Quantum Langevin theory for two coupled phase-conjugated electromagnetic waves
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While loss-gain-induced Langevin noises have been intensively studied in quantum optics, the ef-
fect of a complex-valued nonlinear coupling coefficient on the noises of two coupled phase-conjugated
optical fields has never been questioned before. Here, we provide a general macroscopic phenomeno-
logical formula of quantum Langevin equations for two coupled phase-conjugated fields with linear
loss (gain) and complex nonlinear coupling coefficient. The macroscopic phenomenological formula
is obtained from the coupling matrix to preserve the field commutation relations and correlations,
which does not require knowing the microscopic details of light-matter interaction and internal
atomic structures. To validate this phenomenological formula, we take spontaneous four-wave mix-
ing in a double-A four-level atomic system as an example to numerically confirm that our macroscopic
phenomenological result is consistent with that obtained from the microscopic Heisenberg-Langevin
theory. Finally, we apply the quantum Langevin equations to study the effects of linear gain and
loss, complex phase mismatching, as well as complex nonlinear coupling coefficient in entangled

photon pair (biphoton) generation, particularly to their temporal quantum correlations.

I. INTRODUCTION

Quantum Langevin equations is a common approach
to studying an open quantum system involving loss or
gain, where the stochastic coupling between the system
and its environment is molded as a set of Langevin noise
operators [1-5]. For example, in the parametric down-
conversion (PDC) process, a pump laser beam passes
through a nonlinear crystal and is down-converted
into a pair of phase-conjugated electromagnetic (EM)
waves. In the simplest case with the perfect phase-
matching condition and an undepleted pump beam, with-
out linear loss or gain, the two phase-conjugated single-
mode fields are governed by the following coupled equa-
tions [0]
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where am and dl, (m = 1,2) are the field annihilation
and creation operators, M is the 2x2 coupling matrix,
and « is the (real) nonlinear coupling coefficient. Here
we consider only the forward-wave case with both fields
propagating along the same +z direction. If losses are
presented during the propagation of the two fields, the
coupling matrix is
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and their coupled equations become [3, 7]
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where am > 0 are the loss (absorption) coefficients,
and_sm are the associated Langevin noise operators sat-
isfying

If there is linear gain instead of loss, for example in
channel 1, be., oq < 0, equation (3) can be modi-
fied by taking v2alfT — v/-2al/lI''" One can show
that these Langevin noise operators are necessary to pre-
serve the commutation relations during propagation, be.

N

Equation (3) has been widely applied for PDC pro-
cesses where the nonlinear coupling coefficient x is real
[3, 7-9]. However, in a more general case of cou-
pled phase-conjugated fields, such as four-wave mixing
(FWM) near atomic resonances [10-12], the nonlinear
coupling coefficient k¥ can take a complex value involving
complicated atomic transitions. In this case, equation
(3) is not valid and its solution does not preserve com-
mutation relations of the fields. What are the general
quantum Langevin coupled equations accounting for the
complex nonlinear coupling coefficient?

To answer the question, the common approach is to
derive quantum Langevin equations by solving the light-
matter coupled Heisenberg equations, which requires
knowing microscopic details of light-matter interaction
such as atomic populations and transitions [11-13], The
complexity of this approach increases dramatically as
more atomic transitions are involved and it is extremely
difficult for experimentalists to follow, particularly in
some situations where it is impossible to obtain full mi-
croscopic details. Then our reduced question becomes:



Is it possible to obtain self-consistent quantum Langevin
coupled equations from the general expression of the cou-
pling matrix? We call this the macroscopic phenomeno-
logical approach. To our best knowledge, there has been
no published work in investigating Langevin noises in-
duced by a complex nonlinear coupling coefficient &

In this article, for the first time, we provide a gen-
eral macroscopic phenomenological formula of quantum
Langevin equations for two coupled phase-conjugated
fields with linear loss (gain) and complex nonlinear cou-
pling coefficient, in both forward- and backward-wave
configurations. The macroscopic phenomenological for-
mula is obtained from the coupling matrix by preserv-
ing commutation relations and correlations of the fields,
which does not require knowing the microscopic details of
light-matter interaction and internal atomic structures.
We aim to make it readable and accessible for experi-
mental researchers in the quantum optics community.

This article is structured as follows. In Sec. II, to ful-
fill the requirement of preserving commutation relations,
we formulate the general macroscopic phenomenologi-
cal quantum Langevin coupled equations and their solu-
tions from the coupling matrix taking into account linear
loss (gain) and complex nonlinear coupling coefficient,
in both forward- and backward-wave configurations. In
Sec. Ill, taking spontaneous four-wave mixing (SFWM)
in a double-A four-level atomic system as an example,
we derive the coupled Langevin equations from micro-
scopic light-atom Heisenberg interaction for this special
case. We numerically confirm that the macroscopic phe-
nomenological solution in Sec. II agrees well with the
microscopic approach. In Sec. IV, we apply the quan-
tum Langevin theory to study effects of linear gain and
loss, complex phase mismatching, and complex nonlinear
coupling coefficient in entangled photon pair (biphoton)
generation, particularly to their temporal quantum cor-
relations. We conclude in the last section V.

II. QUANTUM LANGEVIN EQUATIONS

Here we consider the two coupled single-mode phase-
conjugated fields in either forward-wave or backward-
wave configuration, as illustrated in Fig. 1. In the
forward-wave configuration [Fig. 1(a)], both fields prop-
agate along +z direction through a nonlinear medium
with a length L. In the backward-wave configuration
[Fig. 1(b)], the two fields propagate in opposing direc-
tions. The field annihilation operators om(f, z) can be
expressed as
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where + represents that field 2 propagates along +z or
—z direction, for the forward-wave or backward-wave

configuration, respectively. The filed operators satisfy
the following commutation relations

[6m (f, z), z)] = -1, N
[(tm (iv, Z), 0], (iv , 2)] = SmnS[ui IV ).

In the forward-wave configuration, both fields are input
at z = 0, or 0i(0) and 02(0) are the “initial” boundary
conditions. The general coupling matrix is [14]
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where am = -i"grXm with Xm being linear suscepti-
bility, and Ak (real) is the phase mismatching in vac-
uum. In general, am is complex valued, whose real part
Re{am} > 0 represents loss (or gain for Re{am} < 0)
and imaginary part represents phase velocity dispersion.
The nonlinear coupling coefficient X can also be complex-
valued. In the backward-wave configuration, the general
coupling matrix becomes [12, 15]

Afe
MR = ; Afc (7)
(27
and the “initial” boundary conditions are o0i(0) and
02(L): field 1 is input at z = 0 and field 2 is input at
z=1L
One can show that, under the following unitary gauge
transformation
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As physics is preserved and unchanged under the above
gauge transformation, we take 6 = ( throughout this
article for convenience and simplification.

In presence of linear loss or gain, Le., Re{am} ™ 0, or
complex nonlinear coupling coefficient, k¥ ™ K*, the two-
mode coupled equations must include Langevin noise op-
erators to preserve the commutation relations of the field
operators in Eq. (5). The noise operators should only
be related to Re{am} and Im{ft}. As K is real, the cou-
pled equations in forward-wave configuration should be
reduced to the known Eq. (3). For both forward- and
backward-wave configurations in the same nonlinear ma-
terial, the noise origin is the same except field 2 prop-
agates along +z direction for different configurations.
With these guidelines, we provide quantum Langevin
equations for the two phase-conjugated fields from their
coupling matrix in the following subsections.
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Figure 1.

Schematics of two coupled phase-conjugated electromagnetic waves:

K{

Medium

—)rz
0

(a) forward-wave configuration, and (b)

backward-wave configuration, X is the nonlinear coupling coefficient between the two modes.

A. Forward-Wave Configuration

In the forward-wave configuration as shown in
Fig. 1(a), we find that its quantum Langevin coupled
equations can be expressed in the following general form
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The Langevin noise operators satisfy
z), z) = - Wz -2z)  (13)

and have the following correlations
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The Langevin noise matrix is given by
Np = V-(MF + Mp*) = NFR + zNpp (15)

where NFR and Npi are the real and imaginary parts of
the matrix Np (be., Np”™ = NpR” + zNpi”"), respec-
tively. As indicated in Eq. (14), in this work we make
the physical assumption that the noises fluctuate about
a mean value of zero, be., the noise sources are in their
ground states, such that their mean occupation numbers
are zero.

We obtain the solution of Eq. (11) at the output sur-
face z = L as the following

di (L) _ gMpL Oi (0)"
at, (0)_

St (A dz.

MF(Z-2)  NFR A (A 7k (A

L

(16)

Defining
1 B
kL, (17)
Mp(L-z) AW Bi.(Z) (18)
a(A SiA
we rewrite Eq. (16) as
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We numerically confirm that the solution preserves the
commutation relations

[am(cu, L), a*(cu , L)] [nm(iv, 0), ojnfu: , 0)]

= Smn5(cv — to)). (20)

Now we examine some special cases.
Case 1: We first consider the coupling matrix Mp in Eq.
(6) where the nonlinear coupling coefficient £ is real and
both modes have losses (Re{com} > 0) . This works for
most PDC processes [3, 7]. Under such a condition, we
have the following diagonalized noise matrix

\J2Re{aq} 0
Np = NFR 21
P 0 ~2Refal) D
and the coupled Langevin equations
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which is the well-known result in literature [3, 7].

Case 2: & is real, the mode 1 has linear loss (Re{ctq} =
a > 0), and the mode 2 has linear gain (Re{co2} = —g <
0). The noise matrix becomes

V2a 0

Np 0 iVag

(23)



We have the following coupled Langevin equations
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Case 3: The two modes are perfectly phase-matched

without linear gain or loss: AA =0, OR = a? = 0, but

the nonlinear coupling coefficient is complex-valued K =

i/ + if. In this case, the coupled matrix is

0 -C + by
Mp ¢ Zar o (25)
The noise matrix becomes
Np ©O4C 4 Lxecow-c L )
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where ©(C) is Heaviside step function, 0(C) = 1 if C > 0,
©(C) = 0 if C <O0. The Langevin coupled equations are
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Eq. (27) shows that a complex-valued nonlinear coupling
coefficient also leads to Langevin noises even when there
is no linear gain or loss. This is revealed by this article
for the first time.

Case 4: As K is real and there is no linear loss or gain
(or = 0.2 = 0), the coupled equations can be written as
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The effective Hamiltonian A has anti-parity-time (APT)
symmetry, which has been demonstrated in FWM in cold
atoms [14, 16].

B. Backward-Wave Configuration

In the back-wave configuration as shown in Fig. 1(b),
the quantum Langevin coupled equations can be ex-
pressed in the following general form
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Different from the forward-wave configuration, the
“boundary” condition is

0i(w, 0), aj(cA, 0) = «2(w, L), d*co"' L) = 6> —u>).

(30)

The Langevin noise operators satisfy the same commu-
tation relations and correlations in Eqgs. (13) and (14).
The Langevin noise matrix is given by

1 0 7 —MBH —MBi —MBH —MBil
0 -1 V MBI MB22 MBI MB22
= NBR + *NBI,
(31)

where NBR and NBI are the real and imaginary parts of
the matrix NB, respectively. One can show that the noise
matrix defined in Eq. (31) has the same origin as that
in the forward-wave configuration in the same nonlinear
material:

N, Ne (32)

We note that the choice of noise matrix is not unique.
For example, transformation /1 — —f1 or/and jo — —fo
does not affect computing any physical observable. We
elaborate on this more in Appendix A.

We obtain the solution of Eq. (29) at z = A as follow-
ing
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Different from the forward-wave case, in the backward-
wave configuration, the mode | input is at z = 0 and the
mode 2 input is at z = L. With known 0i(0) and 02(A),
we rearrange Eq. (33) and obtain solutions for 61(A) and
62(0):
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We numerically confirm that Eq. (36) preserves the com-
mutation relations
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Similarly to the forward-wave configuration, we exam-
ine the following four special cases.
Case 1: We assume the nonlinear coupling coefficient ¥
is real and both modes have losses (Re{am} > 0). Under
such a condition, we have the following diagonalized noise
matrix

Y/2Re{ai} 0

NR = 39)
0 —y2Re{<*2}.
and the coupled Langevin equations
AT s 1
d M V~Rejail/i (40)
02 V/2Re{0!2}/2

Case 2: K is real, mode 1 has linear loss (Re{ai} = a >
0), and mode 2 has linear gain (Rejoq} = —g < 0). The
noise matrix becomes

Np V2a 0 | 1)
0
We have the following coupled Langevin equations
i i -VWi'
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Case 3: The two modes are perfectly phase-matched
without linear gain and loss: AA = 0, oq = a2 = 0,
but the nonlinear coupling coefficient is complex-valued
ft =/ + *C- In this case, the coupled matrix is

MR 0 ) -C +ill (43)
-C +ill 0
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The noise matrix becomes
Ng=@(OVC | | +ie(-OpvrC | | (44
The Langevin coupled equations are
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Eq. (45) shows that in the backward-wave configuration,
a complex-valued nonlinear coupling coefficient also leads
to Langevin noises even though there is no linear gain or
loss.

Case 4: As K is real and there are equal losses in both
modes (oq = a? = a > 0) with perfect phase matching
(AA: = 0), the coupled equations can be written as
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Interestingly, the effective Hamiltonian A here follows
parity-time (PT) symmetry [17, 18].

III. MICROSCOPIC ORIGIN OF LANGEVIN
NOISES: SFWM

One could validate the above phenomenological ap-
proach of quantum Langevin coupled equations by con-
firming the microscopic origin of the Langevin noises.
However, for two systems with the same quantum
Langevin equations, their microscopic structures may be
quite different. Therefore it is impossible to sort all mi-
croscopic systems. In this section, we focus on SFWM in
a double-A four-level atomic system [10-12, 19, 20] with
electromagnetically induced transparency (FIT) [21, 22],
and show that the phenomenological approach in the
above section agrees with the numerical results from the
microscopic quantum theory of light-atom interaction.

We start from a single-atom picture, considering an
EM wave couples the atomic transition |j) and [A). The
induced single atom polarization pjk oc Pjfcoyfc, where
Pjk is the electric dipole moment matrix element, fijk =
7 ) (4] is single atom transition operator from state k) to
lj). In the Heisenberg-Langevin picture, the single-atom
transition operator can be expressed as

where is the zeroth-order steady state so-
lution. The single atom noise operator between atomic
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Figure 2. Spontaneous four-wave mixing (SFWM) in a double-A four-level cold atomic medium, (a) Backward-wave geometry
of SFWM optical configuration. Driven by counter-propagating pump (Ep) and coupling (Ec) beams, phase-matched backward
Stokes (ds) and anti-Stokes (das) are spontaneously generated from a laser-cooled atomic medium, (b) Atomic energy-level
diagram. The pump (ivp) laser is detuned with Ap from transition |[f) — |4), and the coupling (cvc) laser is on-resonant with
transition [2) — |3). Stokes (cvs) photons are spontaneously generated from transition [4) — [2), and anti-Stokes (cvas) photons
from transition [3) — |f). zu = izas — cvi3 is the anti-Stokes photon frequency detuning from transition |f) — |3).

transition \v) — 1/j) is represented by f77Z, which satisfies
the following correlations:

<ALtV)bhT")) =
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where and are diffusion coefficients.

In a continuous medium with atomic number density
n, the noises from different atoms are uncorrelated. We
have the spatially averaged atomic operator

A T=FA2 (49)

where A is the single-mode cross-section area, and the
spatially averaged atomic noise operators fff7 satisfy the
following modified correlations

= —ui)5(z — z'),
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where the diffusion coefficients are the same as those from
the single-atom picture.
The electric field and polarization are described as

E(t.2) #H)(t,2) + #-)(1.2) .
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Where #+), £{+) and \ ) are positive and nega-
five frequency parts. We take the following Fourier trans-

form
E{)«.=) = -j=
V271 (52)
f(H(t,z) = ~=
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where E(us z), P(uj, z) are complex amplitudes in fre-
quency domain. The Maxwell equation under slowly
varying envelope approximation (SVEA) can be written
as

dE(u,z) | (53)
2

where =+ represents for propagation direction along ==z,
and free space impedance iJ = 1/(ceo) = 377 Ohm, with
¢ being the speed of light in vacuum, and £o the vacuum
permittivity. With quantized electric field
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P(w, z) = z), (55)

and

we obtain the Langevin equation for the EM field in the
atomic medium
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Here gjk = g'% . is single photon-atom coupling strength.

Now we turn to the backward-wave SFWM in a double-
A four-level atomic system as illustrated in Fig. 2. In
presence of counter-propagating pump (£p.z») and cou-
pling (&c cvc) laser beams, phase-matched Stokes (cvs)
and anti-Stokes (cvos) are spontaneously generated and
propagate through the medium in opposing directions.
In the rotating reference frame, the interaction Hamilto-
nian for a single atom is

V= — h«3i00s13i + — ft (542f1-s0"42 + 924d(<

—  —ft(IIc0"32 + ~c™2s) — Nt (2p<T4i +

— HAp(3a4 — po(d33 — f.ox7022,

where Oc = 932Ec¢/h is coupling Rabi frequency. The
coupling laser is on-resonant with transition [2) — |3).
Op = p4iEp/h is pump Rabi frequency. The pump
laser is far detuned from the transition [1) — |4) with
Ap = ojp — (V14 so that the atomic population mainly oc-
cupies the ground state |1). We take this ground-state
approximation through this section. With continuous-

"DI2,21 2*M2,24
142,21 2)42,24
DI3,21 DI3,24

2M321 2)43,24

22,31 2)2,34"
24231 2)42,34
DI331 2)13,34
24331 24334

wave pump and coupling driving fields, the energy con-
servation leads to cvos+cvs = osc+ojp. Here w = cvos —W13
is the anti-Stokes frequency detuning and thus the Stokes
frequency detuning is tos — cvso = —w-.

The atomic evolution is governed by the following
Heisenberg-Langevin equation [11]

(59)

where 7jk = yy (nonzero only as j k) are dephasing
Jrates, rA (nonzero only as j = k) are the population
transfer resulting from spontaneous emission decay. The
full equation of motion can be found in Appendix B. The
3diffusion coefficients }jkj>k can be obtained through the
Einstein relation

YEY& —  (dj&dy&)
- — /Ti&AP&A ,

(60)

where 4jk = §-zcfik — /j~. For the SFWM governed by
Eq. (59), we have [11, 12]
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T12 (d32) 0 0 0
0 T4 (d32) 0 T4 (d33)
Solving Eq. (59) under the ground-state approximation where
(dn) = 1 with weak pump excitation Ap = {Cip, F4}, we
get the single-atom steady-state solutions (with gv = .&0) 4(07 + 2712)
12,13,42,43) ab TerET 0a
ncriP 0340T
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Figure 3. Comparison of commutation relations between the macroscopic (“Macro”’, blue solid lines) and microscopic (“Micro”,
red dashed lines) approaches in the group delay regime: (a) [a.as (L), ats(L)], (b) [aas (L), als (L)] — S(zu — zu'), (c) [as (0), a) (0)],
and (d)[as(0),a.)(0)] — S(zu — zu'). The results with no Langevin noise operators (“NLN’’) are shown as black dotted lines in

(a) and (c).
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where T{w) = |flc|2 - 4 (57 + *743) (57 + *712). We then
obtain the ensemble spatially averaged atomic operators

for generating anti-Stokes and Stokes fields from Eq. (49)

_ L
713 =

1
\/ﬁ :I:: NHVI {1V
(66)

1 . o)
42 = a4? m;ﬁpﬁf”y.

For simplicity, we define aas(u7,z) = aas(ojas) + uj, z) and
as(zu,z) = as(iv§) — w,z). Following the procedures in
Egs. (56) and (57):

02 1 M,Agi3(713(0;, z),

mt(: 67)

HIANAN(S5T, 2),

we get coupled equations for the counter-propagating
anti-Stokes (propagating along +z) and Stokes (propa-
gating along —z) fields in the backward-wave configura-
tion
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&as
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(68)
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are shown as blue solid and red dashed lines, respectively.
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Fas = ignVnd sl | 3954Y + B934 + 234

Fs = -igd2 VnA MM2/12" 4 /M3M30 + 042/42) + /74303

(69)
and
““os — 720Xos,
_Ws
<3 — X3,
2¢ p el
4n |/43T {w + HI12) (70)
ST e0fi 7 (zu)
% A
s nlX4r 713)  |*p| -
v3) MPI3P32f«24f«dl 1 l
T(0;)(Ap + 1MNi4)'
X(3) _ MAftI3f«32f«24f(41 1 1

EoR3  T*(%7)(Ap + "yid)'

The expressions for /J“0 and are listed in Egs. (65).

Four real correlations of Stokes and anti-Stokes fields in the group delay regime:
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(@) (aas(L)ais(L)) (b)

The macroscopic (“Macro’) and microscopic (“Micro’) approaches

AA: = (Wos—rios)/c—(Ay+Ap) ' £ is the phase mismatching
in vacuum. Here the complex aas represents the EIT
loss and phase dispersion, a* is the Raman gain and
dispersion along -z propagation direction. One can show
that the nonlinear coupling coefficients can be expressed
as Kas = K-¢i9 and ks = Ke~id, where

y/T0sas 77P3P24 (71)
2c elh  Ap + ¥4 Tz

and 6 is the phase of ClpClc(Ap + *714). As a result, K0S
and ks fulfill the gauge transformation discussed in Sec.
II. Therefore, to be consistent with the treatment in Sec.
II, we rewrite Eq. (68) to

d, _ &as Fus
02 = Mr ot Ft (72)
where
(% 7\
MR = (*oa + 7

Fus 7Pas‘€-i/\/2] (73)

ft =
Similarly, we rewrite the SFWM quantum Langevin

equations in the forward-wave configuration in Ap-
pendix C.
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We now turn to compare Eq. (72) with Eq. (29)
from the phenomenological approach in Sec. II, where
we take mode | as anti-Stokes and mode 2 as Stokes in
the backward-wave configuration. From Eq. (29), we
have

Fuas

NBRU/1 + NBIH/1l + NBI12/2 + NBRIO/J,

s

—NBR21A — NBI21/1 ™ ~3122/2 — NBR22/2 -

(74)
Therefore, we obtain Fas and FJ from two different ap-
proaches: Eq. (69) from the microscopic photon-atom
interaction, and Eq. (74) from the macroscopic phe-
nomenological approach.  Although we remark that

are different from the

the atomic noise operators

field noise operators /,,,, the correlations of Fus and Fs

uniquely determine the system performance. While we

find it difficult to analytically prove the two approaches

are equivalent, we could numerically compute and com-

pare the commutation relations and correlations of aa$,
and

We consider here the backward-wave SFWM in laser-
cooled 85Rb atoms with relevant atomic energy lev-
els being |1) = [52S1/2,F = 2), |2) = |52S1/2,F = 3),
[3) = [52Pi/2,F = 3), |4) = 152P3/2,F = 3). The decay
and dephasing rates for corresponding energy levels are
3 =14 =21 x 6 MHz, 1r3i = |r3, 32 = §r3,rdi =
|44 = |14, 713 = y23 = 714 = 724 = 211 x 3 MHz,
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Figure 6. Comparison of commutation relations between the macroscopic (“Macro”, blue solid lines) and microscopic (“Micro”,
red dashed lines) approaches in the damped Rabi oscillation regime: (a) [aas (L), a(s(L)], (b) [a.as (L), a\a(L)] — S(zu — zu'), (c)
[as(0),a)(0)], and (d)[a.s(0),a.)(0)] — S(zu — zu'). The results with no Langevin noise operators (“NLN”) are shown as black

dotted lines in (a) and (c).

and 712 = 211 x 0.03 MHz. With vacuum inputs in both
Stokes (z = L) and anti-Stokes (z = 0) modes, we have

-&)) =<S(o7-a/)
and (<z\(a;,0)<WGT7',0)) = =0
There is also no correlation between Stokes and anti-
Stokes fields at their inputs.

We numerically compute SFWM in two different
regimes to confirm the consistency between the macro-
scopic and microscopic theories, i) The first is the group
delay regime, where the SFWM spectrum bandwidth is
determined by the FIT slow-light induced phase mis-
matching [10]. The working parameters are: fip =
21 x 1.2 MHz, Qc = 211 x 12 MHz, Ap = 21 x 500 MHz.
The cold atomic medium with length L = 2 cm has den-
sity n = 5.1 x 1016 m~3, corresponding to an atomic
optical depth OD = 80 on the anti-Stokes resonance
transition, ii) The second is the Rabi oscillation regime,
where biphoton correlation reveals single-atom dynamics
[10]. The working parameters are: ilp = 211 x 1.2 MHz,
Qc = 2K x 24 MHz, Ap = ivp —1174 = 211 x 500 MHz. The
cold atomic medium with length L = 0.2 cm has density
n = 6.4 x 1014 m~3, corresponding to OD = 0.1. In both
cases, we take 4k = 127 rad/m.

The numerical results in the group delay regime are
plotted in Figs. 3, 4, and 5. The commutation re-

lations [oos(L), als(L)] and [o0s(0), 0|(0)] are shown in
Fig. 3. Both macroscopic and microscopic approaches
agree well with each other [Figs. 3(a) and (c)], with neg-
ligible relative small difference < 1.0 x 10~6 [Figs. 3(b)
and (d)]. As expected, the macroscopic phenomenologi-

cal results give perfect flat lines at A=

A = 1 which is the starting point of Sec.

II. The microscopic results of field commutations are
consistent with the macroscopic approach, but with <
1.0 x 10~6 deviation at some spectra points. As we
understand, these small spectra discrepancies may be
caused by the ground-state and zeroth-order approxi-
mations we take for solving the microscopic Heisenberg-
Langevin equations (59). Ifthe Langevin noise operators
are not taken into account, as shown in the black dotted
curves in Figs. 3(a) and (c), the anti-Stokes commuta-
tion relation is not preserved and displays BIT transmis-
sion spectrum, while Stokes commutation relation still
approximately holds due to the negligible gain or loss in
Stokes channel under the ground-state approximation.

Figure 4 displays four real-valued correlations of
Stokes and anti-Stokes fields: (a )(oos(L)oJs(L)), (b)
M (6,(0)61(0)), and (d) (6t(0)6,(0)).

Figure 5 shows the twelve (six pairs) complex-valued
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correlations of Stokes and anti-Stokes fields: (a)
(W K,L(%%(0)=> —
(© (6_(1OLO0p = (6,(0)«L(Dr, (d)
(&L()6X0)) = (6t(0)6s,(i))*, (¢
(6L(™)4(0))*, and (f) (6,(0)6,(0)) = ((#)6t(0))*
The macroscopic solutions agree well with those obtained
from the microscopic approach.

The numerical results in the Rabi oscillation regime are
plotted in Figs. 6, 7, and 8. The macroscopic phenomeno-
logical results also agree remarkably well with those from
the microscopic theory.

In the microscopic Langevin-Heisenberg theory, the
Stokes and anti-Stokes Langevin noise operators in
Eq. (69) are expressed as a linear summation of atomic
noise operators whose correlations are defined in Eq. (48).
On the other side, in the macroscopic phenomenological
approach [Eq. (74)], they are obtained from the noise
matrix in Eq. (31) [or Eq. (15) for the forward-wave
configuration] and two-mode field noise operators whose
correlations follow Eq. (14). Although Eq. (69) (with
atomic transition noise operators) and Eq. (74) (with
two-mode optical field noise operators) appear different,
their numerical results of correlations show a remarkable
agreement with each other in Figs. 3-8. We attribute
this to the fact that in both microscopic and macro-
scopic theories the two fields share the same coupling

matrix, and both satisfy the bosonic commutation rela-
tions. Under these constraints, their physical observable
and outputs should be uniquely determined, though the
choice of noise matrix in the macroscopic phenomeno-
logical formula is not unique, for example as elaborated
in Appendix A. It is extremely challenging to directly
drive the noise matrix in Eq. (15) and Eq. (31) from the
microscopic Heisenberg-Langevin theory, because: 1) the
microscopic Heisenberg-Langevin theory has a huge com-
putational complexity (See Sec. Ill), 2) for two systems
with the same coupling matrix, their microscopic struc-
tures may be quite different, and 3) the choice of noise
matrix in the macroscopic phenomenological formula is
not unique. For these reasons, we take numerical con-
firmation for the correlations which are relevant to the
physical observables. However, we do confirm when the
nonlinear coupling coefficient is real, Eq. (15) and (31)
are indeed reduced to the known results in literature (See
Cases | and 2 in Secs. ITA and IIB).

We note that, although the noise field correlations
from Eqgs. (69) and (74) agree well with each other,
there are small numerical differences at some spectral
points as shown in Figs. 3-8. These neglectable dis-
crepancies are not from fundamental physics, but rather
from the approximations taken during derivation: For in-
stance, the ground-state approximation and lowest-order
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perturbation are used in deriving the microscope noises
and the coupling matrix. As a result, in the micro-
scopic Heisenberg-Langevin theory, although the under-
lying microscopic quantum mechanics ensures the preser-
vation of commutation relations, the computation nu-
merical results may be slightly away from the exact val-
ues due to these approximations. In the macroscopic
phenomenological treatment, we “force” the commuta-
tion relations to hold. As a result, some “adjustment”
is added to the Langevin noise operators to compensate
the approximation-induced error in the coupling matrix.
These resulted differences are small and neglectable as
long as the coupling matrix describes closely its true sys-
tem, as shown in Figs. 3-8.

In this work, it is assumed that the noise sources are in
their ground states such that their mean occupation num-
bers are zero, as indicated in Eq. (14). If this condition
is not met, our macroscopic phenomenological quantum
Langevin equations may not be applicable and require
adjustment. We find that the complex nonlinear cou-
pling coefficient arises from near-resonance interaction
between light and atomic transitions. Although in this
work, we focus on SFWM in a double-A atomic system,
we anticipate the same physics applies to other multiple
wave mixing processes, such as two-level [23], three-level
[24-26], and diamond-shape four-level systems [27, 28].



IV. BIPHOTON GENERATION

We now turn to apply the quantum Langevin the-
ory to study time-frequency entangled photon pair
(biphoton) generation through spontaneous four-wave
mixing process, especially in a variety of situa-
tions involving gain, loss, and/or complex nonlinear
coupling coefficient. We consider continuous-wave
pumping whose time translation symmetry leads
to frequency anti-correlation aq + U0 =constant
between the paired photons. In the spontaneous
four-wave mixing process, both input states are vac-

uum:  (aj(tz7, 0)61(777,0)) = (6/(777,0)62(777',0)) = 0,
(01(07', 0)0{ (117, 0)) = (02(07', 0)c4 (17, 0)) =
671 — W, for the forward-wave configuration,

and (6](777,061(777',0)} = (6/(777, L)62(717, L)} = 0O,
(01 (07, 0)6j (to', 0)) = (02(07, L)Oo(07', L)) = 6777 — to")
for the backward-wave configuration. From Eq. (4), with
cvi = cvio + to and U0 = oqo — 07, we have

«i(A,21) = 677761(771, zi)e*
giW20(A=""—t)
as(A,22) 67776-2(777, z2)e ~
V27T
(75)
where =+ represents the forward-wave (+) or backward-
wave (-) configuration, z = zl and z = z) are the

output positions of channels | and 2, respectively. For
the forward-wave configuration, zi = z) = L. For the
backward-wave configuration, zi = L and z2 =0. The
phase mismatching in vacuum AA = (cuas Zus)/c—(ke +
kp)+z ~ (wosO =ws0)/c— {kc + kp) ' z is nearly a constant.
The vacuum time delay z*/c constants are usually very
small in usual experimental conditions, from now on we
ignore these constants for simplification and rewrite the
above equations to (otherwise one just needs to make a
time translation #—>% — z*/c)

<ZI(f,Z1) 677761(771, z1)e

(76)

q2(f,22) ((0762(07, 25 )e**.

1277

The photon rate in channel m can be computed from

Rm — /7, (A, -Im) 6m (A, zm )/
[ 7 poo '

= N ———

(07, Zm

(77)
Here we are particularly interested in the two-photon
Glauber correlation in the time domain, which can be
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computed from the following two different orders
G i (A2,A1)

= (6] (Ai, 21) 6/ (A2.22) 62 (As, 22) 61 (Ap zi))
—10s (As, 22) 61 (Ai2i))p
+ (12 (As, 2s) 1 (AL, Zi))/ + 121122,

G~(AiLA2)

=0s (As, 2) 6] (A, zi) 61 (Ap zi) 62 (As, 25))
=101 (AL,2)&2 (As.2s))P
+ (2 (As, 25) 11 (AL, 21))/ + 121122,

where we have applied the Gaussian moment theorem
[29, 30] to decompose the fourth-order field correlations
to the sum of the products of second-order field correla-
tions (See Supplementary Material [31] for the detailed
verification). The first term in Egs. (78) and (79) can be
expressed as |[Tf2,i(A2,A1)2 and |TT2(AL, A2)|2, where

#s,1(As,Ai) = (6s (As, 2s) 61 (Apzi)) (80)
= e-"Me-"""21(A1l -A2),
#1,8(A1,A2) = (61 (Apzi)62 (As, 22))

e ANON AN1ONy 1 (81)
=e- e-"M°"M,2(A1 -Ag),

are the two-photon wavefunctions with the relative parts
7s,1(Al -A2)
=— '.]] 6777607'(62(177', 22)61(777, zi))e 4rajtl t2/ * ~

161,5(Ai -A2)
L[ GTTI6777(6I(T77, ZI)62(TTT, Z2))e" *A(RA" A+

2r /.

One can show that the second term in Egs. (78) and (79)
is zero if the nonlinear coupling coefficient is real-valued,
and it is usually very small as compared to other terms.
The third term in Egs. (78) and (79) is the accidental
coincidence counts. The two-photon wavefunction and
Glauber correlation satisfy the following exchange sym-
metry

W2LAL — A2) = w021 (Ai — As) = 01,2 (Ai — #2),
*2i(A2,Ai) = T2,I(A2,A1) = TI2(ALA2),
Gzr (A2A1) = G2J (A2,A1) = G/ (ALA2)

(84)

The normalized two-photon correlation is defined as

g<;>fe<D)sG (7<)
Ail Ats

(85)

As the system has time translation symmetry with
continuous-wave pumping, G"i (A2,A1) = G (Al - A2)
depends only on the relative time G - G-



A. Loss and Gain

To simplify and unify the descriptions for account-
ing both forward- and backward-wave cases, we define
“input-output” fields: aijin = c¢q(0), 02, = a2(0),
a-j0Ut = a-i(L), and 020Ut = 02(L) for the forward-wave
case; a\™n = r-i(0), o2jjn = 02(L), oii0li = a-i(L), and
02j0Ut = 02(0) for the backward-wave case. In this sub-
section, we aim to investigate the roles of loss and gain
in biphoton generation, considering linear loss in mode |
(Re{ai} = a > 0) and linear gain (Re{a2} = —g < 0)
in mode 2. We also assume X is real, or its contribution
to Langevin noises is much smaller than the linear gain
and loss, be., Im{ft} < {a,g/). In this case, for forward-
and backward-wave configurations, the noise matrix is
reduced to

0

NF,B 0 ﬂ:i\/Zg 86

Hence, the output fields in Egs. (19) and (36) can be

rewritten as

"A B Jin
G D

7 Xi x», AM

ALout 4
Joo Xor oy A

f“ﬁ,out
(87)

where Xmn are combined coefficients. We further rewrite
Eq. (87) as

My,

ﬂu,out — Aaig.n + Ba/\ in + / Xrfi(=) + AA2/2(Z

A2out — +
’ Jo |
88

As shown in Eq. (84), there are two different orders
[(: ctocq :) or (: cqao :)] to compute the two-photon wave-
function and Galuber correlation. Although these two
orders are equivalent, the numerical computation com-
plexity may be significantly different. Computing bipho-
ton wavefunction in Eq. (83) in the order (: cqao :) in-
volves nonzero noise field correlations (/,,,/,],}, while in
the order (: ctocq :) [Eq. (82)] these noise field corre-
lations disappear because of (/A/m) = 0. These field
correlations in the frequency domain can be expressed as

(%/) "Ziout (a3)) = <% — %) [-BD*], (89)

{ft'lout 0'Oout ))
Ac* + / -~ )

Jo

— SO —

(90)
Therefore, we obtain the biphoton wavefunction follow-
ing the order (: aocq :)

AT {ef'2,0utf™ )e
1)
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where r = G - f2. If following the order (: cqao :), we
have

Vha(r) AUdiU (¢l )02 e

/ Je AG*+ /
Jo
(92)
One can show that the second term in Eqgs. (78) and (79)
is zero in this loss-gain configuration. The single-channel
photon rates can be obtained as

i2i — — J \Bl~dw,

(93)

Kt + ~(|¥02ip + [%22p)  dw.

172 = 7.

It is interesting to remark that, in the loss-gain config-
uration, the biphoton field correlation following the order
(- ogainoloss :) does not involve noise field correlations as
shown in Egs. (89) and (91), which dramatically reduces
the computation complexity. On the other side, taking
the order (: oiossogain :) must include noise field corre-
lations as shown in Eqgs. (90) and (92). This may be
understood in the heralded photon picture [32]: When
a photon in a lossy channel is detected (annihilated) by
a detector, we can always ensure there is its partner (or
paired) photon in another channel; On the other side,
when a photon is detected in a gain channel which pro-
duces multiple photons, we can not always ensure it has
a partner photon in another channel. The exchange sym-
metry can only be preserved by taking into account the
Langevin noises.

In the SFWM described in Sec. 111, the anti-Stokes
photons experience finite BIT loss due to the ground
state dephasing (qq2 G 0), and the Stokes photons prop-
agate with negligible but small Raman gain. Figure
9 displays the two-photon Glauber correlation in the
group delay regime with the same parameters as those
in Figs. 3, 4 and 5. As shown in Fig. 9(a) and (b), both
macroscopic and microscopic approaches with Langevin
noises give consistent results. As expected, the compu-
tation of G™]s(r) (following the order (: dsdas :)) with-
out Langevin noise operators (black dotted line: NLN)
agrees with the exact results obtained from both macro-
scopic (blue solid line) and microscopic (red dashed line)
approaches, shown in Fig. 9(a). On the contrary, the
computation of G”s(r) (following the order (: dasds :))
without Langevin noise operators deviates significantly
from the exact results, as shown in Fig. 9(b).

B. Complex Phase Mismatching

Different from the Heisenberg picture where the evo-
lution of field operators is governed by their Langevin
coupled equations, reference [10] provides a perturbation
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Figure 9. Two-photon Glauber correlation in time domain in
the group delay regime: (a) G~L(T) and (b) Gdula(r). The
simulation conditions are the same as that in Figs. 3, 4, and
5. NLN: no Langevin noise included.

theory to describe biphoton state in the interaction pic-
ture. The solution from Heisenberg-La.ngevin theory may
contain correlations of more than two photons, while the
perturbation theory focuses only on the two-photon state
by ignoring higher-order terms. These two treatments are
expected to give the same results in the limit of small pa-
rameter gain. Although the perturbation theory in the
interaction picture provides a much clear physics picture
of two-photon state, treating loss and gain requires a
proper justification. In the perturbation theory, linear
loss and gain are included in the complex phase mis-
matching Ak(w) [10]. For the SFWM described in Sec.
111, Ref. [10] derives the biphoton relative wa.vefunction
with perturbation theory as

/ dnTR(UZT)<F(tZT)e *ror, (94)
J

where the longitudinal detuning function is

$tm) = sine /L Hasfisl (95)

There is a statement in Ref. [10]: “It is found that to be
consistent with the Heisenberg-La.ngevin theory in the
low-gain limit, the argument in <f should be replaced by
Ak = (kas + k* — kc — kp’j 1 £, where k* is the conjugate

of Ay.” For the SFWM in the double-A four-level atomic
system, there is small Raman gain in the Stokes chan-
nel. What happens if there is loss in the Stokes channel?
Should we take k* or ks in the complex phase mismatch-
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ing Ak(w)7 Although Ref. [10] takes k* for Stokes pho-
tons with gain, it is not clear whether it still holds for the
case with loss. In this subsection, we do not only provide
a justification for the above statement in Ref. [10] from
the quantum Langevin theory by taking small parametric
gain approximation, but also extend the complex phase
mismatching to the case with loss in the Stokes channel.

We take the same backward-wave configuration in
Ref. [10]. We assume anti-Stokes photons in mode | are
lossless with FIT and there is gain (or loss) in Stokes
mode 2. The small parametric gain fulfills |x| << {a, g}.

In the backward-wave configuration, using Eq. (7),
(34), and (37), we obtain analytical expressions of
A, B,C, and D as

VV - 4ft2e-(ai~*2)L/)

A
1?sinh q? - 4ft2] + ylq) — 4/Acosh (vy2q] - 4ft2)
B 2K
q + ylql — 4f2COth(y ylq) — 4ft2)’
c —2ift
q + ylq2 — 4ft2coth(y yiq) — 4t2)"
D

i%sinh  y2q2 - 4f0j + 2! — 4ftdcosh “Sy2q) - 4ft)j

(96)
where ¢ = a\ + 4% — iAk. In the small parametric gain
approximation, we have

y2q2 —4Aft2 % ¢

: o 97)
o\ +a) —idk = —i(Ak'i — Ak'2* + AA),
and
a\ —a% = —i(Aki + AAW). (98)
where Akm = is the wavenumber difference from

that in vacuum. Hence, we simplify A, B, C, and D to
A =exp F%qﬂ exp ridkL

i-— +
B —inLsine (A% = A& +A&)B

[(Aki — + AA)LL
X exp i(Aki — Akk) + AA:)

2

(A&i - A&" + AA)B ©9)

C = — iftLsinc

i(AAq — AAY* + AK)L
X exp

D =exp [-idkoL] exp iAkL

We first look at the case with gain in the Stokes (mode
2). As discussed in Sec. IV A, we take the order (: epeq :)

V'siM = // <&'<&"%<Z2,out(a/)<ii,out(a;))e
(100



where

- +
BD* = iftLsinc (Ady AT

(A&l — A&S +2A/%)Z/
X exp

Comparing Eqgs. (100) and (101) with Egs. (94) and (95),
particularly for the argument in the sine function, we
have AA = AAy — AAy - AA = Ay — Ay — Ay | Ay, =
Ays — k* — Ay + kp which is consistent with the statement
in Ref. [10].

We now look at the case with loss in the Stokes (mode
2). We take the order (: cycy :) and have

102
= / dwAC*e
where
AC* = *R*Lsinc (A&; — A& + A&)T
(103)

QA& - A&T +AA2)Z,
exp

Comparing Eqgs. (102) and (103) with Egs. (94) and (95),
we have AA = AA( — AAy 4- AL =/ — Ay —Ay4- Ay =
kas — Ay — Ay + Ay, which is different from the case with
gain. Here we have taken Ay ~ A;( for lossless mode 1.
Although our discussion is based on the backward-
wave configuration, the conclusion can be extended to
the forward-wave configuration, which is derived in de-
tail in Appendix D. Therefore, in the case with gain in
the Stokes mode 2, the complex phase mismatching is
AAX = (kas + k* — kc — kp™ 1z. In the case with loss in

the Stokes mode 2, the complex phase mismatching be-
comes AA = (kas 4- Ay — Ay — Ay) ' 1.

C. Complex Nonlinear Coupling Coefficient and
Rabi Oscillation

As illustrated in Fig. 2, we can understand the SFWM
process in the following picture. After a Stoke and anti-
Stokes photon pair is born from a single atom follow-
ing the atomic transitions [Fig. 2(b)], the paired pho-
tons then propagate through the medium [Fig. 2(a)]. As
the photon pair can be generated at any atom inside the
medium, the overall two-photon wavefunction (or prob-
ability amplitude) is a superposition of all possible such
generation-propagation two-photon Feynman paths. Fol-
lowing this picture, when the propagation effect can be
ignored, the biphoton state reveals the single atom dy-
namics, which is connected to the nonlinear coupling co-
efficient. In the following, we consider SFWM in the limit
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of small optical depth (OD) where the linear propaga-
tion effect is small and show how the complex spectrum
of nonlinear coupling coefficient reveals single-atom Rabi
oscillation.

We rewrite the nonlinear coupling coefficient in
Eq. (71) as:

1 1
(w  fie/2 + ¥7e) (ca + ne/2-l-rye)

(104)
where
.VVI
VWV, .VWVig/| | (105)
Ap + *714
Here Qe = |Clc|2 — (713 - 712)2 is the effective coupling

Rabi frequency, and ye = (712 + 7i3)/2 is the effective
dephasing rate. Obviously, the nonlinear coupling coeffi-
cient x/ry has a complex spectrum, with two resonances
separated by the effective coupling Rabi frequency Cle. In
the ground-state approximation with major atomic pop-
ulation in state 1), the undepleted pump laser beam is
far detuned from the transition |I) — [4) and its exci-
tation is weak such that we can take Xs — 0. On the
other side, from Eq. (70) we have the complex linear
susceptibility for anti-Stokes photons

. n |pi3|2 (g1 +*712)
to?*  (zu — f2e/2 + *Te)(x7 + f2e/2 + *Te)
(106)
Although the anti-Stokes photon absorption at w =
is suppressed by the EIT effect, there are two absorp-
tion resonances appearing at w = =fle/2 which coin-
cide with the two resonances of nonlinear coupling coef-
ficient in Eq. (104). We take the pump laser with weak
intensity (OC If2p|2) and large detuning (Ap) such that
Re{ayiS(ti7 = +0e/2)}>Im{K(n7 = *f2e/2)}, which are
usually satisfied in the ground state condition. As the
propagation effect is small and the phase matching is not
important, the paired photons are mostly generated from
the two resonances (w = £Qe/2) of the nonlinear cou-
pling coefficient.
In the forward-wave configuration, with the coupling
matrix

Mp (107)

*M
and short medium length L satisfying |[MFL| <« 1, we
have approximately

A B

CD eMpL =1 + MFL

) ) (108)
| —aasL + i™rL inL

—iK,L | —*yL

As discussed in Sec. IV A, the biphoton field correlation
following the order (: dsdas :) does not need count the



Langevin noise operators:
(as{w' L)aas{w, L)) = BD*5{w )
A
=inLd i - L)3( —w)

= iK(zu)L6(zu — w'),
(109)
where we have neglected higher order terms O(L2). From
Eq. (82), we have the relative biphoton wavefunction

V's-asM =  / d%TK(GT)f (HO)

which is the Fourier transform of the nonlinear coupling
coefficient with r = zas — #s. Substituting Eq. (104) into
Eq. (110) we obtain

— e*"7/2]0(T)
(HD)

where O(r) is the Heaviside function. Equation (111)
shows a damped Rabi oscillation, resulting from the beat-
ing between biphotons generated from the two resonances
at w = +f2e/2. The Heaviside function shows the anti-
Stokes photon is always generated after its paired Stokes
photon following the time order of atomic transitions
[1) — 14) — 12) = 13) — |1) in an SFWM cycle shown in
Fig. 2(b).

In the backward-wave configuration, the coupling ma-
trix becomes

AL
—Qlgs T 2 1R
MB ik —i% 112
With [MBL| << | we have
A B o
G D cMbL = | + MbL
(113)
| — aaslL + iNNL inL
IftT ~ | - !
and
A B | — aasL + i™rL inL (114)
C D —Y%KIL | +

where we have neglect higher order terms O(L2). Simi-
larly, we have

{as(uj\ 0)oos(n7, L)) = in{m)L5{m — m’), (115)

which is the same as Eq. (109) of the forward-wave con-
figuration. Therefore, we obtain Rabi oscillations in both
forward- and backward-wave configurations. Equation
(111) is identical to the result derived from the pertur-
bation theory in the interaction picture [10].

Figure 10 displays the two-photon Glauber correlation
in the damped Rabi oscillation regime with the same pa-
rameters as those in Figs. 6, 7 and 8 As illustrated
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14 -0.2 0 0.2 0.4

Figure 10. Two-photon Glauber correlation in time domain
in the damped Rabi oscillation regime: (a) GilJiS(r) and (b)
G'A(v). The simulation conditions are the same as that in

Figs. 6, 7, and 8. (c) shows the analytic solution for the bipho-
ton waveform [V's-as(T)|2. NLN: no Langevin noise included.

in Fig. 10(a) and (b), both macroscopic and microscopic
approaches with Langevin noises give consistent results.
As expected, the computation of G*]s(r) (following the
order (: asaas :)) without Langevin noise operators (dot
points) agrees with the exact results obtained from both
microscopic (red dashed line) and macroscopic (blue solid
line) approaches, shown in Fig. 10(a). On the con-
trary, the computation of G”S(T) (following the order
(- aasas :)) without Langevin noise operators (dot points:
NLN) deviates significantly from the exact results and vi-
olates the causality, as shown in Fig. 10(b). Fig. 10(c)
shows the result from the analytic solution in Eq. (I11)
which agree well with the exact results in Figs. 10(a) and
(b).

It is interesting to examine a system without gain and
loss whose Langevin noises are purely contributed by the
complex nonlinear coupling coefficient. In this case, the
above approximation and conclusion do not hold. Let’s
now consider the case 3 with the forward-wave config-
uration in Sec. II A, where al = an = AA: = 0, and
ft = i/ + i As shown in Sec. Il A, the noise matrix is
different as ( is positive or negative. We first consider



C > 0, the Langevin coupled equations (27) becomes

d 0 in i i A

—in 0 Ve i g @0
Under the condition |MFL| << 1, we solve Eq.
the first order of L and have

(116) to

®i(l) — ai(0) + 8RLai(0) + yC / dz (/1 + /2

«B3(1) =8&3(0)+ —~40)+yc / = (-/T+

(117)
The two-photon field correlations are

(Qi(Z,)a2(Z,)) = (QAZ,)ai(Z,)) = ~(« + K*)Z,J(0; — ca).

118,
As C < 0, the Langevin coupled equations (27) becomes

d 0 in 1o
—in 0 -1 1 (HO)
Under the condition |MFL| << 1, we solve Eq. (119) to

the first order of L and have

0'i(L) — 0i(0) + iKLal(0) + \'~C I dz (// +fo),

do (L) — 02(0) + in*La,|(0) + VNCJ dz y~fi + foJ

20,
The two-photon field correlations are

(61(Z,)a2(Z,)) = (a2(Z,)61(Z,)) = (& + &*)_L<5(a; — ca'),
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which is the same as Eq. (118). The biphoton relative
wavefunction is

W) = N(-T) =~ /d%N& + He-~.  (122)

One can prove that under the same limit [MBL| << 1, the
backward-wave configuration gives the same two-photon
field correlation [Eqgs. (118) and (121)] and temporal
wavefunction [Eq. (122)]. Equation (122) suggests the
biphoton temporal wavefunction has time reversal sym-
metry when there is no linear gain and loss.

V. CONCLUSION

In summary, we provide a macroscopic phenomenolog-
ical formula of quantum Langevin equations for two cou-
pled phase-conjugated fields with linear loss (gain) and
complex nonlinear coupling coefficient, in both forward-
and backward-wave configurations. The macroscopic
phenomenological formula, obtained from the coupling
matrix and the requirement of preserving commutation
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relations of field operators during propagation, does not
require knowing microscopic details of light-matter inter-
action and internal atomic structures. To validate this
phenomenological formula, we take SFWM in a double-
A four-level atomic system as an example to numeri-
cally confirm that our macroscopic phenomenological re-
sult is consistent with that obtained from microscopic
Heisenberg-Langevin theory. As compared to the com-
plicated microscopic theory which varies from system
to system, the macroscopic coupled equations are much
more friendly to experimentalists. We apply the quantum
Langevin equations to study the effects of gain and/or
loss as well as complex nonlinear coupling coefficient in
biphoton generation, particularly to the temporal quan-
tum correlations. We show that the computation com-
plexity can be dramatically reduced by taking a proper
order of field operators based on loss and gain. Making
a comparison between the quantum Langevin theory (in
the Heisenberg picture) and the perturbation theory (in
the interaction picture [10]), we extend the expression of
complex phase mismatching to account for loss and gain.
At last, we reveal Rabi oscillation in SFWM biphoton
temporal correlation when the propagation effect is small.
Although in this article we focus on biphoton generation
from the spontaneous parametric process, the quantum
Langevin coupled equations can also be used to study
two-mode squeezing, parametric oscillation, and other
quantum light state generation.

ACKNOWLEDGMENTS

S.D. acknowledges support from DOE (DE-
SC0022069), AFOSR (FA9550-22-1-0043) and NSF
(CNS-2114076, 2228725).

Appendix A: Noise Matrix in Backward-Wave
Configuration

In the macroscopic quantum Langevin equations, the
requirement of preserving commutation relations allows
multiple choices of the noise matrix. For example, f7 —
—/1 or/and /2 — —/2 do not affect any computation re-
sults of physical observables involving pairs of Langevin
noise operators. As an example, here we provide several
equivalent noise matrices for backward-wave conhgura-



tion:
NBl— | 0' s-—MBH —MBI2 —MBH —MBI2
S0 -1 MB2I MB22 MB21 MB22
_ 1 0
0 -1 Np,
NB2 = NBI
—MBH MBI —Man MBI)
—MB21 MB22 —MB21 MB22
-10
NB}  NBI
-1 0
NB4 O NBL -NBr
(A

We take the first choice NBI in the main text [see Eq. (31)
in Sec. IIB] so that it is consistent with the microscopic
treatment in Sec. III.

Appendix B: Heisenberg-Langevin Equations of
SFWM

The full Heisenberg equation of motion can be written

as
(BD)
where
0"1 arz o3 aid
g (0 (3 -
031 032 033 034 (B2)
LO4l <40 043 dd4j
0 0 QOSiClas Hp/2
0 w 42«
= & B3
@ 9i3<zL, w0 (B3)
924« 0 AP .
BSIASS + 14i<jd4 7122 "T13(713 —T14(714
~ 71 F320'33 + r42(144 —703(723 <<T24(724
0= 7130431 —723°32 SBS(33 —734(734
—714(741 74742 7443 —Toss
(B4)
<) (< "
; %; 2( Qg Y
F= /A 2 3 (B5)
51 K5 13
) <7)
U4l 3 4

Fm = Fmi + rm2 is the total spontaneous decay rate of
excited state |m), where m = 3, or 4, and rmyj is the decay
rate from state |m) to \j). For the two hyperhne ground
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states, there are F4 = F2 = 0. For cold atoms with
only spontaneous emisson decay, the dephasing rates 77k
(G £ k) between states |k) and |j) are 713 = 723 = F3/2,
714 = 724 = r4/2, 734 = (¥3+14)/2. 712 is the dephasing
rate between two hyperhne ground states |1) and |2).

Appendix C: Microscopic SFWM Quantum
Langevin Equations in Forward-Wave Configuration

Although Sec. Ill1 focuses on numerical confirmation
of backward-wave SFWM, we remark that it may be
helpful for general readers to write the SFWM quantum
Langevin equations in the forward-wave configuration as
well.

In the forward-wave configuration with both Stokes
and anti-Stokes fields propagating along +z direction,
the coupled Langevin equations become

d Fas

(@)

where

"Ctos + * Azfc

—In

(2)

with Ak = (was+ujs)/c- (kc+kp)1z. The noise operators
ras and Fj, defined in Eq. (69), originate from micro-
scopic atom-light interaction. To compare Eq. (CI) with
Eq. (11) from the phenomenological approach in Sec. II,
we take mode | as anti-Stokes and mode 2 as Stokes in
the forward-wave configuration. From Eq. (11), we can

also obtain 7as and Fj from the noise matrix:

Fas = NpRII/I + Npin/j - NF112/2 - NFR12/2,
Fg = NpR2i/i + Npi2i/i | NF1222 § NFR22/2"

(C3)

Appendix D: Complex Phase Mismatching in
Forward-Wave Configuration

In the forward-wave configuration, similar to the
backward-wave configuration in Sec. IVB, we assume
anti-Stokes photons in mode | are lossless with FIT and
there is gain (or loss) in Stokes mode 2. The small para-
metric gain fulfills Kl << {a, g}. Using Eq. (6) and (17),



obtain analytical expressions of A, B, C, and D as

ulfg1 3-#ax2cosh (A"qgl + 4x2rj — gsinh "4 W + 4k

A= \Jq2 + 4ft2e(“i+al V/1

2*Ksinh /7 V/gq! + ax2
B

—2*Ksinh ™ V12 + 4K

Vil + 4ft2e(“i+al V/2

Vi2 +4k2cosh "4 W +4k2j +i%inh W +4k2

B VV + 4K2e(“i+2V/)
(DD

where ¢ = ay — ¢*) — iAk. In the small parametric gain
approximation, we have

Vg2 —4K2 % g

=ay —ay — idk = —*(AAy + AA) + AA)), ©2)

and
oy - ay — —*(AAy — AA*2), (D3)
where Akm = is the wavenumber difference from

that in vacuum. Hence, we simplify A, B, C, and D to

. iAkL
A =exp [1AAyL] exp ik

A
B —*fLsinc (AAy + A&" + A&)B

i(AAy — Ako)L
X exp i(Ady %)

. (D4)
A
C iftLsinc (A&l A A&)B

\ oxp i(Ak\ — AkPL

—iAkL
D =exp [-iAKk"L] exp ik
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