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While loss-gain-induced Langevin noises have been intensively studied in quantum optics, the ef­
fect of a complex-valued nonlinear coupling coefficient on the noises of two coupled phase-conjugated 
optical fields has never been questioned before. Here, we provide a general macroscopic phenomeno­
logical formula of quantum Langevin equations for two coupled phase-conjugated fields with linear 
loss (gain) and complex nonlinear coupling coefficient. The macroscopic phenomenological formula 
is obtained from the coupling matrix to preserve the field commutation relations and correlations, 
which does not require knowing the microscopic details of light-matter interaction and internal 
atomic structures. To validate this phenomenological formula, we take spontaneous four-wave mix­
ing in a double-A four-level atomic system as an example to numerically confirm that our macroscopic 
phenomenological result is consistent with that obtained from the microscopic Heisenberg-Langevin 
theory. Finally, we apply the quantum Langevin equations to study the effects of linear gain and 
loss, complex phase mismatching, as well as complex nonlinear coupling coefficient in entangled 
photon pair (biphoton) generation, particularly to their temporal quantum correlations.

I. INTRODUCTION and their coupled equations become [3, 7]

Quantum Langevin equations is a common approach 
to studying an open quantum system involving loss or 
gain, where the stochastic coupling between the system 
and its environment is molded as a set of Langevin noise 
operators [1-5]. For example, in the parametric down- 
conversion (PDC) process, a pump laser beam passes 
through a nonlinear crystal and is down-converted 
into a pair of phase-conjugated electromagnetic (EM) 
waves. In the simplest case with the perfect phase­
matching condition and an undepleted pump beam, with­
out linear loss or gain, the two phase-conjugated single­
mode fields are governed by the following coupled equa­
tions [6]

d ct-1 = M Ol 0 in Ol
fl'l “1 —in 0 T'2_

where am and dl, (m = 1,2) are the field annihilation 
and creation operators, M is the 2x2 coupling matrix, 
and « is the (real) nonlinear coupling coefficient. Here 
we consider only the forward-wave case with both fields 
propagating along the same +z direction. If losses are 
presented during the propagation of the two fields, the 
coupling matrix is

M —a.\ ift 
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where am > 0 are the loss (absorption) coefficients, 
and fm are the associated Langevin noise operators sat- 
isfying
If there is linear gain instead of loss, for example in 
channel 1, be., oq < 0, equation (3) can be modi­
fied by taking v/2a1f1 —> v/-2a1/1'. One can show 
that these Langevin noise operators are necessary to pre­
serve the commutation relations during propagation, be.

M).

Equation (3) has been widely applied for PDC pro­
cesses where the nonlinear coupling coefficient k is real 
[3, 7-9]. However, in a more general case of cou­
pled phase-conjugated fields, such as four-wave mixing 
(FWM) near atomic resonances [10-12], the nonlinear 
coupling coefficient k can take a complex value involving 
complicated atomic transitions. In this case, equation 
(3) is not valid and its solution does not preserve com­
mutation relations of the fields. What are the general 
quantum Langevin coupled equations accounting for the 
complex nonlinear coupling coefficient?

To answer the question, the common approach is to 
derive quantum Langevin equations by solving the light- 
matter coupled Heisenberg equations, which requires 
knowing microscopic details of light-matter interaction 
such as atomic populations and transitions [11-13], The 
complexity of this approach increases dramatically as 
more atomic transitions are involved and it is extremely 
difficult for experimentalists to follow, particularly in 
some situations where it is impossible to obtain full mi­
croscopic details. Then our reduced question becomes:
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Is it possible to obtain self-consistent quantum Langevin 
coupled equations from the general expression of the cou­
pling matrix? We call this the macroscopic phenomeno­
logical approach. To our best knowledge, there has been 
no published work in investigating Langevin noises in­
duced by a complex nonlinear coupling coefficient k.

In this article, for the first time, we provide a gen­
eral macroscopic phenomenological formula of quantum 
Langevin equations for two coupled phase-conjugated 
fields with linear loss (gain) and complex nonlinear cou­
pling coefficient, in both forward- and backward-wave 
configurations. The macroscopic phenomenological for­
mula is obtained from the coupling matrix by preserv­
ing commutation relations and correlations of the fields, 
which does not require knowing the microscopic details of 
light-matter interaction and internal atomic structures. 
We aim to make it readable and accessible for experi­
mental researchers in the quantum optics community.

This article is structured as follows. In Sec. II, to ful­
fill the requirement of preserving commutation relations, 
we formulate the general macroscopic phenomenologi­
cal quantum Langevin coupled equations and their solu­
tions from the coupling matrix taking into account linear 
loss (gain) and complex nonlinear coupling coefficient, 
in both forward- and backward-wave configurations. In 
Sec. Ill, taking spontaneous four-wave mixing (SFWM) 
in a double-A four-level atomic system as an example, 
we derive the coupled Langevin equations from micro­
scopic light-atom Heisenberg interaction for this special 
case. We numerically confirm that the macroscopic phe­
nomenological solution in Sec. II agrees well with the 
microscopic approach. In Sec. IV, we apply the quan­
tum Langevin theory to study effects of linear gain and 
loss, complex phase mismatching, and complex nonlinear 
coupling coefficient in entangled photon pair (biphoton) 
generation, particularly to their temporal quantum cor­
relations. We conclude in the last section V.

II. QUANTUM LANGEVIN EQUATIONS

Here we consider the two coupled single-mode phase- 
conjugated fields in either forward-wave or backward- 
wave configuration, as illustrated in Fig. 1. In the 
forward-wave configuration [Fig. 1(a)], both fields prop­
agate along +z direction through a nonlinear medium 
with a length L. In the backward-wave configuration 
[Fig. 1(b)], the two fields propagate in opposing direc­
tions. The field annihilation operators om(f, z) can be 
expressed as

<Z2(f,z)

1
V27T , 

V27T ,

z)e' .(^Z—Wt)

t(=l=^Z—wt)
(4)

where ± represents that field 2 propagates along +z or 
—z direction, for the forward-wave or backward-wave

configuration, respectively. The filed operators satisfy 
the following commutation relations

[6m (f, z), z)] = - f'), ^
[(tm (iv, z), o], (iv , z)] = SmnS[ui IV ).

In the forward-wave configuration, both fields are input 
at z = 0, or oi(0) and o2(0) are the “initial” boundary 
conditions. The general coupling matrix is [14]

Mp -o-i , Afc
, Afc (6)

where am = -i^grXm with Xm being linear suscepti­
bility, and Ak (real) is the phase mismatching in vac­
uum. In general, am is complex valued, whose real part 
Re{am} > 0 represents loss (or gain for Re{am} < 0) 
and imaginary part represents phase velocity dispersion. 
The nonlinear coupling coefficient k can also be complex- 
valued. In the backward-wave configuration, the general 
coupling matrix becomes [12, 15]

Mr = -0.1
.Afc

; Afc 
( 2 J

(7)

and the “initial” boundary conditions are oi(0) and 
o2(L): field 1 is input at z = 0 and field 2 is input at 
z = L.

One can show that, under the following unitary gauge 
transformation

Cf-l 0 " Ol
= U

Ol ' -
_C*2. 0 h'2. ®2_

(8)

the corresponding coupling matrix become

Mp(0) = UMpU1 = -o\
—in.e

.Afcl-
iO .■Afc 

( 2 J
(9)

and

Mg(6)) =UMgUt -o.\ .Afc
-i6 .Afc (10)

As physics is preserved and unchanged under the above 
gauge transformation, we take 6 = 0 throughout this 
article for convenience and simplification.

In presence of linear loss or gain, Le., Re{am} ^ 0, or 
complex nonlinear coupling coefficient, k ^ K*, the two­
mode coupled equations must include Langevin noise op­
erators to preserve the commutation relations of the field 
operators in Eq. (5). The noise operators should only 
be related to Re{am} and Im{ft}. As k is real, the cou­
pled equations in forward-wave configuration should be 
reduced to the known Eq. (3). For both forward- and 
backward-wave configurations in the same nonlinear ma­
terial, the noise origin is the same except field 2 prop­
agates along ±z direction for different configurations. 
With these guidelines, we provide quantum Langevin 
equations for the two phase-conjugated fields from their 
coupling matrix in the following subsections.
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Figure 1. Schematics of two coupled phase-conjugated electromagnetic waves: (a) forward-wave configuration, and (b) 
backward-wave configuration, k is the nonlinear coupling coefficient between the two modes.

A. Forward-Wave Configuration

In the forward-wave configuration as shown in 
Fig. 1(a), we find that its quantum Langevin coupled 
equations can be expressed in the following general form

®2_
= Mp

<(g

+ Nfr + Npi
d_

<9z

with the “initial” condition at z = 0:

0), o)n(uj , 0)j SmnS(cd cj ).

The Langevin noise operators satisfy

z), z') = - w')#(z - z')

and have the following correlations

= 0,

- /),

^.L(w,z)^(w',z')^ = = 0.

The Langevin noise matrix is given by

Np = \/-(Mf + Mp*) = Nfr + zNpp

(11)

(12)

(13)

(14)

(15)

where Nfr and Npi are the real and imaginary parts of 
the matrix Np (be., Np^ = NpR^ + zNpi^), respec- 
tively. As indicated in Eq. (14), in this work we make 
the physical assumption that the noises fluctuate about 
a mean value of zero, be., the noise sources are in their 
ground states, such that their mean occupation numbers 
are zero.

We obtain the solution of Eq. (11) at the output sur­
face z = L as the following

di (L) — gMpL Oi (o)"
at, (0)_

MF (L-z) Nfr A (A 
L/l (AJ " Npi ft (A 

LA (A dz.

(16)

Defining

MpL .1 B
C D

Mp(L-z) _

we rewrite Eq. (16) as

AW Bi(z)
Cl (A £>i(A

(17)

(18)

oi (LY "A B Oi (0)"
af2(L)_ C D at, (0)_

rL r
+ Ai (z) Bt (z

Ci (a ci e
NpR h (A 

LA (AJ + Npi ft (A 
LA (AJ dz.

(19)
We numerically confirm that the solution preserves the 
commutation relations

[am(cu, L), a^(cu , L)] = [nm(iv, 0), o)n{u: , 0)]
= 5mn5(cv — to'). (20)

Now we examine some special cases.
Case 1: We first consider the coupling matrix Mp in Eq. 
(6) where the nonlinear coupling coefficient k, is real and 
both modes have losses (Re{com} > 0) . This works for 
most PDC processes [3, 7]. Under such a condition, we 
have the following diagonalized noise matrix

Np = Nfr 

and the coupled Langevin equations 

= Mp

0\J 2Re{aq }
0 ^2Re{a2}_

d_
<9z

a i 
l4j

a i 
l4j + [y2Re{^}^J

(21)

(22)

which is the well-known result in literature [3, 7].
Case 2: k, is real, the mode 1 has linear loss (Re{ctq} = 
a > 0), and the mode 2 has linear gain (Re{co2} = — g < 
0). The noise matrix becomes

Np V2a 0 
0 iV2g (23)
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We have the following coupled Langevin equations

A 4
Az 4 Mp Ol 'VWi' (24)

The Langevin noise operators satisfy the same commu­
tation relations and correlations in Eqs. (13) and (14). 
The Langevin noise matrix is given by

Case 3: The two modes are perfectly phase-matched 
without linear gain or loss: A A: = 0, or = a2 = 0, but 
the nonlinear coupling coefficient is complex-valued k = 
1] + i£. In this case, the coupled matrix is

Mp 0 -C + by 
C — ill 0

The noise matrix becomes

(25)

Np ©(C)4C 4 l + *©(-C)v/-C 1
1 ’ (26)

1 0 J —MBh — MBi2 + —MBh — MBi2
0 -1 V MB21 MB22 MB21 MB22

= Nbr + *Nbi,
(31)

where NBr and NBi are the real and imaginary parts of 
the matrix NB, respectively. One can show that the noise 
matrix defined in Eq. (31) has the same origin as that 
in the forward-wave configuration in the same nonlinear 
material:

where ©(C) is Heaviside step function, 0(C) = 1 if C > 0, 
©(C) = 0 if C <0. The Langevin coupled equations are N, 1 0 

0 -1 Np (32)

d
02

Op
=Mp

" 1 1" \fl]
-1 1 lti\

+ ©(-()
" 1 1" \m
-1 1 ih\

(27)

Eq. (27) shows that a complex-valued nonlinear coupling 
coefficient also leads to Langevin noises even when there 
is no linear gain or loss. This is revealed by this article 
for the first time.
Case 4: As k is real and there is no linear loss or gain 
(or = o.2 = 0), the coupled equations can be written as

02
61 
-1 —

' At
2 — K 

At
61 
-1 = H

61 
-1La4J ti 2 - La4J La4J

(28)

The effective Hamiltonian H has anti-parity-time (APT) 
symmetry, which has been demonstrated in FWM in cold 
atoms [14, 16].

B. Backward-Wave Configuration

We note that the choice of noise matrix is not unique. 
For example, transformation f\ —> —f\ or/and jo —> —fo 
does not affect computing any physical observable. We 
elaborate on this more in Appendix A.

We obtain the solution of Eq. (29) at z = A as follow­
ing

'61 (A)' _ Mb L 61 (0)"
.4 (^). — e 4 (o).

CM b(L-z) NBR
A(: ■NBI

/i (:

We define

dz.

(33)

^MbL A B 
C D ' (34)

In the back-wave configuration as shown in Fig. 1(b), 
the quantum Langevin coupled equations can be ex­
pressed in the following general form

d
02

61

4. = Mb
61

69 _
+ NBr 41lti\ + NBi 41

ih\ (29)
£1M b(L-z) Ai(z) Bi(z) 

Ci(z) A(z) (35)

Different from the forward-wave configuration, the 
“boundary” condition is

oi(w, 0), aj(cA, 0) = «2(w, L), d^co', L) = 6(u> — u>').
(30)

Different from the forward-wave case, in the backward- 
wave configuration, the mode 1 input is at z = 0 and the 
mode 2 input is at z = L. With known oi(0) and 02(A), 
we rearrange Eq. (33) and obtain solutions for 61(A) and 
62(0):
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(B)' A B '6i(0)' 1 -B fL
.4 (0). C D .4 w + 0 -D Jo [ A M

./s (-).
+ Nbi

f/j (41
.h (4.

(fz, (36)

where

A

B

C

D

A - 

B

BC
~D~’

D’_
C

D'
1

~D

(37)

We numerically confirm that Eq. (36) preserves the com­
mutation relations

6i(w,Z,),<z|(k/,Z,)

a2(w,0),a^(k/,0)

<ii(w,0),<z|(k/,0) 

«2(w, B),a^(w%B)
(38)

Similarly to the forward-wave configuration, we exam­
ine the following four special cases.
Case 1: We assume the nonlinear coupling coefficient k 
is real and both modes have losses (Re{am} > 0). Under 
such a condition, we have the following diagonalized noise 
matrix

Nr = Y/2Re{ai} 0
0 -y2Re{<*2}.

(39)

and the coupled Langevin equations

d
02

Mf
V^RejaiJ/i
V/2Re{o!2}/2

(40)

Case 2: k is real, mode 1 has linear loss (Re{ai} = a > 
0), and mode 2 has linear gain (Rejoq} = —g < 0). The 
noise matrix becomes

Np V2a 0 

0 '
(41)

We have the following coupled Langevin equations

d_ pi
Mr

Oi -VWi'
—V^gh_

(42)

Case 3: The two modes are perfectly phase-matched 
without linear gain and loss: A A: = 0, oq = a2 = 0, 
but the nonlinear coupling coefficient is complex-valued 
ft = 1] + *C- In this case, the coupled matrix is

Mr 0 -C + ill 
-C + ill 0

(43)

The noise matrix becomes

Ng = @(()\/C 1 1 
1 -1

+ ie(-C)v^C 1 1 
1 -1

The Langevin coupled equations are

+ e(-0v^c

d
02

Ol = Mr
Ol

-1 -1KJ
"i i "
i -i lti\

"i i '
i -i

(44)

(45)

Eq. (45) shows that in the backward-wave configuration, 
a complex-valued nonlinear coupling coefficient also leads 
to Langevin noises even though there is no linear gain or 
loss.
Case 4: As k is real and there are equal losses in both 
modes (oq = a2 = a > 0) with perfect phase matching 
(AA: = 0), the coupled equations can be written as

02

Ol —ia —n Ol
= H

Ol

«2. — K tCK «2. «2
(46)

Interestingly, the effective Hamiltonian H here follows 
parity-time (PT) symmetry [17, 18].

III. MICROSCOPIC ORIGIN OF LANGEVIN 
NOISES: SFWM

One could validate the above phenomenological ap­
proach of quantum Langevin coupled equations by con­
firming the microscopic origin of the Langevin noises. 
However, for two systems with the same quantum 
Langevin equations, their microscopic structures may be 
quite different. Therefore it is impossible to sort all mi­
croscopic systems. In this section, we focus on SFWM in 
a double-A four-level atomic system [10-12, 19, 20] with 
electromagnetically induced transparency (FIT) [21, 22], 
and show that the phenomenological approach in the 
above section agrees with the numerical results from the 
microscopic quantum theory of light-atom interaction.

We start from a single-atom picture, considering an 
EM wave couples the atomic transition \j) and |At) . The 
induced single atom polarization pjk oc Pjfcoyfc, where 
Pjk is the electric dipole moment matrix element, frjk = 
| j ) ( At | is single atom transition operator from state \k) to 
\j). In the Heisenberg-Langevin picture, the single-atom 
transition operator can be expressed as

where is the zeroth-order steady state so­
lution. The single atom noise operator between atomic
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Figure 2. Spontaneous four-wave mixing (SFWM) in a double-A four-level cold atomic medium, (a) Backward-wave geometry 
of SFWM optical configuration. Driven by counter-propagating pump (Ep) and coupling (Ec) beams, phase-matched backward 
Stokes (ds) and anti-Stokes (das) are spontaneously generated from a laser-cooled atomic medium, (b) Atomic energy-level 
diagram. The pump (ivp) laser is detuned with Ap from transition |f) —> |4), and the coupling (cvc) laser is on-resonant with 
transition |2) —> |3). Stokes (cvs) photons are spontaneously generated from transition |4) —> 12), and anti-Stokes (cvas) photons 
from transition |3) —> |f). zu = izas — cvi3 is the anti-Stokes photon frequency detuning from transition |f) —> |3).

transition \v) —> \/j) is represented by fffl, which satisfies 
the following correlations:

<A(,tV) bhT')) =

(fTVFAV)} = )/h!V)>
= S(iO id ),

where and are diffusion coefficients.
In a continuous medium with atomic number density 

n, the noises from different atoms are uncorrelated. We 
have the spatially averaged atomic operator

^ + -T=f ^2 (49)

where A is the single-mode cross-section area, and the 
spatially averaged atomic noise operators fffi satisfy the 
following modified correlations

= — ui')5(z — z'),

= (^(w,z)^,(w\/)) 

= 'Dvh,h>vA{uj — ui')5(z — z'),

(50)

where the diffusion coefficients are the same as those from 
the single-atom picture.

The electric field and polarization are described as

E (t,z)

P(W

#+)(t,z) + #-)(t,z) 

pW(t,z) + p(-)(t,z)
(51)

form
e(+)«.=) = -j=

V 27T

f(+)(t,z) = ^=
V 27T

(52)

where E(uj, z), P(uj, z) are complex amplitudes in fre­
quency domain. The Maxwell equation under slowly 
varying envelope approximation (SVEA) can be written 
as

dE(u,z) 1
2

(53)

where ± represents for propagation direction along ±z, 
and free space impedance i] = l/(ceo) = 377 Ohm, with 
c being the speed of light in vacuum, and £o the vacuum 
permittivity. With quantized electric field

and

(54)

P(w, z) = z), (55)

we obtain the Langevin equation for the EM field in the 
atomic medium

<%(w,z) .... .

= inA^kd^(w,z) + P(w,z),

where
 / jk

#(w, z) = z)

(56)

(57)

Where #+), f (+) and \ ) are positive and nega- = ^ -)-
five frequency parts. We take the following Fourier trans- V 2ceoh ^
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Here gjk = g*k . is single photon-atom coupling strength.
Now we turn to the backward-wave SFWM in a double- 

A four-level atomic system as illustrated in Fig. 2. In 
presence of counter-propagating pump (Ep,up) and cou­
pling (Ec, cvc) laser beams, phase-matched Stokes (cvs) 
and anti-Stokes (cvos) are spontaneously generated and 
propagate through the medium in opposing directions. 
In the rotating reference frame, the interaction Hamilto­
nian for a single atom is

V = — h (<?3i0os<T3i + — ft (5,42fl-sO"42 + 924d(<

— -ft(IIcO"32 + ^c^2s) — ^ft (f2p<T4i +

— HAp(J44 — f?.cx7(J33 — f?.cx7(J22,

wave pump and coupling driving fields, the energy con­
servation leads to cvos+cvs = ojc+ojp. Here w = cvos —W13 
is the anti-Stokes frequency detuning and thus the Stokes 
frequency detuning is coa — cvsq = — w.

The atomic evolution is governed by the following 
Heisenberg-Langevin equation [11]

(59)

where 7jk = yy (nonzero only as j k) are dephasing 
)rates, rA (nonzero only as j = k) are the population 
transfer resulting from spontaneous emission decay. The 
full equation of motion can be found in Appendix B. The 

3diffusion coefficients Vjkj>k> can be obtained through the 
Einstein relation

where Qc = 932Ec/h is coupling Rabi frequency. The 
coupling laser is on-resonant with transition |2) —> |3). 
Qp = p4i Ep/h is pump Rabi frequency. The pump 
laser is far detuned from the transition |1) —> |4) with 
Ap = ojp — CV14 so that the atomic population mainly oc­
cupies the ground state |1). We take this ground-state 
approximation through this section. With continuous-

2^&y&' — (dj&dy&')
^ (60) 

— — /(Tj&Ap'&A ,

where Ajk = §-tcfjk - /j^. For the SFWM governed by 
Eq. (59), we have [11, 12]

"Dl2,21 2^12,24 2)l2,31 2)l2,34 "
1^42,21 2)42,24 2)42,31 2)42,34
Dl3,21 Dl3,24 Dl3,31 2)l3,34

.2^43,21 2)43,24 2)43,31 2)43,34 _
2712 (An) + F34 (<733) + F41 (<744) 712 (<714)

712 (d44) 0
0 0
0 0

0
0

r3 (An) + r3i (d33) + r4i (d44)
Fg (d4l)

0 - 
0

F3 (di4) '
F3 (d44)J

(61)

-V21,12 2)21,42 2)21,13 2)21,43 '
V24,12 2)24,42 2)24,13 2)24,43
2)31,12 2)31,42 2)31,13 2)31,43

L2)34,12 2)34,42 2)34,13 2)34,43 _
"2712 (d22) d r32 (d33) + r42 (d44) 0 T12 (d23) 0 "

0 F4 (dag) + r32 (d33) + r42 (d44) 0 r4 (d23)
T12 (d32) 0 0 0

0 r4 (d32) 0 r4 (d33)_

Solving Eq. (59) under the ground-state approximation 
(dn) = 1 with weak pump excitation Ap > {Clp, F4}, we 
get the single-atom steady-state solutions (with gv = 
12,13,42,43)

d42 =d^)

where

.(0) 4(07 + 2712)
a13 =---------------9310aT(z

ncriP
T (57) (Ap + 2714 -9340T

- (0) _ (57 + 2713) l^pl"_______ 1
T (zu) (Ap — 2724) (Ap + 2714)

(64)
924<z),

T (57) (Ap - 2724)

■p

931 &asi
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Figure 3. Comparison of commutation relations between the macroscopic (“Macro”, blue solid lines) and microscopic (“Micro”, 
red dashed lines) approaches in the group delay regime: (a) [a.as (L), a£s(L)], (b) [a.as (L), als (L)] - S(zu - zu'), (c) [as (0), a) (0)], 
and (d)[as(0),a.)(0)] — S(zu — zu'). The results with no Lange vin noise operators (“NLN”) are shown as black dotted lines in 
(a) and (c).

^3

/5l2

/?13

/^43

TM'
*4 (57 + ryig)

TJw) ’

7 flp
T (a;) (Ap - *724)' 

i2ilp (w + »712)
T (a;) (Ap - *734)'

*2(57 + 7713)
T(a;) (Ap-^24)'

in*pil*
T (a;) (Ap - *724)' 

i
(A p — *724)

ijK
2 (Ap — *724) (Ap — *734) ’

for generating anti-Stokes and Stokes fields from Eq. (49)

- - (O'
(713 =

- _°"42 — a42

T/ y ^HVJ {IV •>

(66)

(65)
For simplicity, we define aas(u7, z) = aas(ojas0 + uj, z) and 
as(zu,z) = as(ivSQ — w,z). Following the procedures in 
Eqs. (56) and (57):

02
mt(:

i M,Agi3(713(0;, z), 

**7^42^42(57, z),
(67)

we get coupled equations for the counter-propagating 
anti-Stokes (propagating along +z) and Stokes (propa­
gating along —z) fields in the backward-wave configura­
tion

where T{w) = |flc|2 - 4 (57 + *743) (57 + *712). We then 
obtain the ensemble spatially averaged atomic operators

d
02

— &as + iKas &as ' Pas'
*«s — *A^ A. +

(68)
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Figure 4. Four real correlations of Stokes and anti-Stokes fields in the group delay regime: (a) (aas(L)ais(L)), (b) 
{als(L)a.as(L)), (c) (as(0)a.)(0)), and (d) (a.)(0)a.s(0)). The macroscopic (“Macro”) and microscopic (“Micro”) approaches 
are shown as blue solid and red dashed lines, respectively.

where
Fas = ignVnA 

F.s = -ig42 VnA 

and

JOS K17) I JOS A<r) I jos A<r) I JOS r(cr)
P12J12 + P13J13 + P42/42 + P43/43

^12/12 ^ + /^13^3^ + 042/42^ + /^43^3^
(69)

“os — —Xos,2c
_ .Ws

<*3 — —X3,

2c p c 1

Xos —

Xs

4n |/4i3T {w + H12) 
e0fi T (zu)

n I/X24 r ~ *713) |^p|
2 >

X.

MPl3P32f«24f«41 1 1
T(o;)(Ap + i^i4)'

(3) _ Mftl3f«32f«24f(41 1 1

y(3)

(70)

EoR3 T*(%7)(Ap + ^yi4)'

The expressions for /J“® and are listed in Eqs. (65).

AA: = (wos-los)/c-(Ay + A:p) • £ is the phase mismatching 
in vacuum. Here the complex aas represents the EIT 
loss and phase dispersion, a* is the Raman gain and 
dispersion along -z propagation direction. One can show 
that the nonlinear coupling coefficients can be expressed 
as Kas = K-ei9 and ks = Ke~id, where

y/T’o s J-'s ??P^3P24
2c e0 h A p + *714

and 6 is the phase of ClpClc/(Ap + *714). As a result, kos 
and ks fulfill the gauge transformation discussed in Sec. 
II. Therefore, to be consistent with the treatment in Sec. 
II, we rewrite Eq. (68) to

T(z
(71)

where

d_
02

Mr =

= Mr &as 
n. t

—(*oa + i^r

Fas
-Ft

p — p p-i^/2 1 as 1 asc )
ft =

(72)

(73)

Similarly, we rewrite the SFWM quantum Langevin 
equations in the forward-wave configuration in Ap­
pendix C.
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Figure 5. Twelve complex correlations of Stokes and anti-Stokes fields in the group delay regime: (a
(aLMaLW)', (b) K.(^)a.(0)) = (at(o)at.(^))', (c) K.(^)«1(0)) = (a.(O)al.M)', (d) (aL(^)«.(0) 
(e) (os(0)oas(L)) = (a.L(T)al(0))*, and (f) (as(0)as(0)) = (ai(O)ai(O))*. The macroscopic ("Macro 
cro”) approaches are shown as blue solid and red dashed lines, respectively.

ls(U)aas{V)) =
(0)) = (al(0)a..(^))\
and microscopic (“Mi-

We now turn to compare Eq. (72) with Eq. (29) 
from the phenomenological approach in Sec. II, where 
we take mode 1 as anti-Stokes and mode 2 as Stokes in 
the backward-wave configuration. From Eq. (29), we 
have

Fa.s = Nbru/i + Nbih/l + NBI12/2 + Nbrio/J ,

Fs = —NBR21A — NBI21/1 ™~ ^3122/2 — NBR22/2 -

(74)
Therefore, we obtain Fas and FJ from two different ap­
proaches: Eq. (69) from the microscopic photon-atom 
interaction, and Eq. (74) from the macroscopic phe­
nomenological approach. Although we remark that 
the atomic noise operators are different from the

field noise operators /„, , the correlations of Fas and Fs 
uniquely determine the system performance. While we 
find it difficult to analytically prove the two approaches 
are equivalent, we could numerically compute and com­
pare the commutation relations and correlations of aas, 

and

We consider here the backward-wave SFWM in laser- 
cooled 85 Rb atoms with relevant atomic energy lev­
els being |1) = |52S1/2, F = 2), |2) = |52S1/2, F = 3), 
|3) = |-52Pi/2, F = 3), |4) = 152P3/2, F = 3). The decay 
and dephasing rates for corresponding energy levels are
r3 = r4 = 2tt x 6 MHz, r3i = |r3, r32 = §r3,r4i = 
|r4,r42 = |r4, 713 = y23 = 7i4 = 724 = 2tt x 3 MHz,
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(a) x s (vj-w1)
1 ~

(b) X1 O^S(w-vj')

(c) xS(w-w') 
1

ro/27r [MHz] zu/2tt [MHz]
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Figure 6. Comparison of commutation relations between the macroscopic (“Macro”, blue solid lines) and microscopic (“Micro”, 
red dashed lines) approaches in the damped Rabi oscillation regime: (a) [a.as (L), a(s(L)], (b) [a.as (L), a\a (L)] — S(zu — zu'), (c) 
[as(0),a)(0)], and (d)[a.s(0),a.)(0)] — S(zu — zu'). The results with no Langevin noise operators (“NLN”) are shown as black 
dotted lines in (a) and (c).

and 712 = 2tt x 0.03 MHz. With vacuum inputs in both 
Stokes (z = L) and anti-Stokes (z = 0) modes, we have

-&)) =<S(o7-a/)
and (<z^(a;,0)<WG7',0)) = = 0-
There is also no correlation between Stokes and anti- 
Stokes fields at their inputs.

We numerically compute SFWM in two different 
regimes to confirm the consistency between the macro­
scopic and microscopic theories, i) The first is the group 
delay regime, where the SFWM spectrum bandwidth is 
determined by the FIT slow-light induced phase mis­
matching [10]. The working parameters are: fip = 
2tt x 1.2 MHz, Qc = 2tt x 12 MHz, Ap = 2tt x 500 MHz. 
The cold atomic medium with length L = 2 cm has den­
sity n = 5.1 x 1016 m~3, corresponding to an atomic 
optical depth OD = 80 on the anti-Stokes resonance 
transition, ii) The second is the Rabi oscillation regime, 
where biphoton correlation reveals single-atom dynamics 
[10]. The working parameters are: ilp = 2tt x 1.2 MHz, 
Qc = 2-k x 24 MHz, Ap = ivp —1174 = 2tt x 500 MHz. The 
cold atomic medium with length L = 0.2 cm has density 
n = 6.4 x 1014 m~3, corresponding to OD = 0.1. In both 
cases, we take Ak = 127 rad/m.

The numerical results in the group delay regime are 
plotted in Figs. 3, 4, and 5. The commutation re­

lations [oos(L), als(L)] and [os(0), o|(0)] are shown in 
Fig. 3. Both macroscopic and microscopic approaches 
agree well with each other [Figs. 3(a) and (c)], with neg­
ligible relative small difference < 1.0 x 10~6 [Figs. 3(b) 
and (d)]. As expected, the macroscopic phenomenologi­
cal results give perfect flat lines at ^ =

^ = 1 which is the starting point of Sec. 
II. The microscopic results of field commutations are 
consistent with the macroscopic approach, but with < 
1.0 x 10~6 deviation at some spectra points. As we 
understand, these small spectra discrepancies may be 
caused by the ground-state and zeroth-order approxi­
mations we take for solving the microscopic Heisenberg- 
Langevin equations (59). If the Langevin noise operators 
are not taken into account, as shown in the black dotted 
curves in Figs. 3(a) and (c), the anti-Stokes commuta­
tion relation is not preserved and displays BIT transmis­
sion spectrum, while Stokes commutation relation still 
approximately holds due to the negligible gain or loss in 
Stokes channel under the ground-state approximation.

Figure 4 displays four real-valued correlations of 
Stokes and anti-Stokes fields: (a )(oos(L)oJs(L)), (b) 

M (6,(0)6l(0)), and (d) (6t(0)6,(0)). 
Figure 5 shows the twelve (six pairs) complex-valued
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Figure 7. Four real correlations of Stokes and anti-Stokes fields in the damped Rabi oscillation regime: (a) (aas(L)ais(L)), (b) 
{als(L)a.as(L)), (c) (as(0)a)(0)), and (d) (a.)(0)a.s(0)). The macroscopic (“Macro”) and microscopic (“Micro”) approaches are 
shown as blue solid and red dashed lines, respectively.

correlations of Stokes and anti-Stokes fields: (a)
(W K,(%(0)> = 

(c) (6_(i)6l(0)> = (6,(0)«L(i)r, (d) 
(&L(i)6X0)) = (6t(0)6s,(i))*, (e) =
(6L(^)4(0))*, and (f) (6,(0)6,(0)) = ((#)6t(o))*. 
The macroscopic solutions agree well with those obtained 
from the microscopic approach.

The numerical results in the Rabi oscillation regime are 
plotted in Figs. 6, 7, and 8. The macroscopic phenomeno­
logical results also agree remarkably well with those from 
the microscopic theory.

In the microscopic Langevin-Heisenberg theory, the 
Stokes and anti-Stokes Langevin noise operators in 
Eq. (69) are expressed as a linear summation of atomic 
noise operators whose correlations are defined in Eq. (48). 
On the other side, in the macroscopic phenomenological 
approach [Eq. (74)], they are obtained from the noise 
matrix in Eq. (31) [or Eq. (15) for the forward-wave 
configuration] and two-mode field noise operators whose 
correlations follow Eq. (14). Although Eq. (69) (with 
atomic transition noise operators) and Eq. (74) (with 
two-mode optical field noise operators) appear different, 
their numerical results of correlations show a remarkable 
agreement with each other in Figs. 3-8. We attribute 
this to the fact that in both microscopic and macro­
scopic theories the two fields share the same coupling

matrix, and both satisfy the bosonic commutation rela­
tions. Under these constraints, their physical observable 
and outputs should be uniquely determined, though the 
choice of noise matrix in the macroscopic phenomeno­
logical formula is not unique, for example as elaborated 
in Appendix A. It is extremely challenging to directly 
drive the noise matrix in Eq. (15) and Eq. (31) from the 
microscopic Heisenberg-Langevin theory, because: 1) the 
microscopic Heisenberg-Langevin theory has a huge com­
putational complexity (See Sec. Ill), 2) for two systems 
with the same coupling matrix, their microscopic struc­
tures may be quite different, and 3) the choice of noise 
matrix in the macroscopic phenomenological formula is 
not unique. For these reasons, we take numerical con­
firmation for the correlations which are relevant to the 
physical observables. However, we do confirm when the 
nonlinear coupling coefficient is real, Eq. (15) and (31) 
are indeed reduced to the known results in literature (See 
Cases 1 and 2 in Secs. IIA and IIB).

We note that, although the noise field correlations 
from Eqs. (69) and (74) agree well with each other, 
there are small numerical differences at some spectral 
points as shown in Figs. 3-8. These neglectable dis­
crepancies are not from fundamental physics, but rather 
from the approximations taken during derivation: For in­
stance, the ground-state approximation and lowest-order
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Figure 8. Twelve complex correlations of Stokes and anti-Stokes fields in the damped Rabi oscillation regime: (a)
(b) (a..(^)a.(0)) = (al(0)aL(^))\ M (a..(^)al(0)) = (a.(O)al.(^))', (d) (aL(^)«.(0)) =

(ol (0)oas(L))*, (e) (as(0)aas(L)) = (a(s {L)a\ (0))*, and (f) (os(0)a.s(0)) = (dJ(O)aJ(O)}*. The macroscopic (“Macro”) and mi­
croscopic (“Micro”) approaches are shown as blue solid and red dashed lines, respectively.

perturbation are used in deriving the microscope noises 
and the coupling matrix. As a result, in the micro­
scopic Heisenberg-Langevin theory, although the under­
lying microscopic quantum mechanics ensures the preser­
vation of commutation relations, the computation nu­
merical results may be slightly away from the exact val­
ues due to these approximations. In the macroscopic 
phenomenological treatment, we “force” the commuta­
tion relations to hold. As a result, some “adjustment” 
is added to the Langevin noise operators to compensate 
the approximation-induced error in the coupling matrix. 
These resulted differences are small and neglectable as 
long as the coupling matrix describes closely its true sys­
tem, as shown in Figs. 3-8.

In this work, it is assumed that the noise sources are in 
their ground states such that their mean occupation num­
bers are zero, as indicated in Eq. (14). If this condition 
is not met, our macroscopic phenomenological quantum 
Langevin equations may not be applicable and require 
adjustment. We find that the complex nonlinear cou­
pling coefficient arises from near-resonance interaction 
between light and atomic transitions. Although in this 
work, we focus on SFWM in a double-A atomic system, 
we anticipate the same physics applies to other multiple 
wave mixing processes, such as two-level [23], three-level 
[24-26], and diamond-shape four-level systems [27, 28].



14

IV. BIPHOTON GENERATION

We now turn to apply the quantum Langevin the­
ory to study time-frequency entangled photon pair 
(biphoton) generation through spontaneous four-wave 
mixing process, especially in a variety of situa­
tions involving gain, loss, and/or complex nonlinear 
coupling coefficient. We consider continuous-wave 
pumping whose time translation symmetry leads 
to frequency anti-correlation aq + ujo =constant 
between the paired photons. In the spontaneous 
four-wave mixing process, both input states are vac­
uum: (aj(tz7, 0)61(777', 0)) = (6/(777, 0)62(777', 0)) = 0, 
(01(07', 0)o{(lx7, 0)) = (02(07', 0)c4(lx7, 0)) =
6(777 — w') for the forward-wave configuration, 
and (6] (777,0)61(777', 0)} = (6/(777, L)62(777', L)} = 0,
(01 (07, 0)6 j (to', 0)) = (02(07, L)Oo(o7', L)) = 6(777 — to') 
for the backward-wave configuration. From Eq. (4), with 
cvi = cvio + to and ujo = oqo — 07, we have

«i(A, 21) = 677761(777, zi)e*

as(A,22)
gtW2o(^=^"—t)

a/27T
67776-2(777, z2)e

(75)
where ± represents the forward-wave (+) or backward- 
wave (-) configuration, z = z 1 and z = z2 are the 
output positions of channels 1 and 2, respectively. For 
the forward-wave configuration, zi = z2 = L. For the 
backward-wave configuration, zi = L and z2 =0. The 
phase mismatching in vacuum A A: = (cuas ±us)/c—(kc + 
kp) • z ~ (wos0 ± ws0)/c— {kc + kp) • z is nearly a constant. 
The vacuum time delay z*/c constants are usually very 
small in usual experimental conditions, from now on we 
ignore these constants for simplification and rewrite the 
above equations to (otherwise one just needs to make a 
time translation #—>•# — z*/c)

~2

<Zl(f,Zl)

<Z2(f,Z2)

\/27r

1/277

677761(777, zi)e
(76)

((0762(07, 2s )e*^*.

The photon rate in channel m can be computed from

Rm — //, (A, -2m ) 6m (A, Zm ) /
1 r poo *

= ^ ^  ̂' (07, Zm

(77)
Here we are particularly interested in the two-photon 
Glauber correlation in the time domain, which can be

computed from the following two different orders

G^i (A2,Ai)

= (6| (Ai, 21) 6/ (A2,22) 62 (As, 22) 61 (Ap zi))
= I0S (As, 22) 61 (Ai,2i))p

+ | (fl'2 (As, 2s) fl-1 (Ai, Zi))/ + i?i i?2,

G^(Ai,A2)

= 0s (As, 2s) 6| (Ai, zi) 61 (Ap zi) 62 (As, 2s))
= 101 (Ai,2i)&2 (As,2s))P

+ | (fl'2 (As, 2s) fl-1 (Ai, 21))/ + i?i i?2,

where we have applied the Gaussian moment theorem 
[29, 30] to decompose the fourth-order field correlations 
to the sum of the products of second-order field correla­
tions (See Supplementary Material [31] for the detailed 
verification). The first term in Eqs. (78) and (79) can be 
expressed as |1Tf2,i(A2,Ai)|2 and |Tii2(Ai, A2)|2, where

#s,i(As,Ai) = (6s (As, 2s) 61 (Apzi))
= e-^^e-^°^2,i(Ai -A2),

(80)

#i,s(Ai,A2) = (61 (Apzi)62 (As, 22))
= e-^°^e-^i°^i,2(Ai -Ag),

(81)

are the two-photon wavefunctions with the relative parts

^s,i (Ai -A2)

= — Jj 6777607'(62(177', 22)61(777, zi))e_4ra|-tl_t2/ ^ ^

l6i,s(Ai -A2)
67776777'(6i(777, Zi)62(777', Z2))e"*^(*^"*^/ ^ ^

One can show that the second term in Eqs. (78) and (79) 
is zero if the nonlinear coupling coefficient is real-valued, 
and it is usually very small as compared to other terms. 
The third term in Eqs. (78) and (79) is the accidental 
coincidence counts. The two-photon wave function and 
Glauber correlation satisfy the following exchange sym­
metry

/•’21 (A 1 — A2) = ■02,1 (Ai — As) = 01,2 (Ai — #2),
*2i(A2,Ai) = T2,i(A2,Ai) = Tii2(Ai,A2), (84)

G21 (A2,Ai) = G2J (A2,Ai) = g[1 (Ai,A2) •

The normalized two-photon correlation is defined as

g<;>fe,<1)sG/(1/<'). (85)
Ail Ats

As the system has time translation symmetry with 
continuous-wave pumping, G^i (A2,Ai) = G^i (Ai - A2) 
depends only on the relative time G - G-
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A. Loss and Gain where r = G - f2. If following the order (: cqao :), we 
have

To simplify and unify the descriptions for account­
ing both forward- and backward-wave cases, we define 
“input-output” fields: aijin = cq(0), o2,i„ = a2(0), 
a-ijOUt = a-i(L), and o2jOUt = o2(L) for the forward-wave 
case; a\^n = cr-i(0), o2jjn = o2(L), oiiOUi = a-i(L), and 
o2jOUt = o2(0) for the backward-wave case. In this sub­
section, we aim to investigate the roles of loss and gain 
in biphoton generation, considering linear loss in mode 1 
(Re{ai} = a > 0) and linear gain (Re{a2} = —g < 0) 
in mode 2. We also assume k is real, or its contribution 
to Langevin noises is much smaller than the linear gain 
and loss, be., Im{ft} < {a,g}. In this case, for forward- 
and backward-wave configurations, the noise matrix is 
reduced to

Nf,b 0
0 ±i\/2g (86)

Hence, the output fields in Eqs. (19) and (36) can be 
rewritten as

^l,out "A B ,in r Xi X12 A M
fd̂2,out G D _^2,«u.

+ Jo X21 %22 .A
(87)

where Xmn are combined coefficients. We further rewrite 
Eq. (87) as

flu,out — Aaig.n + Ba^ in + / Xnfi(z) + AA2/2(z

^2,out — +
Jo L

(88)

As shown in Eq. (84), there are two different orders 
[(: ctocq :) or (: cqao :)] to compute the two-photon wave- 
function and Galuber correlation. Although these two 
orders are equivalent, the numerical computation com­
plexity may be significantly different. Computing bipho­
ton wavefunction in Eq. (83) in the order (: cqao :) in­
volves nonzero noise field correlations (/„,/,],}, while in 
the order (: ctocq :) [Eq. (82)] these noise field corre­
lations disappear because of (/A/m) = 0. These field 
correlations in the frequency domain can be expressed as

(%/) "Ziout (a;)) = <%(%; - %/) [-BD*], (89)

{ft'lout Q’Oout ))

= S(w — ' Ac* + / ^ )

Jo
(90)

Therefore, we obtain the biphoton wavefunction follow­
ing the order (: aocq :)

Vh2(r) dtUdiU (c l ) 02 ))c

AG* + /
Jo

(92)
One can show that the second term in Eqs. (78) and (79) 
is zero in this loss-gain configuration. The single-channel 
photon rates can be obtained as

i?i — — J \B\~dw, 

Kf +i?2 = ^. ^(|%2ip + |%22p)
(93)

dw.

It is interesting to remark that, in the loss-gain config­
uration, the biphoton field correlation following the order 
(: ogainoloss :) does not involve noise field correlations as 
shown in Eqs. (89) and (91), which dramatically reduces 
the computation complexity. On the other side, taking 
the order (: oiossogain :) must include noise field corre­
lations as shown in Eqs. (90) and (92). This may be 
understood in the heralded photon picture [32]: When 
a photon in a lossy channel is detected (annihilated) by 
a detector, we can always ensure there is its partner (or 
paired) photon in another channel; On the other side, 
when a photon is detected in a gain channel which pro­
duces multiple photons, we can not always ensure it has 
a partner photon in another channel. The exchange sym­
metry can only be preserved by taking into account the 
Langevin noises.

In the SFWM described in Sec. Ill, the anti-Stokes 
photons experience finite BIT loss due to the ground 
state dephasing (qq2 G 0), and the Stokes photons prop­
agate with negligible but small Raman gain. Figure 
9 displays the two-photon Glauber correlation in the 
group delay regime with the same parameters as those 
in Figs. 3, 4 and 5. As shown in Fig. 9(a) and (b), both 
macroscopic and microscopic approaches with Langevin 
noises give consistent results. As expected, the compu­
tation of G^]s(r) (following the order (: dsdas :)) with­
out Langevin noise operators (black dotted line: NLN) 
agrees with the exact results obtained from both macro­
scopic (blue solid line) and microscopic (red dashed line) 
approaches, shown in Fig. 9(a). On the contrary, the 
computation of G^s(r) (following the order (: dasds :)) 
without Langevin noise operators deviates significantly 
from the exact results, as shown in Fig. 9(b).

B. Complex Phase Mismatching

d'TZjd'TZJ {cf'2,out{^ )) c
(91) Different from the Heisenberg picture where the evo­

lution of field operators is governed by their Langevin 
coupled equations, reference [10] provides a perturbation
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Figure 9. Two-photon Glauber correlation in time domain in 
the group delay regime: (a) G^L(t) and (b) G{aa\a(r). The 
simulation conditions are the same as that in Figs. 3, 4, and 
5. NLN: no Langevin noise included.

theory to describe biphoton state in the interaction pic­
ture. The solution from Heisenb erg- L a.nge vin theory may 
contain correlations of more than two photons, while the 
perturbation theory focuses only on the two-photon state 
by ignoring higher-order terms. These two treatments are 
expected to give the same results in the limit of small pa­
rameter gain. Although the perturbation theory in the 
interaction picture provides a much clear physics picture 
of two-photon state, treating loss and gain requires a 
proper justification. In the perturbation theory, linear 
loss and gain are included in the complex phase mis­
matching Ak(w) [10]. For the SFWM described in Sec. 
Ill, Ref. [10] derives the biphoton relative wa.vefunction 
with perturbation theory as

where the longitudinal detuning function is

ing Ak(w)7 Although Ref. [10] takes k* for Stokes pho­
tons with gain, it is not clear whether it still holds for the 
case with loss. In this subsection, we do not only provide 
a justification for the above statement in Ref. [10] from 
the quantum Langevin theory by taking small parametric 
gain approximation, but also extend the complex phase 
mismatching to the case with loss in the Stokes channel.

We take the same backward-wave configuration in 
Ref. [10]. We assume anti-Stokes photons in mode 1 are 
lossless with FIT and there is gain (or loss) in Stokes 
mode 2. The small parametric gain fulfills |k| < {a, g}.

In the backward-wave configuration, using Eq. (7), 
(34), and (37), we obtain analytical expressions of 
A, B, C, and D as

A

B

C

D

vV - 4ft2e-(ai~“2)L/2
i?sinh q2 - 4ft2 j + y2q2 - 4/Acosh (yy2q2 - 4ft2 j

2* K
q + y2 q2 — 4ft2COth( y y2q2 — 4ft2) ’ 

—2i ft
q + y2q2 — 4ft2coth( y y2q2 — 4ft2) ’

i?sinh y2q2 - 4ft2 j + y2q2 - 4ft2cosh ^ y2q2 - 4ft2 j
(96)

where q = a\ + a.% — iAk. In the small parametric gain 
approximation, we have

y2q2 — 4ft2 % q
o.\ + a) — iAk = —i(Ak'i — Ak'2* + AA:),

(97)

and
a\ — a% = —i(Aki + AAW). (98)

where Akm = is the wavenumber difference from
that in vacuum. Hence, we simplify A, B, C, and D to

a pa 7 n riAkLA =exp [*AAqLJ exp

B =in,L sine (A&i - A&3 + A&)B

/ dn7ft(tZ7)<F(tZ7)e *ror, (94) i(Aki — Akk) + AA:)L1
J x exp 2

C = — iftLsinc (A&i - A&^ + AA)B

${m) = sine / AkL

(99)

*(^as ~\~ fas ~)L (95) x exp
i( AAq — AAy* + Ak)L

There is a statement in Ref. [10]: “It is found that to be 
consistent with the Heisenberg-La.ngevin theory in the 
low-gain limit, the argument in <F should be replaced by 
A A: = (k,as + k* — kc — kp^j ■ £, where k* is the conjugate

of Ay.” For the SFWM in the double-A four-level atomic 
system, there is small Raman gain in the Stokes chan­
nel. What happens if there is loss in the Stokes channel? 
Should we take k* or ks in the complex phase mismatch-

D =exp [-iAkoL] exp iAkL

We first look at the case with gain in the Stokes (mode 
2). As discussed in Sec. IV A, we take the order (: epeq :)

(100)
V'siM = / / <&^<&^%<Z2,out(a/)<ii,out(a;))e
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where

BD* = iftLsinc (AAy - + A/r)T

x exp i(A&i - A&S +2A/%)Z/

of small optical depth (OD) where the linear propaga­
tion effect is small and show how the complex spectrum 
of nonlinear coupling coefficient reveals single-atom Rabi 
oscillation.

We rewrite the nonlinear coupling coefficient in 
Eq. (71) as:

Comparing Eqs. (100) and (101) with Eqs. (94) and (95), 
particularly for the argument in the sine function, we 
have A A: = AAy — AAy -|- A A: = Ay — Ay — Ay I Ay, = 
Ay,s - k* - Ay + kp which is consistent with the statement 
in Ref. [10].

We now look at the case with loss in the Stokes (mode 
2). We take the order (: cycy :) and have

1
fie/2 + *7e)

where

1
(ca + ne/2-l-rye)

(104)

J \/VV,. VV/q/ | |
Ap + *714

(105)

%6i2(T) (IzudiU (d'\ out ((tu ))c
(102)

= / dwAC*e

where

AC* = *R*Lsinc (A&; - A&2 + A&)T

exp i(2A&i - A&I +AA2)Z,
(103)

Here Q,e = |C2c|2 - (713 - 712)2 is the effective coupling
Rabi frequency, and ye = (712 + 7i3)/2 is the effective 
dephasing rate. Obviously, the nonlinear coupling coeffi­
cient k{vj) has a complex spectrum, with two resonances 
separated by the effective coupling Rabi frequency Cle. In 
the ground-state approximation with major atomic pop­
ulation in state 11), the undepleted pump laser beam is 
far detuned from the transition |1) —> |4) and its exci­
tation is weak such that we can take Xs — 0. On the 
other side, from Eq. (70) we have the complex linear 
susceptibility for anti-Stokes photons

Comparing Eqs. (102) and (103) with Eqs. (94) and (95), 
we have A A: = AA:( — AAy 4- A A: = /* — Ay — Ay 4- Ay = 
kas - Ay - Ay + Ay, which is different from the case with 
gain. Here we have taken Ay ~ A:( for lossless mode 1.

Although our discussion is based on the backward- 
wave configuration, the conclusion can be extended to 
the forward-wave configuration, which is derived in de­
tail in Appendix D. Therefore, in the case with gain in 
the Stokes mode 2, the complex phase mismatching is
A A: = (kas + k* — kc — kp^ ■ z. In the case with loss in 
the Stokes mode 2, the complex phase mismatching be­
comes A A: = (kas 4- Ay - Ay - Ay) • i.

C. Complex Nonlinear Coupling Coefficient and 
Rabi Oscillation

, , n |pi3|2__________(g7 + *712)__________
to?* (zu — f2e/2 + *7e)(tx7 + f2e/2 + *7e)

(106)
Although the anti-Stokes photon absorption at w = 0 
is suppressed by the EIT effect, there are two absorp­
tion resonances appearing at w = ±f2e/2 which coin­
cide with the two resonances of nonlinear coupling coef­
ficient in Eq. (104). We take the pump laser with weak 
intensity (oc |f2p|2) and large detuning (Ap) such that 
Re{ayiS(ti7 = ±Oe/2)}>Im{K(n7 = ±f2e/2)}, which are 
usually satisfied in the ground state condition. As the 
propagation effect is small and the phase matching is not 
important, the paired photons are mostly generated from 
the two resonances (w = ±Qe/2) of the nonlinear cou­
pling coefficient.

In the forward-wave configuration, with the coupling 
matrix

As illustrated in Fig. 2, we can understand the SFWM 
process in the following picture. After a Stoke and anti- 
Stokes photon pair is born from a single atom follow­
ing the atomic transitions [Fig. 2(b)], the paired pho­
tons then propagate through the medium [Fig. 2(a)]. As 
the photon pair can be generated at any atom inside the 
medium, the overall two-photon wavefunction (or prob­
ability amplitude) is a superposition of all possible such 
generation-propagation two-photon Feynman paths. Fol­
lowing this picture, when the propagation effect can be 
ignored, the biphoton state reveals the single atom dy­
namics, which is connected to the nonlinear coupling co­
efficient. In the following, we consider SFWM in the limit

Mp *M ’ (107)

and short medium length L satisfying |MFL| « 1, we 
have approximately

A B 
C D eMpL = 1 + MFL

1 — aasL + i^rL inL 
—iK,L 1 — *y L

(108)

As discussed in Sec. IV A, the biphoton field correlation 
following the order (: dsdas :) does not need count the
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Langevin noise operators:

(as{w', L)aas{w, L)) = BD*5{w — w')
A b

= inL(l + i — L)3(txj — w')

= iK(zu)L6(zu — w'),
(109)

where we have neglected higher order terms 0(L2). From 
Eq. (82), we have the relative biphoton wave function

V's-asM = ^ / d%7K(G7)f (HO)

which is the Fourier transform of the nonlinear coupling 
coefficient with r = tas - ts. Substituting Eq. (104) into 
Eq. (110) we obtain

- e*"^/2]0(T)
(HI)

where 0(r) is the Heaviside function. Equation (111) 
shows a damped Rabi oscillation, resulting from the beat­
ing between biphotons generated from the two resonances 
at w = ±f2e/2. The Heaviside function shows the anti- 
Stokes photon is always generated after its paired Stokes 
photon following the time order of atomic transitions 
|1) —> 14) —> 12) —> 13) —> |1) in an SFWM cycle shown in 
Fig. 2(b).

In the backward-wave configuration, the coupling ma­
trix becomes

Mb
- A&

2

With |MbL| < 1 we have

A B 
G D cMbL = 1 + MbL

1 — aasL + i^L inL
IftT ^ 1 - '

and

A B 1 — aasL + i^rL inL
C D — %KjL 1 +

(112)

(113)

(114)

where we have neglect higher order terms 0(L2). Simi­
larly, we have

{as(uj\ 0)oos(n7, L)) = in{m)L5{m — m'), (115)

which is the same as Eq. (109) of the forward-wave con­
figuration. Therefore, we obtain Rabi oscillations in both 
forward- and backward-wave configurations. Equation 
(111) is identical to the result derived from the pertur­
bation theory in the interaction picture [10].

Figure 10 displays the two-photon Glauber correlation 
in the damped Rabi oscillation regime with the same pa­
rameters as those in Figs. 6, 7 and 8. As illustrated

1.4 -0.2 0
r [fis]

0.2 0.4

Figure 10. Two-photon Glauber correlation in time domain 
in the damped Rabi oscillation regime: (a) Gi2JiS (r) and (b) 
G'A(v). The simulation conditions are the same as that in 
Figs. 6, 7, and 8. (c) shows the analytic solution for the bipho­
ton waveform IV’s-as(t)|2. NLN: no Langevin noise included.

in Fig. 10(a) and (b), both macroscopic and microscopic 
approaches with Langevin noises give consistent results. 
As expected, the computation of G^]s(r) (following the 
order (: asaas :)) without Langevin noise operators (dot 
points) agrees with the exact results obtained from both 
microscopic (red dashed line) and macroscopic (blue solid 
line) approaches, shown in Fig. 10(a). On the con­
trary, the computation of G^s(t) (following the order 
(: aasas :)) without Langevin noise operators (dot points: 
NLN) deviates significantly from the exact results and vi­
olates the causality, as shown in Fig. 10(b). Fig. 10(c) 
shows the result from the analytic solution in Eq. (Ill) 
which agree well with the exact results in Figs. 10(a) and 
(b).

It is interesting to examine a system without gain and 
loss whose Langevin noises are purely contributed by the 
complex nonlinear coupling coefficient. In this case, the 
above approximation and conclusion do not hold. Let’s 
now consider the case 3 with the forward-wave config­
uration in Sec. II A, where a1 = an = AA: = 0, and 
ft = 1] + i(. As shown in Sec. II A, the noise matrix is 
different as ( is positive or negative. We first consider
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C > 0, the Langevin coupled equations (27) becomes

d 0 in
—in 0 Vc i i 

-i i
h

Jh - (H6)

Under the condition |MFL| < 1, we solve Eq. (116) to 
the first order of L and have

®i(l) - ai(0) + 8RLai(0) + yC / dz (/l + /2

«3(i) = &3(0) + ^4(0) + yc / (fz ( -/T + .

The two-photon field correlations are
(117)

(<2i(Z,)a2(Z,)) = (<22(Z,)ai(Z,)) = -(« + K*)Z,J(o; - ca').
(118)

As C < 0, the Langevin coupled equations (27) becomes

• (H9)
d 0 in

—in 0
1 1

-1 1

Under the condition |MFL| < 1, we solve Eq. (119) to 
the first order of L and have

O'i(L) — oi(0) + iKLal(0) + \/~C I dz (// + fo ) ,

do (L) — 02(0) + in* La, |(0) + v~C J dz y~fi + fo J ■
(120)

The two-photon field correlations are

(6i(Z,)a2(Z,)) = (a2(Z,)6i(Z,)) = ^(& + &*)_L<5(a; - ca'),

(121)

which is the same as Eq. (118). The biphoton relative 
wavefunction is

Wr) = ^i(-T) = ^ /d%^(& + f)e-^. (122)

One can prove that under the same limit |MBL| < 1, the 
backward-wave configuration gives the same two-photon 
field correlation [Eqs. (118) and (121)] and temporal 
wavefunction [Eq. (122)]. Equation (122) suggests the 
biphoton temporal wavefunction has time reversal sym­
metry when there is no linear gain and loss.

V. CONCLUSION

relations of field operators during propagation, does not 
require knowing microscopic details of light-matter inter­
action and internal atomic structures. To validate this 
phenomenological formula, we take SFWM in a double- 
A four-level atomic system as an example to numeri­
cally confirm that our macroscopic phenomenological re­
sult is consistent with that obtained from microscopic 
Heisenberg-Langevin theory. As compared to the com­
plicated microscopic theory which varies from system 
to system, the macroscopic coupled equations are much 
more friendly to experimentalists. We apply the quantum 
Langevin equations to study the effects of gain and/or 
loss as well as complex nonlinear coupling coefficient in 
biphoton generation, particularly to the temporal quan­
tum correlations. We show that the computation com­
plexity can be dramatically reduced by taking a proper 
order of field operators based on loss and gain. Making 
a comparison between the quantum Langevin theory (in 
the Heisenberg picture) and the perturbation theory (in 
the interaction picture [10]), we extend the expression of 
complex phase mismatching to account for loss and gain. 
At last, we reveal Rabi oscillation in SFWM biphoton 
temporal correlation when the propagation effect is small. 
Although in this article we focus on biphoton generation 
from the spontaneous parametric process, the quantum 
Langevin coupled equations can also be used to study 
two-mode squeezing, parametric oscillation, and other 
quantum light state generation.
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Appendix A: Noise Matrix in Backward-Wave 
Configuration

In summary, we provide a macroscopic phenomenolog­
ical formula of quantum Langevin equations for two cou­
pled phase-conjugated fields with linear loss (gain) and 
complex nonlinear coupling coefficient, in both forward- 
and backward-wave configurations. The macroscopic 
phenomenological formula, obtained from the coupling 
matrix and the requirement of preserving commutation

In the macroscopic quantum Langevin equations, the 
requirement of preserving commutation relations allows 
multiple choices of the noise matrix. For example, fi —> 
—/1 or/and /2 —> —/2 do not affect any computation re­
sults of physical observables involving pairs of Langevin 
noise operators. As an example, here we provide several 
equivalent noise matrices for backward-wave conhgura-
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tion:

NBi =
1
0

0 ' 
-1 / —Mbh 

Mb21
— Mb12 
Mb22 + —Mbh 

Mb21
— Mb12 
Mb22

= 1
0

0 ' 
-1 Np >

Nb2 = Nbi

states, there are F4 = F2 = 0. For cold atoms with 
only spontaneous emisson decay, the dephasing rates 7jk 
(j f k) between states |k) and \j) are 713 = 723 = F3/2, 
714 = 724 = r4/2, 734 = (r3+r4)/2. 712 is the dephasing 
rate between two hyperhne ground states |1) and |2).

—Mbh Mb 12 —Man Mbi2
— Mb21 Mb22 + — Mb21 Mb22

Nb3 Nbi
-1 0 
0 1 ’

NB4 Nbi
-1 0 
0 -1 -Nbi-

(Al)
We take the first choice NBi in the main text [see Eq. (31) 
in Sec. IIB] so that it is consistent with the microscopic 
treatment in Sec. III.

Appendix C: Microscopic SFWM Quantum 
Langevin Equations in Forward-Wave Configuration

Although Sec. Ill focuses on numerical confirmation 
of backward-wave SFWM, we remark that it may be 
helpful for general readers to write the SFWM quantum 
Langevin equations in the forward-wave configuration as 
well.

In the forward-wave configuration with both Stokes 
and anti-Stokes fields propagating along +z direction, 
the coupled Langevin equations become

Appendix B: Heisenberg-Langevin Equations of 
SFWM

The full Heisenberg equation of motion can be written
as where

d Mr
Fas

(Cl)

where

«S
0"11
(721
031

LO41

a12 

(722 
032 
<742

0"13

(723
033
O43

a i4
(T24
034
d44j

(Bl)

(B2)

o = -

■ 0 
0

9i3<zL

0
w

924«I

QSlClas

W
0

Hp/2'
g42«a

0
AP .

(B3)

Q =

BsiAss + r4i<j44 —712^12 "713(713 — 714(714
—712(721 F320"33 + r42(744 —723(723 “724(724
—7130*31 —723^32 -Bs(733 — 734(734
—714(741 — 724(742 — 734(743 — T4&44

(B4)

111
) f(<7) ;(<r)

112 113 7M"4 14
F = / 21

/ 31

) f(<7) ;(<r)/22 /23
) fM f(<7) 432 433

424
134

(B5)

U41 ) fM f(<7)142 143 J44 J

Fm = Fmi + rm2 is the total spontaneous decay rate of 
excited state |m), where m = 3, or 4, and rmj- is the decay 
rate from state | m) to \j). For the two hyperhne ground

Mr "Ctos + *
—in

Afc
2 (C2)

with Ak = (ujas+ujs)/c- (kc + kp) ■ z. The noise operators 
Fas and Fj, defined in Eq. (69), originate from micro­
scopic atom-light interaction. To compare Eq. (Cl) with 
Eq. (11) from the phenomenological approach in Sec. II, 
we take mode 1 as anti-Stokes and mode 2 as Stokes in 
the forward-wave configuration. From Eq. (11), we can 
also obtain Fas and Fj from the noise matrix:

Fas = NpRll/l + Npin/j

Fg = NpR2i/i + Npi2i/i H
- Nfi12/2 

NF122/2 H
- NFR12/2, 

NFR22/2 •
(C3)

Appendix D: Complex Phase Mismatching in 
Forward-Wave Configuration

In the forward-wave configuration, similar to the 
backward-wave configuration in Sec. IV B, we assume 
anti-Stokes photons in mode 1 are lossless with FIT and 
there is gain (or loss) in Stokes mode 2. The small para­
metric gain fulfills |k| < {a, g}. Using Eq. (6) and (17),
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A =

B

C

obtain analytical expressions of A, B, C, and D as 

■\fq1 2 3 4 + 4k2cosh (k^q2 + 4k2 j - gsinh ^4 W + 4k2

2). As discussed in Sec. IV A, we take the order (: cycy :}

\J q2 + 4ft2e(“i+a2 V/2

2*Ksinh f ^ \/q2 + 4k2

—2*Ksinh ^ Vi2 + 4k2

B

Vi2 + 4ft2e(“i+a2 V/2
Vi2 + 4k2cosh ^4 W + 4k2j + i?sinh W + 4k2

VV + 4K2e(“i+“2V/2
(Dl)

where q = ay - a*2 - iAk. In the small parametric gain 
approximation, we have

\Jq2 — 4k2 % q

= ay — ay — iAk = —*(AAy + AA:2 + AA:),

and

oy -\- ay — —*(AAy — AA*2),

(D2)

(D3)

where Akm = is the wavenumber difference from
that in vacuum. Hence, we simplify A, B, C, and D to

A =exp [iAAyL] exp iAkL

B =*ftLsinc

x exp

(AAy + A&^ + A&)B

i(AAy — A ko)L

C = — iftLsinc (A&i + A^ + A&)B
(D4)

x exp i(Ak\ — Akf)L

D =exp [-iAk^L] exp —iAkL

^2i(T) = /V"
(D5)

clwBD* e

where

BD* = iftLsinc (A&i + A^ + AA)B

x exp i(AAy — A k<Q + 2AAy + A k)L (D6)

Comparing Eqs. (D5) and (D6) with Eqs. (94) and (95), 
particularly for the argument in the sine function, we 
have A A* = AAy 4- AA.^ T A A* = Ay 4- A.^ — Ay — Ay, = 
kas + A:* - Ay - kp which is consistent with the statement 
in Ref. [10].

We now look at the case with loss in the Stokes (mode 
2). We take the order (: cya2 :) and have

Vh2(T)= / /

(D7)

where

AC* = i/ALsinc (AA^ + A&2 + A&)B

x exp *(2AAy — A kl + A Ay + A k)L
(D8)

Comparing Eqs. (D7) and (D8) with Eqs. (94) and (95), 
we have A A* = AA.]) T A Ay 4~ Ak = Ay 4~ Ay — Ay 4~ 
Ay = Ays + Ay - Ay - Ay, which is different from the 
case with gain. Here we have taken Ay ~ A:f for loss­
less mode 1. Therefore, in the case with loss in the 
Stokes mode 2, the complex phase mismatching becomes

We first look at the case with gain in the Stokes (mode Ak has + Ay — Ay — Ay
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