Downloaded via UNIV OF KANSAS on October 28. 2021 at 15:22:17 (UTC).

See https://pubs.acs.org/sharingguidelin

EC

research

Industrial & Engineering Chemistry Research

pubs.acs.org/IECR

Process Designs for Separating R-410A, R-404A, and R-407C Using
Extractive Distillation and lonic Liquid Entrainers

Ethan A. Finberg and Mark B. Shiflett*

Cite This: https://doi.org/10.1021/acs.iecr.1c02891 I I Read Online

ACC ESS ‘ [l Metrics & More ] Article Recommendations | > Supporting Information

ABSTRACT: Hydrofluorocarbon refrigerants are being
phased out over the next two decades due to their high
global warming potential. To separate and recycle
refrigerants that form azeotropic mixtures, current
distillation methods are inadequate and a new technology
is required. Extractive distillation using an ionic liquid as
the entrainer offers a solution. Vapor liquid equilibria data
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for refrigerants difluoromethane (HFC-32), B
chlorodifluoromethane  (HCFC-22), pentafluoroethane
(HFC-125), 1,1,1-trifluoroethane (HFC-143a), and 1,1,1,2- ‘ = HFC-32
tetrafluoroethane (HFC-134a) in ionic liquids 1-ethyl-3- ° YHFC-125 ;
methylimidazolium bis(trifluoromethylsulfonyl)- imide = A
([C2C1im][Tf2N]) and 1-butyl-3-methylimidazolium hexa- | HFC Solubility | | Process Design |

fluorophosphate ([C4Ciim][PF¢]) were fit with the

Peng-

Robinson equation of state to simulate the separation of four

azeotropic refrigerant mixtures (R-404A, R-407C, R-4104A, and R-410A + HCFC-22) and to develop rate-based and
equilibrium models in ASPEN Plus. Process flow diagrams were developed and optimized based on a set of
physical and chemical constraints. The goal was to optimize the parameters to achieve refrigerant grade (>99.5

1. INTRODUCTION Toward Hydro
Hydrofluorocarbons (HFCs) have been wused as
refrigerants globally since the 1990s and replaced
chlorofluorocarbons (CFCs) and
hydrochlorofluorocarbons (HCFCs), which were linked
to the depletion of the Earth’s ozone layer. Even though
HFCs have zero ozone depletion potential, some HFCs
have a high global warming potential (GWP) ranging
from 1000 to 5000! on a 100-year basis where COz =
1.0. The European Fluorinated Greenhouse Gas (EU F-
Gas) Regulations,? the Kigali Amendment to the
Montreal Protocol,3* and most recently in 2020, the
American Innovation and Manufacturing (AIM) Act,’ all
plan to reduce climate change by significantly reducing
the production and use of HFCs over the next two
decades. The refrigerant industry is currently
transitioning to the next-generation refrigerants,
hydrofluoroolefins (HFOs), and HFO/HFC refrigerant
blends, to replace HFCs in many applications.® This
will require the recycling and repurposing of HFC
mixtures; however, many are azeotropic or near
azeotropic (i.e, R-404A,” R-407C2 and R-410A%10),
making the separation difficult or impossible using
current distillation methods. HFCs such as HFC-32 with
a lower GWP = 677 can be used in new refrigerant
mixtures such as R-454 composed of HFO-1234yf
(2,3,3,3-tetrafluoropropene) and HFC-32 (di-
fluoromethane). Higher GWP HFCs such as HFC-125
(Gwp

= 3170) and HFC-143a (GWP = 4800) can be
potentially

utilized as new feedstocks for fluorinated polymers.
Project EARTH (Environmentally Applied Research


https://pubs.acs.org/action/showCitFormats?doi=10.1021/acs.iecr.1c02891&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.iecr.1c02891?ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1=%22Ethan%2BA.%2BFinberg%22&field2=AllField&text2&publication&accessType=allContent&Earliest&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1=%22Mark%2BB.%2BShiflett%22&field2=AllField&text2&publication&accessType=allContent&Earliest&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.iecr.1c02891?goto=articleMetrics&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.iecr.1c02891?goto=recommendations&%3Fref=pdf
https://pubs.acs.org/doi/10.1021/acs.iecr.1c02891?goto=supporting-info&ref=pdf
https://pubs.acs.org/IECR?ref=pdf
https://pubs.acs.org/IECR?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.iecr.1c02891?fig=abs1&ref=pdf

fluorocarbons) is a multi-university effort
involving the University of Kansas, the University
of Notre Dame, Texas A&M University, and
Rutgers University funded by the National Science
Foundation (NSF), which aims to develop
environmentally responsible materials and
technology to separate azeotropic HFC mixtures
and recycle the pure component refrigerants.
Extractive distillation!! is the most widely used
technology for the separation of homogeneous
azeotropic mixtures or solvents with similar
boiling points.'? Extractive distillation separations
include organic/water, olefin/paraffin (alkene/
alkane), aliphatic/aromatic hydrocarbons, and
aromatic/ aromatic hydrocarbons.!3 Extractive
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distillation uses an additional solvent, an entrainer, to
alter the liquid phase properties and modify the
volatility of each component, resulting in a more
efficient separation. The entrainer absorbs one of the
components to carry the solute to the bottom of the
column while the other component is distilled out the
top of the column. The entrainer and the absorbed
component are
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fed into another unit operation, usually a flash column
or second stripping column, to purify the solute and
recover the entrainer. Entrainers are typically high
boiling solvents that make recovery and recycling
simple and efficient. Extractive distillation columns
contain either sieve trays or structured packing.

The defining characteristics for an entrainer are

miscibility
with the feed, absorption selectivity between the
components, and low volatility. Experimentally, these
can be measured using gravimetric and volumetric
techniques, chromatography, and ebulliometry. The
entrainer should not form any azeotropes with the feed
components. In most cases, the solvent is much less
volatile than the feed components to ensure an easy
solvent recovery and a large difference in component
concentrations. A low miscibility between the entrainer
and components can lead to two-liquid phases and
should be avoided. There are five types of entrainers
used in extractive distillation: liquid solvents, solid salts
(or dissolved salts), a mixture of liquid solvents and
solid salts, hyperbranched polymers, and ionic liquids
(ILs).'* Organic liquid solvents have been the primary
choice for entrainers, but ILs have shown higher
selectivity for many processes.!516

ILs are typically composed of a large organic cation
and an inorganic anion with a melting point defined
to be below 100
°C.17 Room temperature ILs are liquids at room
temperature.
Many ILs have high thermal and chemical stability with
a wide liquid range and negligible vapor pressure that
makes them ideal as entrainers for extractive
distillation. One trade-off of using extractive distillation
is the risk of the entrainer contaminating the distillate
product. ILs, unlike other organic solvents, have
extremely low vapor pressure (e.g., <1 X 107> Pa) that
significantly reduces the amount of IL in the distillate.
In addition, ILs can be efficiently recycled due to the low
volatility. Another interesting feature of ILs is the
ability to tune properties, such as density, viscosity, and
gas solubility for different components, to maximize
separation efficiency by selecting the appropriate
cation and anion. Experimental equilibrium data [e.g.,
activity coefficients at infinite dilution, vapor-liquid
equilibrium (VLE), and liquid-liquid equili- brium
(LLE) of binary and ternary systems] are available in
the Dortmund Data Bank and ILThermo NIST
Database.!® Extensive studies and reviews on gas
solubility in ILs!%721 have been published, but only a few
works describe the separation of azeotropic mixtures
using ILs as entrainers for extractive distillation.2? ILs
were first introduced as entrainers in 2001 by the BASF
Chemical Company and patented in 2004 by Arlt et
al.2324+ To the best of our knowledge, BASF2> and
Eindhoven University of Technology?2¢ are the only two
institutions that have published experimental results
for extractive distillation using ILs.

Process designs for extractive distillation with IL

entrainers
have been investigated for several systems, mostly for
aliphatic/aromatic hydrocarbon separation. Navarro
et al. have proposed a total of five process designs for
the separation of benzene/cyclohexane,?’
benzene/methylcycloalkanes,?8 cy-
clohexane/cyclohexene,?° toluene/n-heptane,® and the
dear- omatization of pyrolysis gasoline.3! Other authors
have also modeled benzene/cyclohexane3? and the
aromatic-aliphatic separation from naphtha.33 Designs
for dehydration from systems such as ethanol,3473°

tetrahydrofuran,3” tert-butyl alcohol,*® acetonitrile,*! and iso-
propanol*243 have also been investigated with extractive
distillation using ILs. Other proposed processes include
the use of ILs to separate
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acetone/methanol,*?  cyclopentane/neohexene,**
n-heptane/  methylcyclohexane,*> and ethyl
acetate/ethanol.*¢ However, only three proposed
designs have been published for the separation of
low boiling components with an IL entrainer [e.g.,
carbon dioxide/ethane,*’
tetrafluoroethylene/carbon dioxide,*8 and
difluoromethane (HFC-32)/pentafluoroethane
(HFC-125)].#° Recently, Asensio-Delgado et al
published a summary of all references involving
the solubility of fluorinated carbons in ILs, and
provided process designs for separating
refrigerants.>0

This study analyzes the separation of low boiling
components in binary mixture R-410A and
ternary mixtures: R-404A, R-407C, and R-410A
mixed with 10 wt % chlorodifluoromethane
(HCFC-22). R-410A was the replace- ment for
HCFC-22 in residential air-conditioning systems,
and recyclers find that these two refrigerants
often get mixed together. The compositions for R-
404A, R-407C, and R-410A are shown in Table
1 and consist of the components:

Table 1. R-404A, R-407C, and R-410A Components and
Composition

component  R-404A (wt %) R-407C (wt %) R-410A (wt %)

HFC-32 23 50
HFC-125 44 25 50
HFC-134a 4 52

HFC-143a 52

difluoromethane (HFC-32), pentafluoroethane
(HFC-125), 1,1,1,2-tetrafluoroethane (HFC-134a),
and 1,1,1-trifluoro- ethane (HFC-143a). Each
refrigerant mixture also contains at least one

binary azeotrope (e.g., R-404A has binary azeotrope
HFC-125 + HFC-143a and R-407C and R-410A have
binary azeotrope HFC-32 + HFC-125).5152 [n addition,
other azeotropes exist such as HFC-32 + HFC-143a, and
for the mixture of R-410A with HCFC-22, an azeotrope
exists between HFC-125 + HCFC-22. No ternary
azeotropes exist with R-404A, R-407C, or R-410A mixed
with HCFC-22. ILs can be used to separate HFCs,535%
and extractive distillation will be required to break the
binary azeotropes in these refrigerant mixtures.>>

ILs have high solubility for certain HFCs and HCFCs
and are excellent candidates as entrainers.5657 In this
work, the ILs, 1-ethyl-3-methylimidazolium
bis(trifluoromethylsulfonyl)- imide ([C2C1im][Tf2N])
and 1-butyl-3-methylimidazolium hexafluorophosphate
([C4C1im][PFs]) were selected as entrainers because
vapor-liquid equilibria data were available for these ILs
and the refrigerants of interest in this study. In
addition, the ILs also have a fairly low viscosity (e.g.,
[C2C1im][Tf2N] = 33.4 mPa's at 25 °©°C8 and
[C4C1im][PFé]

= 217.7 mPa's at 25 °C59) and good thermal stability (e.g,

[C2C1im][Tf2N] decomposition onset at 222 °C in air and
[C4C1im][PFs] decomposition onset at 248 ©°C in

air).°® In this work, reboiler temperatures were
maintained below 135

°C, which is a conservative temperature limit considering the

onset of decomposition temperatures for both
[Ls.61.62  The [C2Ciim][Tf:N] is considered the
preferred entrainer since it has the lowest viscosity,
the highest thermal stability, and is the most stable in
the presence of water at elevated temperatures.®3 The
other ionic liquid [C4Ciim][PFs] is also stable at
operating temperatures described in this work and in
some cases demonstrates a higher selectivity for
HFC-32 from ethane-based refrigerants such as
HFC-125 and HFC-143a.

https://doi.org/10.1021/acs.iecr.1c02891
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Common lubricants used in air conditioning and
refriger- ation systems, such as polyalkylene glycol,6*
pentaerythritol tetranonanoate,®> and polyvinyl ether
68,56 were found to have a high solubility for HFCs and
were also considered as alternative entrainers to ILs.
However, these lubricants had smaller differences in
solubility for the HFCs of interest in this work
compared with the ILs.°” In addition, the lubricants
have a much higher molecular weight than ILs that
leads to a low mass fraction solubility and a higher
solvent-to-feed ratio in extractive distillation
applications.

The goal of this project was to design process flow

diagrams
using Aspen Plus V10 for separation of azeotropic HFC
mixtures such as R-404A, R-407C, R-4104A, and R-410A
with HCFC-22 to obtain a minimum purity of 99.5 wt %
for each component. Separation of the ternary mixtures
consisted of a multistep distillation process involving
conventional distillation to remove a relatively high
boiling component in the ternary mixture, extractive
distillation to isolate a binary mixture of azeotropic
refrigerants, and a flash vessel for IL recycle.
Simulations were conducted using both equilibrium and
rate- based models. The ionic liquid [C2C1im][Tf2N] was
tested first and if the desired purity for each
component could not be achieved then [C4Ciim][PFs]
was also evaluated.

2. THERMODYNAMIC MODEL

The Peng-Robinson equation of state (PR-EoS),68:69
shown in eq 1, was used to define the equilibrium of
the system by fitting experimental data for HFC-32,
HCFC-22, HFC-125, HFC-134a, and HFC-143a in
[C4C1im][PFs] and [C2C1im]- [Tf2N].
p= RT a
Vo-b Vg - b) ey

m m m m

The PR-EoS parameters, a and b, are a function of the
pure component critical properties and Boston-Mathias
mixing parameters ki; and lj, shown in eqs 2 and 3.

kB

i

ko= kW 4+ (@7 4+

b y T )
13
I =10+ A7+
y y T (3)

The IL physical properties (T» and MW), critical
properties (Tc¢, Pe, Ve Z, Q), and ideal gas heat
capacities, ACp,c, are required in order to regress the
VLE data using the PR-EoS in the ASPEN simulation.
The boiling point temperature, Tb, and critical
properties for the ILs are considered pseudo-properties
because ILs decompose before reaching their boiling
point or critical point. Valderrama and Robles70.71
presented the group contribution method to define
critical property values for 50 different ILs, and the
estimated  values for  [C2Ciim][Tf2N] and
[C4C1im][PF¢] are summarized in Table 2. Ge et al.72
generated group contribution parameters to predict
ACpc for ILs as a function of temperature using the
Joback method, and ACric regressions as a function of
temperature are provided in Figure S1 in the

Table 2. Physical Properties for ILs

nam [C2C1im][Tf2N] [C4C1im] [PFe]
e
formula CgH{;1N3FeS,0, CgH15N,PF¢
MW (g mol?) 391.3 284.2
Ty (K) 816.7 554.6
Te (K) 1249.3 719.4
P. (MPa) 3.27 1.73
Ve (cm3 mol™) 875.9 762.5
Zc 0.2753 0.2203
Q 0.2157 0.7917

Values for all binary parameters kj and I; with
[C2C1im][Tf2N] and [C4Ciim][PF¢] are provided in
Table S1 in the Supporting Information.

The PTx for HFC-32, HFC-125, and HFC-134a in
[C2C1im][Tf;N] are shown in Figure S2,56757¢ and the
PTx for HCFC-22 in [C2C1im][Tf2N] and [C4C1im][PFs]
are shown in Figure S377 in the Supporting
Information. There is no literature data for the
solubility of HFC-143a in [C2Ciim][Tf:N], so it was
assumed to be the same as the solubility of HFC-143a
in [C4C1im][PF¢]. The solubility of HFC-125 and HFC-
143a is similar in ionic liquid [C4+Ciim]- [PFs]. Also,
the solubility of HFC-125 is similar in both ILs
[C4C1im][PF¢] and [C2C1im][Tf2N]; therefore, it is a
reasonable assumption that the solubility of HFC-
143a will also be similar to the solubility of HFC-125
in [C2Ciim]- [Tf2N], particularly at low solubilities,
which is the case for both refrigerants. Once the global
PTx phase behavior over the entire composition range
was calculated and the heat capacities correlated, the
equilibrium separation process was simulated.

LLE was observed in the PTx phase behavior (see Figure 1) for

HFC-125, HFC-134a, and HFC-143a but not with HFC-32.

3. EQUILIBRIUM AND RATE MODELS

3.1. Equilibrium Model. Equilibrium models were

based on the MESH (material balances, equilibrium,
summation

equations, and heat balances) equations to calculate

the flow

rates, compositions, temperatures, and pressures at each
stage. The model assumed that each stage was at
fite. ]ilrll g%uargdvgﬁ}élet streams in order to determine the number

of theoretical stages, JN; needed to achieve the

T
separation. Physical trays are rarely at equilibrium; therefore,
Supporting Information.

Experimental PTx data collected for HFC solubility with ILs
were fitted to the PR-EoS for [C4C1im][PFs], as shown in
Figure 1, by adjusting parameters k; and [;; with the goal
of using the minimum number of binary parameters
while minimizing error (<10% AARD). The PR-EoS has
nine parameters to fit each binary system where ki = kji
and Iy # I

https://doi.org/10.1021/acs.iecr.1c0289
1
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model to real applications. The three types of
efficiency applied to column performance are: (1)
overall efficiency (analysis comparing the
theoretical stages with the actual stages), (2)
the Murphree efficiency (single plate analysis of
the vapor and liquid equilibrium), and (3) local
efficiency (single plate analysis of the VLE).”® To
accurately determine these efficiencies,
experimental data are required, otherwise
predictions can be made with some uncertainty in
the calculations.

3.2. Rate-Based (Non-Equilibrium) Model. Rate-based

models, also known as non-equilibrium models,
for distillation were first proposed in 1982.7°
These models have grown in popularity for
various column internals, reactive distillations,
and absorption systems and can predict the
column profile without the need for estimating
column or tray efficiencies. The column
performance is calculated using rate equations and
transfer coefficients for the mass and energy
transfer through the gas-liquid interface instead
of assuming each tray or stage is at equilibrium.
The gas-liquid interface occurs on a surface

https://doi.org/10.1021/acs.iecr.1c0289
1


https://doi.org/10.1021/acs.iecr.1c02891?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.iecr.1c02891?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

Industrial & Engineering Chemistry Research

pubs.acs.org/IECR

4

Pressure (MPa)
(3]

0 0.2 0.4 0.6 0.8

Pressure (MPa)

1
Mole Fraction HFC-32

4 ' |

' LLE ( i

: c) |

3 | :
o \ H =
z, /1 .-
' 5]
g a2

# ! 4 298.15K

c‘: (=W

0 0.2 04 0.6 0.8
Mole Fraction HFC-134a

Figure 1. PTx data (O) for HFC-32 (a), HFC-125 (b), HFC-134a (c),

data (o) for HFC-125,73 HFC-134a,’* and HFC-143a.7+

283.15K
vl e e |

283.15K

I G+---

Mole Fraction HFC-143a

0.6 0.8

and HFC-143a (d) with [C4C1im][PFs]5¢ and corresponding LLE

Table 3. Physical Properties for [CoCiim][Tf:N] and [C4Ciim][PFs]

property temp. range (K) correlation C1 C
[C2C1im][Tf2N] p (kg m3) 293.2 to 473.2 z=C+ CGT 1816.5 -0.9920
U (mPa s) 272.2 to 323.2 Inz=C +C/T+CInT -138.10 9054.9
CrL (J Kt molt) 256.9 to 370.0 z=C1+ T+ 3T 362.96 0.4793
o (mN m1) 313.0 to 413.1 z=C+ CGT 51.130 -0.0514
u (mPa s) 288.2 to 313.2 z = C1 exp(C2/T) + C3 5.271 x 106 52285
CrL (J Kt mol1) 283.2 to 550.0 z=C1+ CT + C3T: 124.44 1.2403
o (mN m1) 288.2 to 313.2 z=C+ CGT 63.552 -0.06773

-9.612 x 10

aGeneralized equation provided by the NIST Database in ASPEN. PExperimental data regressed in this work.
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(tray or packing) where the bulk liquid is flowing down
the surface and bulk vapor is flowing up past the
surface. Unlike the MESH equations, the rate-based
model uses balances in the gas and liquid phases
separately and considers mass and heat transfer
resistances according to film theory by explicit
calculation of interfacial fluxes and film discretization,
accounting for the concentration and temperature
gradients in both phases.’? The rate-based model also
considers the geometry and sizing of the column
internals (trays or packings) to determine the effective
interfacial area, pressure drops, and flooding or
weeping phenomena. Rate-based models and
multicomponent mass transfer theory have led to
more realistic stage models rather than empirical

efficiency factors when incorporating nonequilibrium
effects.?!
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outlet streams. Successful application of the rate-based
method for a packed column distillation simulation
depends on the appropriate choice of prediction methods
for transport properties and the effective interfacial area
for heat and mass transfer.82 Though rate-based models
require more computa- tional effort, the added degree of
rigor is necessary for modeling separations of
components with similar boiling points and highly
non-ideal separation processes.

The higher viscosities of ILs, compared to traditional
organic solvent entrainers, can decrease the mass
transfer efficiency, leading to the rate-based
calculations and the equilibrium of the system to be a
less effective prediction for column sizing.8384 In 2013,
Quijada-Maldonado et al.?> validated the accuracy of rate-
based models with a pilot scale extractive distillation
column using an IL entrainer and 750Y Mellapak Sulzer
structured packing to separate ethanol and water. The
IL entrainer 1-ethyl-3-methylimidazolium dicyanamide
([C2C1im][DCA]) was compared with the commonly
used

https://doi.org/10.1021/acs.iecr.1c02891
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organic solvent entrainer, ethylene glycol (EG). Model surface tension that were not
prediction for the temperature profiles of both
entrainers were compared at various solvent-to-feed
ratios and distillate flowrates. Rocha, Bravo, and
Fair’'s8687 rate-based model provided the best
prediction for the pilot scale extractive distillation with
a 10% total deviation from experimental data. The
[C2C1im][DCA] achieved higher mass transfer efficien-
cies than EG over the range of solvent-to-feed ratios
tested. It is important to note that the Quijada-

Maldonado et al. simulation used experimental binary
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refrigerant mixtures (R-404A, R-407C, R-4104, and R-
410A + HCFC-22). The variables for each of these
processes are shown in Figure 3. For both distillation
processes, structured packing was used for its higher
efficiency compared with trays, thus reducing the
overall height of the column. The methodology for each
simulation began with testing the separation of the
refrigerant mixture with a (1) flash vessel, followed by
evaluating a (2) conventional distillation, and finally
using an (3) extractive distillation.

The flash vessel is a single stage equilibrium
separation dependent only on temperature, T, and
pressure, P. The flash vessel T was varied from 0 to 135
°C and P from 0.01 to 1.0 MPa. Ideally, the preferred
pressure should be close to 0.1 MPa (i.e., atmospheric
pressure), and the temperature should be close to 20 °C
(i.e., ambient temperatures) or to the feed temperature.
If the flash vessel did not achieve the desired purity and
recovery for each of the refrigerant components in
either the bottom stream (i.e., liquid) or top stream (i.e.,
vapor), then conventional distillation was modeled. It
was important to test the separation with one or two
components leaving the distillate (or vapor stream)
because two of the three components might be
more volatile (i.e., light key
components) and could be separated from the heavy
key component. Conventional and extractive distillation
columns provide additional variables to optimize, such
as reflux ratio and solvent-to-feed ratio.

4.1. Constraints and Heuristics. To efficiently

optimize

multiple variables, a set of constraints were defined and

heuristics were created. The first constraint considered
was the height of the column. The maximum height of
15 m was based on the maximum height in the
University of Kansas (KU) unit operations laboratory
high-bay area where a pilot-scale extractive distillation
column is under construction. The second constraint
was the reboiler temperature: 15 °C < Treboiler < 135 °C.
The lower temperature limit is to avoid the need for a
low temperature thermostat, and the upper
temperature limit is to avoid IL decomposition. The
most preferred case (Case 1) would have Treboiler < 100
°C and the condenser temperature, Tcondenser > 15 °C so
that the chilled water supply in the KU unit operations
laboratory can be used without the need for a low-
temperature thermostat. Case 2 would have the same
Treboiter < 100 °C, but Tcondenser > 0 °C requiring a low-
temperature thermostat. If neither of these cases
achieve the desired refrigerant purity, then Case 3
includes Treboiler < 135 ©°C. These temperature
constraints are a function of the column operating
pressure and the solvent-to- feed ratio.

A consistent heuristic in most simulations is that a liquid-
phase refrigerant feed will result in a higher distillate purity,

compared to a vapor-phase feed. In addition, the colder the

resulting in the component leaving the bottoms. This
guided whether the separation was performed with one
or two components of the ternary mixture in the
distillate.

The present simulations used a feed rate, F = 10 kg/h,
which is a recommended flow rate for a 10 cm diameter
column using 750Y Mellapak Sulzer-structured packing
(the highest surface area packing for pilot scale
operation).”3 The ASPEN rate- based model takes into
consideration the volume of the structure packing and
with a fixed column diameter, calculates the column
height. The remaining variables to optimize included
the pressure, P, feed stage, Nr, reflux ratio, RR, solvent-
to-feed ratio, S/F, and the number of theoretical stages,
Nt, for the equilibrium model or height of packing for
the rate- based model.

4.2. Optimizing Distillation. Optimizing P, Nr, RR, S/F
(for extractive distillation), and Nt or height of packing
can be challenging since some of the optimal values for
each variable are dependent on each other. The data
analysis showed that
(1) S/F, P, and Nt influenced the optimal Nr, while RR
had a very small effect, (2) P was constrained by the
resulting TReboiler and Tcondenser, SO N1 could be increased
or decreased at various P, (3) P determined the
solubility of the refrigerant in the IL depending on the
amount of solvent in the column, and (4), RR was the
final adjustable variable for optimizing the distillate
purity. The order in which the variables were optimized
were S/F — P — Nt — Nr — RR. The optimization

algorithm is
shown in Figure 4.

Figure 4. Diagram for optimizing distillate and bottoms purity
using extractive distillation.

refrigerant feed and solvent feed, the higher the distillate

purity; therefore, the feeds were set at 20 °C (ambient
temperature), so no additional cooling of the streams
was necessary. Another heuristic included the IL feed
always entering at the top of the packing, Ns = 2,
because the IL has essentially no measurable vapor
pressure. Other simulations referenced in the
introduction follow the same ap- proaches.?7~4

To achieve complete separation of each component,
the distillate rate, D, should equal either the mass
fraction of one component multiplied by the feed (D =
ziF) resulting in the component leaving the distillate, or
the mass fraction sum of the other components

multiplied by the feed (D = (1 - z)F)

Ind. Eng. Chem. Res. XXXX, XXX,
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the solid lines and extractive distillation, which requires
an additional set of variables when introducing an IL
entrainer, is represented by the dashed lines. If the
desired purity cannot be achieved within the constraints
of conventional distillation (i.e., azeotrope or close-
boiling components), then extractive distillation will be
considered for separation. If adding an IL solvent for
extractive distillation did not result in the desired purity
below a S/F = 20, then a different IL entrainer was
considered. In the current study, [C2C1][Tf2N] was the
first entrainer considered and [Cs4Ciim][PFs] was the
second choice evaluated. Once the desired separation
was achieved,

https://doi.org/10.1021/acs.iecr.1c02891
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and rate-based models provided similar optimal

the next step was to repeat the optimization process by (a)values for S/F ratlo P, N¢/Nt, and RR. This result
adjusting P to achieve the specified temperature sup] N;=70

constraints (i.e.,, cases 1, 2, or 3) and minimize the Ficpoiter = 8.7°C

reboiler heat duty. If the unit operation was an 99 -

extractive distillation column, then the next step was to
repeat the process by decreasing the S/F ratio.
Variables P and S/F ratio had the greatest impact on the
heat duty. The final step repeated the process by
decreasing the Nt or height of the packing.

A sensitivity analysis found that when separating one
refrigerant from a ternary mixture using conventional
distillation that the lower the operating pressure the 9
fewer theoretical stages required (i.e., packing height);
however, the reboiler and condenser temperatures also 95 " j
decrease and can become very cold (sub-ambient). For 5 ) - 15
example, lowering the pressure when separating HFC- Feed stage, N,
134a from HFC-32 and HFC- 125 in R-407C using
conventional distillation can significantly increase the 100
HFC-134a purity at Nt = 20 but will also decrease
TReboiler @s shown in Figure 5a. To remain within the
temperature constraint of Treboiler > 15 °C the lowest 99
operating pressure for maximizing the purity of HFC-
134a was between
0.4 and 0.6 MPa; however, this achieved a maximum
distillate purity of only 99 wt % HFC-134a. To reach
the specified HFC-134a purity of >99.5 wt %, the RR
was optimized followed by Nr (or the packing height
for the rate-based model) and the algorithm
repeated.

For extractive distillation, the opposite trend was 96

found with pressure. Higher pressures required fewer
theoretical stages or packing height to achieve the
desired refrigerant purity. Increasing the pressure
increased the refrigerant solubility in the IL entrainer,
but also increased the Treboiler. For example, increasing
the pressure when separating HFC-125 from HFC-
32 and HFC-134a in R-407C using extractive distillation
significantly increased the HFC-125 purity at Nt = 20,
but also increased Treboiler as shown in Figure 5b. There
was a large increase in HFC-125 purity when raising
the pressure from 0.8 to 1.0 MPa, but further pressure
increases provided smaller improvements in purity
with a maximum purity of about 99.4 wt % HFC-125 at
Nr = 20 and 1.6 MPa. To increase HFC-125 purity to
>99.5 wt %, the RR was adjusted, and if further
increases were required, the Nt (or packing height) or
S/F was increased. The initial values specified for
optimizing the separation processes in Section 5 were:
P =8, Nt =20 (or packing height =10 m), Nr=10,RR =
2, and, for extractive distillation, S/F = 5.

In the case of a commercial column, the capital versus
operating costs would be considered to determine the
lowest overall cost (operating and capital); this can be
conducted by increasing the column height, which
would increase product purity, avoiding the need to
increase the S/F ratio and reduce the overall heat duty.
For the current situation with a limited height of 15 m
for constructing the pilot-scale column, our goal was to
optimize columns P, S/F, and RR.

5. RESULTS

Refrigerant mixtures, R-404A, R-407C, R-4104, and R-
410A with HCFC-22, were simulated using an
equilibrium model and the Rocha et al. rate-based
model with the goal of achieving 99.5 wt % purity for
each component. The initial hypothesis assumed that
the optimized parameters for each unit operation in
the equilibrium model would be significantly different
than the rate-based model; however, the equilibrium

e =21.0°C

98 -

Wipc.1340 (WE%0)

98

97
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95
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Figure 5. (a) Sensitivity analysis for Nr as a function of Pat Nr =

20 for calculating HFC-134a bottoms purity using conventional
distillation to separate R-407C. Condenser temperatures
range from

-20.1 to 7.5 °C. (b) Sensitivity analysis for Nr as a function of P at
Nr = 20 for calculating HFC-125 distillate purity using extractive
distillation to separate R-407C. Condenser temperatures
ranged from

4.5 to 30.0 °C. (c) Sensitivity analysis using a flash vessel for recovery
of HFC-32 as a function of T and P.

benefit of rate-based models is to predict the number of
actual trays or the height of structured packing needed
for non-ideal systems. The results of the process flow
diagrams (PFD) are shown in Figure 6a-d and are based
on the rate-based model simulation and also provide the
Nt found in the corresponding equilibrium model. The
PFDs include the results for mass fractions, wi, mass flow
rates (F, S, Bn, and Du), heat duties (Q), T, P, RR, feed
locations (Ns and Nr), packing height for 750Y
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Figure 6. (a) Process for separating ternary refrigerant mixture R-404A with entrainer [C2C1im][Tf2N]. (b) Process for separating
ternary refrigerant mixture R-407C with entrainer [C4Ciim][PF¢]. (c) Process for separating binary refrigerant mixture R-410A
with entrainer [C4Ciim][PFs]. (d) Process for separating ternary refrigerant mixture R-410A with HCFC-22 and entrainer

[C4CiimPFe]
C 1T ]

Mellapak Sulzer with a 10 cm diameter, and the
theoretical stages from the equilibrium model, Nr.

Two options were considered for recovering the ionic
liquid after the extractive distillation using a flash
vessel and a stripping column. Because the ILs are non-
volatile, recovering the solvent using a single stage
flash separation was found to be optimal. The stripping
column resulted in a higher energy input and higher
reboiler temperatures. The flash vessel did require
vacuum operation, but overall the energy required was
the lowest of the two options. A sensitivity analysis for
the separation of HFC-32 from R-407C using a flash
vessel as a function of T and P is shown in Figure 5c.
Atmospheric pressure was not low enough to fully
recover HFC-32; therefore, a vacuum was required. The
small amount of refrigerant (wrer < 0.5 wt %) remaining
in the recycled IL aided in decreasing the viscosity of
the fluid and reducing pumping power; however, this
amount had to be balanced with the purity required in
the distillate from the extraction distillation column. In
the vapor stream from the flash vessel, there was a
trace amount of IL (defined as the “OUT” stream). The
PR- EoS slightly overpredicted the vapor pressure for
the IL which accounts for this loss. An outlet was added
to the flash tank to account for this loss that was
recycled back to the column (similar to how a demister
would be used if ionic liquid were entrained in the
vapor, see Figure 6a-d).

5.1. ngzration R-404A. The PFD for separating R-

4

is shown in Figure 6a. HFC-134a has a higher relative
volatility and boiling temperature compared with HFC-
125 and HFC- 143a. Separation was achieved using
conventional distillation by removing HFC-125 and
HFC-143a in the distillate and collecting HFC-134a from
the bottoms of the first conven- tional distillation
column. The optimal pressure for separating these HFC
refrigerants was about 0.3 MPa, but the pressure was
set at a minimum of 0.65 MPa to remain within the
constraint of Case 2 (Tcondenser > 0 °C). A bottoms
composition of 99.5 wt % HFC-134a was achieved
with Nr
= 29 and a packing height of 10 m. Impurities
included 0.4 wt
% HFC-143a and 0.1 wt % HFC-125.

HFC-125 and HFC-143a from the distillate could not be
separated with conventional distillation as expected because
these HFCs form an azeotrope at 46.3 wt % HFC-125 and

53.7
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wt % HFC-143a at -46.7 “C.>%°% Extractive
distillation was used with IL [C2C1im][Tf:N] as
the entrainer. The maximum constraints for the
S/F ratio of 20, packing height of 15 m, and
pressure of 0.8 MPa were required to maintain a
TRreboiler < 135

°C. Prior to connecting the recycle stream, increasing RR

decreased the distillate purity, which was not
expected, but is the result of HFC-143a returning
to the rectifying section (i.e., azeotropic section) of
the column. Also, increasing the amount of HFC-
143 returning to the column in the IL reduced the
separation efficiency. The addition of the IL recycle
stream and increasing the RR to 4.0 led to a slight
increase in the distillate purity within the
constraints specified.

The HFC-143a composition in the distillate was
about 99.1 wt % with 0.9 wt % HFC-125. The
HFC-125 absorbed in the IL exited the bottom of
the column. The HFC-125 was separated from the
IL entrainer using a flash vessel operating under a
vacuum of P = 0.01 MPa and T = 130 °C. The
purity of HFC-125 obtained was about 99.0 wt
% with 1.0 wt % HFC-143a.

Increasing the pressure above 0.8 MPa increased

the refrigeraatt. putitiRs, but also increased thew
temperature of the extractive distillation column

beyond the constraints specified in Cases 1-3.
Increasing the packing height also resulted in a higher
purity. Higher pressures (up to 2.0 MPa) and a taller
column (up to 50 m) were modeled to determine if
>99.5 wt % HFC-143a and HFC-125 purities could be
achieved. The highest HFC-143a purity of 99.5 wt % and
the highest HFC-125 purity of 99.4 wt % were
achieved at 1.1 MPa and 30 m. The separation process
was repeated with [C4Ci1im][PF¢] as the entrainer and
the maximum HFC-143a was about 83.9 wt %, and the
HFC-125 was about 81.0 wt % (see Figure S4 in the
Supporting Information). HFC-125 and HFC-143a also
have LLE (see Figure 1b,d) that needs to be carefully
considered when operating the extractive distillation
column and flash separation vessel.

5.2. Separation R-407C. The PFD for separating R-407C
is shown in Figure 6b. Similar to the separation of R-
404A, HFC-134a has a higher relative volatility and
boiling temperature than the other two components
(HFC-32 and HFC-125). Separation was achieved using
conventional distillation by boiling off HFC-32 and
HFC-125 and collecting

https://doi.org/10.1021/acs.iecr.1c02891
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HFC-134a from the bottoms. To achieve the necessary

purity of HFC-134a, the pressure was set at 0.8 MPa to

satisfy Tcondenser > 0 °C (constraint Case 2). A bottom

composition of

99.9 wt % HFC-134a was achieved with 0.1 wt % HFC-

125 with Nt = 24 and a packing height of 10 m.
HFC-32 and HFC-125 form an azeotrope at 67.8 wt %

HFC-32 and 32.2 wt % HFC-125 at -52.1 ©C529

and

extractive distillation with an entrainer was

Eﬁﬂ%‘?ﬂ]n@whe initial ASPEN model using [C C
21 2

achieved a distillate purity of 95.9 wt % HFC-125 and
95.6 wt

% HFC-32 with the constraints specified in Cases 1-3
(see Figure S5 in the Supporting Information). Because
>99.5 wt % purity was not achieved, the simulation was
repeated using [C4C1im][PFs] as the entrainer.

A purity of 99.7 wt % HFC-125 with 0.3 wt % HFC-32
was achieved at a S/F ratio of 8 and a packing height
of 10 m or Nr
= 24. The pressure was set at 1.6 MPa to keep the
reboiler temperature (TRreboiler < 135 °C) within the
constraint of Case
3. The system could be further optimized to reduce
TRreboiler and Qreboiler by decreasing the P or S/F ratio and
increasing the packing height. The HFC-32 absorbed in
the IL exits the bottoms stream and is fed into a flash
vessel at a vacuum of P =
0.05 MPa and T = 130 °C, where the HFC-32 desorbs
from
the IL. The vapor stream of the flash vessel achieved
99.7 wt % HFC-32 with 0.3 wt % HFC-134a, and the IL
recycled back to the extractive distillation column
contained about 0.13 wt % HFC-32.

5.3. Separation R-410A. The PFD for separating R-

410A

is shown in Figure 6c¢. The mixture of HFC-32 and HFC-
125 forms an azeotrope and cannot be separated with
conventional distillation; therefore, extractive
distillation is required. The initial separation using
[C2C1im][Tf2N] as the entrainer achieved a maximum
purity of 95.5 wt % of HFC-125 in the distillate and 95.5
wt % HFC-32 in the vapor stream of the flash vessel
with the constraints specified in Cases 1-3 (see Figure
S6 in the Supporting Information). This confirms from
the separation of R-407C that [C2C1im][Tf2N] is not an
adequate solvent to separate the azeotropic mixture
HFC-32 + HFC-125. Next, the separation was simulated
with [C4Ciim]- [PFs], the more selective solvent for
HFC-125 versus HFC-32, and achieved a distillate
composition of 99.6 wt % HFC-125 with 0.4 wt %
HFC-32. The system was operated with the most
preferred reboiler and condenser temperatures for
Case
1. A sensitivity analysis was performed with a packing
height of 9 m for different S/F ratios and pressures. A
column pressure of P = 1.4 MPa and S/F = 7 achieved
a distillate purity >99.5 wt % HFC-125 at a minimum
Qreboiler = 2.5 kW. The bottoms of the extractive
distillation column was fed to a flash vessel operating at
a vacuum of P = 0.01 MPa and T = 96.4 °C (equal to
TReboiler) Where HFC-32 desorbed from the IL and the
IL was recycled back to the extractive distillation
column. The vapor stream of the flash vessel achieved
99.6 wt % HFC-32 with 0.4 wt % HFC-125, and the
recycled IL contained a minimal amount of refrigerant
(0.04 wt % HFC-32).

5.4. Separation R-410A with HCFC-22. The PFD

form an azeotrope, but the mixture is near-azeotropic
and difficult to separate.

Conventional distillation was modeled for separation
of R- 410A and HCFC-22, but the maximum bottom
purity was 72 wt % HCFC-22 with trace amounts of
HCFC-22 in the distillate. Extractive distillation was
modeled using [C2Ciim]- [Tf2N] as the entrainer, but
only reached a maximum purity of
87.2 wt % HFC-125 in the distillate with the constraints

for

separating R-410A with HCFC-22 is shown in Figure 6d.
HFC-32, HFC-125, and HCFC-22 all have similar normal
boiling points (-51.65, -48.09, -40.81 °C, respectively).>! In
addition, binary mixtures HFC-32 + HFC-125 and HCFC-22

+ HFC-125 form azeotropes. The HCFC-22 + HFC-125 form
an azeotrope at approximately 5 wt % HCFC-22 and 95 wt %
HFC-125 at -48.1 °C (see Figure S7 in the Supporting
Information). Binary mixture HFC-32 + HCFC-22 does not
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repeated using [C4C1im][PFs] as the entrainer. A
distillate purity of 99.5 wt % HFC-125, 0.3 wt %
HFC-32, and 0.1 wt % HCFC-22 was

achieved within the temperature constraints of
Case 3 at a column pressure of 1.4 MPa. When
pressure was increased to achieve an even higher
purity, this resulted in a reboiler temperature
that no longer satisfied Case 3 (TReboiler < 135

°C). The bottoms of the extractive distillation column was

fed

to a flash vessel operating at a vacuum of P = 0.05 MPa and

T

= 120 °C. HFC-32 and HCFC-22 were desorbed
from the IL and the IL containing 0.12 wt % HFC-
32, and 0.03 wt % HCFC-22 was recycled back to
the extractive distillation column.

The refrigerant stream containing primarily
HFC-32 and HCFC-22 from the flash vessel was
condensed to a liquid at ambient temperature (T =
20 °C) and fed to a conventional distillation
column. Even though HFC-32 and HCFC-22 do not
form an azeotrope, conventional distillation was
not effective at separating these refrigerants to a
purity of >99.5 wt

% within the constraints provided in Cases

therefore,

extractive distillation is recommended to increase
the relative volatilities of the components. The
solubility of HFC-32 and HCFC-22 are both high in
the modeled entrainers [C2Ciim]- [Tf:N] and
[C4C1iim][PF6] resulting in low selectivity;
therefore, a new entrainer should be identified.
For this reason, conventional distillation was
modeled to determine the maximum amount of
HFC-32 that can be recovered from HCFC-22
within the constraints specified. The distillate
contained 98.5 wt % HFC-32 at the maximum
distillate rate of D = 4.5 kg/h, and the bottoms
contained 94.4 wt % HCFC-

22. The distillate rate has the largest effect on
purity, but changes the total amount of refrigerant
recovery. To increase the HFC-32 purity in the
distillate, the distillate rate of D = 4.5 kg/h was
decreased, but this also decreased the purity of
HCFC-22 leaving the bottoms and the percent
recovery of HFC-32.

A distillate purity of 99.5 wt % HFC-32, 0.4 wt %
HFC-125, and 0.1 wt % HCFC-22 was achieved at
D = 4.0 kg/h (about 90% recovery of the HFC-32),
and the bottoms contained 66.1 wt % HCFC-22,
33.7 wt % HFC-32, and 0.1 wt % HFC-125 as
shown in Figure 6d. In this case, approximately
0.50 kg/h (about 10%) of the HFC-32 was not
recovered from the bottom. To recover additional
HFC-32, more work on new entrainers with
higher selectivity is recommended.

Additional simulations were conducted outside
the current constraints (Cases 1 to 3) to
determine the highest purity that could be
achieved for both HFC-32 and HCFC-22 using
conventional distillation. A distillate composition
of 99.5 wt % HFC-32 at a D = 4.5 kg/h and a
bottom purity of 99.5 wt % HCFC-22 was possible
with a packing height of 54 m and an operating
pressure of 2 bar, resulting in reboiler and
condenser temperatures of Treboiler = -25.3 °C
and Tcondenser = =37.1 °C.
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6. CONCLUSIONS

Many commercial refrigerant mixtures such as R-404A,
R- 407C, and R-410A contain components that form
azeotropic mixtures. Some components of these
mixtures, such as HFC- 32, can be separated and reused
to prepare new low-GWP mixtures with HFO
refrigerants. Separation of refrigerants, particularly,
ozone depleting chemicals such as HCFC-22, will reduce
the amount of HFCs that have to be incinerated, which
otherwise could be recycled. Distillation is a common
process for separating refrigerant mixtures; however, if
azeotropes are present, complete separation of the
components is not possible. Extractive distillation is
a common technology used to separate azeotropic
mixtures or close boiling point solvents with the use of
an entrainer to alter the liquid phase properties and to
modify the volatility of each component for more
efficient separation. For HFC separations, ILs have been
shown to be good candidates as entrainers for
extractive distillation. ILs have negligible vapor
pressure that reduces losses in the distillate and are
chemically stable over a wide temperature range
needed for reboiler operation. In this work, simulations
are provided for the separation of R-404A, R- 407C, R-
410A, and R-410A + HCFC-22 with two IL
entrainers ([C2Ci1im][Tf2N] and [C4Ciim][PFs¢]). Equili-
brium and rate-based models using the PR-EoS were
used for the ASPEN simulations, and HFC + IL VLE data
were fit within 10% AARD over the entire
composition range.

The R-404A separation scheme was able to achieve

99.5 wt
% purity for the HFC-134a using conventional
distillation but was not able to achieve the same purity
for separating the azeotropic mixture of HFC-125 and
HFC-143a using extractive distillation and entrainers
[C2C1im][Tf2N] and [C4C1im][PFe] within the constraints
specified in Cases 1-3. The highest purity achieved in
the distillate for HFC-143a was
99.1 wt % at the maximum packing height, RR, and S/F
ratio. Additional simulations were run at higher
pressures and packing heights beyond the constraints
specified that achieved a maximized purity of 99.5 wt
% HFC-143a and 99.4 wt % HFC-125.

The R-407C separation scheme was able to achieve

99.9 wt
% HFC-134a purity with a conventional distillation
column and 99.7 wt % purity for both HFC-125 and
HFC-32 using an extractive distillation column and the
[C4C1im][PF¢] ionic liquid entrainer. The separation of
the azeotropic mixture HFC-32 and HFC-125 was not
able to achieve a purity greater than 95.9 wt % HFC-
125 using the [C2Ciim][Tf2N] ionic liquid entrainer
within the constraints specified.

The R-410A separation scheme was able to achieve

99.6 wt
% purity for both HFC-125 and HFC-32 using an
extractive distillation column and the [C4Ciim][PFs]
ionic liquid entrainer. Similar to the R-407C separation,
the [C2Ciim]- [Tf:N] ionic liquid entrainer could only
achieve 95.5 wt % HFC-125 purity in the distillate
within the constraints specified.

A separation scheme was also modeled for a mixture
containing R-410A and 10 wt % HCFC-22 to determine
what purities could be achieved and how much HFC-32
can be recovered. Purities of 99.5 and 99.7 wt % were
achieved for HFC-32 and HFC-125, respectively. In
addition, about 90 and 99.7% of HFC-32 and HFC-125

was recovered. Separation of HCFC-22 and HFC-32 was
challenging because these components have similar boiling
points. Conventional distillation did achieve separation of
these two components
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but required a packing height of 54 m and very
low Tcondenser and Treboiler; in this case, extractive
distillation with a selective solvent between HFC-
32 and HCFC-22 would be beneficial. Overall,
azeotropic refrigerant mixtures such as R-404A, R-
407C, R-4104A, and R-410A + HCFC-22 can be
separated to refrigerant purities of about 99.5 wt %
in most cases using the proper ionic liquid
entrainers. Future work will focus on
experimentally verifying these simulations using a
pilot scale extractive distillation column that is
currently under con- struction and modeling how
to separate higher component

refrigerant mixtures.
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