (1997) and Alexanderson (2011,
Chapter 3).

Maxwell Alfred Heaslet (February 17, 1907–July 13,
1976), Uspensky’s next student at Stanford, received his
Ph.D. there in 1934 (dissertation “Concerning the Devel-
opment Coefficients of an Aequianharmonic Function”).
Information about him is surprisingly scanty. Here is what
we have been able to find, piecing together several scat-
tered sources.

Born in Bentonville, Arkansas, the son of Walter Mon-
roe Heaslet and Nancy Angeline Austin, Heaslet received
both his bachelor’s and master’s degrees from the Uni-
versity of Oklahoma before moving to Stanford in 1928.
After marrying Helen Virginia Camp in June 1935, he
joined the faculty of San Jose State College (now Univer-
sity), where he taught mathematics and physics for seven
years. He began working at the Ames Research Center
(housed in the Moffett Federal Airfield in nearby Moun-
tain View) in 1942. He appears to have been initially on
loan from San Jose, because he is listed in a departmen-
tal history (Jackson, no date) as being a member of the
faculty from 1935 to 1945. If so, this arrangement pre-
sumably ceased at the end of the war, and Heaslet elected
to stay on at Ames; he eventually became head of the
theoretical aerodynamics branch of the Theoretical and
Applied Research Division. He often collaborated with
Harvard Lomax (1922–1999), who had a distinguished
career in aeronautics and computational fluid dynamics
(Seabass, 2002), and wrote many papers during his time
at Ames; see Hartman (1970). Due to ill health, Heaslet
was forced to retire from Ames in 1959 and moved to
Florida where he remained for the rest of his life. He had
two children, Austin and Jonathan Heaslet.

From a purely academic standpoint, Uspensky’s most
successful student was Orville Goodwin Harrold, Jr.
(September 2, 1909–May 16, 1988); he had 14 doctoral
students and 135 “descendants,” and at different stages
in his career was active in research (writing dozens of
papers published in leading journals, including one each
with Eilenberg and Moise), university administration, and
professional service. He received all of his degrees from
Stanford (AB 1931, AM 1932, Ph.D. 1936); although his
dissertation was on a topic in numerical analysis (“On the
Expansion of the Remainder in the Open Type Newton-
Cotes Quadratic Formula”), he switched fields to topol-
ogy immediately after he received his doctorate. The
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course of his initial career presumably reflected the job
market of the time: during the next decade, while holding
a succession of short-term positions (Oregon State Col-
lege, 1937–39, a National Research Fellow at Virginia and
Michigan, 1939–40, Northwestern, 1940–42, Louisiana,
1942–43, Pomona, 1943–46, Princeton, 1946–47), he
published at least ten papers before being appointed a Pro-
fessor at the University of Tennessee at Knoxville, where
he taught from 1947 to 1964. In 1964, he moved to Florida
State University, where he was the head of the Department
of Mathematics from 1964 to 1974; the Orville G. Harrold
Professorship there is named in his honor. He was elected
a Fellow of the AAAS in 1954, was a Guggenheim Fellow
in 1957–58, was a member of the Institute for Advanced
Studies twice (1958 and 1964), and served as an Asso-
ciate Secretary of the AMS from 1965 to 1976. He was
married to Gladys E. Buell on June 30, 1934, and had a
son, Jeffrey Buell Harrold.

At the other extreme, Franklin Alfred Butter, Jr. (Febru-
ary 1, 1910–November 27, 1972), who like Harrold also
received all three of his degrees from Stanford (AB 1930,
AM 1931, Ph.D. 1936) and graduated the same year as
Harrold (the title of his dissertation “A Contribution to
the Theory of the Arithmetic–Geometric Mean”), is more
elusive. We know the basic details of his career up to
1946 thanks to his entry in the Stanford University An-
nual Register for 1945–46, when he temporarily returned
to Stanford as an Acting Assistant Professor.41 After he
received his Ph.D. at Stanford, he spent the year 1936–
1937 at Washington University in St. Louis as a Rocke-
feller Science Fund Research Fellow, collaborating with
Gábor Szegő in the preparation of Szegő’s classic book
Orthogonal Polynomials (Szegö, 1939, p. vii), and then
went on to teach at the University of Southern Califor-
nia for the next six years. He appears to have published
nothing during his time at USC, however, leaving there in
1943 and spending the next three years in a series of one-
year positions at the University of Wisconsin, Lawrence
College and Stanford. But then his life took an unexpected
turn: in 1942–43, he had been a mathematical consultant
in the Engineering Department at the Douglas Aircraft
Company, and this appears to have generated an interest in
aerospace science (see Butter, 1945, a review of Aircraft
Analytic Geometry). In any case, he left academia in 1946
to work in the aerospace industry: first as a mathemati-
cian and later Research Physicist at the Hughes Aircraft
Company, Culver City, California, 1946–57; then an en-
gineering specialist at Northrop Aircraft, Inc., Hawthorne,
California, 1957–1961; and finally a Staff Engineer at the

41Stanford University Fifty-fifth Annual Register 1945–46. Stanford
University, Published by the University. An invaluable historical re-
source, the registers are available online at https://exhibits.stanford.
edu/stanford-pubs/browse/annual-register-1891-1947 (last accessed
January 30, 2022).

Aerospace Corporation, El Segundo, California, 1961–65
(all three of these located in Los Angeles County). But he
returned to teaching in 1965, when he was appointed an
Associate Professor at California State College at Long
Beach, and promoted to Professor there in 1970.42

Finally there is Carl Douglas Olds (May 11, 1912–
November 11, 1979), Uspensky’s last student, who re-
ceived his Ph.D. in 1943, his dissertation, like Bacon’s,
on number theory (“On the Number of Representations of
the Square of an Integer as the Sum of an Odd Number of
Squares”). He was an acting instructor at Stanford from
1935 to 1940, and an assistant professor at Purdue from
1940 to 1945, before joining the faculty of San Jose State
in 1945 (perhaps as a replacement for Heaslet), where he
remained for the rest of his career. He was an active mem-
ber of the Mathematical Association of America, winning
the 1973 Chauvenet prize for his article on the continued
fraction expansion of e (Olds, 1970) , and may be familiar
to some because of his lovely book Continued Fractions
(Olds, 1963).

APPENDIX B: BIBLIOGRAPHY OF J. V. USPENSKY

AJM: American Journal of Mathematics
AMM: The American Mathematical Monthly
BAMS: Bulletin of the American Mathematical Society
TAMS: Transactions of the American Mathematical

Society

B.1 Thesis

1910 Some applications of continuous parameters to
number theory. https://catalog.hathitrust.org/Record/
006087199 (accessed March 23, 2020).

Uspensky’s thesis studies minimization problems for
pairs of linear forms αx + βy and γ x + δy, continuing
earlier research of Voronoi and Minkowski. The main re-
sult of the thesis is an algorithm for the reduction of forms
of the type αx2 +2bxy + cy2 that depend on i and e2π i/3.
[See Markov, Steklov and Krylov (1921, p. 4).]

B.2 Books

1937 Introduction to Mathematical Probability. New
York: McGraw-Hill.

Reviews: F. N. David, Biometrika 30, 194–195; J A.
Greenwood, The American Mathematical Monthly 45,
471; H. T. H. Piaggio, The Mathematical Gazette 22, 202–
204; Anonymous, Nature 141, 769.

1939 Elementary Number Theory (co-author Maxwell
A. Heaslet). New York: McGraw-Hill.

42The details of Butter’s life from 1946 on have been teased from the
News and Notices pages of The American Mathematical Monthly, 53
(1946), page 603; 65 (1958), page 63; 73 (1966), page 108; 78 (1971),
page 107; and an announcement in the Notices of the AMS, 8 (1961),
p. 486.

https://exhibits.stanford.edu/stanford-pubs/browse/annual-register-1891-1947
https://catalog.hathitrust.org/Record/006087199
https://catalog.hathitrust.org/Record/006087199
https://exhibits.stanford.edu/stanford-pubs/browse/annual-register-1891-1947
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Reviews: R. Oldenburger, Bull. Amer. Math. Soc. 46,
202–205; G. F. Cramer, National Mathematics Magazine
14, 494; L. J. Mordell, The Mathematical Gazette 24,
295–298; H. Davenport, Nature 146, 418–419.
MR0000236 (Reviewer: D. H. Lehmer).

1948 Theory of Equations. New York: McGraw-Hill.
Reviews: Garrett Birkhoff, Science 109, 429; T. A.

Brown, The Mathematical Gazette 34, 140–142; L. E.
Bush, The American Mathematical Monthly 56, 348–350;
Kenneth May, Popular Astronomy 57, 46–47.

B.3 Papers

Unless otherwise noted, all papers up to 1925 are in
Russian and all papers from 1927 onward are in English.

1906

1. On whole numbers formed with the 5th root of
unity. Matematicheskii Sbornik 26, 1–17. [Proves Z[ζ5]
is Euclidean.]

1909

1. Note sur les nombres entiers dépendant d’une
racine cinquième de l’unité. Math. Ann. 66, 109–112 (in
French). [A reworking of his 1906 paper for the mathe-
matical world outside of Russia.]

1912

1. Sur une série asymptotique d’Euler. Archiv der
Mathematik und Physik 19, 370–1 (in French).

1913

1. Arithmetical proof of the Kronecker relations be-
tween the class numbers of binary quadratic forms.
Matematicheskii Sbornik 29, 26–52. [Provides an elemen-
tary proof of the Kronecker relations. This line of inves-
tigation was later continued by Uspensky in his seven pa-
pers in the years 1925–1926.]

2. On arithmetical theorems given by Stieltjes. Bul-
letin of the Mathematical Society in Kharkov 14, 7–30.

3. On the representation of numbers by sums of
squares. Bulletin of the Mathematical Society in Kharkov
14, 31–64.

4. On certain arithmetic theorems, I. Bulletin of the
Mathematical Society in Kharkov 14, 88–96.

1914

1. On certain arithmetic theorems, II. Bulletin of the
Mathematical Society in Kharkov 14. 97–99.

2. On the possibility of representing prime numbers
by some of the simplest quadratic forms. Kazan. [Cited
in Markov, Steklov and Krylov (1921, p. 5); no further
bibliographic details are given.]

3. A rule for determining the sign in the equality 1 ·2 ·
. . . p−1

2 ≡ ±1 (mod p) for a prime p of the form 4µ + 3.
Kazan. [Cited in Markov, Steklov and Krylov (1921, p.
6); no further bibliographic details are given.]

1915

1. On the class numbers of positive Hermite forms.
Bulletin of the Imperial Academy of Sciences of St.-
Petersburg 9, 1769–1800.

1916

1. On the representation of numbers by the quadratic
forms with 4 and 6 variables, I. Bulletin of the Mathemat-
ical Society in Kharkov 5, 81–112.

2. On the representation of numbers by the quadratic
forms with 4 and 6 variables, II. Bulletin of the Mathemat-
ical Society in Kharkov 5, 113–147.

3. On the convergence of quadrature formulas be-
tween infinite limits. Bulletin of the Imperial Academy of
Sciences of St.-Petersburg 10, 851–866. [Extended in Us-
pensky, 1928/2]

4. On the development of functions in series arising
from the polynomials ex dnxne−x

dxn . Bulletin of the Imperial
Academy of Sciences of St.-Petersburg 10, 1173–1202.

1920

1. Asymptotic formulae for numerical functions,
which occur in the theory of the partition of numbers into
summands. Bulletin of the Academy of Sciences of Russia
14, 199–218.

1921

1. About approximate expressions for the coefficients
of distant terms in the development of the equation of the
center into a series by the sine of multiples of the mean
anomaly. Bulletin of the Academy of Sciences of Russia
15, 333–342.

1923

1. Note on the scientific work of A. A. Markov. Bul-
letin of the Academy of Sciences of Russia 17, 19–34.

1924

1. On a problem of Jean Bernoulli. Bulletin of the
Academy of Sciences of Russia 18, 67–84.

1925

1. Sur les valeurs asymptotiques des coefficients de
Cotes (in French). BAMS 31, 145–156. [Describes the
asymptotic behavior of the coefficients in the Newton–
Cotes method. “Attention should be called to the fact that
many formulas on p. 147 . . . are marred by typographical
errors” (Uspensky, 1935/1, p. 382).]

2. Note sur le nombre des représentations des nom-
bres par une somme d’un nombre pair de carrés. Bulletin
of the Academy of Sciences of the USSR 19, 647–642.

3. Sur les relations entre les nombres des classes des
formes quadratiques binaires et positives. Premier Mé-
moire, I. Bulletin of the Academy of Sciences of the USSR
19, 599–620.
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4. Sur les relations entre les nombres des classes des
formes quadratiques binaires et positives. Premier Mé-
moire, II. Bulletin of the Academy of Sciences of the USSR
19, 763–784.

1926

1. Sur les relations entre les nombres des classes des
formes quadratiques binaires et positives. Deuxième Mé-
moire, I. Bulletin of the Academy of Sciences of the USSR
20, 25–38.

2. Sur les relations entre les nombres des classes des
formes quadratiques binaires et positives. Deuxième Mé-
moire, II. Bulletin of the Academy of Sciences of the USSR
20, 175–196.

3. Sur les relations entre les nombres des classes des
formes quadratiques binaires et positives. Troisième Mé-
moire. Bulletin of the Academy of Sciences of the USSR
20, 327–348.

4. Sur les relations entre les nombres des classes des
formes quadratiques binaires et positives. Quatrième Mé-
moire. Bulletin of the Academy of Sciences of the USSR
20, 547–566.

5. Sur les relations entre les nombres des classes des
formes quadratiques binaires et positives. Cinquième Mé-
moire. Bulletin of the Academy of Sciences of the USSR,
20 619–642.

The last seven papers rigorously derive class-number
relations using elementary methods; these relations were
already known but had been obtained previously using the
more complex machinery of elliptic functions. For later
discussion, see Dwyer (1937) .

6. Vladimir Andreevich Steklov. Bulletin of the Aca-
demy of Sciences of the USSR 20, 10–11, 837–856.

1927

1. Note on the computation of roots. AMM 34, 130–
134.

2. A curious case of the use of mathematical induction
in geometry. AMM 34, 247–250.)

3. On a problem arising out of the theory of a certain
game. AMM 34, 516–521.

4. On the development of arbitrary functions in se-
ries of Hermite’s and Laguerre’s polynomials. Annals of
Mathematics 28, 593–619. [Uspensky says in the intro-
duction that his paper 1916/4 “was written in Russian
and published during the time when all the international
relations were broken, and this may sufficiently account
for the fact that it could pass unnoticed. However, as the
method used by the author can successfully be applied
whenever asymptotic expressions of a certain type exist, it
seems worthwhile to reproduce the essential parts of this
paper in a modified and simplified form.” See Sansone
(1950).]

1928

1. On Jacobi’s arithmetical theorems concerning the
simultaneous representation of numbers by two different
quadratic forms. TAMS 30, 385–404. [“Uspensky devel-
oped the elementary methods, which seem to have been
used by Liouville in a series of papers published in Rus-
sian; references will be found in [this Transactions paper].
He carries his analysis up to 2s = 12, and states that his
methods enable him to prove Boulyguine’s general for-
mulae (Hardy and Wright, 1960, p. 318).]

2. On the convergence of quadrature formulas related
to an infinite interval. TAMS 30, 542–559. [L2 conver-
gence of Lagrange interpolation on the entire real line.
Nevai (1986, p. 118) notes Uspensky’s priority in deal-
ing with the problem more than three decades earlier than
other literature.]

3. On Gierster’s classnumber relations. AJM 50, 93–
122. [Applies results in his 1925-26 series of memoirs.]

4. On some new class-number relations. Proceedings
of the International Mathematical Congress (J. C. Fields,
ed.), Vol. 1, 315–317. [Written with his student, Boris
Venkov]

1929

1. On the number of representations of integers by
certain ternary quadratic forms. AJM 51, 51–60. [See
Kaplansky (2013) for later context.]

1930

1. On the reduction of the indefinite binary quadratic
forms. BAMS 36, 710–718.

2. On incomplete numerical functions. BAMS 36(10),
743–754. [Applies results in his 1925–26 series of mem-
oirs.]

1931

1. A method for finding units in cubic orders of a neg-
ative discriminant. TAMS 33, 1–22. [An extension of the
results in Zolotarev’s classic paper of 1869.]

2. On Ch. Jordan’s series for probability. Annals of
Mathematics 32(2), 306–312. [Uspensky’s paper “has
been overlooked by most authors dealing with [Poisson]
approximation problems” (Deheuvels and Pfeifer, 1988,
pp. 671–672). Deheuvels and Pfeiffer go on to establish
a relationship between Uspensky’s approximation and the
modern Poisson convolution semigroup approach, and ex-
ploit this to simplify and extend prior results in the litera-
ture.]

1932

1. On the problem of runs. AMM 39, 322–326.

1933

1. A minimum problem. BAMS 40, 5–10.
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1934

1. On an expansion of the remainder in the Gaussian
quadrature formula. BAMS 49, 871–876. [“In this article
I shall prove that the remainder in the Gaussian formula
can be expanded into a series possessing all the properties
of the classical Euler–Maclaurin expansion.”]

1935

1. On the expansion of the remainder in the Newton–
Cotes formula. TAMS 37, 381–396. [Extends work in
1934/1]

1944

1. Elementary derivation of the series for sinx and
cosx. (Spanish) Math. Notae 4, 1–10.

2. A new proof of Jacobi’s theorem. (Spanish) Math.
Notae 4, 80–89.

1945

1. On the problem of the ruin of gamblers. (Spanish)
Publ. Inst. Mat. Univ. Nac. Litoral 7, 155–186.

2. Sur la méthode de Laplace dans la théorie de
l’attraction des ellipsoides homogènes. (French) Publ.
Inst. Mat. Univ. Nac. Litoral 5, 63–71.

3. On the arithmetico–geometric means of Gauss, I–
III. (Spanish) Math. Notae 5, 1–28, 57–88, 129–161.

1946

1. On a problem of John Bernoulli, I–IV. (Spanish)
Rev. Un. Mat. Argentina 11, 141–154, 165–183, 239–255;
12, 10–19.

B.4 Book Reviews and Letters

1932 Review of Studies in the Theory of Numbers, by
L. E. Dickson. BAMS 38, 463–465.

1940 Review of Development of the Minkowski Geome-
try of Numbers by Harris Hancock. National Mathematics
Magazine 14, 423–424.

1944 Remarks on the History of Science in Russia. Sci-
ence 100, 193–194 (with S. P. Timoshenko).

1946 Book Review: P. L. Chebyshev, Collected works.
Vol. 1. Theory of numbers, BAMS 52, 50.

B.5 Problems and Solutions

Uspensky was a frequent contributor to the Problem
Section of the American Mathematical Monthly, submit-
ting at least eleven problems and three solutions to it:
Number 3251, 34:4 (Apr. 1927), p. 216 [solution given
by Uspensky 37:6 (Jun.–Jul. 1930), pp. 318–319]; Num-
ber 3278, 34:7 (Aug.–Sep. 1927), p. 381; Number 3290,
34:9 (Nov. 1927), p. 491 [reproposed by C. D. Olds – Us-
pensky’s student – as Number 4400, 57:6 (June 1950),
p. 420]; Number 3304, 35:1 (Jan. 1928), p. 41; Number
3312, 35:3 (Mar. 1928), p. 154; Number 3343, 35:8 (Oct.

1928), p. 446 [solved by H. Langman, 36:8 (Oct. 1929),
p. 450]; Number 3354, 35:10 (Dec. 1928), p. 563; Num-
ber 3389, 36:8 (Oct. 1929), p. 448; Number 3408, 37:1
(Jan. 1930), p. 38 [solution given by Uspensky 39:3 (Mar.
1932), pp. 176–177]; Number 3534, 39:2 (Feb. 1932), p.
116 [but see 68:8 (Oct. 1961), p. 814 indicating an error in
the formula proposed by Uspensky, and 69:2 (Feb. 1962),
pp. 172–173, showing that this was due to a simple typo-
graphical error]; solution to Number 3588 in 40:10 (Dec.
1933), p. 614 [note “Solved also by L. Zander” – his wife]

B.6 Other Writings

In addition to the papers listed above, the Markov,
Steklov and Krylov report to the Russian Academy of Sci-
ences lists two papers whose publication status was un-
known to them:

a. Application of the Poisson summation method to
some types of Chebyshev polynomials.

[Markov, Steklov and Krylov (1921, p. 6) explain: “This
paper should have been published in the jubilee edition of
the Notices (Izvestiya) of the Kazan Mathematical Soci-
ety. It is unknown what happened to it.” It may be this is
the paper Uspensky (1927/5, p. 593) is referring to when,
commenting on Hille (1926), he wrote: “From the same
point of view, but in a slightly different way, the subject
was treated in a paper by the author presented to the Math.
Society in Kazan in 1916. Owing, however, to the political
disturbances of that time, this paper never was published
and was finally lost.”]

b. On the approximate expression of the deleted terms
in the expansion of the equation center in a row of sines
multiple of the average anomaly. Markov, Steklov and
Krylov say: “This paper should have been published in
the “Notices” (Izvestiya) of the Perm State University, but
it is unknown whether it has been printed by now.”

At the end of their report Markov, Steklov and Krylov add
“Besides the aforementioned works there are preprints for
the following,” and then list without date what appear to
be five pedagogical books or pamphlets written by Uspen-
sky:

1. Lectures on non-Euclidean geometry. 126 p.
2. Theory of biquadratic and cubic residues. 160 p.
3. Continuous fractions and their applications. 160 p.
4. Introduction to additive number theory. 80 p.
5. Liouville methods in number theory. 250 p.

B.7 Translations

J. Bernoulli, Ars Conjectandi, Part 4, translated from
the Latin by Ya. V. Uspenskii, and with an introduction
by A. A. Markov. St.-Petersburg: Imp. Akademiya Nauk,
1913. Reprinted with additional commentary by Yu. V.
Prokhorov, 1986.
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B.8 Books in Russian

Ocherk istorii logarifmov (Essay on the History of Log-
arithms). Petrograd: Nauchnoe knigoizdatel’stvo, 1923.
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