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Abstract

Modern nanotechnology provides efficient and cost-effective nanomaterials (NMs). The
increasing usage of NMs arises great concerns regarding nanotoxicity in humans. Traditional
animal testing of nanotoxicity is expensive and time-consuming. Modeling studies using
machine learning (ML) approaches are promising alternatives to direct evaluation of

nanotoxicity based on nanostructure features. However, NMs, including two-dimensional
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nanomaterials (2DNMs) such as graphenes, have complex structures making them difficult to
annotate and quantify the nanostructures for modeling purposes. To address this issue, we
constructed a virtual graphenes library using nanostructure annotation techniques. The irregular
graphene structures were generated by modifying virtual nanosheets. The nanostructures were
digitalized from the annotated graphenes. Based on the annotated nanostructures, geometrical
nanodescriptors were computed using Delaunay tessellation approach for ML modeling. The
partial least square regression (PLSR) models for the graphenes were built and validated using a
leave-one-out cross-validation (LOOCV) procedure. The resulted models showed good
predictivity in four toxicity-related endpoints with the coefficient of determination (R?) ranging
from 0.558 to 0.822. This study provides a novel nanostructure annotation strategy that can be
applied to generate high-quality nanodescriptors for ML model developments, which can be

widely applied to nanoinformatics studies of graphenes and other NMs.
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1. Introduction

Modern nanotechnology is a critical technology for sustainable nanomaterial (NM)
developments in both basic research and commercial applications [1-3]. The global
nanotechnology market is expected to exceed $125 billion by 2024 [4]. Due to their diversity in
structures, properties, and bioactivities, NMs have gained prominence in fields such as food
security and safety processing [5-8], precision agriculture [9-11], clean energy [12], and clinical
medicine [13, 14]. However, the increasing use of NM is coupled with concerns for nanotoxicity
[15-21]. There is an urgent need for comprehensive risk assessments of both emerging and
existing NMs. Traditional experimental methods to evaluate NM toxicity, which often use large
numbers of animals, are expensive and time-consuming. With the development of Machine
Learning (ML) approaches, computational modeling is emerging as an alternative for predicting
the behavior of NMs in biological environments [22] and evaluating their nanotoxicity [23, 24].
Quantitative Nanostructure Activity Relationship (QNAR) modeling using ML approaches
reveals the relationships between NMs’ structural features and biological activities such as
toxicity in a quantitative manner [25]. In the Organization for Economic Co-operation and
Development (OECD) 2022 report on risk assessment for NMs, ML-based modeling study was

highlighted as a promising strategy for rapid toxicity screening of NMs [26].

ML has been successfully utilized in modeling studies of physicochemical properties and
bioactivity for small molecules [27-31]. However, ML applications in computational
nanotoxicology are limited because of lacking nanotoxicity data and the difficulties of
nanostructure annotations [32]. Based on the EU-US Nanoinformatics Roadmap 2030 guidance
for ML model development, the good performance of predictive nanotoxicity models relies

heavily on the well-defined descriptors that tie nanostructures and physicochemical properties to
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the bioactivities of NMs [33]. Nanodescriptors represent NMs’ chemical and physical identities,
intrinsic properties and extrinsic properties, which can be classified as experimental, empirical,
and geometrical [34]. Experimental results of NMs’ morphological properties and
physicochemical properties such as size [35], magnetic properties [36], and zeta potentials [37],
can be used as descriptors for modeling purposes. However, these measured nanodescriptors
vary significantly with different experimental conditions and may not be reliable without prior
references. Empirical descriptors have been developed using molecular simulations and quantum
chemistry [38-40], however, these descriptors need expertise for selecting appropriate force
fields and calculation methods to generate descriptors. Geometrical descriptors provide more
detailed information on nanostructures by annotating the important structural features such as
molecular structures, mechanical properties, and electrical properties [23]. In our previous
studies, novel geometrical nanodescriptors were developed by employing Delaunay tessellation
and atomic properties. The nanodescriptors quantified nanostructures, by simulating the surface
chemistry, to develop ML models for NMs such as metallic nanoparticles [41, 42]. However, for
more complex NMs, such as two-dimensional nanomaterials (2DNMs) like graphenes,
nanostructure annotations and simulations were not previously successful due to complex

nanostructures.

As 2DNMs, graphenes are carbon-based NMs consisting of single- or few-layer atoms
arranged in a planar honeycomb structure and are being widely applied in biomedicines,
biosensors, and solar cells [43, 44]. Graphenes usually present planar structures with irregular
edges, which is a key factor influencing their effects on cellular uptake and cytotoxicity [45-47].
Lateral size has long been shown to modulate the pathogenicity of graphenes [48, 49], but subtle

surface modifications can also influence their bioactivity [46, 47, 50]. For example, primary
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endothelial cells develop more cytoplasmic protrusions and are more prone to losing their barrier
function when exposed to increasingly oxidized graphene sheets [S51]. The type of surfactant
necessary to disperse the more hydrophobic graphenes and its concentration may also affect their
cytotoxicity [52]. As graphene derivatives, graphene oxides have carbon frames oxidized with
oxygen-containing functional groups on their edges and basal plane. The diverse graphene
structures, especially the irregular edges, are difficult to annotate precisely through simulating
experimental conditions, which prohibits the use of geometrical nanodescriptors in ML

modeling.

In this study, we developed a novel structure annotation strategy by (1) simulating the
nanostructures of synthesized graphenes; (2) developing geometrical nanodescriptors to
characterize the structure features of graphenes; and (3) using the calculated nanodescriptors to
develop ML models for various toxicity endpoints of graphenes. In a previous study, we
synthesized and assessed the toxicities of graphenes and graphene-like inorganic 2DNMs [53],
which generated a high-quality dataset for graphene toxicity modeling. The irregular structures
of the graphenes and inorganic 2DNMs were constructed by modifying the number of vertices
and edges on virtual nanosheets. For graphene oxides, functional groups including hydroxyl,
epoxy, and carboxyl groups were added on the graphene surface to reach the carbon/oxygen
(C:0) ratio experimentally measured. The annotated nanostructures were saved as Protein Data
Bank (PDB) files. Novel geometrical nanodescriptors were computed from the annotated
nanostructures using the Pauling electronegativity and the Delaunay tessellation approach.
Partial least square regression (PLSR) models were developed for various nanotoxicity endpoints

including LDH release, cell viability, oxidative stress, and apoptosis. This structure annotation
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strategy shows great potential in developing ML models for nanotoxicity predictions of NMs

with complex nanostructures.
2. Material and methods
2.1. 2DNMs dataset

The 11 2DNMs used for ML modeling were synthesized and characterized in our
previous study [53]. Graphene oxides were synthesized according to a modified Hummer's
method [54]. Reduced and partially reduced graphene oxides were synthesized by controlled
reduction using L-ascorbic acid and size-sorted graphene oxide as the starting material.
Graphene and inorganic 2DNMs were synthesized by liquid-phase exfoliation in the presence of
sodium cholate hydrate (NaC) or Pluronic® F-108 (PF108). The toxicities of all the 2DNMs
were investigated in a triculture model of small intestinal epithelium. LDH release, cell viability,
and oxidative stress were tested after treating with 1 pg ml™! and 5 ug ml™' 2DNMs and
apoptosis was tested after treating with 5 ug ml™' 2DNMs. LDH release (plasma membrane
damage) was calculated as % of LDH in lysed control. Cell viability (mitochondrial enzymatic
activity) was expressed as % of activity (fluorescence) measured in cells treated with control
fasting food model (FFM) digesta. Caspase 3/7 activity (apoptosis) was expressed as fold
changes relative to that in cells exposed to FFM digesta. Oxidative stress (ROS generation) was
expressed as fold changes relative to that in cells exposed to FFM digesta. The Pearson
correlation analysis was implemented using the Python package SciPy 1.6.2 to test for results

associations between two doses of 2DNMs in LDH release, cell viability, and oxidative stress.

2.2. Virtual 2DNMs library construction
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The construction of virtual 2DNMs (v2DNMs) was performed by the new graphenes
generation toolkit of VINAS, which took the target lateral size and C:O ratio as the input
parameters. Briefly, a 2DNM sheet was first created with a lateral size larger than the target
lateral size. Then, the irregular 2DNM was generated by scaling down the initial lateral size to
the target and modifying the number of vertices and edges on the sheet. For GOs, rGOs, and
prGO, the functional groups such as hydroxyl, epoxy, and carboxyl groups were randomly
placed on the irregular graphene frame until the C:O ratio reached the target value. The structure
information of annotated 2DNMs was then saved as PDB files. To avoid potential inconsistency
of calculated nanodescriptor results due to different irregular shapes and randomly distributed

functional groups, total 30 v2DNMs were generated for each 2DNMs in the dataset.
2.3. Nanodescriptor generation

Based on the generated v2DNMs, nanodescriptors were calculated using the new
descriptor calculation toolkit of VINAS coded in Java 1.8.0 301. There are eight types of atoms
in these v2DNMs: C (carbon), O (oxygen), H (hydrogen), N (nitrogen), S (sulfur), B (boron), Mo
(molybdenum) and W (tungsten). Every four nearest atoms (e.g., CCCC, CCHO, etc.) that can
form a trigonal planar, quadrangulation, or tetrahedron were identified from the v2DNM
structures using the Delaunay tessellation approach. In 3D space, atoms within a distance cutoff
of 2.0 A and 2.5 A played a key role in the physicochemical properties of GRMs and graphene-
like inorganic 2DNMs, respectively [55-58]. Accordingly, the distance between any two atoms
in a formed 3D tetrahedron fragment was set to within 2.0 A in GRMs and within 2.5 A in
inorganic 2DNMs. In 2D planar, atoms within a distance cutoff of 2.5 A were important for the
2D features of 2DNMs, the distance between any two atoms in a formed 2D trigonal planar or

quadrangulation fragment was set to within 2.5 A in all 2DNMs [59, 60]. The geometrical
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nanodescriptors were calculated without considering the atom order within a quadrangulation or
tetrahedron (e.g., CCCO was the same as COCC). As described in our previous study [41], the
procedure of geometrical nanodescriptors calculation can be summarized as follows: (1) the
value of each quadrangulation or tetrahedron was the sum of the electronegativity of four atoms
in this quadrangulation or tetrahedron. (2) The descriptor value in each v2DNM was computed
as the value of the relevant quadrangulation or tetrahedron multiplied by its occurrences. (3) The
final descriptor values of a 2DNM were averaged from results obtained from 30 v2DNMs. In this
study, additional surfactant descriptors to describe the surfactants for experimental testing were

also used.

2.4. Machine learning modeling

ML models were developed using the PLSR algorithm. PLSR is a method that combines
principal component analysis and multiple regression [61]. PLSR performs a descriptor
dimension reduction procedure and constructs a set of components that accounts for as much as
possible of the total descriptors variance in the dataset, which can avoid multicollinearity and
model overfitting [62, 63]. It is suitable for the modeling of small training sets using large sets of
descriptors [64-66]. In this study, the generated geometrical nanodescriptors and surfactant
descriptors were used to develop PLSR models for 2DNMs’ toxicities. The PLSR algorithm was
implemented using scikit-learn 0.24.1 [67]. The original dataset was split into training and test
sets with the ratio of 9:2 for cell viability, LDH release, and oxidative stress and 8:1 for
apoptosis. The training sets were used to build models and relevant test sets were used for the
prediction purpose. The leave-one-out cross-validation (LOOCV) procedure was performed to
find the optimal number of components for modeling using the training set. Briefly, a single

2DNM was excluded from the training set and the remaining 2DNMs were used for model
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development. Then the developed models were used to predict the excluded 2DNM. This
procedure was repeated until every 2DNM in the training set was used for prediction purpose
one time. In the LOOCYV procedure, the root mean square error (RMSE) and coefficient of
determination (R?) were used as the parameters to identify the optimal number of components

and the best PLSR model for each toxicity endpoint as follows:

Yy(YprED-YEXP)?
R?=1-— 1
YXy(YExp—YMEAN)? (1

1
RMSE = \/;ZY(YPRED — Yexp)? (2)

where Ygxp was the experimental results, Yppgp Was the predicted results, Yy g4y Was the mean
value of the experimental results, n was the number of samples. Then, the external test set was

used to evaluate the performance of selected PLSR models.
3. Results and Discussion
3.1. 2DNMs dataset overview

The information of the original 2DNMs dataset is summarized in Table 1. The dataset
consisted of two types of 2DNMs: (1) eight graphene-related materials (GRMs) including two
graphenes, three graphene oxides (GO), two reduced graphene oxides (rGO), and one partially
reduced graphene oxide (prGO); (2) three graphene-like inorganic 2DNMs including one
hexagonal boron nitride (h-BN), one molybdenum disulfide (MoS>), and one tungsten disulfide
(WS2). Amphiphilic GOs were dispersed in water and the remaining 2DNMs, which are
hydrophobic NMs, were dispersed in NaC or PF108 solutions for experimental testing. The
toxicity data of the 2DNMs were summarized in Table S1. After treatment with 1 ug ml™!

2DNMs, the values for LDH release, cell viability, and oxidative stress range from 1.61% to
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6.63%, 95.95% to 113.88%, and 0.81 to 2.23 (fold change) respectively. After treatment with 5
ng ml~! 2DNMs, the toxicity results of LDH release, cell viability, oxidative stress, and
apoptosis range from -1.08% to 16.40%, 76.03% to 119.96%, 0.80 to 2.15 (fold change), and -
2.50 to 0.55 (fold change) respectively. Pearson correlation analysis between the experimental
results of 1 ug ml™! and 5 pg ml~! 2DNMs were shown in Fig. S1. The resulted Pearson
correlation coefficient r and two-tailed p-value showed that two doses 2DNMs have good
correlation in oxidative results while they were not correlated in LDH release and cell viability

results.
3.2. Annotating 2DNMSs by constructing virtual 2DNMs

The in-house Virtual Nanostructure Simulations (VINAS) toolbox coded in Python 3.8
was used to construct all v2DNMs in this study with specified lateral size and C:O ratio as the
input parameters. The key structure features of GRMs were shown in Fig. 1A-D. Pristine
graphene represented a carbon frame arranged in a hexagonal lattice (Fig. 1A). Based on the
Lerf-Klinowski-type structural models [68], hydroxyl groups were added randomly on the
carbon frame (Fig. 1B); epoxy groups were placed on two adjacent connected carbon atoms (Fig.
1C); and carboxyl groups were placed on the carbons at the frame edges (Fig. 1D) to form GO,
rGO and prGO respectively. Each carbon atom on the graphene frame can be modified by adding
one functional group and the functional groups can be added either above or below the carbon
frame layer. The vGRMs generation procedure has three steps. First, a graphene sheet was
created. The actual sheet’s lateral size, which was based on the experimental results, was marked
as p3p4 on the diagonal line p/p2 (Fig. 1E). The virtual graphene sheet was generated by
randomly forming other vertices with their distances to the sheet center o no larger than half of

the target lateral size. Then these vertices were connected to form a polygon with an irregular
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shape, and the remaining sheet outside the polygon was deleted (Fig. 1F). To generate GO, rGO,
and prGO, the functional groups were randomly added on the surface of the graphene to reach
the target C:O ratio. For three inorganic 2DNMs in the dataset, the constructions of
corresponding v2DNMs followed the same procedure except using different atoms and
associated residues to generate the initial sheet. For example, h-BN had a lattice with B and N
atoms in a hexagonal formation (Fig. 2). MoS> and WS, showed similar atom arrangements in
which S and Mo or W atoms were connected by covalent bonds as S-Mo-S and S-W-S
respectively (Fig. 2). In the end, the constructed v2DNMs were saved as individual PDB files.
All 11 2DNMs’ PDB files and bioactivity data are downloadable from in-house nanoinformatics

portal (http://vinas-toolbox.com/explore group/2DNMs).

3.3. Nanostructure visualizations

Using the PDB files consisting of annotated 2DNMs, the nanostructures in the dataset can
be rendered by visual molecular dynamics (VMD) [69] using van der Waals (VDW) method. All
the GRMs and inorganic 2DNMs have irregular polygon structures that varied in sizes, edge
numbers, atom types, and surface groups (Fig. 2). Specifically, G-NaC and G-PF108 are
graphenes with different lateral sizes, which were constructed only with carbon atoms. GOs,
rGOs, and prGO are GRMs oxidized with hydroxyl, epoxy, and carboxyl groups with C:O ratios
ranging from 61:39 to 78:22. h-BN has a structure similar to graphene, where B and N atoms
alternately constructed hexagonal lattices instead of carbons. MoS; and WS> showed a sandwich-
like structure with two hexagonal planes of S atoms and a hexagonal plane of Mo or W atoms in
the middle. All the annotated 2DNM structures were used to calculate nanodescriptors for

modeling purposes.

3.4. Nanodescriptors generations
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To account for the uncertainty of experimental synthesis of 2DNMs, 30 v2DNMs were
constructed for every 2DNM to mimic the diverse irregular structures of corresponding 2DNM
[53]. The average lateral sizes of generated v2DNMs for each 2DNM are consistent to
experimental conditions and were shown in Table 1. The designed nanodescriptors should be
able to describe the diverse 2DNM and but not be sensitive to changes of irregular shapes of
2DNM due to the synthesis uncertainty. Based on the Delaunay tessellation approach,
quadrangulations or tetrahedrons were generated for each four nearest neighboring atoms on
v2DNM structure as nanodescriptors. The identified quadrangulations or tetrahedrons can
describe v2DNM structure features on the surface, which account for their properties, activities
and toxicities. The value for each identified quadrangulation or tetrahedron was the sum of
electronegativity values of the four atoms within this trigonal planar, quadrangulation or
tetrahedron. For example, the value of CCCC was 10, obtained from the sum of four carbon
electronegativity values (2.5 x 4). The atomic electronegativity values of all atoms were
summarized in Table 2. Furthermore, a nanodescriptor value for a v2DNM was calculated as the
value of each trigonal planar, quadrangulation, or tetrahedron electronegativity multiplied by its
occurrences in this v2DNM. As mentioned above, 30 v2DNMs were constructed for every
2DNM. Thus, the nanodescriptors for a 2DNM were calculated by averaging descriptor values of
30 v2DNMs. Since surfactants can influence 2DNMSs’ stability and surface chemistry [70-72],
additional categorical descriptors were introduced to account for the effects of different
surfactants on 2DNMSs’ properties. Based on the surfactants used in the experimental testing
(Table 1), the surfactant descriptors of the corresponding 2DNM were binary descriptors with
“0” representing the absence and “1” representing the presence of the associated surfactant.

Binary descriptor is widely used in ML modeling for drug discovery, such as MACCS keys
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fingerprints and PubChem fingerprints [73-76]. The results of calculated nanodescriptors for all
2DNMs were provided in Supporting Information Excel file E1. The standardized nanodescriptor
values in each 2DNM were shown in Fig. 3. Some geometrical nanodescriptors have relatively
high values for specific 2DNMs. Since the structures of G-NaC and G-PF108 were constructed
with carbon atoms, the values of CCCC descriptor were higher than the other 2DNMs. In
graphene lattice, six carbons located at the hexagon apexes with two sublattices, A and B. The
carbon atom of one sublattice forms trigonal planar with three nearest neighbors of the other
sublattice, which is one of the important features influencing graphene’s activity [59, 60]. As
shown in Fig. S2, CCCC descriptors in graphene were developed using the trigonal planar
geometry based on the relationship of sublattice A and B, which can reflect the structure feature
of armchair edges (a and b)/zigzag (c), dangling atoms (d and e), and general atoms (f and g) in
the plane. It can also extract the features of convex corner. For future explorations, descriptors
reflecting 2DNMs’ frame structures can be divided into different subtypes. For example, CCCC
descriptors reflecting the edge effect features can be separated from the general CCCC, and
different weights can be given to these subtype descriptors for modeling purposes. Besides
CCCC descriptor, surfactant descriptors NaC and PF108 showed high values in G-NaC and G-
PF108, respectively (Fig. 3). These two surfactant descriptors were also used to further
differentiate G-NaC and G-PF108. For GOs, rGOs and prGO, hydroxyl, epoxy and carboxyl
groups were added on the graphene frame, so the values of nanodescriptors consisting of C, H,
and O atoms were larger than the other nanodescriptors. h-BN, MoS», and WS structures were
constructed with inorganic atoms, so the nanodescriptors containing B, N, Mo, W, and S atoms

showed higher values than others.
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The calculated nanodescriptors can be used to show the chemical space of 2DNMs
through principal component analysis (PCA). Both the top two and top three principal
components were used to represent the distribution of all 2DNMs, which accounted for 73% and
81% of the total descriptor variance, respectively. As shown in Fig. 4 and Fig. S3, the 2DNMs in
the dataset were structurally diverse due to various shapes, lateral sizes, atom types, surface
chemistry, and surfactant types. The three GRMs, prGO, rGO-S, and G-NaC, are close to each
other in both 2D and 3D chemical space, which mainly due to their similar lateral size and same
surfactant. Although h-BN and MoS: share similar 2D chemical space, they locate differently in
3D chemical space. 3D chemical space retains more information of the original chemical space,
which can better differentiate h-BN and MoS,. Compared to other GRMs, GO-L is a structure
outlier mainly due to the large number of hydroxyl groups on its surface, which significantly
increases the value of descriptor HHHH. To better analyze this type of GRMs, more graphene

oxides with different sizes should be included in future studies.
3.5. Computational modeling

Four nanotoxicity models were developed using the calculated nanodescriptors and PLSR
approach for the 2DNMs in the dataset. When data in two doses (1 ug ml™!' and 5 pg ml™!) were
available for LDH release and cell viability, both dose results were used in the model
development (Table S1), so this effort resulted in models for low/high doses of these toxicity
endpoints. Two medium-sized graphenes in the dataset, prGO and GO-M, were selected as test
set, and the remaining nine 2DNMs were used as the training set for model development. For
apoptosis dataset, which consists of nine 2DNMs total (Table S1), one medium-sized graphene

(prGO) was selected for test purpose, and the remaining eight 2DNMs were used as training set
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for model development. The LOOCYV procedure was used to evaluate the performance of

developed nanotoxicity models within training sets.

The correlations between experimental values and predicted values of the resulted four
nanotoxicity models were shown in Fig. 5. The optimal number of components for developing
the best PLSR model in the training set was obtained from the LOOCV procedure. The training
set R? values using the obtained optimal number of components ranged from 0.558 to 0.822 in
corresponding PLSR models (Table 3). The RMSE values of training (test) set were 1.371
(0.916), 5.882 (7.361), 0.250 (0.164), and 0.447 (0.591) for the models of LDH release (%), cell
viability (%), oxidative stress (fold change), and apoptosis respectively (fold change) (Table 3).
The RMSE values between the training and test set of all four models are similar, indicating that
the resulted nanotoxicity models are reliable for prediction purposes. Although most 2DNMs
were correctly predicted, prediction errors still exist. For example, G-PF108 has relatively large
prediction errors in the models of LDH release, oxidative stress, and apoptosis (Fig. 5 A, C and
D). This issue was mainly due to the lack of other GRMs tested by using PF108 as the surfactant
in the dataset. Compared to the other GRMs dispersed in NaC, G-PF108 was the only GRM
dispersed in PF108. PF108 is a non-ionic surfactant while NaC is an ionic surfactant, which can
influence the toxicity of 2DNMs [77, 78]. For the model of cell viability, 5 pg ml™' rGO-S has a
larger prediction error than others (Fig. 5 B and D). For the model of cell viability and apoptosis,
5 ug ml™! rGO-S has a larger prediction error than others (Fig. 5 B and 5D). The reason for
prediction errors of rGO-S was similar to G-PF108. rGO-S has its structural nearest neighbor as
prGO. However, 5 pg ml™! rGO-S and prGO have cell viability testing results as 76.03% and
87.88% respectively, and apoptosis testing results as -2.22 and -2.26 respectively. The issues are

similar to the “activity clift” of QSAR modeling studies [79]. There are only two types of rGO in
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the dataset, and the lateral size of rGO-L is at least 5 times larger than rGO-S. The training data
used in this study are not sufficient to cover the structure diversity of rGO, so the model
performance can be improved when new rGO with different lateral sizes are added into the

training sets.
3.6. Mechanism analysis of 2DNMs-induced toxicities

Analysis of the developed ML models allowed to identify nanostructure features
responsible for nanotoxicity, which can be used to illustrate potential mechanisms of 2DNMs-
induced toxicity and guide future 2DNMs design. The top ranked nanodescriptors were obtained
from accepted PLSR models (Fig. 6). The high coefficient value of a descriptor indicates its
critical contribution to the final models. The ranking was calculated based on the descriptors’
contributions to the models of 2DNMs. Descriptors with contributions greater than 4% of the
total descriptor contributions were shown in Fig. 6. In a resulted ML model, the high frequency
of a nanodescriptor utilization indicates its critical contribution to the associated nanotoxicity

[41, 80].

To explore the mechanism of 2DNMs-induced toxicity, several descriptors were found to
be critical for various toxicities of 2DNMs. Specifically, the descriptor CCCC was important for
LDH release obtained by low concentration 2DNMs (1 ug ml™!) (Fig. 6 A), which mainly
reflects the geometries of GRMs (Fig. S4 A). This result implies that geometries influence
GRMs’ toxicities, which had been reported in previous studies [45, 81, 82]. Descriptors
containing functional groups were also found to be important for 2DNMs’ toxicity in developed
models (Fig. 6 A and G). For example, CCCO descriptor mainly reflects the neighbor
relationship between a carboxyl group and a hydroxyl group (Fig. S4 B). This substructure can

make GRMs interact with biomolecules by hydrogen bonding thus influencing GRMs’ toxicity
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[83, 84]. OOOOQ descriptor represents four oxygen atoms from neighbor hydroxyl groups (Fig.
S4 C), which describes an oxidized region of GRMs. Intramolecular or Intermolecular hydrogen
bonds can be formed with this substructure, which were important for GRMs’ bioactivity and
toxicity [85, 86]. Descriptors, such as SSSS, SSSW, and WWWW, were found to be important
for WS;-mediated toxicity in developed models (Fig. 6 A, B, E, F, and G). SSSS/WWWW
descriptors capture structure features on sulfur/tungsten layers, and SSSW reflected the sublattice
of WS, (Fig. S4 D-F). Although the toxicity of WS is still under investigation, tungstate ion has
been identified as a potentially toxicant against guppies and shows tumorigenicity and
genotoxicity in vitro [87-89], which partially validate the importance of this descriptor. MoS»-
related and h-BN-related descriptors, such as MoMoMoS, MoSSS, BBBN, and BNNN, showed
positive contribution in cell viability models, which may reflect the low toxicity of MoS> and h-
BN (Fig. 6 D). Surfactant descriptors (i.e. PF108, Water and NaC) were also found to be
important to nanotoxicity models, which increased the 2DNMs' dispersibility and stabilized their

dispersion under different mechanisms [77, 78].

3.7. Pitfalls and perspectives

In this study, nanodescriptors calculated from annotated 2DNMs structures afford the
predictive modeling of 2DNM toxicity. Some pitfalls still exist due to limited data. For example,
G-PF108 is a structural outlier and more similar 2DNMs needs to be tested to cover the relevant
structure diversity. Furthermore, besides lateral size and surface chemistry, which are critical
features influencing 2DNMs’ toxicity, thickness should also be considered as a potential feature
in the modeling process, as investigated in previous studies [90]. Although the above issues
exist, the current results showed the feasibility of using the current nanostructure annotation and

modeling strategy to predict nanotoxicity in the future study.
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4. Conclusions

In this study, novel structure annotation strategy and machine learning approach were
integrated for computational modeling of nanotoxicities of 2DNMs with irregular shapes, which
characterized the complex nanostructure features and enable the toxicity prediction of 2DNMs.
A new computational approach was designed to construct virtual 2DNMs, which simulated
2DNMs’ irregular geometries and diverse functional modifications. The annotated 2DNMs
structures were saved as PDB files and were further used for geometrical nanodescriptors
calculations. Additional surfactant descriptors were also added. To prove the applicability of the
nanostructure annotation and nanodescriptors calculation, a dataset containing diverse 2DNMs
with different atom types, lateral sizes and surface chemistry was used to develop various
nanotoxicity models. Good predictivities were shown in the resulted models for all available
endpoints including LDH release, cell viability, oxidative stress, and apoptosis. This novel
structure annotation strategy shows great potential to generate high-quality nanodescriptors for
ML modeling purposes. Integration of structure annotation and machine learning approaches

paves a road for the future development of NMs with complex structures.
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1  Figures:
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Irregular graphene with five edges Graphene Oxide

3 Fig. 1. Schematic workflow of v2DNMSs development. The three-dimensional (3D) structures of
4  graphene hexagonal lattice (A), hydroxyl group (B), epoxy group (C), and carboxyl group (D)

5 are visualized by CPK drawing method in VMD. The v2DNMs generated in the workflow (E-G)
6 are also shown by CPK drawing method in VMD. The construction of irregular graphene with 10
7 nm lateral size and five edges (F) is based on a 12x12 nm? graphene sheet (E). Then, a graphene

8  oxide with C:O ratio of 64:35 (G) is constructed based on the generated irregular graphene. The

9 (, 0O, and H atoms are represented in black, red, and blue.
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sizes, atom types, and surface groups. The 3D structures of the v2DNMs are rendered by VDW
drawing method in VMD. The C, O, H, N, B, S, Mo, and W atoms are represented in black, red,

blue, green, pink, yellow, cyan, and purple.
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The coefficient of determination (R?) from the modeling results is also shown.
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1 Tables:

2 Table 1 Key physicochemical properties of the 2DNMs used in this study.

2DNM Lateral size C:O Surfactant
(nm £ SD)  ratio
Graphene-related Small-sized graphene in NaC (G-NaC) 184 +23 N/A  Na-Cholate
Small-sized graphene in PF108 (G-PF108) 206 + 51 N/A PF108
Small-sized graphene oxide (GO-S) 271 + 34 64:35 Water
Medium-sized graphene oxide (GO-M) 462+ 114 61:39 Water
Large-sized graphene oxide (GO-L) 1560 + 750 61:38 Water
Small-sized reduced graphene oxide (rGO-S) 411+£79 78:22  Na-Cholate
Large-sized reduced graphene oxide (rGO-L) 2015+ 674 78:22 Na-Cholate
Partially reduced graphene oxide (prGO) 357 +£42 72:28 Na-Cholate
Inorganic Hexagonal boron nitride (h-BN) 149 + 12 N/A Na-Cholate
Molybdenum disulphide (MoS>) 428 + 103 N/A Na-Cholate
Tungsten disulphide (WS) 323 +28 N/A PF108

4  Table 2 Atomic electronegativity values used in the calculation of nanodescriptors.

Atoms C O H N S B Mo W

Electronegativity value 2.5 3.5 2.2 3.1 2.4 2.0 2.2 2.4

5

6  Table 3 The optimal number of components, the coefficient of determination (R?) and root mean
7  square error (RMSE) of PLSR models for four toxicity endpoints.

Toxicity endpoint The optimal number R? RMSE forthe = RMSE for the
of components training set test set

LDH release (%) 3 0.822 1.371 0.916

Cell viability (%) 3 0.612 5.882 7.361

Oxidative stress (fold change) 2 0.760 0.250 0.164

Apoptosis (fold change) 2 0.861 0.447 0.591

8
9
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