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ABSTRACT ARTICLE HISTORY
High-throughput plant phenotyping (HTPP) has become an emerg- Received 26 January 2022
ing technique to study plant traits due to its fast, labor-saving, accu- ~ Accepted 12 November 2022
rate and non-destructive nature. It has wide applications in plant KEYWORDS

!:reeding and crop management. However, the _resulting massive Supervised learning; ADMM
image data has raised a challenge associated with efficient plant algorithm; online detection;
traits prediction and anomaly detection. In this paper, we propose adaptive cusum; plant leaf
a two-step image-based online detection framework for monitoring area; high-throughput plant
and quick change detection of the individual plant leaf area via real- phenotyping (HTPP)

time imaging data. Our proposed method is able to achieve a smaller

detection delay compared with some baseline methods under some

predefined false alarm rate constraint. Moreover, it does not need to

store all pastimage information and can be implemented in real time.

The efficiency of the proposed framework is validated by a real data

analysis.

1. Introduction

Agriculture is facing global challenges associated with meeting the demands of a growing
population under dwindling natural resources, climate change, and increased frequency
and intensity of extreme weather events. To meet the growing demands for food, fiber,
biofuel, and feed, global crop production needs to double by 2050 [33]. One promising
solution is to accelerate the development of crops with desirable traits (e.g. improved yield,
and abiotic and biotic stress resistance) via traditional and emerging breeding and molec-
ular technologies. Technological innovations in the past decade resulted in two major
advances in plant sciences, the development of next-generation genetic sequencing and
high-throughput phenotyping [10]. Although significant advancements have been made
in sequencing the genetic material of economically important crops, the high-throughput
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assessment of phenomics traits associated with the expression of these genes has lagged
behind. In fact, plant phenotyping has become the bottleneck in the process, due to
its costly and labor-intensive nature [11]. Also, efficient plant phenotyping is needed in
crop management, such as irrigation and disease control [7]. Traditional low-throughput
methods of measuring plant traits often rely on plant scientists and student workers man-
ually measuring destructively or non-destructively crops. With the rapid advancements
in imaging techniques, including visible (red, green, blue; RGB), multispectral, thermal,
hyperspectral, and fluorescence imaging, high-throughput plant phenotyping (HTPP) has
enabled new prospects for non-destructive plant traits measurement [40]. Without the
need of destructive sampling, HTPP is able to acquire plant images regularly during the
whole life cycle of the plant. The sampling frequency is usually much higher than the
traditional methods. It makes it possible to monitor plant traits in real time and detect
any significant change [9]. Yet, the new technology raises a challenge in the analysis, that
is developing efficient statistical models to predict plant traits and monitor plant growth
dynamics or stress based on a huge volume of plant imaging data [8].

To address this challenge, several efforts have emerged in recent years to address HTPP
image analysis, modeling, and detection. Adams et al. [1] proposed a novel approach on
image labeling to segment plants from the background with supervised learning methods
using RGB images of maize plants. Xu et al. [42] used functional data analysis to study
the maize plant growth dynamics with the extracted plant sizes from RGB images. Wang
et al. [41] developed an R package called ‘implant’ for RGB plant image segmentation and
functional data analysis of the extracted plant traits. Bashyam et al. [3] developed an auto-
mated leaf tracking method to determine corn plant growth based on image segmentation
analysis. To evaluate whether the traits of plants under some treatment are significantly
different from those measured in healthy plants at a given time point, say fy, researchers
usually use statistical hypothesis testings, such as two sample ¢ test and ANOVA F test, or
classification algorithms, such as support vector machines, only with image data collected
at fg. Behmann et al. [4] applied classification algorithms such as support vector machines
to separate the drought-stressed plants from the well-watered plants with hyperspectral
images. Asaari et al. [2] used a spectral similarity measure and F test to monitor water stress
and recovery with hyperspectral images in real time. Romer et al. [36] used simplex volume
maximization for feature extraction from hyperspectral images and applied MANOVA test
for the real-time drought detection. However, without utilizing the historical plant traits
information prior to the given time tp, those methods are not optimal in terms of making
the quickest detection of plant traits change under the false alarm rate constraint. In this
paper, we focus on developing a real-time image-based plant traits monitoring and detec-
tion model, which is efficient in computing and can achieve a smaller detection delay by
integrating the plant traits information up to the time ;.

Efficient online change detection methods with time-series data are well established and
have been widely applied in many areas such as quality control [16], financial analysis [18],
medical condition monitoring [5], and climate change detection [15]. The classical version
of this problem, where one monitors independent and identically distributed (iid) uni-
variate or low-dimensional multivariate observations, is a well-developed area, and many
classical procedures have been developed such as the Shewhart chart [38], Page’s CUSUM
procedure [27], EWMA chart [34], and Shiryaev-Roberts procedure [35,39]. These proce-
dures enjoy nice optimal properties when the pre-change and post-change distributions are
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fully specified [22,29]. When the post-change parameters are unknown, generalized likeli-
hood ratio based procedures and the adaptive CUSUM based procedures are often used to
detect the possible change [17,21,23]. Yet, to the best of our knowledge, efficient CUSUM-
based detection methods have not been established in the area of high-throughput plant
phenotyping.

We proposed a two-step image-based online detection method to detect when an indi-
vidual plant leaf area growth changes its dynamics, for instance, would slow down under a
given stress, e.g. drought. First, we developed an efficient supervised learning algorithm
to extract plant leaf area from the multiview RGB images. Then, we proposed to use
the adaptive CUSUM procedure [23] to monitor the standardized relative change of the
predicted plant leaf area. There are three advantages of our proposed method. First, our
proposed framework of monitoring and quick detection of the individual plant leaf area
via the real-time imaging data is general and can be used to monitor other features of
the plant. Second, due to the recursive format of the adaptive CUSUM statistics, our pro-
posed method does not need to store all past image information and can be implemented
in real time. Therefore, our proposed method can be used to monitor a large number
of plants simultaneously. Third, our proposed method does not rely on the true post-
change information. Instead, given the minimal magnitude of the meaningful change based
on some domain knowledge, our method can estimate the true post-change information
adaptively and detect the change fast. To validate the efficiency of our proposed frame-
work and method, we conducted a case study on the data sequence of multiview RGB
images of 100 soybean plants, which were collected almost every 2 days over a 2-month
period at the Nebraska Innovation Campus Greenhouse, High-Throughput Plant Pheno-
typing Core Facilities (Scanalyzer 3D, LemnaTec Gmbh, Aachen, Germany), University of
Nebraska-Lincoln. The soybean plants were randomly split into a control group (watered,
80% field capacity) and a treatment group (water-stressed or drought, 40% field capacity).
Our method allowed the detection of small and significant changes in plant leaf area growth
over time under water-stress or drought treatment.

This paper consists of four sections. Section 1 is the introduction. OQur proposed image-
based plant monitoring and detection method is presented in Section 2. To validate the
efficiency of the method, a case study is given in Section 3. We conclude the paper in
Section 4.

2. Methods

Our proposed image-based plant monitoring and detection method include two steps,
which will be presented in Section 2.1 and Section 2.2 respectively. First, an efficient super-
vised learning algorithm is developed to predict the plant leaf area with multiview RGB
images. Second, we introduce the adaptive CUSUM procedure to detect the time when the
individual plant leaf area growth has been affected by drought.

2.1. Model for plant leaf area

Suppose the study was conducted during the time period [0, T] with # plants. Let y;(¢) be
the ith plant leaf area at time t, where t € [0, T], i = 1,2,...,n. To obtain plant leaf area
measurements, a subset of plants was destructively sampled. Specifically, for the destructed
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plant, all plant material above soil is harvested and fractionated into leaves, stems, and pods,
and leaf area is then measured by a leaf area meter. Consequently, we can only have one
leaf area measurement per destructed plant. For notation simplicity, we assume the first ny
plants were harvested and their leaf areas were measured. For 1 < i < ny, denote by y;(t;)
the measured leaf area of the ith plant collected at time ;. The destructive sampled time
points t;s range from the early plant growth stage to the late stage.

To recover the full trajectory of the leaf area of any single plant in the study, we propose
a statistical model to predict the plant leaf area with the non-destructive high-throughput
multiview RGB images. The number of plant leaf region pixels from the RGB images is
essential for the leaf area prediction. To extract this information, we use the enhanced green
index 2G/(R + B), where R, G, and B represent red, green, and blue intensities of plant
images at the pixel level, respectively [13]. Suppose that there are n plants in the study and
plant images were taken in p different views with resolution m; x my. Let v;;(f) be the
enhanced green index of the kth pixel of the ith plant image taken from view j at time t.
The larger the enhanced green index of a pixel is, the more likely it is within the plant leaf
region. The number of leaf region pixels can be appropriately estimated by the following
threshold-based statistics:

mimy

xij(t;€) = Z s>y 1=<j=p, (1)
k=1

where c is the threshold parameter. Indeed, those pixels with the enhanced green index
above ¢ will be counted as leaf region pixels.

By intuition, plant leaf area is related to the numbers of leaf region pixels from the mul-
tiview images. More specifically, it is positively correlated with the leaf pixel number from
a single view, given those from all other views being the same. Hence, the expected plant
leaf area can be modeled as a linear function of leaf pixel numbers from multiview images
with non-negative coefficients. Specifically, we write the ith plant leaf area at time t as

r
i) =) Bij(ts ©) + €i(d), ©)

j=1

where B > 0,1 < j < p and €;(t)s are independent stochastic process.

Let B = (B1,...,Bp) . Since multiview images taken for a single plant are highly cor-
related, model parameters § would be poorly estimated with classical least-squares meth-
ods. We apply the penalized least squares method with the Lasso penalty for parameter
estimation. Specifically, we will solve the following optimization problem:

A A . 1
(B,©) = argming..q cp 51l — X (B3 + Bl (3)

where y = (y1(t1), - - - ¥, (tn,) T, X(0) = (xi(t;3 ©)) is the ny x p design matrix, A is the
complexity parameter, and || - ||; and || - ||; denote £, and £, norm, respectively.

Note that given ¢, the above optimization is a Lasso regression with the non-negative
coefficient constraint, which can be solved by developing the alternating direction method
of multipliers (ADMM) algorithm [6]. Specifically, given ¢, the 8 optimization in (3) can
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Table 1. Algorithm: Parameter estimation based on ADMM algorithm.

e Setadensediscretecy,...,cn. A
e  For each given ¢ = ¢, estimate B via the ADMM algorithm and denote by B ;. Let | be the identity matrix and
(x)+ == x1p=0}, ¥x € R.Forthe kth iteration,
=YD = X©TX(©@ + )T X Ty = »© + o).
k+1 3 k41 .
TV = (v 0+ BV =0 = b
_y(k+1) — },{k} +p(B +1) —x(“”)_
e C=g¢ and,@ = ,@m, where £ = arg min,:1_2__.__N%||y — )((q)ﬂmlli + l,||,@m||1, where , is obtained by cross
validation.

be solved by a standard ADMM algorithm by introducing a new variable x € RP?, that is

. _ 1
(ﬁﬂ=ﬂ@mmkmmﬂ45h—x@m@+WMh+hw%ﬁzxL (@)
where I, () is defined as, for any k € R?,

0, ifx=0,

00, otherwise.

14@:{

To solve (4), we can minimize the augmented Lagrangian function given a penalty
parameter p > 0,

1
Lﬂﬁmﬂzjw—x©mﬁ+WHh+hw)

1
+yWﬁ—w+5mm—M@ (5)

where p is the Lagrangian multiplier. The above optimization can be solved by running
three-step iterations till convergence:

Bstep: B*Y —argminL, (ﬁ,x(k), y(k)), (6)
kstep: k™D =argminL, (ﬁ(kH),lc,y(k)), (7)
ystep: p&D = y® +p(ﬁ(k+1) _ k_(k+1)). (8)

Moreover, both 8 step and k step in (6) and (7) have the closed-form solutions, which will
be given in Table 1. Hence, our proposed algorithm is efficient.

To sum up, we first pick a dense discrete set c,. .., cy. Given each ¢;, we estimate
with the above ADMM algorithm, where the tuning parameter A is obtained by cross-
validation. Then, ¢, the estimate of ¢, will be the c; that leads to the smallest value of the cost
function, and B will be the corresponding estimator obtained from the ADMM algorithm.
The details of the algorithm are given in Table 1.

Suppose that the ith plant images were taken at £; time points, i.e. ty, k = 1,2, .., £;. The
ith plant leaf area at time f; can be predicted by

P
ilti) =) Byxij(tus ©). ©)

j=1

Then, the full trajectory y;(t), t € [0, T of the ith plant leaf area is estimated using penal-
ized smoothing spline [14,32], where the function g; is a natural cubic spline with knots at
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ti1, ti, - -+ , tig; that minimize
£
Cg) =Y _Giltir) — giltw))* + afg§’(u)2du (10)
k=1

and « is a nonnegative smoothing parameter which can be selected by cross-validation.

Remark 2.1: For greenhouse plant images, since the background of images is homoge-
neous, the proposed predictive model works well and fast. In more general applied scenar-
ios, such as plant images in the fields, semantic segmentation is commonly used to extract
the plant features from images [25]. However, to conduct the semantic segmentation, it
needs a large amount of labeled data and the annotation cost is particularly expensive as
it requires pixel-wise labeling. Thus we recommend using the proposed method when the
background of images is homogeneous, and applying semantic segmentation methods for
plants images with more complicated background.

2.2. Adaptive change detection method

After obtaining the predicted plant leaf area g(t) from (9, 10), we are ready to present our
monitoring and adaptive change detection method for each plant.

Specifically, for every plant trajectory g(t), we take N discrete equispaced time f; =
kT/N,k =1,2,...,N,over the interval [0, T] and denote the corresponding fitted leaf area
measurement for the ith plant as g; x = gi(tx). Note the number of samples N is determined
by how often we can take the image data x; ;.

To reduce the temporal correlation and increase the detection efficiency, we propose to
monitor the standardized relative change to detect the potential change on the leaf area.
For the ith plant at time index k, we denote the relative change as

8ik — 8ik—1

- , (11)
8ik—1

ik =
where k> 1 and let r;; = 0. The relative change r; is one version of relative growth rates
defined by researchers in plant science, which has reduced temporal correlation and has
been widely used in plant growth analysis [30]. Since the mean and variance of the relative

change process r;; vary with the time index k, we further standardize r;; by

rik — T,
Zig = 22—, (12)
Srk

where 7y and s, are the sample mean and sample standard deviation of relative change at
time index k for all plants in the control group.

After standardizing those relative changes, we assume those z; ;’s are i.i.d with standard
normal distribution N(0, 1) for the control samples and have some unknown mean shifts
for those drought samples, i.e. with normal distribution N (i, 1). Here y quantifies the mag-
nitude of the change for the drought group compared with the control group. Furthermore,
the time when the mean shift occurs is unknown and may vary from plant to plant.

If we had known the exact post-change mean y, we would essentially face the problem of
testing the hypotheses in the change-point model where z; 5, . . ., z;,,_; areiid. fo(x) = pdf
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of N(0,1) and z;,, . .., ziy are i.i.d. fi(x) = pdf of N(u, 1). At each time k, we repeatedly
test the null hypothesis Hp : v = 00 (no change) against the alternative hypothesis Hj :
v = 1,2,... (a change occurs at some finite time v). Thus the log-likelihood ratio statistic
at time k becomes

[T—1fo(zie) ne v+1f1(z1£)

i = max log (13)
t I<v<k Hg 1f0(zn‘3)
which can be recursively computed as
Wiy = max (W}y_; + pzik — 1/2,0), (14)

fork =1, 2, ..., with the initial value W* = 0. In the literature, the statistic W"‘ in (14)
was first deﬁned by [27] and is called cumulatlve sum (CUSUM) statistics. The CUSUM
procedure is then defined as the first time when the CUSUM statistic exceeds some pre-
defined threshold b: that is, the CUSUM procedure is given by

7 (b) = inf{k > 1: W} > b}, (15)

which enjoys theoretical optimality [22,26].

However, in our context of plant leaf area monitoring, we do not know the exact value
of the post-change mean y except that u < —§, where § is the minimal magnitude of the
change that we want to detect. Thus we cannot use the CUSUM W}, in (14) directly. One
natural idea is to estimate the post-change mean of the ith plant u; from observed data, and
then plug in the estimated fi; into the CUSUM statistics in (14). For that purpose, at time
k, denote by Vi the largest £ < k — 1 such that W', = 0. Then the generalized likelihood
ratio properties suggest that Dy, is actually the maximum likelihood estimate of the change-
point v at time k, and thus one would expect that the data between time [V, k] would be
likely from the post-change distributions, which allows us to provide a reasonable estimate
of the post-change mean fi; at time k. This idea was first rigorously investigated in [23]
for detecting positive mean shifts of normal distributions, and here we aim to detect the
negative mean shifts. Specifically, at time k, for the ith standardized relative change z;x’s,
we define S;k, Tix by

k-1
Tix =k—", Six= Zzi,j- (16)

=0

Then, the estimate of the post-change mean of z;x can be written by

. . [ Sik+s )
i = min : , =0 <0, 17

Here t > 0, s < 0 are prespecified constants, and s/t can be thought of as a prior estimate of
the post-change mean.
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By plugging the adaptive estimations fi;x of the post-change mean y in the CUSUM
statistics in (14), we can derive the adaptive CUSUM statistics by

Wik = max (Wik—1 + fikzik — Aix/2, 0), (18)

where Wjp = 0. Based on the adaptive CUSUM statistics, our proposed monitoring
procedure can be defined by

7i(b) = inf{k > 1 : Wi > b}, (19)

where b is a constant that can control the false alarm rate.
From the computation viewpoint, the adaptive CUSUM procedure can be implemented
in real time due to its recursive form. That is, based on the definition of (S;, Tjx) in (16),
they can be computed recursively over k by
if Wig—1 > 0,
Tij—1+1 ) 1

)
Tix)
b (g) if Wix—; =0.

Remark 2.2: We should mention that our proposed two-step monitoring framework in
HTPP is very flexible. Besides of the adaptive CUSUM procedure, many classical statistical
process control (SPC) methods can be used in the second step of our proposed framework.
Here, we introduced the adaptive CUSUM as an example and will show it outperforms
some classical methods such as Shewhart chart, EWMA chart, standard CUSUM in a case
study in the following section. However, as shown in [22,23], the optimality of the adap-
tive CUSUM requires the i.i.d assumption, which may not hold in practice. Thus some
advanced monitoring procedures that can handle the non i.i.d data, e.g. [19,20,31], may
also be used in the second step of our proposed framework.

(Si,k—l + zZik

3. Case study

In this section, we will apply our proposed method to the soybean plant data collected at
the Nebraska Innovation Campus Greenhouse, High-Throughput Plant Phenotyping Core
Facilities (Scanalyzer 3D, LemnaTec Gmbh, Aachen, Germany), University of Nebraska-
Lincoln. In Section 3.1, we will introduce the detailed experimental design and the data
description. The plant leaf area prediction and detection results will be presented in
Section 3.2. We compare our proposed method with exact CUSUM procedures and the
classical Shewhart chart.

3.1. Experimental design and data description

The experiment was conducted in the Nebraska Innovation Campus Greenhouse, High-
Throughput Plant Phenotyping Core Facilities (Scanalyzer 3D, LemnaTec Gmbh, Aachen,
Germany), University of Nebraska-Lincoln. One hundred soybean plants were sown on
July 3, 2019, among which 50 were randomly assigned to the drought treatment group and
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Figure 1. A sequence of side view images of one drought soybean plant taken on July 18, August 7,
August 23, and September 8, respectively.

the other 50 were assigned to the control group. Between July 3 and July 17, a uniform
watering rate was applied to both groups to ensure all soybean plants were established well
before the water treatments. From July 18, the pots were transferred onto automated con-
veyor belts, with an automated weighing and watering station where the change in pot
weight as a result of water evaporation and transpiration can be quantified, and prescribed
amounts of water can be precisely applied to the desired level. For the control group, water
was added to the pots to a targeted weight of 7 kg (representing 80% field capacity), while
water was added to the pots daily to a targeted weight of 5kg (representing 40% field
capacity) for the drought group.

From July 18, 2019, to September 8, 2019, pots were moved into the imaging chamber
with RGB camera (maker: Basler) every 2 days. Multiview images were taken at 10 different
angles (9 side views at 0, 36, 72, 108, 144, 216, 252, 288, and 324 degrees, and 1 top view at
90 degrees) with side view resolution 6576 x 4384 and top view resolution 4384 x 6576
(see Figure 1).

At seven time points during the experiment, a total of 66 plants were destructively sam-
pled (July 29, August 2, August 9, August 14, August 23, August 30, and September 6).
Six plants were sampled at the first date, and 10 plants were sampled at subsequent sam-
pling points. For each destructed soybean plant, all plant material above soil was harvested
and fractionated into leaves, stems, and pods, and leaf area was measured by a leaf area
meter (LI-3100C, LI-COR Biosciences, Lincoln, Nebraska, USA). Thus, after destructive
sampling, these plants were destroyed and no further images of those plants can be taken.

At the late stage of the experiment, some branches of soybean plants were tied to the
stake in the middle to avoid problematic movement on the conveyor belt because the plants
got bushy. Correspondingly, the projected areas of plant images taken after tying decreased.
But this did not have an impact on our experiment, since plant leaf growth started to slow
down much earlier than the date of tying the branches, which occurred on August 21.

3.2. Results

In this section, the proposed methods in Section 2 are applied to detect when the leaf area
growth of the individual soybean plant would slow down due to drought stress.
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We trained the predictive model (2) for plant leaf area with the plant RGB images and
observed leaf areas. One thing to note is, at the late stage of the experiment, the branches of
soybean plants were tied to the stake in the middle to avoid problematic movement on the
conveyor belt because the plants got bushy. Correspondingly, the projected areas of plant
images taken after tying decreased. To this end, we separated the 66 destructed plants into
two groups. The first 36 plants without tying were used to fit model (2) to predict the plant
leaf area growth in the early and middle stages of the experiment, while the remaining
plants were used to fit the same model to do prediction in the late stage. The detected
change in this study occurred about 20 days earlier than the date of tying the branches,
which was August 21. Thus, to avoid the tying effect, we only used the first 36 destructed
plants to fit model (2). We used 25 of them for training and the other 11 for testing. The
tuning parameter A was selected by cross-validation and the predicted R? in the testing set
is 0.93. We predict plant leaf areas at every time point when plant images were taken before
August 21 using (9) and further obtained the predicted leaf area of each individual soybean
plant at the semi-day frequency with the penalized smoothing spline method.

Figure 2 (a) shows the smoothed mean growth curves of the leaf area in the control
group and the drought group, while Figure 2(b) shows the mean difference of the standard-
ized relative change between the control and the drought treatment. Both results show that
the mean leaf areas of the soybean plants in the control group are significantly different
from those in the drought group, and the difference appears around 13 days after July 18.
However, this argument is established at the population level. Later on, we will use our pro-
posed change detection method to provide such information at the individual plant level.
We also observe a higher standardized relative change in the drought group around 25
days after July 18. One potential reason is that the well-watered plants might have passed
their fast growth period and started to grow toward their maximum sizes, the plant growth
would slow down. Correspondingly, the standardized relative changes z would decrease.
However, the plants under drought stress need longer time to grow up. So compared to the
well-watered plants, they might have higher standardized relative changes in some periods.
Yet, since it occurred about 12 days after the mean change was detected, it would not affect
the validity of our detection method.

To detect when the leaf area of the individual plant under drought treatment becomes
different from control, we monitor the standardized relative change as in (12) obtained
from our predictive model. Based on it, we will compare the following four methods:

e Our proposed adaptive CUSUM method in (19), which is denoted by T,(b).

e The exact CUSUM method in (15), with some specific choices of post-change mean p.
We denote this method by T¢(b, w).

e The one-sided EWMA chart ([34]), which is denoted by Tewma(b) := inf{k > 1,:

—Mj > b x \/ﬁ[l — (1 — 1)%k), where My = Az + (1 — A)Mj_q, A is the chosen
weight.

e The one-sided Shewhart chart [38], which is denoted by Ty (b) := inf{k > 1,: —zx >
b}.

Note for our proposed method T (b), the tuning parameter §, which represents the min-
imal magnitude of the change, can be selected by the practitioners based on the domain
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Figure 2. (a) The smoothed mean growth curves of the leaf area in the control and the drought treat-
ment group; (b) the mean difference of the standardized relative change between the control and the
drought treatment group. Here, day 0 corresponds to July 18, the first day when plant images were taken.

Table 2. Acomparison of the average detection delays of the four meth-
ods using the standardized relative change with in-control average run
length as 60 based on 10, 000 repetitions in Monte Carlo simulation.

Method Specific Detection delay
Adaptive CUSUM Ta(b = 4.15) 11.39 (0.58)
CUSUM T.(b=439,u=—1) 11.73 (0.57)
T.(b=537,u=—2) 12.34(0.56)
One-sided EWMA Towma(b = 2.56,A = 0.1) 14.88 (1.40)
Tewma(b = 2.75,4. = 0.2) 13.27 (1.31)
One-sided Schewhart chart Tsc(b = 3.42) 15.26 (0.51)

Note: The standard error of detection delays are reported in the bracket.

knowledge. Here, we simply set § = 1 and show the results for illustration. Furthermore,
wealso sett = 1,5 = —1 for our method. And we set A =0.1 and 0.2 for the EWMA chart.

To evaluate the performance of the four methods, for each value of threshold b, we
conduct 10, 000 Monte Carlo simulations to simulate the average run length by random
sampling with replacement from the control group. Then, we search for the appropriate
value of the threshold b such that the average run length to the false alarm of each proce-
dure equals to 60 in the control group (N = 60), so that the false alarm rate keeps the same
across the four methods. Then, using the obtained b for each method, we identify the time
when the procedure raises an alarm for each of the 50 plants in the drought group. Since we
do not know the true change time for each plant, we consider a worst-case scenario when
the true change occurs at the beginning of the time series in the drought group. Thus the
time when the monitoring procedure raises an alarm can be thought of as the worst-case
detection delay. To compare the performance of the four methods, the average and stan-
dard error of the worst-case scenario detection delays of the 50 plants in the drought group
are summarized in Table 2.

Table 2 demonstrates that our proposed method has the smallest detection delay com-
pared with other methods. While it is not surprising that our adaptive CUSUM procedure,
the exact CUSUM procedures, and the EWMA chart are faster than the classical Shewhart
chart method due to the cumulative properties, we can observe an interesting phenomenon
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Figure 3. Left: Adaptive CUSUM statistics of one plant from the control group; Right: Adaptive CUSUM
statistics of one plant from the drought group.

that our proposed method is also better than the exact CUSUM. One possible explanation
is that with our proposed method, the unknown true post-change parameter y is estimated
adaptively from the observed data, while the preset y in the exact CUSUM method could
be away from the true value. Thus our proposed method yields better results. In addition,
by comparing the two exact CUSUM results, we found that the average detection delay of
the one with the smaller post-change (i = —1) is much closer to the proposed adaptive
CUSUM procedure, indicating that the absolute magnitude of the actual change is likely
smaller than 1.

It is important to mention that the detection delays reported in Table 2 indeed represent
the worst-case scenario of the delay, where the change happened at the initial time. How-
ever, in practice, individual drought plants may start to change at a different unknown time.
Thus it would be very challenging to get the actual average detection delay for all plants in
the drought group.

To have another illustration of our proposed method, in Figure 3, we show our adaptive
CUSUM statistics for one plant from the control group and one from the treatment group.
The statistics are very small for the plant in the control group, but become very large after
day 15 for the plant under drought stress. This phenomenon implies the adaptive CUSUM
statistics are good indicators for the change.

4, Conclusion

In this paper, we developed a framework of monitoring and quickest detection of the indi-
vidual plant leaf area via real-time imaging data. An efficient ADMM-based algorithm
was developed to extract the plant leaf area from the multiview RGB images and the
adaptive CUSUM procedure was then proposed to detect the individual plant leaf area
change in real time. To the best of our knowledge, efficient detection methods have not
been established in the area of high-throughput plant phenotyping. We validated the pro-
posed framework with multiview RGB images of 100 soybean plants, which were collected
almost every 2 days from the greenhouse at the University of Nebraska Lincoln in about 2
months. With our proposed online image detection framework, the monitoring and detec-
tion can be implemented in real time without keeping all past images in storage. The
result showed our method had the smallest detection delay compared with other meth-
ods. Further, although the proposed framework was illustrated based on plant leaf area, it
can be generalized to monitoring and detection of other morphological, physiological, and
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biophysical plant traits or indices, such as height, width, size, biomass, water content, nor-
malized difference vegetation index (NDVTI), photochemical reflectance index (PRI), and
other well-established VIs extracted from hyperspectral images or other types of images
[2,12,24,28,37]. Our results contribute to the solutions that aim at addressing the bot-
tleneck in HTPP research and will allow the development of tools for fast and efficient
linkages between phenomics traits and genomics expression to speed up the selection of
genotypes and improve the decision-making process of plant breeders and plant scientists.
Besides, the real-time monitoring procedure is helpful for crop management in precision
agriculture, such as irrigation and disease control.
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