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Abstract— Advancements in robot-assisted surgery have been
rapidly growing since two decades ago. More recently, the
automation of robotic surgical tasks has become the focus
of research. In this area, the detection and tracking of a
surgical tool are crucial for an autonomous system to plan and
perform a procedure. For example, knowing the position and
posture of a needle is a prerequisite for an automatic suturing
system to grasp it and perform suturing tasks. In this paper,
we proposed a novel method, based on Deep Learning and
Point-to-point Registration, to track the 6 degrees of freedom
(DOF) pose of a metal suture needle from a robotic endo-
scope (an Endoscopic Camera Manipulator from the da Vinci
Robotic Surgical Systems), without the help of any marker.
The proposed approach was implemented and evaluated in a
standard simulated surgical environment provided by the 2021-
2022 AccelNet Surgical Robotics Challenge, thus demonstrates
the potential to be translated into a real-world scenario. A
customized dataset containing 836 images collected from the
simulated scene with ground truth of poses and key points
information was constructed to train the neural network model.
The best pipeline achieved an average position error of 1.76 mm
while the average orientation error is 8.55 degrees, and it can
run up to 10 Hz on a PC.

[. INTRODUCTION

Suturing requires high dexterity and is often a tedious
task, especially in Minimally Invasive Surgeries (MIS), when
surgeons manipulate tools to perform the procedure instead
of using their hands. The suturing quality and completion
time directly affect the success of the surgery and the
patient’s wellness. Recently, growing research interest is
attracted to automating suturing with assistance from robotic
systems, and advanced suturing is a technique that can be
expected to reach Level 3 - Conditional Autonomy [1].
To realize automatic suturing with a robot, a fundamental
prerequisite is that the robot needs to know where the needle
locates and keeps tracking the pose precisely, so that the
robot can pick up a needle and use it for suturing. Due
to the potential of varying lighting conditions and complex
tissue background during operation, tracking a small needle
promptly irrespective of the surrounding environment is still
a challenging problem.

In robot-assisted surgeries, visual feedback is usually
available from a camera and plays a vital role in perceiving
the scene. So, most of the needle tracking systems are
developed based on the information from images, in the early
years, researchers tried to use color-based and geometry-
based methods to segment the needle body [2] and track
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Endoscope view of the simulated suturing scene provided by the
2021-2022 AccelNet Surgical Robotics Challenge, with the visualization of
the needle pose tracking result from our implementation. PSM refers to
Patient Side Manipulator.

Fig. 1.

the needle [3], [4], [5], [6], but their systems either require
painting or attaching markers on the needle body, and need
environment-specific tuning of parameters to accommodate
the complex and varying surgical background with different
objects and light conditions, textures, and lighting condi-
tion. More recently, advanced computer vision techniques
including Deep Learning have been explored, Mei et al. ([7])
utilized two popular object detection architectures: You Only
Look Once (YOLO) and R-CNN (Region-based Convolu-
tional Neural Network) to extract the bounding box of a
suture needle in the images, Zhou et al. [8] also used Feature
Pyramid Net (FPN) to detect a tiny needle tip. However,
their work all stays in 2D object detection/segmentation and
does not include 6 DOF pose information. Wilcox et al.
[9] combined semantic segmentation with random sample
consensus (RANSAC) to obtain an estimated needle pose,
but did not include a numerical evaluation of the accuracy.

Given the limitations of the existing literature mentioned
above, in this paper, to the best of our knowledge, we are the
first to propose a markerless method based on Deep Learning
and Point-to-point Registration that only uses the information
of the robotic endoscope to estimate the 6 DOF pose of a
suture needle under a simulated surgical scene (Fig. 1). Our
method does not require any modification to a commercial
suture needle and introduces little interference to the existing
surgical workflows. We constructed a customized dataset to
train the neural network, tested the whole pipeline in a public,
standard simulation environment by [10], and evaluated the
accuracy and time efficiency.
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Fig. 2. Tracking method overview.

II. METHODS

The goal of this work is to estimate the position and
orientation of a suture needle solely from a robotic endoscope
without the use of any markers. Briefly, our method has two
steps, the first step is to extract the needle body points on
a 2D image using a deep neural network architecture varied
from Mask R-CNN [11], and the second step is to calculate
the transformation using the positional information and the
correspondence of the needle body points in different frames
(Fig. 2). We also took advantage of the robotic endoscope to
get multiple viewpoints of the needle and to reduce errors.

In the following sections, Section II. A introduces the
environment in which we collected our training dataset and
implemented our tracking system. Section II. B gives the
details about the deep neural network that we used, and the
training process. Section II. C illustrates the point-to-point
registration methods we used to compute the transformation.
Lastly, Section II. D illustrates how the robotic endoscope
was utilized to include multi-viewpoint of the needle and to
reduce the errors.

A. Data collection

The simulated surgical scene is provided by AccelNet
Surgical Robotics Challenge [10], and it is built on Robot
Operating System (ROS) [12] and Asynchronous Multi-Body
Framework (AMBF) [13], it contains a suturing training
phantom (in pink), the red squares on it are entry and
exit holes for passing the needle, a needle with a thread
connected to the tail, and a da Vinci surgical system patient
side manipulator (PSM) from da Vinci Research Kit (dVRK)
[14] with one Endoscopic Camera Manipulator (ECM), see
Fig. 1.

The needle model used for the initial implementation (Fig.
3) is essentially a 120-degree arc with a radius of 10.18 mm,
we defined five body points (A, B, ..., E) equally spaced on
the arc. Note the coordinates of one of these points in the
needle frame as Py = [xy,yv,2n]-

Ground truth poses of the needle and the ECM can be
queried from ROS. The left and right cameras are rigidly
fixed on the end-effector of the ECM. Note these transfor-
mations in the world coordinate system as Tyy (needle),
Twe (ECM end-effector), Ty (left camera), and Tyg (right
camera).

2

/\

Fig. 3. Needle frame and keypoints on the needle body. All five of them
are equally spaced on the arc, Point A is the tip of the needle, and Point E
is the tail connected with a thread.

In this simulation, the virtual endoscope on the ECM
acquires a 1080P stereo video stream at 30 FPS. On the
collected images, the ground truth of the 5 key points loca-
tions was computed using the camera projection equations,
and was used to train our neural network.

We collected 418 groups of data in total for training, each
group of our dataset contains:

o a pair of images from the left and the right camera,

o 2D coordinates of the 5 needle body points in the left
and right images,

« bounding box of the needle,

« transformation of the needle and the ECM in the world
coordinate system.

Examples of our dataset are as Fig. 4 shows, including dif-
ferent ECM viewpoints and Patient Side Manipulator (PSM)
poses to create different backgrounds but not to occlude
the needle. We also varied brightness (+30%) and contrast
(£30%), and rotated the images for data augmentation

B. R-CNN for Point Picking

The problem that extracting the 5 key points on the needle
body lies in the Object Detection area in Deep Learning.
Over the past few years, many Deep Learning models have
been invented, such as YOLO [15], and R-CNN [16]. Since
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Fig. 4. Examples of the collected data. (a) A typical scene with default light settings, with both PSMs in the scene. (b) Flipped view, no PSMs in the
scene, brighter, lower contrast. (c¢) Varied viewpoint, no PSMs, higher contrast. (d) Varied viewpoint, with PSMs. (e) Rotated view, no PSMs, dimmer,
lower contrast. (f) Rotated view, with PSMs, lower contrast. (g) Rotated view, dimmer.

our aim is not only to obtain the bounding box of the needle
but also the “landmarks” on the needle body, we choose to
use a variant of Mask R-CNN [11] to achieve the goal. We
implemented a Keypoint R-CNN model with a pre-trained
ResNet-50-FPN [17] backbone using the PyTorch library
[18]. Fine-tuned the model on a dataset with 836 images
and tested it with 60 images. The loss function contains three
terms, which are the classification and regression losses for
both the Region Proposal Network and the R-CNN, and the
keypoint loss (cross-entropy loss over an m”-way softmax
output, m is the side length in pixels of the binary mask
represents the training target), same as the loss function in
[19] and [11].

Loss = Lejs + Lyeg + Lieyprs (1)

C. Point-to-point Registration

Point-set registration is a process to find out a spatial
transformation between two point sets in different coordinate
systems. To find out the pose of the needle, we can use such a
technique based on information about the needle body points
from the previous step. Two pipelines were implemented, the
first one is based on coordinates on the 2D images, and the
second one makes use of stereo vision to get a 3D point set
and then registers to the needle frame.

Pipeline I - 2D-to-3D Registration: Once we have the im-
age coordinates of the needle body points from the previous
step, and we also know the 3D coordinate of the points in the
needle frame, estimating the pose of the needle with respect

3

to the camera is so-called a Perspective-n-Point [20] problem.
We used the Efficient Perspective-n-Point (EPnP) method
[21] to directly calculate the 6 DOF transformation. The
complete pipeline for one pair of images is as Fig. 5 shows.
The final output is an average of the two transformations.

Pipeline II - 3D-to-3D Registration: Another way to
calculate the pose is by 3D point set registration. Since we
have a pair of images from the left and right camera, with
the paired 2D coordinates of the body points and the camera
parameters, we can use stereo triangulation to compute the
3D coordinates of these body points. Finally, given the
shape of the needle and the local 3D coordinates of these
body points, we can perform a point cloud registration (with
known correspondence) to obtain the transformation from the
camera frame to the needle frame.

For the Stereo Triangulation, we used Direct Linear Trans-
formation (DLT) method [22]. Arun’s method [23] was used
to calculate the final transformation matrix from the point
cloud in the camera frame to the point cloud in the needle
frame. The complete pipeline that uses this registration
method is as Fig. 6 shows.

D. Multi-viewpoint from a Robotic Endoscope

The ECM is a robotic arm with an endoscope, with the
current joint values, the end-effector (endoscope) pose can be
calculated from its forward kinematics. When performing an
MIS with the da Vinci robot, the surgeon can use the Master
Tool Manipulator (MTM) to adjust the pose of the endoscope
to get a different viewpoint during a procedure. In suture
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Pipeline I. R-CNN extracts the defined 5 needle body points from the left and right images, the transformation from the left and right cameras to

the needle are calculated respectively, the final result is an average of the two transformations. Transformations from multiple viewpoints can be combined,

see Section II. D.
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Pipeline II. Both of the images are taken from the endoscope at the same time. 3D coordinates are triangulated from the 2D coordinates pairs

(blue dots are the ground truth, red ones are from stereo triangulation). The needle pose is the 3D point sets registration result.

needle tracking, self-occlusion is a special case when one
part of the needle obstructs another part of it from a certain
point of view so that the camera can not see its full body.
In some particular viewpoints, the projection of the needle
shape into a 2D image can even shrink to a segment rather
than a curve. To mitigate this problem and take advantage of
the robotic endoscope, we introduce multi-viewpoint tracking
to enhance our core algorithm. The surgeon can move the
ECM to a few different poses and get different multiple
views of the needle. A valid image will be used for tracking
only if the neural network reports a confidence score larger
than a threshold (e.g., 0.5), which means that the endoscope
probably sees the whole needle, then the transformation is

computed via the EPnP approach. Multi-view tracking can
also help to reduce random errors.

The workflow is as Fig. 7 shows. Transformations are
stored in a queue, every time the ECM moves to a new
pose, a new transformation inserts into the queue, and all the
stored transformations are multiplied by the offset to change
them to the current endoscope pose. The tracking result is
the average of all elements in the queue after eliminating
outliers.

III. EXPERIMENTS AND RESULTS

The training hyperparameters are listed in Table I. To test
the performance of our implemented methods, we randomly
placed the needle on the suturing phantom with random poses

4
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Fig. 7. ECM Multi-viewpoint ensemble. When the ECM moves from
the previous pose (Index n-1) to the current pose (Index n), a new Tgy is
estimated and inserted into the queue, all previous results (Tgn—1, ..., TEN—k»
k is the queue size) in the queue are multiplied by the ECM pose difference
and are converted into the current endoscope frame.

TABLE I
HYPERPARAMETERS
Epoch 20
Batch size 8
Learning rate 0.01
Momentum 0.9

Weight decay ~ 0.0005

30 times (60 images aside from the training dataset), the
needle locations ranging from 10 cm to 25 cm away from the
camera. Metrics including the 2D and 3D point localization
errors and the 6 DOF pose estimation errors were evaluated.

A. Point Tracking

2D point-picking errors were computed as the Euclidean
distance between our estimation and the ground truth. The
tracking errors for 60 images of the 5 defined needle body
points are shown in Table 2. We noticed that the error in the
middle points (Point B, C) are relatively higher than the head
point (A) and the tail point (E). We think it is because the
middle points are harder to identify since there is no texture
or marker on the needle surface. The overall average error
is 5.58 pixels, and the image size is 1920x1080.

Pipeline II has one additional step for 3D point localiza-
tion, the errors for 30 pairs of images of the 5 body points are
also computed as the Euclidean distance between our results
and the ground truth. The results are as Table 2 shows. 2D
errors and 3D errors are strongly positively associated, with
a Correlation Coefficient R = 0.63, which indicates that the
2D point picking accuracy largely affects the 3D localization.

TABLE I
POINT TRACKING ERRORS.

Keypoint | 2D Error (pixel) STD | 3D error (mm) STD
A 5.70 3.74 478 4.36
B 6.12 5.67 4.22 4.36
C 8.23 7.14 3.98 3.11
D 4.40 3.57 291 2.81
E 343 3.80 2.87 2.32
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TABLE III
POSE TRACKING ERRORS.

Pipeline 1 11 I with Multi-view
Position (mm) 2.26 6.13 1.76
Orientation (degree) | 6.74  35.61 8.55

B. Pose Estimation

The final pose errors of Pipeline I and II are shown in
Table 3. Position errors were computed by the Euclidean
distance between our estimation and the ground truth. For
orientation, the errors are the magnitude of the Rodriguez
vector representing the orientation from our estimation and
the ground truth. Pipeline I is more accurate than Pipeline II.
With the multi-viewpoint (one random joint of the ECM was
moved for 0.05 rad each time) from the ECM, the position
error was reduced to 1.76 mm. Fig. 8 shows the relationship
between the tracking accuracy versus the distance from the
endoscope to the target. Pipeline II is prone to large errors
when the target is relatively far away from the camera.

C. Computational Efficiency

Our tracking system was running on a computer with an
Nvidia RTX 3080 GPU and an Intel Core i7 12700K 12-
Core Processor. The most computationally intensive part (>
90%) is the forward propagation through the R-CNN model.
On average in a test of 10 images, it takes 0.09 seconds to
complete the process for each. The processing time for other
steps is negligible (less than 0.01s). Thus, our pipeline can
run up to 10 Hz on a relatively high-performance personal
computer.

IV. DISCUSSION

Pipeline I and II share the same keypoint detection part
but Pipeline I outperforms Pipeline II in overall pose track-
ing accuracy. Thus, we think stereo triangulation is more
sensitive to 2D errors. Additionally, incorporating multi-
viewpoint reduced the positional error a little but did not
reduce the orientation errors, we think this may be because
the keypoint detection part has systematic errors. Also, in
such a simulated environment, random measurement error
may not be a dominant factor.

The Keypoint R-CNN model was trained on a particular
needle geometry. While the framework is not specific to
any needle arc length or radius and should be robust to
the variety of needle shapes used for suturing, more images
with other shapes of needles need to be collected. Besides,
large inaccuracies were produced when the needle’s body
was obstructed, and in MIS, the needle is often grasped by
tools, making it not fully visible to the camera. In this paper,
our proposed method only aims to track a suture needle
when the camera can see it completely. This is helpful at
the beginning of a suturing task when a robot wants to grab
it from a surface.

In summary, we designed a markerless tracking method
that can estimate the 6 DOF pose of a suture needle
precisely in the simulated surgical scene up to 10 Hz, our
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Fig. 9. A potential solution to obtain the ground truth of needle pose. An
optical marker is rigidly mounted to a suture needle (through a rigid, thin,
and transparent stick), the images taken by the robotic endoscope do not
contain the marker. An optical tracker is calibrated with the dVRK base, so
that the transformation between the ECM and the tracker can be computed
by the calibration matrix and the forward kinematics of the ECM.

results indicate that this method has a good potential to be
implemented in a real-world setup. A dataset for needle body
points detection was produced and we trained a Keypoint R-
CNN model on it and achieved a low relative key points
detection error of 0.51%. Two complete tracking pipelines
were built using different point-to-point registration methods,
the average positional error is up to 2.26 mm and the average
orientation error is up to 6.74 degrees. We also utilized a
robotic endoscope to ensemble transformations from multi-
viewpoints and reduced the average positional error to 1.76
mm.

V. FUTURE WORK

In terms of the limitations above, a variety of needle
geometries will be included in our training dataset so the
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neural network model should be able to detect keypoints of
needles of different shapes/sizes. Furthermore, we also plan
to include partially occluded needle images to the dataset, but
modification on the R-CNN is necessary as in [24] proposed.

The simulation results show that our approach has the po-
tential to be transferred to real-world cases. We are working
on implementing this framework in a real-world scenario
on the dVRK, but there are challenges. When preparing the
training dataset, we rely on a very accurate needle pose and
camera projection matrix to compute the true coordinates of
the needle keypoints in an image. In reality, it is not feasible
without attaching any marker or changing the appearance of
the needle. So real-world dataset collection would be more
challenging than that in simulation. One potential solution
for this, similar to Thananjeyan et al. proposed in [25], is to
mark the keypoints on the needle with ultraviolet-fluorescent
paint, make those points only visible under ultraviolet light.
Additionally, Transfer Learning techniques [26] will be uti-
lized to make the most of the simulation data and mitigate
the Sim-to-Real gap. To get the ground truth of the 6 DOF
poses for evaluation purposes, we may still need to attach
an external marker (optical/electromagnetic) to the needle
and use a tracker, as Fig. 9 shows, the tracking pipeline will
remain markerless.
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