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Abstract—Community detection is a fundamental problem
in network analysis and has important applications in sensor
networks and social networks. In many cases, the community
structure of the network may change at some unknown time
and thus it is desirable to come up with efficient monitoring
procedures that can detect the change as quickly as possible.
In this work, we use the Erdős-Rényi model and the bisection
stochastic block model (SBM) to model the pre-change and
post-change distributions of the network, respectively. That is,
initially, we assume there is no community in the network.
However, at some unknown time, a change occurs, and two
communities are formed in the network. We then propose an
efficient monitoring procedure by using the number of k-cycles in
the graph. The asymptotic detection properties of our proposed
procedure are derived when all parameters are known. A
generalized likelihood ratio (GLR) type detection procedure and
an adaptive CUSUM type detection procedure are constructed
to address the problem when parameters are unknown.

Index Terms—Change detection, Community detection, Erdős-
Rényi model, Bisection stochastic block model

I. INTRODUCTION

Community detection is a fundamental problem in network
analysis and has important applications in sensor networks [1]
and social networks [2]. In this work, we investigate the quick-
est detection problem of the change of the community pattern
in the network. Particularly, we assume initially, the network
follows the Erdős-Rényi (ER) model [3], [4]. That is, it starts
in the homogeneous state, all nodes are connected randomly
with the same probability, and there is no community structure
in the graph. Then, a change occurs at some unknown time,
and two different communities emerge among individuals with
similarity. This network with communities can be modeled
by the bisection stochastic block model (SBM), which is
widely studied in the literature of community detection [5]–
[7]. Therefore, this quickest change detection problem of the
community pattern can be formulated by the problem to detect
the change between Erdős-Rényi model and the bisection
SBM. This problem has many potential applications. For ex-
ample, in an online retail network, identifying the community
of customers with similar purchasing interests can be helpful
to establish an efficient recommendation system [8]. However,
it is non-trivial to develop efficient monitoring procedures due
to the computational complexity of the likelihood function in
bisection SBM.

We should mention that the Erdős-Rényi model and the
stochastic block model are two fundamental models for net-
work data in offline community detection research [5]–[7].
For a review of recent community detection work in the
SBM, see [9]. In the Erdős-Rényi model, all nodes can be
connected randomly with a constant probability. In the SBM,
nodes are assigned into communities such that two nodes
within the same community have a different probability of
being connected than the nodes from different communities.
For the problem of online community detection, [10] focuses
on the Erdős-Rényi model and consider that change will
affect the connectivity probability of edges in some unknown
subgraph. However, no research has been done on the problem
of quickest detection on the change from the Erdős-Rényi
model to the SBM model.

In the literature of sequential change-point detection,
when monitoring independent streaming data, many efficient
likelihood-based procedures have been developed, such as
Page’s CUSUM procedure [11], Shiryaev-Roberts procedure
[12]. These procedures enjoy nice optimality when the pre-
change and post-change distribution functions are fully spec-
ified [12], [13]. When the post-change parameters are un-
known, generalized likelihood ratio based procedures [14]
and the adaptive estimation of the post-change parameters
based procedures [15] are often employed to detect the
possible change. However, all these methods are based on
the likelihood functions, which are difficult to compute in the
bisection SBM.

In this paper, we focus on sparse graphs with the constant
average degree. To overcome the computational difficulty
of likelihood function in SBM, we propose computationally
efficient online monitoring procedures by the number of k-
cycles in the graph. Our proposed methods are inspired by the
fact that the number of cycles of length log1/4(N) in graph
is asymptotically Poisson distributed with different means in
both Erdős-Rényi model and bisection SBM [16]. Thus, we
propose to use the CUSUM type detection procedure based
on the number of k-cycles instead of raw graphic data directly
when parameters in the Erdős-Rényi model and the bisection
SBM are both completely specified. Then, when parameters
are unknown, we adopt the generalized likelihood ratio (GLR)
test framework to form a GLR type detection procedure. To

2022 IEEE International Symposium on Information Theory (ISIT)

978-1-6654-2159-1/22/$31.00 ©2022 IEEE 1903

20
22

 IE
EE

 In
te

rn
at

io
na

l S
ym

po
si

um
 o

n 
In

fo
rm

at
io

n 
Th

eo
ry

 (I
SI

T)
 | 

97
8-

1-
66

54
-2

15
9-

1/
22

/$
31

.0
0 

©
20

22
 IE

EE
 | 

D
O

I: 
10

.1
10

9/
IS

IT
50

56
6.

20
22

.9
83

45
62

Authorized licensed use limited to: University of Georgia. Downloaded on March 22,2023 at 17:17:09 UTC from IEEE Xplore.  Restrictions apply. 



obtain a computationally efficient algorithm, we propose to
construct an adaptive CUSUM approach borrowing the idea
from [15]. Numerical results show that the adaptive CUSUM
approach not only can be implemented in real-time due to its
recursive form, but also is able to detect the unknown change
of the community structure in the network fast.

The rest of the paper is organized as follows. We first
provide the problem formulation in Section II. The detail
of our proposed CUSUM type detection procedure and its
theoretical property are presented in Section III. We develop
the GLR type and adaptive CUSUM detection procedure in
Section IV to address the detection problem with unknown
parameters. The simulation results are presented in Section
V. Finally Section VI contains the conclusion and further
discussions.

II. PROBLEM FORMULATION

For a given network with N nodes, the graphical structure
can be observed as a sequence of undirected adjacency matri-
ces, i.e., G(1), G(2), · · · , where the adjacency matrix G(t) ∈
{0, 1}N×N characterizes the interaction information between
different nodes at each time t, i.e., G(t)

ij = 1 if and only
if there is an edge between node i and node j. Initially, we
assume G(t) follows the classical Erdős-Rényi model, which is
denoted by G(N, a+b2N ), where a, b are positive fixed constants.
In the Erdős-Rényi model, each edge between two nodes i, j is
connected randomly and independently with fixed probability
a+b
2N , i.e., P(G

(t)
ij = 1) = a+b

2N . Then, at an unknown time
τ , the distribution of G(t) changes and follows the bisection
stochastic block model (SBM) with the same average edge
degree. We denote the bisection SBM as G2(N, aN ,

b
N ). In the

bisection SBM, each node i ∈ {1, · · · , N} is assigned with a
label σi ∈ {±} with probability 1

2 . Then each edge between
two nodes i, j is connected with probability a

N if σi = σj and
probability b

N if σi 6= σj , i.e., P(G
(t)
ij = 1|σi = σj) =

a
N and

P(G
(t)
ij = 1|σi 6= σj) = b

N . Therefore, after the change,
the network has two different communities. In our study,
we focused on the assortative network, which implies that
two nodes from the same community are more likely to be
connected, i.e., a > b.

In this case, the problem of change-point detection between
the Erdős-Rényi model and bisection SBM can be formulated
by the following hypothesis testing problem:

H0 :G(t) ∼ G(N, a+ b

2N
); t = 1, 2, · · · ,

H1 :G(t) ∼ G(N, a+ b

2N
); t = 1, 2, · · · , τ − 1,

G(t) ∼ G2(N,
a

N
,
b

N
); t = τ, · · · , (1)

where τ is the unknown change point. The problem (1) is
illustrated in Fig 1. The objective is to raise an alarm as
quickly as possible after the change occurs.

An online monitoring scheme for detecting the change-
point can be defined as a stopping time T , which can be
viewed as the time when we raise an alarm to declare

that a change has occurred. Here T is an integer-valued
random variable, the decision {T = t} is based only on
the observations in the first t time steps. To evaluate the
performance of T, we denote the probability measure and
expectation as P(∞) and E(∞) when the data G(t)’s are i.i.d.
with distribution G(N, a+b2N ), and use P(τ) and E(τ) to denote
the same when the change occurs at time τ and G(t)’s have
the post-change distribution G2(N, aN ,

b
N ). Under the standard

minimax formulation for online change-point detection [13],
the performance of a stopping time T is evaluated by the
average run length (ARL) to the false alarm, E(∞)(T ) and
the worst-case detection delay

D(T ) = sup
τ≥1

ess supEτ [(T − τ)+|G(1), · · · , G(τ−1)]. (2)

An efficient online monitoring scheme T should have a small
detection delay D(T ) subject to the false alarm constraint

E(∞)(T ) ≥ γ (3)

for some pre-specified large constant γ > 0.
We should emphasize that the reason why we consider

the change-point detection problem where the pre-change
distribution is G(N, a+b2N ) and the post-change distribution
is G2(N, aN ,

b
N ) is that both models have the same average

number of edges as (a+ b)(N − 1)/4. Thus, it is non-trivial
to detect such change by simply monitoring the number of
edges in the graphic network.

Fig. 1. The pre-change graphs follow the classical Erdős-Rényi model
G(N, a+b

2N
). After time τ , the structure of graphs changed. The post-change

graphs follow the bisection SBM G2(N,
a
N
, b
N
). There are two communities

in the bisection SBM, the nodes in the same community have the connectivity
probability a

N
(solid line), while the nodes belong to the different communities

have the connectivity probability b
N

(dashed line).

III. OUR PROPOSED DETECTION METHOD WITH KNOWN
PARAMETERS

In this section, we proposed our detection procedure to
solve the change detection problem in (1). We start with
the cumulative sum (or CUSUM) procedure, which has been
widely used when the pre-change and post-change distribu-
tions are completely specified.

Specifically, for the detection problem (1), under the null
hypothesis, i.e., G(t) ∼ G(N, a+b2N ), the likelihood function of
G(t) for can be written as

L0(G
(t)) =

∏
1≤i<j≤N

(
a+ b

2N
)G

(t)
ij (1− a+ b

2N
)1−G

(t)
ij . (4)
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Under the alternative hypothesis, after the change point τ , the
graph G(t) follows G2(N, aN ,

b
N ), and the likelihood function

of G(t) can be expressed as

L1(G
(t)) =∑

σ∈{±}N
∏

1≤i<j≤N (pij(σ))
G

(t)
ij (1− pij(σ))1−G

(t)
ij

2N
, (5)

where

pij(σ) =

{
a
N , σi = σj ,
b
N , σi 6= σj .

Then, the CUSUM statistic can be written as a recursive form:

W
(t)
CUSUM = max(W

(t−1)
CUSUM + log(

L1(G
(t))

L0(G(t))
), 0). (6)

The CUSUM procedure is then defined as the first time when
the CUSUM statistic exceeds some pre-defined threshold c.
That is, the CUSUM procedure is given by

TCUSUM(c) = inf
{
t :W

(t)
CUSUM ≥ c

}
, (7)

where the threshold c is a pre-set constant to control the
false alarm rates. The CUSUM procedure enjoys nice optimal
properties when the pre- and post-change distributions are
known [13].

Although the CUSUM statistic has a recursive form, it is
computationally expensive to compute the updated CUSUM
statistic in (6) sequentially due to the 2N terms in the sum-
mation when calculating L1(G

(t)) in (5), especially when the
number of nodes N is large. To overcome the computational
difficulty, we proposed a detection procedure based on the
number of k-cycles of the network. In graph theory, k-cycles
refers to a circuit with k vertices in which only the first
vertex (which is also the last) appears twice. Our proposed
procedure is inspired by the fact that the number of k-cycles
are approximately Poisson distributed in both the Erdős-Rényi
model and the bisection SBM but with different means, see
[16]. This result is summarized in the following lemma.

Lemma 1. For a graph G(t) with N nodes, let’s denote
X

(t)
k as the number of k-cycles of graph G(t). If k =

O(log1/4(N)), we have
1) If G(t) ∼ G(N, a+b2N ), then X(t)

k
d−→ Poi(λk);

2) If G(t) ∼ G2(N, aN ,
b
N ), then X(t)

k
d−→ Poi(λk(1 + δk)),

where
λk =

1

2k
(
a+ b

2
)k, δk = (

a− b
a+ b

)k.

Therefore, instead of constructing the CUSUM procedure
in (7) by using the pre-change and post-change distributions
of the graph G(t) directly, we can use the pre-change and
post-change distributions of the number of the k-cycles X(t)

k .
Specifically, we propose to consider the following change
detection problem of X(t)

k :

H0 :X
(t)
k ∼ Poi(λk); t = 1, 2, · · ·

H1 :X
(t)
k ∼ Poi(λk); t = 1, · · · , τ − 1

X
(t)
k ∼ Poi(λk(1 + δk)); t = τ, · · · , (8)

where
λk =

1

2k
(
a+ b

2
)k, δk = (

a− b
a+ b

)k. (9)

Then, when the parameters a, b are known, we can derive
the CUSUM statistic of X(t)

k by

W
(t)
C = max(W

(t−1)
C +X

(t)
k log(1 + δk)− λkδk, 0), (10)

and the corresponding monitoring procedure can be written
by

TC(c) = inf{t :W (t)
C > c}. (11)

Note that the monitoring procedure proposed in (11) is
computationally simple because at each time, it only need
to count the number of k-cycles in each graph, which can
be obtained by efficient algorithm such as depth first search
(DFS) [17].

Moreover, by the properties of classical CUSUM [13], we
can derive theoretical properties of our proposed method.

Theorem 1. If k = O(log1/4(N)), we have E∞(TC(c)) ≥ ec.
Moreover, when γ →∞, we have

D(TC(c)) ∼
c

I
, (12)

where
I = λk(1 + δk) log(1 + δk)− λkδk,

is the Kullback–Leibler (KL) divergence between the distribu-
tion of Poi(λk) and Poi(λk(1 + δk)).

By Theorem 1, we can see by setting c = cγ = log γ, our
proposed method TC(cγ) satisfies the false alarm constraint in
(3). In the meantime, the corresponding detection delay satis-
fies D(TC(cγ)) ∼ log(γ)/I. Let m = (a−b)2

2(a+b) . Then we should
notice the detection delay D(TC(cγ)) ≤ 6k log(γ)/(mk).
This result implies the detection performance of our proposed
method depends on whether m > 1 or not. If m > 1
and k � log log γ, the upper bound of the detection delay
goes to 0, which implies that our proposed procedure (10)
can detect the change very quickly. However, if m < 1,
the upper bound will go to infinity as k → ∞. This result
implies the detection delay of our proposed procedure will
be large when m < 1. This phase transition phenomena
is consistent to the well studied phenomena in the offline
community detection literature [16]: if m < 1, no consistent
tests exist to distinguish the ER model G(N, a+b2N ) and the
bisection SBM G2(N, aN ,

b
N ). If m > 1, consistent tests are

available to distinguish these two models.

IV. DETECTION PROCEDURES WITH UNKNOWN
PARAMETERS

Although our proposed detection procedure TC(c) in (11)
is computationally simple and also enjoys good theoretical
properties, its implementation requires the full information
of parameters a, b, which may be unknown in practice. In
this section, we proposed a GLR type detection procedure
and an adaptive detection procedure to address the problem
when the parameters a, b are unknown. On the high level, we
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still monitor the process by counting the number of k-cycles
X

(t)
k . Based on Lemma 1, when k = O(log1/4(N)), the pre-

change and post-change distributions of X(t)
k follow Poisson

distribution with different means depending on the unknown
parameters λk, δk. Thus, it is suffice to construct detection
procedures that can estimate λk, δk sequentially.

For the estimation of λk = 1
2k (

a+b
2 )k, note either in pre-

change or post-change distribution, the expectation of number
of edges is (a + b)(N − 1)/4. Therefore, we can use the
number of edges in each graph to estimate λk. Specifically,
for the observed graph G(t), denote the corresponding number
of edges by |E(t)|. Then, we propose to estimate λk by

λ̂k,t =
1

2k
(
2|E(t)|
N

)k, (13)

which is consistent in both pre-change and post-change dis-
tributions. Then, we adopt the generalized likelihood ratio
(GLR) framework to solve the change-point detection problem
with unknown δk. The key idea of GLR is that, when the post-
change model involves unknown parameters, GLR statistic
finds the maximum likelihood estimate (MLE) of the post-
change parameter and plugs it back into the likelihood ratio
to form the detection statistic. Without knowing where change
occurs beforehand when calculating the GLR statistic, we
need to search over all possible change locations.

Specifically, the log-likelihood ratio statistic of problem (8)
when t ≥ τ is

R(τ, λk, δk) =
t∑
i=τ

(X
(i)
k log(1 + δk)− λkδk). (14)

Using the observed post-change samples of the number of k-
cycles X(τ)

k , X
(τ+1)
k , · · · , X(t)

k , we can get the MLE of the
unknown parameter δk by

δ̂k,t =
Mt −Mτ−1

λ̂k,t(t− τ + 1)
− 1,

where Mt =
∑t
i=1X

(i)
k and λ̂k,t defined in (13).

Then, we can get

R(τ, λ̂k,t, δ̂k,t) = (Mt −Mτ−1)[log
(Mt −Mτ−1)

(t− τ + 1)λ̂k,t
− 1]

+ (t− τ + 1)λ̂k,t.

The GLR statistic at time t is

W
(t)
G = max

1≤τ≤t
R(τ, λ̂k,t, δ̂k,t), (15)

and the corresponding detection procedure is defined by

TG(c) = inf{t :W (t)
G > c}, (16)

where the threshold c is a pre-set constant to control the false
alarm rates.

However, it is not computationally efficient to apply this
procedure because we need to recalculate MLE and update
the GLR statistic in (15) when a new data is coming. To

save the computation cost, we adopt the adaptive CUSUM
approach proposed by Lorden and Pollak [15] and propose
an adaptive detection procedure for the online community
detection problem in (1). The key idea is to replace the
unknown parameters λk, δk in the CUSUM statistic in (10)
by their adaptive estimations. In that way, we can get the
following adaptive CUSUM statistic:

W
(t)
A = max(W

(t−1)
A +X

(t)
k log(1 + δ̂k,t)− λ̂k,tδ̂k,t, 0).

(17)

Here, we propose to use the same λ̂k,t as in (13). For δ̂k,t,
we propose to adopt the post-change parameter estimation
approach in [15], which has a nice recursive form. That is, at
each time t, the CUSUM-type detection statistics can produce
a candidate post-change time v̂ ∈ {0, 1, · · · , t − 1} and thus
the observations X

(v̂)
k , X

(v̂+1)
k , · · · , X(t−1)

k can be used to
estimated the unknown parameter δk.

Specifically, at time t, denote v̂ as the largest i ∈
[0, 1, · · · , t − 1] such that W (i)

A = 0, and denote Tt and St
as the total number and the summation of observations X(i)

k ’s
between the candidate post-change time v̂ and time step t−1,
i.e.,

Tt = t− v̂, St =
t−1∑
i=v̂

X
(i)
k .

For the Poisson distribution, the MLE of the post-change mean
λk(1+ δk) is St/Tt. Assume ρ is the smallest shift of δk that
is meaningful in practice, we can then estimate δk at time t
by

δ̂k,t = max(ρ,
St

Ttλ̂k,t
− 1). (18)

Then, the adaptive CUSUM detection procedure is given by

TA(c) = inf{t :W (t)
A > c}. (19)

From the algorithm viewpoint, our proposed algorithm can
be recursively implemented as follows. Let S0 = T0 =

W
(0)
A = X

(0)
k = 0, and δ̂k,0 = 0. For time t ≥ 1, W (t)

A is
updated by (17), where λ̂k,t is defined in (13), δ̂k,t is defined
in (18) and

(
St
Tt

)
=



(
St−1+X(t−1)

k

Tt−1+1

)
, if W (t−1)

A > 0(
X

(t−1)
k

1

)
, if W (t−1)

A = 0

(20)

From above equation (17) and (20), we see the detection
statistics W (t)

A ’s can be computed recursively as the part of
three-dimensional vectors (St, Tt,W

(t)
A ).

Therefore, our proposed detection procedure TA(c) in (19) can
be implemented fast.
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V. SIMULATION STUDY

In this section, we report the simulation results for our
proposed CUSUM type detection procedure TC in (11), the
GLR type detection procedure TG in (16), and the adaptive
CUSUM detection procedure TA in (19). We assume that
before the change, the graph G(t) follows the Erdős-Rényi
model G(N, a+b2N ). After the change, the graph G(t) follows
the bisection SBM G2(N, aN ,

b
N ). We set two different sizes

of graph N , the total number of nodes, as 100 and 500.
For connection probability, we consider two settings (a, b) =

(5, 2), (8, 2), where the corresponding threshold m = (a−b)2
2(a+b)

is m = 0.64 and m = 1.8, respectively. Moreover, we set
k = 3 for all of our methods, so that the number of cycles
with 3 edges for each graph is used to detect the change of
community pattern.

For all detection procedures, we conduct 100 Monte Carlo
simulations to search the thresholds c to satisfy the false alarm
constraint with γ = 1000. Using the obtained threshold for
each method, we then simulate the detection delay when the
change occurs at time τ = 1 based on 100 Monte Carlo
simulations. The average and standard deviation of detection
delays of three procedures under different parameter settings
for N = 100 and N = 500 are summarized in Table I and
Table II, respectively.

a = 5, b = 2(m = 0.64)
TC(c = 2.8) 79.4(2.62)
TG(c = 9.3) 80.2(3.10)
TA(c = 5.3) 81.6(3.04)

a = 8, b = 2(m = 1.8)
TC(c = 6.6) 16.9(1.18)
TG(c = 11.9) 12.4(1.10)
TA(c = 5.3) 14.8(1.14)

TABLE I
COMPARISON OF DETECTION DELAY FOR THREE DETECTION

PROCEDURES WHEN N = 100 AND γ = 1000

a = 5, b = 2(m = 0.64)
TC(c = 3.0) 77.5(2.54)
TG(c = 7.3) 79.9(2.92)
TA(c = 5.5) 79.8(3.13)

a = 8, b = 2(m = 1.8)
TC(c = 5.3) 11.6(0.78)
TG(c = 7.8) 13.9(0.69)
TA(c = 5.9) 10.9(0.69)

TABLE II
COMPARISON OF DETECTION DELAY FOR THREE DETECTION

PROCEDURES WHEN N = 500 AND γ = 1000

From Table I, by comparing the detection delays of the
same procedure under different settings when N = 100, we
see when m > 1, all three procedures have much smaller
detection delays compared with the situation when m < 1.
This result matches our theoretical results in Theorem 1 that
when the graph size N is large, it is easier to detect the change
of the community pattern when m > 1 compared to the case
when m < 1. From Table II, we get similar results when

N = 500 . That is, when m > 1, our proposed procedures
can detect the change quickly.

Moreover, when a = 8, b = 2, we can see an interesting
and counterintuitive result. In this case, we find the detection
delays of the GLR type and adaptive CUSUM procedure have
smaller detection delays compared with the CUSUM type
procedure, which is constructed using the true parameters.
One possible explanation for this phenomena maybe because
all of these methods are trying to detect the change of
community patterns by counting the number of k-cycles in
each graph. The Poisson approximation in Lemma 1 is used
to construct these methods. However, for some finite values
of k and N, the estimation error may be large so that we may
lose some information of original graphs. Therefore, CUSUM
type detection procedure TC with correct parameters may not
has the smallest detection delay.

All simulations were conducted on a Windows 10 Laptop
with Intel i7-8750H CPU 2.20GHz using Python 3.8. In the
procedure of conducting 100 Monte Carlo simulations for TG
and TA, computation time for the GLR type procedure TG
and adaptive procedure TA differ greatly. When we determine
the thresholds for different procedures, we can simulate the
detection delays of TG and TA. For example, when a = 8, b =
2, it takes about 93.8 minutes for GLR type procedure TG
to simulate the detection delays in that 100 Monte Carlo
simulations. For adaptive procedure TA, it takes about 1.0
minute to simulate the detection delays for 100 Monte Carlo
simulations. We see although the GLR type procedure TG has
smaller detection delay compared to the adaptive CUSUM
procedure TA, it takes much longer time to compute and
implement that method. The computational advantage of TA
is evident.

VI. CONCLUSION

We study the problem of quickest detection of the change
of the community structure from the ER model to the bisec-
tion SBM model. Computationally and statistically efficient
detection procedures are constructed by using the number of
k-cycles in the graph. An interesting future direction would be
to explore the optimality for such change detection problem.
Moreover, the proposed framework may be extended to solve
the quickest detection problem of the general stochastic block
models.
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