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Abstract

Let G be a finite group. Let H, K be subgroups of G and H\G/K the double coset space. If Q is a probability on
G which is constant on conjugacy classes (Q(s~1ts) = Q(¢)), then the random walk driven by Q on G projects to a
Markov chain on H\G /K. This allows analysis of the lumped chain using the representation theory of G. Examples
include coagulation-fragmentation processes and natural Markov chains on contingency tables. Our main example
projects the random transvections walk on G L, (q) onto a Markov chain on S, via the Bruhat decomposition. The
chain on S, has a Mallows stationary distribution and interesting mixing time behavior. The projection illuminates
the combinatorics of Gaussian elimination. Along the way, we give a representation of the sum of transvections in
the Hecke algebra of double cosets, which describes the Markov chain as a mixture of Metropolis chains. Some
extensions and examples of double coset Markov chains with G a compact group are discussed.
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1. Introduction

This paper develops tools which allow projecting a random walk on a group to a Markov chain on
special equivalence classes of the group. Fourier analysis on the group can then be harnessed to give
sharp analysis of rates of convergence to stationarity for the Markov chain on equivalence classes. We
begin with a motivating example.

Example 1.1 (Coagulation-fragmentation processes). In chemistry and physics, coagulation-
fragmentation processes are models used to capture the behavior of ‘blobs’ that combine and break
up over time. These processes are used in population genetics to model the merging and splitting of fam-
ily groups. A simple mean field model considers n unlabeled particles in a partition 4 = (41, ..., Ag),
A== .22 >0, Zf:l A; = n. At each step of the process, a pair of particles is chosen uniformly
at random and the partition evolves according to the rules:

1. If the particles are in distinct blocks, combine the blocks.
2. If the particles are in the same block, break the block uniformly into two blocks.
3. If the same particle is chosen twice, do nothing.

This defines a Markov chain on partitions of n. Natural questions are:

o What is the stationary distribution 7(1)?
o How does the process evolve?
o How long to reach stationarity?

All of these questions can be answered by considering the random transpositions process on the
symmetric group S,. The transition probabilities for this process are constant on conjugacy classes, the
conjugacy classes are indexed by partitions and the conjugacy class containing the current permutation
of the walk evolves as the coagulation-fragmentation process on partitions. The answers are (see
section 2.3):

o The stationary distribution is 7(1) = [T/, 1/(i%a;!) for a partition A with a; parts of size i.

o Starting at A = 1", the pieces evolve as the connected components of a growing Erd&s-Rényi random
graph process: Initially there are n vertices and no edges. Random edges are added to the graph so
that the connected components correspond to the parts of a partition A of n. This works as long as
there are no repeated edges (i, j) (so for number of steps of smaller order than ). Repeated edges can
be easily handled so that there is a tight connection between the growth of the random graph and the
random transpositions Markov chain. In particular, random transpositions mix in order (1/2)nlogn,
which is the same amount of time for the random graph to become connected. See [6] for more details.

o It takes order n log n steps to reach stationarity.
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The coagulation-fragmentation process is a special case of a double coset walk: Let G be a finite
group, H, K subgroups of G. The equivalence relation

s~t & hsk=t, heH, kekK

partitions the group into double cosets H\G /K. Let Q(s) be a probability measure on G. That is,
0<Q(s)<1forall s € Gand Y .c QO(s) = 1. Further assume Q(s) is a class function: It is constant
on conjugacy classes, that is, Q(s) = Q(t"'st) for all 5,1 € G. Then Q defines a random walk on G by
repeated multiplication of random elements chosen according to Q. In other words, the random walk is
induced by convolution, 0*%(s) = 3, . Q(1)Q* %~V (st™!) and a single transition step has probability
P(x,y) = Q(yx7").

This random walk induces a random process on the space of double cosets. While usually a function
of a Markov chain is no longer a Markov chain, in this situation the image of the random walk on
H\G /K is Markov. Section 2.2 proves the following general result. Throughout, we pick double coset
representatives x € G and write x for HxK.

Theorem 1.2. For Q(s) = Q(t™'st) a probability on G, the induced process on H\G /K is Markov with
the following properties.

1. The transitions are
P(x,y) = Q(HyKx™"), x,ye H\G/K.
2. The stationary distribution is

|HxK|
G|

n(x) =

3. IfQ(s7Y) = Q(s), then P is reversible with respect to n:

m(x)P(x,y) =7 (y)P(y,x).

Further, suppose Q is concentrated on a single conjugacy class C (that is, Q(s) = 6¢(s)/|C|). Then the
Markov chain P has the following properties.

1. The eigenvalues of P are among the set

{X/l(c) }

X/l(l) ,leé,

where G is the set of all irreducible representations of G and x, is the character of the irreducible
representation indexed by A.

2. The multiplicity of x1(C)/xa(1) is

ma={xala, 1) - (xalg, 1),

where (x1|u, 1) is the number of times the trivial representation appears when y ) is restricted to H.
3. For any time £ > 0,

xa (@)

xa(l)

1
D, m@IP =l < 7 > ma

xeH\G/K A1

This theorem shows that the properties of the induced chain are available via the character theory
of G. It is proved with variations and extensions in Section 2.2. The main example is introduced next.
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Example 1.3 (G L, (g) and Gaussian elimination). Fix a prime power ¢, and let G L,,(q) be the invertible
n X n matrices over Fy. Let H = K = B be the Borel subgroup: upper-triangular matrices in GL,(g). A
classical result is the Bruhat decomposition,

GLu(q) = | | Bwb.

weS,

where w is the permutation matrix for the permutation w € S,,. This decomposition shows that the double
cosets B\GL, (q)/B are indexed by permutations. As explained in Section 2.5 below, the permutation
w associated to M € GL,(q) is the ‘pivotal’ permutation when M is reduced to upper-triangular form
by row reduction (Gaussian elimination).

The set of transvections T, 4 is the conjugacy class containing the basic row operations I + 0E;;
here, 6 € F,, and E;; is the matrix with a 1 in position (i, j) and zeroes everywhere else (so [ + 6E;;
acts by adding 6 times row i to row j). Hildebrand [35] gave sharp convergence results for the Markov
chain on GL,(g) generated by the class function Q which gives equal probability to all transvections.
He shows that n steps are necessary and sufficient for convergence to the uniform distribution for any
gq. Of course, convergence of the lumped chain on B\G L, (¢)/B might be faster. The results we found
surprised us. Careful statements are included below. At a high level, we found:

o Starting from a ‘typical’ state x € S,,, order log n/log ¢ steps are necessary and sufficient for
convergence. This is an exponential speed-up from the original chain.

o Starting from id, order n steps are necessary and sufficient for convergence.

o Starting from wy, the reversal permutation, order log n/(2log g) steps are necessary and sufficient
for convergence.

To simplify the statement of an honest theorem, let us measure convergence in the usual chi-square or
L? distance:

-y, Een - mo)

3 ”q()’)

In Section 3, the usual total variation distance is treated as well.

13

Theorem 1.4. The random transvections walk on GL,(q) induces a Markov chain P(x,y) on S,
B\G L, (q)/B with stationary distribution.

1g(w) = q”“’)/[n]q!, where [n]y! == (1 +¢)(1 +q+q¢)...(0+g+...+¢" ),

forw € S, where I(w) = |{(i, ) : i < j,w(i) > w(j)}| is the number of inversions in w.
Furthermore, iflog q > 6/n then the following statements are true.

1. (Typical start) If € > (logn + ¢)/(log g — 6/n) for any ¢ > 0, then

Z a2 < (e€° = 1) + e~ ",

xX€S,

Conversely, for any €

Z F(X)Xi(f) > (n-— 1)2q_4g'

xeS,

These results show order log, (n) steps are necessary and sufficient for convergence.
2. (Starting from id) If € > (nlogq/2+ c)/(logq — 6/n),c > 0, then

/\(l.zd(f) < (eeiz(t —1)+e ",
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Conversely, for any €,

Xig(0) = (n—1)(g"" - 1g™.

These results show that order n steps are necessary and sufficient for convergence starting from the
identity.

3. (Starting from wo) If ¢ > (logn/2 +c)/(logg —6/n) forc > 2V2, then there is a universal constant
K > 0 (independent of q, n) such that

/\/310 (€) < —2Klog(l —e ) + Ke™".
Conversely, for any €,
Xen(0) 2 g™ "2 (n=1)(g"™" = Dg™.

These results show that order log,, (n) /2 steps are necessary and sufficient for convergence starting
from wy.

Remark 1.5. Note that, while Hildebrand’s result of order n convergence rate was independent of the
parameter ¢, the rates in Theorem 1.4 depend on gq.

The stationary distribution r, is the Mallows measure on S,,. This measure has a large enumerative
literature; see [24] Section 3 for a review or [64]. It is natural to ask what the induced chain ‘looks like’
on S,. After all, the chain induced by random transpositions on partitions has a simple description and
is of general interest. Is there a similarly simple description of the chain in S,,? This question is treated
in Section 5 using the language of Hecke algebras.

Theorem 1.6. Let H,,(q) be the Hecke algebra corresponding to the B\GL, (q)/B double cosets and
D=%rcr, JT€ H,, (q) be the sum of all transvections. Then,

D=(n-1)q"" =[n-1g+@-1 » ¢ VT

1<i<j<n

with T;; in the Hecke algebra.

This gives a probabilistic description of the induced chain on S,,. Roughly stated, from w € S,, pick
(i,7),i < j, with probability proportional to ¢~/=") and transpose i and j in w using the Metropolis
algorithm (reviewed in Section 2.6). This description is explained in Section 5; see also [18]. The
probabilistic description is crucial in obtaining good total variation lower bounds for Theorem 1.4.

Outline

Section 2 develops and surveys background material on double cosets, Markov chains (proving Theorem
1.2), transpositions and coagulation-fragmentation processes, transvections and Gaussian elimination.
Theorem 1.4 is proved in Section 3. Theorem 1.6 is proved in Section 5 using a row reduction. Section 6
contains another Markov chain from a lumping of the transvections chain, and Section 7 surveys further
examples—contingency tables and extensions of the G L, results to finite groups of Lie type, for which
the Bruhat decomposition holds and there are natural analogs of transvections. Of course, there are an
infinite variety of groups G, H, K, and we also indicate extensions to compact Lie groups.

We have posted a more leisurely, expository version of the present paper on the arXiv [19]. This
contains more examples and proof details.
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Notation

Throughout, g will be a prime power. For a positive integer n, define the quantities

n-1 n-2

[n], = =q"" +q""+...+q+ 1, [n]g!:=[nlyln-1],...[1],.

2. Background

This section gives the basic definitions and tools needed to prove our main results. Section 2.1 gives
background on double cosets. In Section 2.2, Markov chains are reviewed and Theorem 1.2 is proved,
along with extensions. Section 2.3 reviews the coagulation-fragmentation literature along with the
random transpositions literature. Section 2.4 develops what we need about transvections, and Section 2.5
connects the Bruhat decomposition to Gaussian elimination. Finally, Section 2.6 reviews the Metropolis
algorithm.

2.1. Double cosets

Let H, K be subgroups of a finite group G. The double coset decomposition is a standard tool of
elementary group theory. The original proof of Sylow’s first theorem uses double cosets, as does
Mackey’s basic theorems on decomposing restrictions of induced representations. The Hecke algebra
Endg (G /H)—the linear maps of the right H-invariant functions that commute with the action of G—
has a basis induced by H-H double cosets. Hecke algebras are basic objects of study in modern number
theory. For a detailed survey, see [24] or [14]. Double cosets can have very different sizes and [24], [48]
develop a probabilistic and enumerative theory. For present applications, an explicit description of the
double cosets is needed.

Example 2.1. Let S,, S,, be parabolic subgroups of the symmetric group S,. Here, 1 = (41,...,4;)
and u = (uy,...,uy) are partitions of n. The subgroup S, consists of all permutations in which the
first A; elements may only be permuted amongst each other, the next 4} + 1, ..., 4; + A, elements may
only be permuted amongst each other and so on. It is a classical fact that the double cosets Sy\S, /S,
are in bijection with ‘contingency tables’—arrays of nonnegative integers with row sums A and column
sums w. See [38], Section 1.3. For proofs and much discussion of the connections between the group
theory and applications and statistics, see [24], Section 5. Random transpositions on S, induces a natural
Markov chain on these tables, see [60] and Chapter 3 of [59]. Contingency tables also label the double
cosets of parabolic subgroups in GL(n, Q). See [39] and Section 7.1 below.

Example 2.2. Let M be a finite group, G = M X M, and H = K = M embedded diagonally as subgroups
of G (thatis, {(m,m) : m € M}). The conjugacy classes in G are products of conjugacy classes in each
coordinate of M. In the double coset equivalency classes, note that

(s,1) ~ (id,s7'1) ~ (id, k's7'tk),

and so double cosets can be indexed by conjugacy classes of M. If O is a conjugacy invariant probability
on M, then Q = Q1 X d;4 is conjugacy invariant on G. The random walk on G induced by Q maps to
the random walk on M induced by Q. In this way, the double coset walks extend conjugacy invariant
walks on M. Example 1.1 in the introduction is a special case.

Of course, the conjugacy classes in M (and so the double cosets) can be difficult to describe.
Describing the conjugacy classes of U, (¢g)—the unit upper-triangular matrices in GL, (g)—is a well-
known ‘wild’ problem. See [2] or [17] for background and details. Describing the double cosets for the
Sylow p-subgroup in S, seems difficult.
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Example 2.3. Let G be a finite group of Lie type, defined over F,, with Weyl group W. Let B be the
Borel subgroup (maximal solvable subgroup). Take H = K = B. The Bruhat decomposition gives

G= L| BwB,

weW

so the double cosets are indexed by W. See [11], Chapter 8, for a clear development in the language of
groups with a (B3, N) pair.

Conjugacy invariant walks on G have been carefully studied in a series of papers by David Gluck,
Bob Guralnick, Michael Larsen, Martin Liebeck, Aner Shalev, Pham Tiep and others. These authors
develop good bounds on the character ratios needed. See [30] for a recent paper with careful reference
to earlier work. Of course, Example 2 with G = GL,(q), W = S,, is a special case. The present paper
shows what additional work is needed to transfer character ratio results from G to W.

The double cosets form a basis for the algebra of H-K bi-invariant functions L(H\G /K) with product
Frgls) =" Fnglst™).
t

This is usually developed for H = K [14], [12], [15], but the extra flexibility is useful. We add a caveat:
When H = K, the algebra of bi-invariant functions (into C) is semisimple and with a unit. This need not
be the case for general H and K. David Craven tried many pairs of subgroups of S4 and found examples
which were not semisimple. For G = §4, Marty Issacs produced the example H the cyclic subgroup
generated by (1234) and K the cyclic subgroup generated by (1243). The algebra doesn’t have a unit and
so cannot be semisimple. This occurs even for some pairs of distinct parabolic subgroups of S,. There
are also distinct pairs of parabolics where the algebra is semisimple. Determining when this occurs is
an open question.

Further examples are in Section 7. Since the theory is developed for general H, K, G there is a
large set of possibilities. What is needed are examples where the double cosets are indexed by familiar
combinatorial objects and the walks induced on H\G /K are of independent interest.

2.2. Markov chain theory

Let H, K be subgroups of a finite group G, and Q a probability on G. See [43] for an introduction to
Markov chains; see [15] or [53] for random walks on groups.

Proposition 2.4. Let Q be a probability on G which is H-conjugacy invariant (Q(s) = Q(h~'sh) for
h € H,s € G). The image of the random walk driven by Q on G maps to a Markov chain on H\G | K
with transition kernel

P(x,y) = Q(HyKx™").

The stationary distribution of P is n(x) = |HxK|/|G|. If Q(s) = Q(s™"), then (P, r) is reversible.

Proof. The kernel P is well defined; that is, it is independent of the choice of double coset representatives

for x, y. Dynkin’s criteria ([40] Chapter 6, [49]) says that the image of a Markov chain in a partitioning

of the state space is Markov if and only if for any set in the partition and any point in a second set, the

chance of the original chain moving from the point to the first set is constant for points in the second set.
Fixing x, y, observe

O(HyK (hxk)™) = Q(HyKx"'h™") = Q(HyKx™").

Since the uniform distribution on G is stationary for the walk generated by Q, the stationary distribution
of the lumped chain is 7(x) = |HxK|/|G|. Finally, any function of a reversible chain is reversible and
Q(s) = Q(s71) gives reversibility of the walk on G. O
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Remark 2.5. A different sufficient condition for Proposition 2.4 is Q(sh) = Q(s) forall s € G,h € H.

Remark 2.6. Usually, a function of a Markov chain is not Markov. For relevant discussion of similar
‘orbit chains’, see [9].

In all of our examples, the measure Q is a class function (Q(s) = Q(¢~'st) for all s, € G), which is
a stronger requirement than that in Proposition 2.4. The eigenvalues of the walk on G can be given in
terms of the irreducible complex characters of G. Let G be an index set for these characters. We write
A € G and y,(C) for the character value at the conjugacy class C. Let

1
b= D 0()xals).

seG

If Q is simply concentrated on a single conjugacy class C, then 3, is the character ratio

_xa©)
xa(l)

For a review of a large relevant literature on character ratios and their applications, see [30].

The restriction of y, to H is written y,|g and (x1|g,1) is the number of times the trivial rep-
resentation of H appears in y,|g. By reciprocity, this is < X,l,Indg(l)>, where Indg is the induced
representation from H to G.

Ba

Proposition 2.7. Let Q be a class function on G. The induced chain P(x,y) of Proposition 2.4 has

eigenvalues
1
= — O(s s), 2.1
Pi= 0 ZG (s)xas)
with multiplicity
my = (xalu, 1) - (xalk, 1) (2.2)

The average square total variation distance to stationarity satisfies

1
D A@IP =alfy <5 >, mapy. 2.3)

x 1eG,1#1

Proof. The eigenvalues of a lumped chain are always some subset of the eigenvalues of the original
chain. To determine the multiplicity of the eigenvalue $, in the lumped chain, fix 1 : G — GL4, an
irreducible representation of G. Let M be the d; X d; matrix representation of A. That is, each entry
M l’} : G — C is a function of G. These functions are linearly independent and can be chosen to be
orthogonal with respect to

(f1, o) = %' Z fi(8)f2(g)

geG

(see Chapter 3 of [58]). Let V; be the space of all linear combinations of the functions M 1’3 If f eV,
then ‘

Pf(x)= ) Px,y)f()) = Baf (x)

yeG

That is, V, is the eigenspace for the eigenvalue 5, and it has dimension dﬁ = xa(1)2.

https://doi.org/10.1017/fms.2022.106 Published online by Cambridge University Press


https://doi.org/10.1017/fms.2022.106

Forum of Mathematics, Sigma 9

In the lumped chain on H\G /K, a basis for the eigenspace for eigenvalue 3, are the H X K invariant
functions in V) [9]. To determine the dimension of this subspace, note that G X G can act on V, by
f882(x) = f (gl‘lxgz). This gives a representation of G X G on V). The matrix of this representation
is isomorphic to M ® M, since M;; (s~ tu) = M;; (s~ )Y M;; (1) M;; (u).

This representation restricts to a representation My ® Mg of H X K, and the dimension of the H X K
invariant functions in V, is the multiplicity of the trivial representation on My ® M. This is

ale ® xalk, 1) = alas 1) - (alk, 1)

To note the total variation inequality, let 1 = 81 > 8> > -+ 2 B, = -+ 2 Bjs,| = —1 be the
eigenvalues with eigenfunctions f; (chosen to be orthonormal with respect to ), and we have

P[
2 . X 2 _ 2 p2¢
GO =17 =1 = 21008
J

where || - |2, » denotes the £> norm with respect to the distribution . Multiplying by (x) and summing
over all x in the state space gives

Z m(x)

X

2

= > w1 Y HE = mapy, 24)

Pf
—x
T 2,7 x j#l A#1

using orthonormality of f;. The total variation bound arises since 4||PL - ﬂll%v < ||PY/m - 1||§ . 0O

2.3. Random transpositions and coagulation-fragmentation processes

Let G = S, be the symmetric group. The random transpositions Markov chain, studied in [22], is
generated by the measure

1/n, w=id,
O(w) =12/n%, w=(ij),
0, otherwise.

This was the first Markov chain where a sharp cutoff for convergence to stationarity was observed.
A sharp, explicit rate is obtained in [54]. They show

1
10f —ullry <2¢7¢, with €= zn(logn+c).

The asymptotic “profile’ (the limit of ||Q — u|l7v as a function of ¢ for n large) is determined in [63].
Schramm [56] found a sharp parallel between random transpositions and the growth of an Erdés-Rényi
random graph: Given vertices 1,2, ..., n, for each transposition (i, j) chosen, add an edge from vertices
i to j to generate a random graph. See [0] for extensions and a comprehensive review. The results,
translated by the coagulation-fragmentation description of the cycles, give a full and useful picture for
the simple mean field model described in the introduction.

It must be emphasized that this mean field model is a very special case of coagulation-fragmentation
models studied in the chemistry-physics-probability literature. These models study the dynamics of
particles diffusing in an ambient space, and allow general collision kernels (e.g., particles close in space
may be more likely to join). The books by Bertoin [7] and Pitman [50] along with the survey paper of
Aldous [3] are recommended for a view of the richness of this subject. On the other hand, the sharp
rates of convergence results available for the mean field model are not available in any generality.

There is a healthy applied mathematics literature on coagulation-fragmentation. A useful overview
which treats discrete problems such as the ones treated here is [5]. A much more probabilistic
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development of the celebrated Becker—Doring version of the problem is in [36]. This develops rates
of convergence using coupling. See also [27] for more models with various stationary distributions on
partitions.

Other lumpings of random transpositions include classical urn models—the Bernoulli—-Laplace model
[23], [28], and random walks on phylogenetic trees [26]. The sharp analysis of random transpositions
transfers, via comparison theory, to give good rates of convergence for quite general random walks on
the symmetric group [20], [34]. For an expository survey, see [16].

2.4. Transvections

Fix n, a prime p and ¢ = p¢ for some positive integer a. A transvection is an invertible linear
transformation of Fy which fixes a hyperplane, is not the identity and has all eigenvalues equal to 1.
Transvections are convenient generators for the group SL,,(¢) because they generalize the basic row
operations of linear algebra. These properties are carefully developed in [62] Chapter 1, 9; [4] Chapter 4.

Using coordinates, let a,v € ]FZ be two nonzero vectors with a’v = 0. A transvection, denoted
Tav € GL,(q) is the linear map given by

Tav(x) =x+v(a'x), for x€ Fy.

It adds a multiple of v to x, the amount depending on the ‘angle’ between a and x. As a matrix,
Tay =1+ [aivayv...a,v] =1+ va™. Multiplying a by a nonzero constant and dividing v by the same
constant doesn’t change T, y. Let us agree to normalize v by making its last nonzero coordinate equal to
1. Let 7.4 € SLn(q) be the set of all transvections.

An elementary count shows

("= D(g""-1)
[Tnql = 71 . (2.5)

Itis easy to generate T’ € 7, 4 uniformly: Pick v € [ uniformly, discarding the zero vector. Normalize
v so the last nonzero coordinate, say index j, is equal to 1. Pick a, as,...,aj_1,a41,...a, uniformly
in ]FZ‘I — {0}, and set a; so that a”v = 0. The transvection T} y fixes the hyperplane {x : a'x = 0}.

Example 2.8. Taking v = e;, a = e, gives the transvection with matrix

0
0
1

o o =
S = =

Te e, =

- o O OO

000 ..
This acts on x by adding the second coordinate to the first. Similarly, the basic row operation of adding
0 times the ith coordinate to the jth is given by T¢ ;.0e;-
Lemma 2.9. The set of transvections T, 4 is a conjugacy class in GL,(q).
Proof. Let M € GL,(q), so MT,

,.e; M~ is conjugate to Te, ¢,. Then,

MTe, o M7 (x) = M(M™'x + (M7'x)2e1) = x + (M~ 'x), Me,.

Let a be the second column of (M ‘I)Tez,e] and v the first column of M, and check this last is 7, y (and
a"v = 0). Thus, transvections form a conjugacy class. O
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2.5. Gaussian elimination and the Bruhat decomposition

The reduction of a matrix M € GL,(g) to standard form by row operations is a classical topic in
introductory linear algebra courses. It gives efficient, numerically stable ways to solve linear equations,
compute inverses and calculate determinants. There are many variations.

Example 2.10. Consider the sequence of row operations
032 032 032 120
M=|120]—-]1 2 0|—>|120]—>]032|=U.
305 0-65 009 009

The first step subtracts 3 times row 2 from row 3, multiplication by

100
Li=[0o 1 o]
0-31

The second step adds 2 times row 1 to row 3, multiplication by

100
L,=|010).
201

The third (pivot) step brings the matrix to upper-triangular form by switching rows 1 and 2, which
corresponds to multiplication by the matrix by

010
w =[100]
001

This gives w1 Lol )M =U = M = L;'L7'w]'U = LoU with L= L)' LT, w = 0] = w;.

If £, B are the subgroups of lower and upper-triangular matrices in G L, (g), this gives

GL,(q) = |_| LwB. (2.6)

weS,

Any linear algebra book treats these topics. A particularly clear version which uses Gaussian elimi-
nation as a gateway to Lie theory is in Howe [37]. Articles by Lusztig [45] and Strang [61] have further
historical, mathematical and practical discussion.

Observe that carrying out the final pivoting step costs d.(w,id) operations, where d.(w, id), the
Cayley distance of w to the identity, is the minimum number of transpositions required to sort w (with
arbitrary transpositions (i, j) allowed). Cayley proved d.(w, id) = n — #cycles in w (see [16]). In the
example above n = 3, w = 213 has two cycles and 3 — 2 = 1—one transposition sorts w.

How many pivot steps are needed ‘on average’? This becomes the question of the number of cycles
in a pick from Mallows measure m,. Surprisingly, this is a difficult question. Following partial answers
by Gladkich and Peled [29], this problem was recently solved by Jimmy He, Tobias Mdller and Teun
Verstraaten in [33]. They show that, when g > 1, the limiting behavior of the number of even cycles
under 7, has an approximate normal distribution with mean and variance proportional to n, and that the
number of odd cycles has bounded mean and variance.
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The Bruhat decomposition
In algebraic group theory, one uses

GL,(q) = u BwB. Q@.7)

weS,

This holds for any semisimple group over any field with B replaced by the Borel group (the largest
solvable subgroup) and §,, replaced by the Weyl group.
Let wg = (! ,2, 7 ") be the reversal permutation in S,. Since £ = woBwy, equation (2.7) is
equivalent to the LU decomposition (2.6). Given M € GL,(q), Gaussian elimination on woM can be

used to find wgM € Lw’U and thus M € BwB with w = wow’.

The subgroup B gives rise to the quotient GL,,(g)/B. This may be pictured as the space of ‘flags’.
Here, a flag F consists of an increasing sequence of subspaces F = F; ¢ F, C ... C F, with
dim(F;) = i. Indeed, GL,(q) operates transitively on flags and the subgroup fixing the standard flag
E =(e;) C (ej,er)... C{eq,...,e,) isexactly B. This perspective will be further explained and used
in Section 6 to study a function of the double coset Markov chain on B\GL,(q)/B.

Remark 2.11. The double cosets of GL, (q) define equivalence classes for any subgroup of GL, (q).
For the matrices SL, (g) with determinant 1, these double cosets again induce the Mallows distribution
on permutations. More precisely, for x € SL,(q), let [x]sz, () = {x" € SL,(q) : x" € BxB} be the
equivalence class created by the double coset relation B\GL,(q)/B, within SL,(g). Note that two
matrices x,x’ € SL,(g) could be in the same double coset with x’ = bjxb,, but by, by ¢ SL,(q)
(necessarily, det(b;) = det(bs)™").

Then, |[w]sL, (g)/ISLa(q)] = pg(w). This follows since |GL,(q)| = (g — 1) - [SL,(q)|, and
|BwB| = (¢ = 1) - |[wlsr,(g]- f M € GL,(q) and M € BwB, then M/det(M) € [w]st, (q)-
Conversely, for each M € SL, (g) there are (¢ — 1) unique matrices in GL,(q) created by multiplying
Mby1,2,...,q—1.

2.6. The Metropolis algorithm

The Metropolis algorithm is a basic algorithm of scientific computing which arises in describing the
random walk induced by transvections on the double cosets B,\G L, (q)/B, (Section 3.2). This section
gives background.

Given a probability distribution 7 on a space &, the Metropolis algorithm gives a way of changing
the output of a Markov chain with transition matrix K(x,y) to have stationary distribution 7 on X.
For simplicity, suppose the original chain is symmetric, K(x,y) = K(y,x) (as in our examples). This
implies that K (x, y) has a uniform stationary distribution. Define the Metropolis Markov chain with the
transition matrix:

K(x,y), if 7(y) 2n(x), x#y,
M(x,y) = K(x.y) - 555, it 7(y) < 7(x), x %,
K(x,x) + Zz:n(z)<7r(x) K(x, Z)(l - 77:((;;)’ if x=y.

These transition probabilities have a simple implementation: From x, pick y according to K (x, y). If
n(y) = n(x),movetoy. If 7(y) < m(x), flip a coin with heads probability 7(y)/x(x). If the coin is heads,
move to y. If the coin is tails, stay at x. Elementary calculations show that 7 (x)M (x, y) = n(y)M(y, x),
that is, M has  as stationary distribution. Note that the normalizing constant of 7 is not needed.

For background, applications, and theoretical properties of the Metropolis algorithm, see the textbook
of Liu [44] or the survey [21]. Sharp analysis of rates of convergence of the Metropolis algorithm is still
an open research problem. The special cases developed in Section 3.2 show it can lead to fascinating
mathematics.
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3. Double coset walks on 5\GL, (q)/B

Throughout this section, B is the group of upper-triangular matrices in GL,(q), T, 4 is the conjugacy
class of transvections in G L, (q). This gives the probability measure on G L, (q) defined by

1 .
o(M) = {|771.q|’ if M€7;,,q.

0, else.

Note the random transvections measure Q is supported on SL,(q), a subgroup of GL,(q). This
means that the random walk on G L,,(g) driven by Q is not ergodic (there is zero probability of moving
x to y if x, y are matrices with different determinants). However, Q is a class function on GL,,(g) since
transvections form a conjugacy class. The image of the uniform distribution on GL,(g) mapped to
B\GL,(q)/B is the Mallows measure 7, (w) = g’ (“)/[n],!.

Section 3.1 introduces the definition of the Markov chain as multiplication in the Hecke algebra, which
is further explained in Section 5. Section 3.3 gives the combinatorial expressions for the eigenvalues
and their multiplicities, which are needed to apply Theorem 1.2 for this case. Section 4.2 shows that
for the induced Markov chain on S,,, starting from id € S,, order n steps are necessary and sufficient
for convergence. Section 4.3 studies the chain starting from the reversal permutation, for which only
order logn/2log g steps are required. Finally, Section 4.4 considers starting from a ‘typical’ element,
according to the stationary distribution, for which log n/log ¢ steps are necessary and sufficient.

These results can be compared to Hildebrand’s Theorem 1.1 [35] which shows that the walk driven
by Q on GL,(g) converges in n + ¢ steps (uniformly in g). Our results thus contribute to the program
of understanding how functions of a Markov chain behave and how the mixing time depends on the
starting state. In this case, changing the starting state gives an exponential speed up.

3.1. Hecke algebras and the Metropolis algorithm

The set of B-B double cosets of GL,(g) has remarkable structure. For w € S, let T,, = BwB. Linear
combinations of double cosets form an algebra (over C, for example).

Definition 3.1. The Iwahori-Hecke algebra H,(q) is spanned by the symbols {7, },¢s, and generated

by T; =T, for s; = (i,i + 1), 1 <i < n — 1, with the relations

{TsiTw =Tsw if I(s;w) = I(w) + 1, (3.1)

Ts,-Tw = qT\‘,-w + (q - l)Ta) lfI(SlU.)) = I(‘U) - 17

where /(w) is the usual length function on S,, (I(s;w) = I(w) £ 1).

Consider the flag space F = G/B. The group GL,(g) acts on the left on F. One can see H,(q)
acting on the right of 7 and in fact

H, (C]) = EndGL,,(q) (GLn(q)/B)

The Hecke algebra is the full commuting algebra of G L,,(g) acting on GL,(q)/B. Because transvections
form a conjugacy class, the sum of transvections is in the center of the group algebra C[GL,(q)], and
so it may be regarded as an element of H,,(q). This will be explicitly delineated and the character theory
of H,(q) used to do computations.
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3.2. The Metropolis connection

The relations (3.1) can be interpreted probabilistically. Consider what equation (3.1) says as linear
algebra: Left multiplication by 7}, can take w to w or s;w. The matrix of this map (in the basis {7, } w¢s,,)
has w, w’ entry

1, if I(sjw)=1Hw)+1, and ' = 5;w,
q, if I(s;w) =1(w) -1, and o’ = w,
g-1, if I(siw)=1(w) -1, and w’ = s,
0, otherwise.

For example, on G L3(q) using the ordered basis Tjq, Ts,, Ts,, Ts, 55> Tsys1» Tsysps,» the matrix of left
multiplication by s is

S oo o ~—O
SO OO | R
=N o Ne )
SO I R OO
—_ o OO0 oo
| RSO OO

g-1

The first column has a 1 in row s; because /(s;) > I(id). The second column has entries g and ¢ — 1 in
the first two rows because I(s%) =1(id) < I(sy).
We can also write the matrices for multiplication defined by T, and Ty, ,s, as

00 ¢ 0 0 0
00 0 0 g O
r _|[10g=10 0 0
27100 0 0 0 g
01 0 0g-1 0

00 0 1 0 g-1

0 0 0 0 0 q°
00 0 e 0 Pg-1)
T 10 0 0 0 q° q*(g-1)
SRTH0 g 0 g(g-1) qlg-1) q(qg - 1)?
0 0 ¢q q(g—-1)q(g-1 q(q—1)?
lg-1g-1(g-1)?% (g-1* (g=1)°+4q(g-1)

Observe that all three matrices above have constant row sums (g, ¢ and ¢>, respectively). Dividing
by these row sums gives three Markov transition matrices: M1, M, and M1y = M1 My M.
These matrices have a simple probabilistic interpretation: Consider, for g = 1/¢, the matrix defined

_‘
Y]

SO O OO
—
—_ o O

[eNeNoNa N
coc oo |
o o |

N}
Qloocoocoo o
—_
| — oo oo
|

https://doi.org/10.1017/fms.2022.106 Published online by Cambridge University Press


https://doi.org/10.1017/fms.2022.106

Forum of Mathematics, Sigma 15

The description of this Markov matrix is: From w, propose sw:

o If I(s1w) > I(w), go to sjw.
o If I(siw) < I(w), go to sjw with probability 1/q, else stay at w.

This is exactly the Metropolis algorithm on S,, for sampling from r, (w) with the proposal given by the
deterministic chain ‘multiply by s;’. The matrices M;,1 < i < n — 1, have a similar interpretation and
satisfy

rg(w)Mj(w,w") = 1y (W )M; (v, w).

The Metropolis algorithm always results in a reversible Markov chain. See Section 2.6 or [21] for
background. It follows that any product of {M;} and any convex combination of such products yields a
74 reversible chain. Note also that the Markov chain on S, is automatically reversible since it is induced
by a reversible chain on GL,,.

Corollary 3.2. The random transvections chain on G L, (q) lumped to B-B cosets gives a ny reversible
Markov chain on S,,.

Proof. Up to normalization, the matrix D in Theorem 1.6 is a positive linear combination of Markov
chains corresponding to multiplication by

T(i,j) = TsiTsiH co Ts-_,-_ZTv_,»_, Ts_,_Z Tt Tsi+1Tsi~
This yields a combination of the reversible chains M; M,y ... M;_ ... M;. m]
Example 3.3. The transition matrix of the transvections chain on G L3(g) lumped to S3 is #q‘D, with
D=2¢>-qg-DI
0 q2 q2 0 0 q3
qq(g-1) 0 q* q* q*(g—1)
vg-nlt 0 ala=D 7 q (g -1)
0 ¢ g  2q(q-1) q(g-1) ¢ +q(g-1)7?
0 ¢ q qg=1)  2q9(g-1) ¢ +q(g-1)

1 g-1 qg-1 q+(g-1?q+(g-1)?* (g—1)*+3gq(g-1)
When g = 2, the lumped chain has transition matrix

54400 8
27044 4
120744 4
21102292 6|
02229 6
1113312

We report that this example has been verified by several different routes including simply running the
transvections chain, computing the double coset representative at each step and estimating the transition
rates from a long run of the chain.

Remark 3.4. The random transvections Markov chain on S, is the ‘g-deformation’ of random trans-
positions on S,. That is, as g tends to 1, the transition matrix tends to the transition matrix of random
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transpositions. To see this, recall |7, 4| = (¢" - 1)(¢™' = 1)/(g — 1) and use L’Hopitals rule to note,
for any integer &,

(g -1)2¢"(g-1D¢ |0, if £> 0,
1m =
a—1" (g" = 1)(g" ' - 1) if £=0.

_1
n(n-1)°

The interpretation of multiplication on the Hecke algebra as various ‘systematic scan’ Markov chains
is developed in [ 18], [10]. It works for other types in several variations. We are surprised to see it come
up naturally in the present work.

The following corollary provides the connection to [52, (3.16),(3.18),(3.20)] and [18, Proposition
4.9].

Corollary 3.5. Let Jy = 1, and let Ji =T, | -+ T5,T5,T5,Ts, - - - Ty, for k € {2,...,n}. Then
n
D= q" (U -1.

k=1

Proof. Using that Jx =T, Jx—1Ty,_,, check, by induction, that

Ji = qk_l +(g-1) Z qj_lT(j’k).

Thus,
. N k=1 .
4= 1) =04+ Y gD _ gk (g 1) Y g R
k=1 k=2 i=l
=(n-1)q"" = [n-1]lg+ (g = 1)D o2 =D,
where D pyn-2) i= ¥, gV . .

3.3. Eigenvalues and multiplicities

Hildebrand [35] determined the eigenvalues of the random walk driven by Q on G L, (g). His arguments
use Macdonald’s version of J.A. Green’s formulas for the characters of G L, (¢) along with sophisticated
use of properties of Hall-Littlewood polynomials. Using the realization of the walk on the Hecke
algebra, developed below in Section 5, and previous work of Ram and Halverson [31], we can find
cleaner formulas and proofs. Throughout, we have tried to keep track of how things depend on both g
and n (the formulas are easier when g = 2).

Theorem 3.6.

1. The eigenvalues B, of the Markov chain P(x,y) driven by the random transvections measure Q on
B\GL,(q)/B are indexed by partitions A + n. These are

ﬁ/l n 1 cht(b) q _1 (32)

bed

IanI

with b ranging over the boxes of the partition A. For the box in row i and column j, the content is
defined as ct(b) = j —i, as in [46].
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2. The multiplicity of Ba for the induced Markov chain on B\GL,(q)/B is f/%, where

n!
= (3.3)
I e h®)
Here, h(D) is the hook length of box b [46].
3. The multiplicity of B, for the Markov chain induced by Q on GL,(q)/B is
[n]q!
di=f ——1 3.4
I Tealn @),

The argument uses the representation of the Markov chain as multiplication on the Hecke algebra.
This is developed further in Section 5.

Proof. (a): Let D be the sum of transvections as in Theorem 1.6. By [31] (3.20), the irreducible repre-

sentation H’l of H,, indexed by A has a ‘seminormal basis’ {vr | S’l} such that Jy vy = g~ L(T(k))vr
where T'(k) is the box containing & in 7. Thus,

n n
ke ~1
Dvr =Y q" (g g TR~ 1yvy =( (‘1 ) E: n-1 c(T(k)))

k=1 k=

(b): The dimension of the irreducible representation of H,, indexed by A is the same as the dimension
of the irreducible representation of S,, indexed by A, which is well known as the hook-length formula
[46, Ch. I(7.6)(ii), §6 Ex.2(a)]:

!
dim(H?) = Card(S}) = S —
(Ho) = Card(S2) = 1, 2 3)
(¢): With G = GL,(q), H = H,, the result follows since [46, Ch. IV(6.7)],
dim(G*) = L and 19 = Z G'® H!
Hbe/l[h(b)]q 5

/Ie§;

Example 3.7. Equation 3.2 for some specific partitions gives
1 I | q" -1
ol (£3)-55)
7 Tl g-1) q-1

1 aot{ -1 qn—l -1 qn -1 qn—2 -1
_ = + —_ =
Bn-1.1) |7;l’q|(61 (61 71 71 e

1 notf o1 o q" 1) gt =1) g" -1
Bn-2,12) Tod] (61 (61 q 71 71 e
1 et » qn—2 -1 qn -1 qn—Z -1
22) = o/ 1+ + - =
Bn-2,2) |771,q|(q ( q . . =1

1 _ _ ) —(n-2) q" -1 g-1
B n—2 =—(q"1(1+q+ql+q +...4q ™ )— =
CI T Tl a-1] ¢

q" -1
(qn—l(q0+q—1+' —(n— l)) _1 ) =0.
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The following simple lemma will be used several times in subsequent sections. It uses the usual
majorization partial order (moving up boxes) on partitions of n, [46]. For example, when n = 4 the
ordering is 1111 < 211 <22 <31 < 4.

Lemma 3.8. The eigenvalues 8, of Theorem 3.6 are monotone increasing in the majorization order.

Proof. Moving a single box (at the corner of the diagram of 1) in position (i, j) to position (i, j’)
necessitates i’ < i and j’ > j, and so ¢/~ < ¢/~". Since any A < 1’ can be obtained by successively
moving up boxes, the proof is complete. For example,

1=t e e
O
The partition 1" = (1,1, ..., 1) is the minimal element in the partial order, and since B(ny =0, we
have the following:
Corollary 3.9. If A + n, then
Ba=0.

Corollary 3.10. If A = (A1,...,Ax), A1 = A2 = ... = A > 0 is a partition of n with 11 = n — j and
Jj < n/2, then

@@ - D@ = )+ (@ (g~ 1)
A4 % P = (@ - D@~ 1)

<7 (+q ") 1+ g7 )1+ g70P),

Proof. The first inequality follows from Lemma 3.8. The formula for 8(,—; ;) is a simple calculation
from equation (3.2). Recall the elementary inequalities:

1 1 1 1

1
< < , =1+ <14+g 0D,
qr qr -1 qr—l 1 - qfr qr -1 q

These give the inequality for B(,—;, j:

/(@ =" =D+ ("= D¢/ - 1)
(¢! =1)(g" - 1)

A A 1

- 9" 'q" (I-g=D)(1-g™)

< (g +q TN (1 4 gD (1 + gD,

Bn-j.j) =

In the following sections, we will use a further bound from Corollary 3.10.

Corollary 3.11. Define kp, 4, := (1 + g 2D (1 + g~ D) (1 + g~ and

log(Kn,q,j)
pg = max ——————.
1<j<n/2 ]
Then for all n, q,
6
Ap g < ;
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Proof. Using 1 +x < e*, there is the initial bound
Kn,g,j < exp(q_("_zj“) +q 7D 4 q_("_z)) < exp(Sq_("_zj)),

which uses that j > 1 and so (n —2) > (n — 2j). Then,

log(kn,q,;) - 3¢~ (=21
J B J

With f(x) = 3¢~ "2 /x, we have

3¢~ ("2 (2xlogg — 1)
> .

[ =

X

Since 21og(2) > 1, we see that f(x) is increasing for x > 1 and any ¢ > 2. Thus, for 1 < j < n/2, f(j)
is maximized for j = n/2, which gives

Sq_(n_zj) <

6
Up,q < Mmax -
1<j<n/2 J n

4. Mixing time analysis

In this section, the eigenvalues from Section 3.3 are used to give bounds on the distance to stationarity
for the random transvections Markov chain on S,,. Section 4.1 reviews the tools which are needed for
the bounds from specific starting states. Section 4.2 proves results for the chain started from the identity
element, Section 4.3 proves results for the chain started from the reversal permutation, and Section 4.4
contains bounds for the average over all starting states.

4.1. Eigenvalue bounds

The following result from [ 18] will be the main tool for achieving bounds on the chi-square distance of
the chain from different starting states.

Proposition 4.1 (Proposition 4.8 in [18]). Let H be the Iwahori—Hecke algebra corresponding to a
finite real reflection group W. Let K be a reversible Markov chain on W with stationary distribution n
determined by left multiplication by an element of H (also denoted by K). The following identities are
true:

1. X)%(f) = q_ZI(x) Daxl t}/yé (TX_1K2[TX), xeW,
2. Yew TOXE(C) = Yawr faxdy (K2,

where /\/I’Ii are the irreducible characters, t) the generic degrees and f, the dimensions of the irreducible
representations of W.

In general, the right-hand side of (a) could be difficult to calculate, but it simplifies for the special
cases x = id,x = wp. These calculations, and the analysis of the sum, are contained in the following
sections.

The right-hand side of the equations in Proposition 4.1 involves the following quantities, defined for
A+ n:
o= G-

A i=1 is
0 c1 = Ypeqct(b), where ct(b) = j —iif box b is in column j and row i,
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Table 1. The quantities involved in the eigenvalue and multiplicity
calculations for n = 4.

pl N ny 9] ca Ba
(4) 1 0 1 6 1
G.1) 3 1 gl 2 L
(2,2) 2 2 S e 0 4
2,1,1) 3 3 Ll 2 =
(1,1,1,1) 1 6 q° -6 0
!
o ty=g" -1y, where 1y = i, [Klg = (¢° = 1)/(q = 1) and [K]y! = [kl - [k = 11, ... [2],
o fa, which is the number of standard Young tableau of shape A. The formula is
n!
=5
Hbe/l h(b)

Table | shows these values for n = 4 and general g. From this example, we can observe that c, is
increasing with respect to the partial order on partitions, while n, is decreasing.
Let us record that

-2 n—1
g -1 g -1 ~
Bn-1,1) = preph tn-1,1) = ¢ =1 and  fpo1,y =n-1 4.1)
Since n! < n™ = ¢1°8" then

n!

rlogn = 4.2)
We will use the following bounds from [18, Lemma 7.2]:
u<g D Op, and Y =l 4.3)

Arn

In addition, we need the following bounds for sums of f;. Part (b) of the proposition below is Lemma
7.2(b) in [18]; the proof there is incomplete, so we give the simple proof below.

Proposition 4.2.
1. There is a universal constant K > 0 such that, forall 1 < j < n,

J .
Z fa< £ 5.62\/5-
A:A1=n—j \/-F J

2. For1 <j<n,
2j
. J!
A:A1=n—j

Proof. Recall that f; is the number of standard tableau of shape A, that is, the elements 1,2,...,n
are arranged in the shape A so that rows are increasing left to right and columns are increasing top to
bottom. If 1; = n — j, then there are (;’) ways to choose the elements not in the first row of the tableau.
For a fixed partition A, the number of ways of arranging the remaining j elements is at most the number
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of Young tableau corresponding to the partition of j created from the remaining rows of A. This number
is at most \/F (Lemma 3 in [22]). Thus,

P (j) NG p(),
A1=n—j

where p(j) is equal to the number of partitions of j. It is well known that log(p(n)) ~ B - v/n for a
constant B. More precisely, from (2.11) in [32], there is a universal constant K > O such thatforalln > 1,

p(n) < 562‘5.
n

This gives (a).

For part (b), we again use the inequality f; < (;l) Sfar, where 4* = (g, ..., Ax) is the partition of j
determined by the rest of A after the first row. Then,

5 [n : 2 n\* n! : n?
Z f/lﬁ(.) Zf,z*z(.) 'J'!=(W) Jls =
Ady=n—j JI J 1)) J:

]

Proposition 4.3. The function s(1) := gt is monotone with respect to the partial order on partitions.
Forany A+ n,

s() < q3).
Proof. Suppose that 1 < A and A is obtained from A by ‘moving up’ one box. Suppose the box at
position (i, j) is moved to (i’, j’), withi’ < i,j" > j.

Let g(1) = ¢4 + ny. Then,

cx=ca+(j =)D+ i-i)
ny=nmi—@{-D)+0G" -1)=n+ " -i).

This implies that
gD =gV + (' =N+ =)= =D+ =D =g+ ("~ J).
Now, consider the change in r,. The hook lengths of A are:

G, j)=h(i,j)=1=0, h@,j)=h(,j)+1=1
hk,j)=hk,j) -1, k<ik#i

hGi, ) =h@i, -1, 1<

h(k,jy=h(k,j)+1, k<i

hi' D) =h('D+1, 1<) 01#]

and E(k, ) = h(k, 1) for all other boxes b = (k,!). Thus,
Db = hb) = (=) + @ =1 == 1) = (- 1)
b b

= =)+ =0,
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Using the inequalities ¢"~! < (¢" — 1) < ¢", we have

~ _ nlgl (g -1)"
S RPNy
< [nlg!(g - 1)" 1 [n]lg! (g — D"
T gZphb)n o qUDH=i=n Ty h(b)
1 [n]g!(g - 1)" 1 ).

= U [, (" ®) — 1)~ gUn+i—n’
Combining this with the result for g(1):

s = g8 Vg = gs U r() = s(g"~" > ()

qU=D+=i)=n

since i > i’
Assuming the monotonicity, then if 11 > n/2 we have s(1) < s((11,n — 47)). To calculate this
quantity:

g() < g((A1,n=A1)) = cayn-ay) + 1 ,n-1y)
A =1 -1 -1 -4 -2
=((12 ), (n— )2(ﬂ 1-2) F -y

= (/121) + (n _2/11) = —n(nz_ 1) —/l](n—/ll).

For r,, note that the hook lengths of (4;,n — A;) are

/ll+1,/11,...,2/11—n+2
241 - n,241 —-n—-1,...,3,2,1
n—/ll,n—/ll—l,...,3,2,1.

If 11 = n — j, we see the terms that cancel:

. _nlgt (-1 -1 (g- D)
(A1,n=21) [1,[1(b)]q M, (g"® - 1)
(¢" - 1)(Cln_1 -1)... (q’ll*'2 -1)- (qZ/ll—n+] -1
@ D@ =D (g 1)
T (k) +(n=2j+1)

q

< 7 -
qzk:I k=j

= q2U=DQOHD=-P+(n=2j+1)=3j(j+D)+
= g/ (I = Ginmd) = gli(n=d)
This uses the inequality ¢" ! < ¢" — 1 < ¢". Thus, if A; > n/2, we have shown

S(/l) = qg(l)r/l < q(g)—ﬂl (n-21y) . q/ll(n—/ll) _ q(,zl)
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Now, suppose A1 < n/2, 50 s(2) < s((n/2,n/2)) (assume n is even). To calculate this,

g(A) < g((n/2,n/2)) = c(nj2,n/2) + N(nj2,n/2)

[\S}

B (n/2—1)n/2+ (n/2-2)(n/2-1) 1_'_n n n
- 2 2 274 2
To bound r,, use the same calculation as before to get
r < n2/4
(n/2,n/2) = 4 s
and so in total s((n/2,n/2)) < ¢"/>/2 = ¢(5). 0

4.2. Starting from id

Theorem 4.4. Let P be the Markov chain on S, induced by random transvections on GL,(q).

1. For t), B, defined in Theorem 3.6, we have

4P, = mgliy < xiy(€) = Z 1 faBy.
Arn,A#(n)

2. Let ay 4 be as in Corollary 3.11 and n, q such that logq > 6/n. Then if £ > nlogg/2Hlognic . 0,

(logg—an,q)
we have
2 e~ _ —-cn
Xig(€) < (e 1) +e "
3. Forany{ > 1,
X0 2 (¢ = D(n =g

4. If € < n/8, then for fixed q and n large,

1Py = 7gllry = 1-o(1). (4.4)

Theorem 4.4 shows that restricting the random transvections walk from G L,,(g) to the double coset
space only speeds things up by a factor of 2 when started from the identity. Hildebrand [35] shows that
the total variation distance on all of G L, (q) is only small after n+ ¢ steps. Note this is independent of g.

Proof. (a): The inequality follows from Proposition 4.1 (b):

XE(0) = gD Ny (TiaK¥ Tra)
A#(n)

= > (K= Y ufsy.
A#(n) A#(n)

(b): From Corollary 3.10if 2y = n — j, then 83 < k. 4,7/, where

Kngj = (1+g "2 1+ gD (1447 2),
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Using the bound on ¢, from equation (4.3), for 1 < j < |n/2], we have

Z tafaBY < (kngiqa ) Z q‘("Ej)Jf(?)f/%

A =n—j A =n-j
20 /2 . n*
< (Knog.jq~ Y2 i —JjG+1)/ j'
1 Io
< _—‘exp(—%’j(logq - M) +logg(nj - j(j+1)/2) +2jlogn
J: J
1 . S .
< i exp(—2Lj(logq — an q) +logq(nj — j(j +1)/2) +2jlogn). 4.5)
Recall the final inequality follows since @, 4 = maxX|<j<p/2log(kn,q,;)/j. If £ = %
n.q

then the exponent in equation (4.5) is

—2j(nlogg/2+logn+c)+logq(nj—j(j+1)/2)+2jlogn
=—j(2c+logq(j+1)/2).

This gives
[n/2] Ln/2) -2je .
Z Z l,lf/l,B Z 3 <e® -1.
j=1 A:1=n— = I
J 1=n—j J

Next, we need to consider the partitions A with A; < n/2. For these partitions,

Ba < Binjznj2) < Kngmppqg ™.

Then we have

_1 _1
nz Z t/‘fﬂﬁzzlfsﬁ%ﬁ/z,n/z) "Z Z tafa

j=n/j2 A:dj=n—j j—n/2 Ad=n—j

(n/2n/2) Z Z g~ 1(1+1)/2f

j=n/2 L:A1=n—j

Sn!-exp( 2€(n/2)(logq+ (1/;/2)+n2/2)

< exp(—n(nlog q/2+logn+c) +n2/2) fo

Arn

< n!exp(—n(n log g/2 +logn +c) +n2/2),
using Z,lf/% =n! and thatif n/2 < j < n, then
. L. 2 2 2 2
nj—j(j+1)/2<n " —n“/d<n"—nn+1)/2 <n"/2
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since the function is increasing in j. Note also that if ¢ > 3, then logg > 1 and n! < n" = ¢'°¢". To
finish the bound,

n—1
Z Z By < exp(n logn —n(nloggq/2 +logn+c) + n2/2)
j=n/2 L:A1=n—j

= exp(—(nz/Z)(logq -1)- cn) <e ",

(¢): The lower bound comes from considering the 1 = (n — 1, 1) term from the sum in (a). Using the
quantities (4.1), this gives

X0 = " afafY 2 taeun S By
A#(n)
n-1 _ 1 n-2 _

20
_q q 1 -1 4
_q?(l’l—l)(m) Z(q" -D(n-1qg™™.

This uses that (¢ 2 = 1)/(¢g"' = 1) > ¢~>.
(d): From the alternative version of the walk on the Hecke algebra, involving D /|7, 4| with D from
1.6, the walk proceeds by picking a transposition (i, j),i < j with probability proportional to

g U
and multiplying by 7;;. As described in Section 3.2, multiplication by 7;; corresponds to proposing the

transposition (i, j) and proceeding via the Metropolis algorithm. Thus, multiplication by 7;; induces at
most 2(j — i) inversions, always less than 2n. From [22] Theorem 5.1, under n4, a typical permutation

has (}) — Z%‘II + O(+/n) inversions (and the fluctuations are Gaussian about this mean). If £ = n/8, the
measure Pf () is concentrated on permutations with at most n? /4 inversions and 74 is concentrated on
permutations with order n?/2 — (n — 1)/(g + 1) + O(~/n) inversions. O

4.3. Starting from wg

Theorem 4.5. Let P be the Markov chain on S,, induced by random transvections on GLy(q), and let
wo € Sy, be the reversal permutation in Sy,.

1. With ty, ca, Ba defined in Section 3.3,

AP, = mqlity < X2y (0 =q7) Y g i
A#(n)

2. Let ay g be as in Corollary 3.11 and n, q such thatlogq > 6/n. If £ > (logn/2 +c)/(logq — an,q)
for c > O withc > 2V2 then

Xi;o (€) < —2Klog(l —e ) + VKe™",

for a universal constant K > 0 (independent of g, n).
3. Forany { > 1,

Xoo (0 =g~ " (=1 (g™ - 1)g™.

Remark 4.6. Theorem 4.5 shows that the Markov chain has a cutoff in its approach to stationarity in
the chi-square metric. It shows the same exponential speed up as the walk started at a typical position
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(Theorem 4.7 below) and indeed is faster by a factor of 2. This is presumably because it starts at the
permutation wy, at which the stationary distribution 7, is concentrated, instead of ‘close to wy’.

Proof of Theorem 4.5. (a): By Proposition 4.9 in [18], if wy is the longest element of W, then

( ) — I(W())+C/lld

where p? is the irreducible representation indexed by A. Using this and 4.1 (a),

Xon (0 = a0 S axy (T, K Ty
A#1

21(w0)Zt v 4 (KT, To, w’l)
A#1

=g N Ly (KXT2,)
A#1

q—zl(wo) Z t/l/\/;l-l (K2[q6,1+1(a)0))
A#1

=g g (K*) = 710 ) g 1By

A£1 Tl

since K € Z(H), that is, K commutes with all elements of the Hecke algebra.
(b): Suppose 1} =n — j for 1 < j < n/2. Recall the definition s(1) = g“¢,. From Proposition 4.3,
s() < q(rzl). Then,

@ 3 =@ Y s

A:A1=n—j A:A1=n—j

< (Kn,q,jq_j)yq_(g Z CI( )f/l

A:d=n—j
—j\2¢
< (Kn,q,jq J) Z fa
A:Aj=n—j
n‘] K 2
'! J

< %exp(—%j(logq— M) +(j - 1)logn+2\/2_j).
i1 J

-7\2¢ .
< (Kng.j4")

The third inequality uses Proposition 4.2 for X’ 3.3,=,—; fa. Recall @y 4 := max;<j<n/210g(kn.q.;)/j. If
t = (logn/2+c)/(logq — an 4), then the bound becomes

n/2
Zq() Z q”t,lf,lﬂ Z exp( ]logn—2]c+(]—l)logn+2\/_)
A:A1=n—j '
~2jc+2+/25
By il
=
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using the loose bound \/_‘ > j/2forall j > 1. Withthe assumption that ¢ > 2V2, we have -2 J c+2\/2_j <
—jc forall j > 1. Finally,

n/2 e_jc S e_jc
21(2 ; ssz -
j=1 j=1

= -2Klog(l —e™).

Now, for the A with 1; > n/2, we have

n-1
Z Z q ()qcﬂt/lf/lﬁ,l <ﬁ(n/2n/2) Z Z fa

j=n/2 L:A1=n—j j=n/2 L:l1=n—j

2¢
< Bl 2

Arn

/2
(,,/2 n/2) (Z f/z) p(n)]/z,

Arn

where p(n) is equal to the number of partitions of n (the inequality is Cauchy—Schwarz). Since p(n) <
%ezm for a constant K > 0 ([32]) and } ., f/% = n!, this gives

< Vil - g exp(@ —26(n)2) (log g — Kran2 ))

n/2
< Vn!- \/gexp(m— nlogn/2 — 2nc)
< \/I?exp(—nc —n(c— \/Enfl/z))

since Vn! < e1°21/2 Since ¢ > 2\/5, then the bound is < VKe <" for any n > 1.
(c): A lower bound comes from using equation (4.1) for the lead term on the right-hand side of (a):

Xfuo(f) > q_(Z)‘]C(VH’Ut(n—l,l)f(n—l,l)ﬁ%,{;_l 1
20
_n nel qn—l -1 -2 -1
=q (z)q(z)“.q—l (n 1)(

_1
(" =D (- g™,

4.4. Starting from a typical site

In analyzing algorithms used repeatedly for simulations, as the algorithm is used, it approaches station-
arity. This means the quantity

D mgWIPL = g llry

x€eS,

is of interest. For the problem under study, 7, is concentrated near wo so we expect rates similar to
those in Theorem 4.5.

Theorem 4.7. Let P be the Markov chain on S,, induced by random transvections on G L, (q).
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1. With f3, Ba defined in Section 3.3,

2

1 1
D m@IPL = mliry | <7 Ym0 =7 ) fiBY

X€ES, X€S, A#(n)

2. Letay 4 beasin Corollary 3.11 and n, q such thatlog g > 6/n. If{ > (logn+c)/(logg—an4),c > 0,
then

Z g (X0 < (e = 1)+,

xeS,

3. Forany € > 1,

Z mg(OX2(0) = (n—1)*q™*.

x€S,

Proof. (a): This is simply a restatement of 4.1 part (b).
(b): We will divide the sum depending on the first entry of the partition. By Proposition 4.2, we have
the bound (true for any 1 < j < n)

Z f/l—]v'

A:A=n—j

Combining this with Corollary 3.10, for j < |n/2],

2j
2 ¢ n
Z Bafa Z 'B(nu)f/l—ﬁ(nu) m
A:A1=n—j A1=n—j
20 -2tj n* 1 . .
< Kyg . 7 = F exp(2¢(log(kn,q,;) — jlogq) +2jlogn)

1 1 i
= J—ex (2{’ (M —logq) +2j10gn).

Define

log(Kn,q,j)
Qpg = Max ———,
1<j<n/2 ]

so thenif £ = (logn +¢)/(log g — @y 4), the bound is

1
< —exp(2j(ang —logq) +2jlogn)
J!

1 e*ZjC
== exp(—2jlogn—2jc+2jlogn) =
]
Then summing over all possible j gives
Ln/2] Ln/2] o-2ic )
Z Z f/l/l—z oy S(ee _1)‘
j=1 AA=n—j Jj=1 J:
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Now, we have to bound the contribution from partitions A with 1; < n/2. Because 3, is monotone
with respect to the order on partitions, we have for all A such that 1; < n/2,

ﬁ/l < ﬁ(n/Z,n/Z) < Kn,q,n/Zq_n/2

since A < (n/2,n/2) (assuming without essential loss that n is even). Then,

n-1
Z Z f/%ﬂ (n/2 n/2) Zf/l

j=n/2 L:A1=n—j

K
< n!-exp|26(n)2)(log g + —L12)
n/2

< n!-exp(—n(logn +c))

S e—cn

s

using >, f/% =n! <n"
(¢): The sum is bounded below by the term for A = (n — 1, 1). This is

n-2

2¢
g" -1 -
f(n 1,1 ﬁ(n Ly = =(n- 1)2(—61"_1 _ 1) > (n— 1)2‘] o,

5. Hecke algebra computations

This section proves Theorem 1.6 which describes the transvections Markov chain on S,, as multiplication
in the Hecke algebra from Definition 3.1. This is accomplished by careful and elementary row reduction.
Our first proof used Hall-Littlewood symmetric functions. It is recorded in the expository account [19].

5.1. Overview

Let C[G] denote the group algebra for G = GL,(q). This is the space of functions f : G — C, with
addition defined (f + g)(s) = f(s) + g(s) and multiplication defined by

fix fals) = Y i folst™.

teG
Equivalently, C[G] = span{g | ¢ € G} and we can write an element f = 3}, cog for ¢, € C, so

flg) = Cg-

Define elements in C[G]:

1
1p = IBIZ andTwzﬁ Z x, for weSs,.

xeB xeBwB

Note that if b € B, then

blp=1gb=1p, 1%=1p.
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If g € BwB, so g = bjwb, with by, by € B, then

]1138]113 = ]lela)bgllg = ]le]lB

b Z b wb _Lﬁ Z
NEE T B 1BwB |

by,byeB eBwB
1Bl 1 1Bl 1 -1 (
= = _7,=4"T,.
1BwB| |B] XE;)B" BoB| 18] © 1

The Hecke algebra is H,(q) = 13C[G]13 and has basis {T,, | w € S,}. Note that H, (g) are all
functions in C[G] which are B-15 invariant, that is, f(b1gb2) = f(g).

Now, let P be the transition matrix for G defined by multiplying by a random transvection. We can
also write this

1
Tn.q]

P Mr,

T€eTng

where My is the transition matrix ‘multiply by 7. In other words, My (x,y) = 1(y = Tx).
Then P defines a linear transform on the space C[G], with respect to the basis {g | g € G}. The

matrix Mr is just the function: Multiply by T in the group algebra. This means P is equivalent to

multiplication by ﬁD, with D = 3.rcr, T as an element in C[G]. The Markov chain lumped
n,q n,q

to S, = B\GL,(q)/B is then equivalent to multiplication by D on H, (g). Since D is the sum of all
elements in a conjugacy class, it is in the center Z(C[G]). This means if g € BwB, then

15(Dg)lp = D1gwlp = (D1g)g ()T,

In conclusion, to determine how D acts in H, (q), we can compute D 1 3. The remainder of the section
proves the following.

Theorem 5.1. Let D = Yr 7, T € C[G]. Then,

Dig=((n-1g"" = n=1])is+(@-1 Y g0,

1<i<j<n

where s;j is the transposition switching i and j.

5.2. Row reduction

Let G = GL,(q) and B be the upper-triangular matrices. For 1 <i < n—1and ¢ € Fy, define y;(c) € G
by

I i+1

—
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That is, multiplication on the left by y;(c) acts by adding ¢ times the ith row to the (i + 1)th row, then
permuting the i and i + 1 rows.

Let w € S,,. We can write the reduced word w = s;, ...s;,, for s; = (i,i + 1) the simple reflections.
Then,

BwB = {yi (c1)...yi,(ce)B|ci,...,ce € Fy},

and |BwB|/|B| = ¢'(®) and G = | | wes, BwB. This provides a very useful way for determining the
double coset that a matrix M belongs to, which just amounts to performing row reduction by multiplying
by different matrices y;(c).

5.3. Transvections

For every transvection T € 7, ,, we can perform row operations, multiplying by y;(c), to determine
which double coset T belongs to.

A transvection is defined by two vectors a,v € IFZ with vTa = 0, with the last nonzero entry of v
normalized to be 1. Assume this entry is at position j. Assume the first nonzero entry of a is at position
i. That is, the vectors look like:

a=(0,...,0,a;,ai41,...,an)", a; %0,
V:(vl,...,vj_l,1,0,...,())T.

Let T,y = I + va". We consider the possible cases for i and j to prove the following result.

Proposition 5.2. Let T,y = I + va' be the transvection defined by nonzero vectors a,v withv'a = 0
and the last nonzero entry of v equal to 1. Let j be the index of the last nonzero entry of v and i the index
of the first nonzero entry of a. If i > j, then T,y € B. Ifi < j, then

Ta,v € st—l S Si1SiSiel 'Sj—IB‘

The case i = j does not occur.

Proof. Caseli> j.Ifi > j, thenT,y € B. To see this, suppose k > [. Then
Tay(k, 1) = (va" )y =via; =0

because via; can only be nonzero if k < j <i < [. Now, we can count how many transvections satisfy
this. There are (¢ — 1)¢"* choices for a (because a; must be nonzero) and ¢’ ~! choices for v (because
v; is fixed at 1). In total for this case, there are

n—1

Z Z(q—l)q" ‘P == g g T g+ )
j=li=j+1 Jj=1

n—1

=(q-1 ) ¢ 1" Z(q" )

j=1
=(n—1)q"-1—(1+q+...+q" H=mn-1g""'-[n-1],.

Case 2 i = j. In this case, v'a = a; # 0. This does not satisfy the condition v'a = 0, so this case
cannot occur.
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Case 3 i < j. The transvection is of the form

1 i J n
1
1d * *
i
Tav= :
a,v : Na,v % ,
J
: 1d
n
where
lL+ayvi  aivi aiovi -+ a;vi
aivist 1+ ai1visl Gipoviger -0 ajvign
Na,v =
a; Aisl 1+ aj
Then,

Tav=Yj-1(vj1) o yirt Vir1) - yi(L+a;") - yiri (—apa;) . yjoi(=ajoiaih) - A,

where A is the upper-triangular matrix

a; iyl ... Aj-1 —l—aj
Id ‘ * ‘ k O 1 0 Vit
A= [0 [b] =| withb=|g o :
0 [0]1d 00 0 1 -v
00 0 0 -a;!

See Appendix A for details of this row reduction calculation.
To count how many transvections fit Case 3: There are

o ¢" ! choices for aj,1, ..., an.

o g — 1 choices of a;.

o ¢! choices of vy, ..., vi_i.

o /717 choices of v;,...,v,_; to satisfy a;v; +... +v;_1a;_1 +a; = 0.

The total is

qnfi(q _ 1)qiflqj717i — (q _ 1)qn7i+j72 — (C] _ l)qn—lf(j—i)qZ(j—lfi)H
= (g - l)qn—]—(j—[)ql(sij)'

Proposition 5.2 now enables the proof of Theorem 5.1.
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Proof of Theorem 5.1. Let C[G] be the group algebra of G = GL,(q), and Z(C[G]) the center. Then
since transvections are a conjugacy class, the sum of transvections is in the center,

D= ZTM € Z(C[G)).

Since D commutes with every element of C[G], we can compute

Dlg=D1}=15DlIg= ) 1sTayls

a,v
= Z 15Tavlgs + ZTa,V]lB = Z 1+ Z 1psi1s
a,v: a,v: a,v: a,v:

i>j i<j i>j i<j
=((n-Dg" " = [n-1l)Is+ > (g-1g" U g 0 1ps;1p
1<i<j<n
=((n=-1g" " = n-1lls+(g-1) > g1,
I<i<j<n

6. A single coset lumping

This section develops the correspondence between B\G L,,(g)/B double cosets and flags and describes
the random transpositions Markov chain in this setting. This description is useful for analyzing specific
features of the Markov chain. If {w,};>¢ is the induced chain on S,,, then {w,(1)};>0 is a process on
{1,...,n}. Thinking of w € S,, as a deck of cards, this is the evolution of the label of the ‘top card’. It
is the lumping of the chain on §,, onto cosets S,,/S,,—1. The main result, Lemma 6.11 below, shows that
the top card takes only a bounded number of steps to reach stationarity.

Remark 6.1. If Q is any probability measure which defines a random walk on G, then the process
induced by multiplication on the left by Q on left cosets G /K, for any subgroup K C G, is always
Markov. This is the special case of Proposition 2.4 with H = {id} (similarly, if Q defines a random walk
by multiplication on the right, then it always induces a Markov chain on right cosets H\G). There are
many examples of random walks lumped to single cosets, for example, [26], for which the properties of
Q are used to analyze the mixing times of the lumped Markov chain.

6.1. Flag representation

The subgroup B gives rise to the quotient GL,,(g)/B. This may be pictured as the space of ‘flags’.

Definition 6.2. Here, a flag F' consists of an increasing sequence of subspaces F = F| C F, C ... C F},
with dim(F;) = i. The standard flag is

E ={(e;) c{ef,er)...C{ep,...,e,).

Indeed, GL,(g) operates transitively on flags, and the subgroup fixing the standard flag is exactly
B. There is a useful notion of ‘distance’ between two flags F, F’ which defines a permutation.

Definition 6.3. Let F, F’ be two flags. The Jordan—Holder permutation w(F, F’) is a permutation
w=w(F,F’) € S, defined by w(i) = j if j is the smallest index such that

F;_y +F],- 2 F;.
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The Jordan—Holder permutation distance satisfies
w(F,F)=w(F',F)"" and w(F,F")=w(MF,MF’) for M € GL,(q). (6.1)
A thorough development with full proofs is in [1].
Lemma 6.4. For M € GL,(q) and E the standard flag,
M e BuB & w=w(E,ME).

6.2. Top label chain

This representation is useful for analyzing a further projection of the chain on S,,: Let {w; };>¢ denote the
Markov chain on S,,. Let P; (-, -) denote the marginal transition probabilities of the first position. That is,

Pl(.lvk) :P(a)t+1(1) = k | wt(l) :j)7 ]’k € {1,,”}
If w is distributed as 7, then the marginal distribution on {1, ..., n} of the first card w(1) is

I(w) j-1 j-1
mg1(j) == P(w(l) = j) = Z 4q _ q _q

[nly!  l+g+...+q" 1 [nly’

w:w(l)=j

Lemma 6.5. For 1 <i,j <n,

(q _ I)an+j—3

1@ =D -1y
PrGD =4 (1 21 4 (g = 12! — 1)

("= D(g"' -1 ’

Remark 6.6. Observe that for i # j the transition probabilities can be written

oo g’ (¢-1Dg"*\ _ o (g =1g"?
P = | ) =m0 ()

. . [((g=Dg"? (¢ - Dg"?
Pl(J,J)=7rq,1(J)-(qqn_l—_ql)Jf(l‘qqn-l—_ql)'

Write p := ((¢ = 1)¢"2)/(¢"~! = 1). This provides another description of the Markov chain: At each
step, flip a coin which gives heads with probability p, tails with probability 1 — p. If heads, move to a
random sample from 7, ;. Otherwise, don’t move.

Remark 6.7. Though the Markov chain P; on {1,...,n} was defined via lumping from a chain on the
group GL,(q) with ¢ > 1 a prime power, note that the transitions are well defined even for ¢ < 1. If
g < 1, then the Mallows measure 7, is concentrated at the identity permutation and P1 (i, j) is largest for
j = 1. Note also that the description in Remark 6.6 is also valid since p = ((¢ - 1)¢"2)/(¢""' =1) < 1
forall g > 0.

Proof. 1f w(1) =i, then a flag representing the double coset has F; = e;. Recall that a transvection T
defined by vectors v, a has T'(e;) = e; + a;v. The first coordinate in the new permutation is the smallest
J such that

e +a;vC <€1,...,€j>.
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There are two cases when this smallest j is equal to i:

1. a; =0, and v can be anything: There are (¢~ — 1) possibilities for a such that @; = 0. Then there
are (¢"~! = 1)/(q — 1) possibilities for v.

2. a; # 0 and v is such that a;v; # —1 and v, = 0 for all £ > i. Note that if ;i = 1, then this is not
possible. Since the nonzero entry at the largest index in v is normalized to be 1, there are two further
possibilities:

o If v; = 1, then there are (¢ — 2) possibilities for a;, (¢*~' — 1) possibilities for the rest of v (note
that it’s not allowed for the rest of v to be 0 because then we could not get a’ v = 0), and then
q"? possibilities for the rest of a.

o Ifv; = 0, then there are (¢'~' —1) /(g — 1) possibilities for v and then (g — 1)¢"~2 possibilities for a.

In summary, if i # 1, then
("' =D -1 i-1 o (@7 =D(g-Dg"?
+ -1D(g-2)g" "+
Tl g1 (@ - Dla=2a g-1

_ (@ -1+ (g - D¢ - Dg"?
(g"=D(g" "' =1) '

Now, if i # j we consider the two possibilities.

Pi(i,i) =

1. i > j: This transition will occurif a; - v; = —1 and vis such that v; > O and vy = Oforall j < k <.
Since the v is normalized so that the entry at the largest index is 1, this requires v; = 1 and a; = —1.
There are then (g — 1)g/~! such v, and for each v there are ¢~ possibilities for a. This gives in total

(g —1g™I=.

2. i < j: This transition will occur if a; # 0, v; = 1 and v = 0 for k > j. There are g’~! possibilities
for v and then (g — 1)¢"~2 possibilities for a, so again in total

(¢ = Dg"™™>.
In summary, for any i # j,
c o lg=Dg™ T (g - 1)
Pi(i,j) = =— " .
| Tn.ql (" =D(g"' = 1)

]

Lemma 6.8. Let Py be the Markov chain from Lemma 6.5 with stationary distribution ng 1. Then P
has eigenvalues {1, B} with
qnfz -1

B:qn—l_]

which is equal to B(n_1,1) from Section 3.3. The eigenvalue 8 has multiplicity n — 1. If ¢ > 1 is fixed and
n large, then B ~ 1/q.

Proof. Call P(i,j) = c;, and remember this is constant across all i # j. Then Pi(i,i) = p; =
1-3 j#i Cj- Let M be the matrix with column j constant ¢, so the rows are constant [c1,...,cn] and
let r = 3 ¢; be the constant row sum. Note we can write our transition matrix as

T=(1-r1+M.

Note that the diagonal entries of this matrix match what we wantsince 7'(i,7) = (1-r)+c; = 1= j4; ¢; =
Di-
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Since M has constant columns/rows it has null space of dimension n — 1. That is, we can find n — 1
vectors vj, v3, ...V, such that vM = 0. Then

vI=v((l-r)I+M)=(1-r)v
(and remember of course the other eigenvector is the stationary distribution, with eigenvalue 1). This

says that there is only one eigenvalue § = 1 — r, with multiplicity n — 1—eigenfunctions are basis of
null space of M. The eigenvalue 3 is

-1 2 n+j-3 n-2 -1 n-2 _ 1
p=1-% (¢-17q _,_4""@=1) _4q .
— (¢" = D(¢"' - 1) e
Note that this is the largest eigenvalue of the full chain on §,,. O

Remark 6.9. This lumping comes from the embedding S,-; C S, as all permutations which fix the
first coordinate. Then the coset space S, /S,-1 consists of equivalence classes of permutations which
have the same label in the first element. Similarly, we could consider the embedding S,—, C S, as all
permutations which fix the first two coordinates. This would induce a Markov chain on the space of
{(a,b) : 1 < a,b,< n,a # b}; we have not attempted to find the more complicated transitions of this
chain.

6.3. Mixing time

The mixing time of the Markov chain P; is very fast; the chain reaches stationarity within a constant
number of steps (the constant depends on ¢ but not on n). This can be proven using a strong stationary
time.

Strong stationary time

An strong stationary time for a Markov chain is a random stopping time 7 at which the chain is
distributed according to the stationary distribution. That is, if (X;);>0 is a Markov chain on Q with
stationary distribution 7, then 7 satisfies

Pr=t,X;:=y|Xo=x)=P(r =1 | Xo =x)7(y), x,y€Q. (6.2)

In words, X, has distribution 7 and is independent from 7. See Section 6.4 of [43].

A strong stationary time is very powerful for bounding convergence time. Intuitively, once the strong
stationary time is reached the chain has mixed, so the mixing time is bounded by the random time 7.
This idea is formalized in the following.

Proposition 6.10 (Proposition 6.10 from [43]). If T is a strong stationary time for a Markov chain P on
state space €, then for any time t,

max ||P' (x,-) — nllry < maxP(r >t | Xp = x).
xX€eQ xeQ

For most Markov chains it is very difficult to find an obvious strong stationary time. A simple one
exists for the chain Py, using the alternate description from Remark 6.6.

To restate the alternate description, let p = ((¢ — 1)¢™2)/(¢"~" = 1). Let {R,};>1 be a sequence
Bernoulli(p) random variables. The Markov chain {X;},>¢ defined by P; can be coupled with the
random variables R; by: Given X;,
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1. If R;y1 = 1, sample Z ~ m, 1 and set X;,1 = Z.
2. If Rl’+1 = O, set Xl’+1 = Xl"

Lemma 6.11. With {R;};>| defined above, the random time T = inf{t > 0 : R, = 1} is a strong
stationary time for {X; }s>o0. If

n—-1 _

q

t=c —m,
(g —1)g"2

with ¢ > 0,

then
P(r>1)<e“.

Proof. By the alternate description of the Markov chain P, whenever R, = 1, the next state X, is a
sample from 7, ;. That is,

X: | {R; =1} is distributed as 7y .
Then, by equation (6.2),
Plr=t,X;: =y | Xo=x)=P(r=1t| Xo =x)7g,1(y),

and 7 is a strong stationary time. The time 7 is a geometric random variable with parameter p. Note also
that 7 is independent of the starting state Xj. Then,

-1 n-2
P(r>t)=(l-p) <e P = exp(—t%) <e €,

(g"'-1)

6[n—l_l

fort=c - —1—.
orr=c (g-1)g™?

7. Some extensions

The main example treated above has G = GL,(g) and H = K the Borel subgroup. As explained
in Theorem 1.2 for any finite group, any subgroups H, K, and any H-conjugacy invariant probability
measure Q on G (Q(hsh™") = Q(s) for all s € G, h € H), the walk on G generated by Q, lumped to
double cosets H\G /K =: X gives a Markov chain on X" with transition kernel

K(x,A) = Q(HAKx™"), Acux,

and stationary distribution the image of Haar measure on G.

There are many possible choices of G, H, K and Q. This gives rise to the problem of making choices
and finding interpretations that will be of interest. This section briefly describes a few examples: Gelfand
pairs, contingency tables, the extension from G L, (g) to finite Chevally groups and a continuous example
0,-1\O0,/O,_1. We have high hopes that further interesting examples will emerge.

7.1. Parabolic subgroups of GL,,

In [39], the authors enumerate the double cosets of GL,(g) generated by parabolic subgroups.

Definition 7.1. Let @ = (ay, .. ., ag) be a partition of n. The parabolic subgroup P, € GL,(g) consists
of all invertible block upper-triangular matrices with diagonal block sizes a7y, . . ., k.

Section 4 of [39] shows that if @, 8 are two partitions of n, the double cosets P,\GL,(q)/Pg are
indexed by contingency tables with row sums @ and column sums (3. Proposition 4.37 of [39] contains
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a formula for the size of a double coset which corresponds to the table X, with 6 = 1/¢,

n, ][ ]9 n] 1[ﬁ]]0
ni,j[ 1]]6’- ’

9_n2+215i<i’51,lsj<j’5.l Xij Xy jr (1 - 9)” .

I=lal,J =Bl (1.1)

Dividing equation (7.1) by (1 — 8)" and sending § — 1 recovers the usual Fisher—Yates distribution for
partitions «, 5.

Fora = (n—1,1), 8= (1"), the contingency tables P,\GL,(q)/Pg are uniquely determined by the
position of the single 1 in the second row. That is, the space is in bijection with the set {1,2,...,n}. If
X7 denotes a table with the 1 in the second row in column j, that is, ng =1,X), =0forall k # j, then
equation (7.1) becomes

—n+n®—(j- n
g U D (g - 1) n— 11y v—q(z) (- Uq l_[(l—q)
which uses
_ _ n—1 i
(1] = (/"' =D(A/9)" > =D ...(1/g-1) _ qg' -1
ha (1/g - 1! L1t — g
:qn_qn—l'ﬁ qi—l =qn_qn—l 1 l_l(l_q)
g"=1 14 -q"! " =1 4G(g-1n 1

Dividing by |GL,(q)| = (¢ — 1)"q(§) - [n]q gives

-G-1) . (q" - qn_l)(q -1 - k _
7 (¢"~ D2(g - D" D"

Note that this distribution is equal to 7, ; from Section 6 if we map j — n — j, that is, index the

double cosets by n,n — 1,...,1 instead of 1,2, ...,n. The ‘follow the top card’ chain in Section 6 is
then equivalent to the induced chain on double cosets P,\GL,(q)/Pg from random transvections on
GLn(q).

It remains an open problem to further investigate probability distributions and Markov chains on the
double cosets of G L, (¢) from parabolic subgroups. In a reasonable sense, for finite groups of Lie type,
parabolic subgroups or close cousins are the only systematic families which can occur; see [57].

7.2. Gelfand pairs

A group G with subgroup H is a Gelfand pair if the convolution of H-bi-invariant functions is commu-
tative. Probability theory for Gelfand pairs was initiated by Letac [42] and Sawyer [55] who studied the
induced chain on

GLw(Zp)\GLn(Qp)/GL(Zp)

as simple random walk on a p-ary tree. Many further examples of finite Gelfand pairs appear in [23],
[15], [12]. These allow analysis of classical problems such as the Bernoulli-Laplace model of diffusion
and natural walks on phylogenetic trees. The literature cited above contains a large number of concrete
examples waiting to be interpreted. For surprising examples relating Gelfand pairs, conjugacy class
walks on a ‘dual group’ and ‘folding’, see [41].
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We also note that Gelfand pairs occur more generally for compact and noncompact groups. For
example, O,,/O,,_; is Gelfand and the spherical functions become the spherical harmonics of classical
physics (this example is further discussed in Section 7.5 below). Gelfand pairs are even useful for large
groups such as S, and U, which are not locally compact; see [8] and [47] for research in this direction.

7.3. Contingency tables

Simper [59] considers the symmetric group S, with parabolic subgroups S, and S, for 4 =
(A1,..., A1), 4 = (41, ..., py) partitions of n. Then S\, /S, can be interpreted as / x J contin-
gency tables {T;;}1<i<s,1<j<s With row sums A and column sums u. Such tables appear in every kind

of applied statistical work. See [24] Section 5 for references. The stationary distribution,

1 Ailuj!
T)=— :
=1 T;!

i,j

is the familiar Fisher—Yates distribution underlying ‘Fisher’s exact test for independence’. Markov chains
with the Fisher—Yates distribution as stationary were studied in [25]. If Q is the random transposition
measure on S, [59] uses knowledge of the Q chain to give an eigen-analysis of the chain induced by Q
on contingency tables.

7.4. Chevalley groups

Let G be a finite Chevalley group (a finite simple group of Lie type). These come equipped with natural
notions of Borel subgroups B and Weyl groups W. The Bruhat decomposition

G= U BwB

weW

is in force, and conjugacy invariant probabilities Q on G induce Markov chains on W. Let U be a
minimal unipotent conjugacy class in G ([11], Chapter 5) and Q the uniform probability on U. Conjugacy
invariance implies that convolving by Q induces an element of Endg (G/B). This may be identified
with the Hecke algebra of B-bi-invariant functions. James Parkinson has shown us that the argument of
Section 2.4 (for the computation of D in the Hecke algebra) goes through for a general Chevalley groups
G over a finite field F,. Although a similar formula holds in full generality, for simplicity we will state
it in the equal parameter case (nontwisted) and when G is not of type C,, with character lattice equal
to the root lattice. Let 6 be the highest root, and let Xy = {x¢(c) | ¢ € F;} be the corresponding root
subgroup. The conjugacy class of xg (1) is an analogue, for general Chevalley groups, of the conjugacy
class of transvections in GL,(g). The sum of the elements in the conjugacy class of x¢(1) provides a
Markov chain on B\G /B which acts the same way as

D=(g-1) 3, 070D ATy,

aed;y

where 6 is the highest root, @7 is the set of positive long roots, and sz denotes the reflection in the root
B and T, is the element of the Iwahori-Hecke algebra for B\G /B corresponding to the element w in
the Weyl group.

Following the ideas in [18], the T, can be interpreted via the Metropolis algorithm applied to the
problem of sampling from the stationary distribution 7(x) = Z7'¢’™*) on W by choosing random
generators. We have not worked out any further examples but would be pleased if someone would.
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7.5. A continuous example

Most of the generalities above extend to compact groups G and closed subgroups H, K # G. Then,
X = H\G/K is a compact space and an H-conjugacy invariant probability Q on G induces a Markov
chain on X.

To consider a simple example, let G = O,;, the usual orthogonal group over R and H = K = O,,_;
embedded as all m € O, fixing the ‘north pole’ ¢; = (1,0,0...,0)7. Then, O,,/O,_; can be thought
of as the (n — 1)-sphere S,,—;. The double coset space O,,—1\O0,,/ O, codes up the ‘latitude’. Consider
the sphere O, /O, defined by ‘circles’ orthogonal to e, (see Figure 1).

Then O,,-1\O,,/O, -1 simply codes which circle contains a given point on the sphere. Thus,
0,-1\0,,/O,,—1 may be identified with [-1, 1].

Represent a uniformly chosen point on the sphere as x = z/||z|| with z = (z1, 22, . . ., 2») independent
standard normals. The latitude is z; /||z|| and so 7 (x) is the distribution of the square root of a 8(1/2, (n—
1)/2) distribution on [—1, 1]. When n = 3, 7(x) is uniform on [—1, 1] (theorem of Archimedes).

One simple choice for a driving measure Q on O, is ‘random reflections’. In probabilistic language,
this is the distribution of 7 — 2UU, with U uniform on S,,_;. There is a nice probabilistic description
of the induced walk on the sphere.

Lemma 7.2. The random reflections measure on S,,—1 has the following equivalent description:

o From x € S,_1, pick a line € through x uniformly (see Figure 2). With probability 1, { intersects the
sphere in a unique point y. Move to y.

Figure 1. The space O,/ 0,1 is defined by the circles on the sphere orthogonal to e;.

Figure 2. Illustration of procedure from Lemma 7.2.
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Remark 7.3. As the lemma shows, there is a close connection between the walk generated from Q and
the popular ‘princess and monster’ algorithm. See [13]. These algorithms proceed in general convex
domains. We know all the eigenvalues of the walk on the sphere and can give sharp rates of convergence.

The induced chain on [-1,1] = O,_1\O0, /O, is obtained by simply reporting the latitude of y.
Thanks to Sourav Chatterjee for the following probabilistic description. For simplicity, it is given here
for n = 3 (so 7(x) is uniform on [-1, 1]).

Lemma 7.4. For n = 3, the Markov chain on [-1, 1] described above is; from xy € [—1, 1], the chain

Jjumps to
X; = (1= 2U})xg +2(cos(nla))|Uy 4|1 - U{J1 = x2,

where Uy,U, are i.id. uniform on [—1,1] random variables. (We have checked that the uniform
distribution is stationary using Monte Carlo.)

Remark 7.5. For a detailed analysis of the random reflections walk on O, (including all the eigenvalues),
see [51].

A. Row reduction for GL,(q)

Explicit row reduction can be performed on a general transvection to determine which B-B double
coset it lies in. This allows computing transition probabilities using the combinatorics of possi-
ble transvections, which is elementary but tedious. This section proves the following result, used
in Section 5.2.

Proposition A.1. Let T,y = [ + va' be the transvection defined by nonzero vectors a,v with via = 0
and the last nonzero entry of v equal to 1. If j > i, then

Tay €Bsj1---5i118iSi41- - 5j1B

exactly when the last nonzero entry of v is v; and the first nonzero entry of a is a;.

The transvection corresponding to a, v is
Tav(x) =x+v(a'x) so that Tav(e;) = e +a;v,

and the ith column of T, y is a;v except with an extra 1 added to the ith entry. So

l+ayvi a1 azvy -+ auvq
aivy l+axvy azvy ---  ayva
Ta,v = . . =1+ (a[vj)]si,an.
apvy avy s l+apvy,
As an example of the row reduction, take n = 5 with vs = 1,a; # 0. Then,
1+ avi asvi asvi asvi asvi
aivy l+axvy azvy asvo asvy
Tay=| aivs arvy  l+azvy agvs asvs
apvy arvy azvs 1+agve asvy
aivs asvs asvs asqvs 1 +asvs
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1+ avi azvi asvi asvi asvy
ajvy l+4azvy azvae agve asva
-1
=ya(vavs)| arvs  avs  1+asvs agvy  asvs
aivs asvs aszvs aqvs 1+asvs
0 0 0 1 vy

1 +avy azvi asvy agvq asviy

aivy 1+apvy azvy agva  asva
= ya(vavsy3(v3vsh)| aivs  aavs  asvs asvs 1+asvs
0 0 1 0 —V3V5_1

0 0 0 1 —\14\15_1

1+a1v1 asvy aszvy aavi asvi
aivs ajzvs asvs dqvs 1+a5vs
= y4(vav3Hy3(v3vsHy2 (v 0 10 0 -—wj!
0 0 1 0 —V3v;'
0 0 0 1 —1)41/5’l

aivs ajzvs asvs asvs 1 +asvs
0 —a;laz —a‘lag —aI1a4 z

1
=y4(V4vg1)y3(V3V§1)y2(v2vgl)y1(al_lvgl+v1v;1) 0 0 0 —v2v;] ,
0 0 1 0 —V3v;1
0 0 0 1 —V4v;1

with (a;lvgl + vlvgl)(l + asvs) + 7 = asvy so that

Z=asvy — (aflvgl +afla5 +vlv5_l +asvy) = —a;las - a;lvgl - vlv;l.

Thus,

Tay = ya(vav3)y3(v3vsHya(vavsHyi(ay' vy +vivsh

aivs azvs asvs asgvs 1+asvs
0 1 0 0 —vzvgl
. yz(—azal_l) 0 0 —agaI' —a4aI1 z- azvzaflvgl
0 0 1 0 —1/3\/;1
0 0 0 1 —mv;l
= ya(vavs)y3(v3vs Dy (vavsHyi (a7 v +vivst)
aivs asvs azvs a4vs 1+a5V5
0 1 0 0 —vwgl
-ya(=azaiNys(-aza;h)l 0 0 1 0 —vavg!
0 0 0 —a4al_1 z—(ayvy + a3V3)a1_1v5_1
0 0 0 1 —V4vgl
= ya(vav3Hy3(v3vsHy2 (vavsHyi(ayvst +vivsh
aivs azvs aszvs a4vs 1+asvs
0O 1 0 o0 —vav3!
ya(~aza;)ys(~aza;)ys(-~asaih)l 0 0 1 0 —Vv3vy
0 0 0 1 —Vavy
0 0 0 0 z- ((12V2 +azvsy + a4V4)aI1v§1
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1

= y4(vav3Hy3(v3vsHy2 (vavsHyi(ayvst +vivsh

avs azvs aszvs asvs 1+ asvs
0 1 0 0 —vzvg1

ya(—azay)ys(-azai)ys(-asai)l O 0 1 0 —vavg!
0 0 0 1 —vwgl
0 0 0 0 —al‘lvgl
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