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Distributed Multi-Armed Bandits
Jingxuan Zhu, Student Member, IEEE , Ji Liu, Member, IEEE

Abstract— This paper studies a distributed multi-armed
bandit problem with heterogeneous observations of re-
wards. The problem is cooperatively solved by N agents
assuming each agent faces a common set of M arms yet
observes only local biased rewards of the arms. The goal
of each agent is to minimize the cumulative expected regret
with respect to the true rewards of the arms, where the
mean of each arm’s true reward equals the average of the
means of all agents’ observed biased rewards. Each agent
recursively updates its decision by utilizing the information
from its neighbors. Neighbor relationships are described
by a time-dependent directed graph G(t) whose vertices
correspond to agents and whose arcs depict neighbor rela-
tionships. A fully distributed bandit algorithm is proposed
which couples the classical distributed averaging algorithm
and the celebrated upper confidence bound (UCB) bandit
algorithm. It is shown that for any uniformly strongly con-
nected sequence of G(t), the algorithm achieves guaran-
teed regret for each agent at the order of O(logT).

I. INTRODUCTION

Multi-armed bandit (MAB) is a fundamental reinforce-
ment learning problem which exemplifies the exploration-
exploitation trade-off as a sequential decision-making process
and has a wide range of applications in natural and engineered
systems including cognitive radio networks, healthcare and
online recommendation systems [1]. In a classical MAB
problem setting with a single decision maker (or player), the
decision maker chooses one arm at each discrete time from
a given finite set of arms (or choices), and collects a reward
generated according to a random variable with unknown dis-
tribution. Different arms may have different unknown reward
means. The target of the decision maker is to minimize
its cumulative expected regret, i.e., the difference between
the decision maker’s accumulated expected reward and the
maximum which could have obtained had all the reward
information been known. Both lower and upper bounds on
the asymptotic regret of this MAB problem have been derived
in the seminal work [2]. Classic and elegant UCB algorithms
have been proposed in [3] which achieve an O(log T ) regret.
Considering that the MAB problem and its variants have been
studied for many years, it is impossible to survey the entire
bandit literature here. For an introductory survey covering the
works in this area, see a recent book [4].

Our social networks, communication infrastructure, power
grids, data centers, and decision-making needs have become
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increasingly massive and complex in recent years. In large-
scale multi-agent networks such as sensor networks and multi-
robot systems, the need for distributed information processing
and computing arises naturally because the sensors or robots
with on-board processors are physically separated from each
other. Meanwhile, in the current emerging big data era, various
types of communication constraints exist, and privacy con-
cerns become pervasive, which restricts information flow over
social networks and cyber-physical-human systems, and thus
precludes conventional centralized information processing and
computing, including parallel computing that typically relies
on the existence of an information center. With these in mind,
efforts to extend conventional single-player bandit settings to
multi-player frameworks have attracted increasing attention
over the past years, and various multi-agent bandit problems
have been proposed and developed with potential applications
in different networks. Notable examples include [5]–[17], just
to name a few.

Among the existing multi-agent settings, a cooperative
setting complements the considerable development in the
areas of distributed control and optimization, by incorporating
consensus processes [18], [19] among all agents. Such a setting
was first proposed in [16] which formulates a distributed
MAB problem with homogeneous observations of rewards,
i.e., all the agents share the same distribution of each arm’s
reward. The problem has recently attracted increasing attention
and a few different consensus-based distributed algorithms
have been proposed and developed [16], [17], [20]–[22]. It
is worth pointing out that in such a homogeneous reward
setting, each agent can independently learn an optimal arm
using any classic single-agent UCB algorithm, without any
information exchange or coordination with its neighbors. Thus,
cooperation among the agents in the homogeneous reward
setting is not necessary, though it may accelerate the agents’
bandit learning processes. It is also worth emphasizing that all
the existing distributed algorithms, tailored for the distributed
MAB problem with homogeneous observations of rewards,
focus on fixed neighbor graphs and require each agent be
aware of certain network-wise global information, such as
spectral properties of the neighbor graph or the total number
of agents in the network.

Motivated by a federated learning [23] scenario where
different agents hold heterogeneous datasets for the same task,
a recent paper [24] formulates a distributed MAB problem
with heterogeneous observations of rewards. This heterogene-
ity may arise due to sampling biases, local observation and
data collection errors or noise. Because of the heterogene-
ity, learning only with local data will lead each agent to
locally optimal, not globally optimal, actions. One way to
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achieve a globally optimal performance is to let all the agents
cooperatively smooth out the local biases or noise, which
necessitates the communication and coordination among the
agents in the network. A motivating example refers to global
health emergencies like the ongoing COVID-19 pandemic, in
which collaborative research among different countries/regions
is critical. Since there are inevitable differences in medical
staff training, treatment protocols, healthcare equipment, etc.
in different countries and regions, their observed effective-
ness of the treatments often contains regional biases. Thus,
sharing local treatment evaluations and collaborating with
other countries and regions can help smooth out the local
biases in treatment and thus obtain a more accurate global
model for diagnosis and healthcare. Detailed discussion of this
hospital treatment selection problem, including how it can be
effectively formulated as a heterogeneous distributed multi-
armed bandit problem, can be found in [24, Section 1].

In fact, very few papers have studied multi-agent bandit
problems with heterogeneous rewards/settings. The papers
[13], [25], [26] consider a system consisting of a central
coordinating authority and multiple computational entities.
Specifically, [13] studies a federated multi-armed bandit prob-
lem in which each arm generates independent observations at
different clients with heterogeneous means, [25] considers a
federated linear contextual model where the feature vectors
at different clients for the same arm are heterogeneous, and
[26] explores the benefits of heterogeneity in arm observability
among different clients. Another recent paper [9] studies a
decentralized setting in which no communication is allowed
among the agents, while collision feedback is available when
more than one agent selects the same arm. The work [24]
is the first and only one which studies a multi-agent bandit
problem with heterogeneous rewards in a cooperative dis-
tributed setting. The paper proposed a distributed algorithm
based on the standard gossiping scheme for communication,
and a differentially private variant is also developed. However,
the distributed algorithm in [24] works only on time-invariant
graphs and requires each agent be aware of global information,
the network size N . The use of N in the algorithm makes it
not resilient when new agents may join the network.

Distributed algorithms naturally rely on the connectivity of
the possibly time-varying graphs representing communication
relationships among the agents. As robots move in a multi-
robot system, for example, they may leave or enter other
robots’ communication and sensing radii, causing dynamic,
time-varying relationships. Another possible cause of time-
varying graphs is unstable communication due to the realistic
assumption of some non-zero communication failure proba-
bility between any two agents at any given time. Thus, there
is ample motivation to develop theoretical guarantees for dis-
tributed bandit algorithms with time-varying communication
graphs. It is worth emphasizing that in distributed control
and optimization problems, the case of time-varying graphs
is usually more challenging than the time-invariant one.

The goal of this paper is to propose a fully distributed
algorithm for the distributed multi-armed bandit problem with
heterogeneous observations of rewards, which does not require
any global information, and to study more general time-

varying graphs. We show that the proposed distributed UCB
algorithm achieves a logarithmic asymptotic regret for each of
the agents, provided that the underlying time-varying neighbor
graphs are “uniformly strongly connected”.

II. PROBLEM FORMULATION

We are interested in the following distributed multi-armed
bandit problem with heterogeneous observations of rewards.

Consider a network consisting of N > 1 agents (or players).
For presentation purposes, we label the agents from 1 through
N , and denote the set of agents by [N ] ≜ {1, 2, . . . , N}.
The agents are not aware of such a global labeling, but can
differentiate between their “neighbors”. Neighbor relationships
among the N agents are described by a possibly time-varying
directed graph G(t) = (V, E(t)), called neighbor graph,
with vertex set V corresponding to agents and edge set E(t)
depicting neighbor relationships at time t ∈ {0, 1, 2, . . .}.
Specifically, agent j is a neighbor of agent i at time t whenever
(j, i) is a directed edge (or an arc) in G(t), representing
that agent i can receive information from agent j at time
t. For simplicity, we assume that each agent i is always a
neighbor of itself, and thus G(t) has a self-arc at each vertex
for any time t. The neighbor graph will be assumed to be
time-invariant and strongly connected or time-varying and
“uniformly strongly connected”.

All N agents face a common set of M > 1 arms (or
choices), denoted by [M ] ≜ {1, 2, . . . ,M}. At each time
t ∈ {0, 1, . . . , T}, each agent i makes a decision on which
arm to select from the M options, and the selected arm is
denoted by ai(t). When agent i selects an arm k ∈ [M ],
it can collect a reward. The genuine reward is generated
according to an unknown random variable Xk(t). However,
the agent cannot observe this true reward; instead, it can only
observe a local biased (or noisy) copy of the reward, which
is generated according to another unknown random variable
Xi,k(t). The unobservability of Xk(t) can be due to local
observational bias or measurement noise. We assume that
{Xk(t)}Tt=0 and {Xi,k(t)}Tt=0, i ∈ [N ], are independent and
identically distributed (i.i.d.) random processes. For simplicity
of analysis and without loss of generality, we also assume that
all Xk and Xi,k have bounded support [0, 1]. The relationship
between Xk(t) and Xi,k(t) is as follows. Let µk and µi,k

be the mean of Xk(t) and Xi,k(t), respectively. For each
k ∈ [M ], the mean of arm k’s true reward equals the average
of the means of all agents’ observed rewards, i.e.,

µk =
1

N

N∑
i=1

µi,k.

Without loss of generality, assume that µ1 ≥ µ2 ≥ · · · ≥ µM ,
and thus arm 1 is always an optimal option.

The distributed multi-armed bandit problem is for each
agent i to minimize the following cumulative expected regret:

Ri(T ) = Tµ1 −
T∑

t=1

E
[
Xai(t)(t)

]
, (1)

with the goal of achieving Ri(T ) = o(T ) (i.e., Ri(T )/T → 0
as T → ∞) for all i ∈ [N ].
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It is worth emphasizing that since each agent i can only ob-
serve Xi,k, and µi,1 is not necessarily the largest among µi,k,
k ∈ [M ], no agent can guarantee to solve the problem without
receiving information from its neighbor(s), as any classic or
state-of-the-art single-agent bandit algorithms, such as UCB1
and UCB2 [3], are designed to minimize a local cummulative
expected regret T maxk µi,k −

∑T
t=1 E[Xi,ai(t)(t)] for each

agent i. This simple but important observation motivates the
necessity of coordination among all N agents. With this
observation in mind, we call the problem under consideration
heterogeneous distributed multi-armed bandit because differ-
ent agents have differing observed reward means for each arm.
In the contrast, in a homogeneous setting where the agents
observe the same reward mean for each arm, in which case
they may even have different arm reward distributions, each
agent can learn the bandit problem correctly and independently
without using any other agent’s information.

The problem just described was first proposed in [24], which
solves the problem for a fixed graph in a gossip setting and
provides privacy preservation guarantees in the presence of
sophisticated adversaries, but requires each agent be aware of a
global information, the network size N . In the next section, we
will propose a fully distributed algorithm without requiring any
global information at any agent. Although privacy preservation
is not main consideration of this paper, we assume agents
do not want to directly share their rewards possibly due to
more immediate, lower-level privacy concerns, which occur
in scenarios like multi-player games and social networks.
Compared with [24], the most important contribution of this
paper is to propose a fully distributed bandit algorithm without
using any global information such as N , which works for both
time-invariant, strongly connected graphs and time-varying,
uniformly strongly connected graph sequences. To get around
the limitation of using the network size N is technically
challenging. Although the overall analysis flow looks similar
to [24] at the glance, the current paper provides a much more
refined algorithm design and analysis.

III. ALGORITHM

To describe our algorithm, we begin with some notation.
Let ni,k(t) be the number of times agent i pulls arm k by

time t. Let 1(·) be the indicator function that returns 1 if the
statement is true and 0 otherwise. Define

x̄i,k(t) =
1

ni,k(t)

t∑
τ=0

1(ai(τ) = k)Xi,k(τ), (2)

which represents the average reward that agent i received from
arm k till time t. Let C(t, ni,k(t)) be the upper confidence
bound function for agent i and arm k, which is a function
of both ni,k(t) and time t. It is designed to be a decreasing
function of ni,k(t) and will be specified in the assertions.

Each agent i has control over two sets of variables, denoted
zi,k(t) and mi,k(t), which represent agent i’s estimate of the
network-wide true reward mean of arm k and the maximum
sampling times of arm k until time t among all the N agents,

respectively, and are updated as follows:

zi,k(t+ 1) =
∑

j∈Ni(t)

wij(t)zj,k(t) + x̄i,k(t+ 1)− x̄i,k(t),

(3)

mi,k(t+ 1) = max
{
ni,k(t+ 1), mj,k(t), j ∈ Ni(t)

}
, (4)

where Ni(t) denotes the set of neighbors of agent i including
itself, and wij(t), j ∈ Ni(t), are positive weights. Let W (t) be
the N ×N matrix whose ijth entry equals wij(t) if agent j is
a neighbor of agent i at time t or zero otherwise. Since each
agent i is always a neighbor of itself, the diagonal entries
of each W (t) are all positive. We assume that W (t) is a
“doubly stochastic matrix” for any time t where by a doubly
stochastic matrix is meant a nonnegative square matrix whose
row and column sums all equal one, and wij(t), j ∈ Ni(t),
are uniformly bounded below by some positive number.1 In
the case when G(t) is undirected (i.e., agent i is a neighbor
of agent j whenever agent j is a neighbor of agent i), such
a doubly stochastic W (t) can be constructed in a distributed
manner via the Metropolis algorithm [27] in which

wij(t) =
1

max{|Ni(t)|, |Nj(t)|}
, j ∈ Ni(t), j ̸= i,

wii(t) = 1−
∑

j∈Ni(t)

1

max{|Ni(t)|, |Nj(t)|}
,

where |Ni(t)| denotes the number of neighbors of agent i
at time t, or equivalently, the degree of vertex i when G(t)
is undirected. It is easy to see that the Metropolis algorithm
requires bi-directional communication between any pair of
neighbors. For more general directed graphs in which uni-
directional communication may occur, it has been shown that
when G(t) is strongly connected, a doubly stochastic matrix
W (t), whose zero and nonzero pattern is consistent with G(t),
always exists [28], and can be computed via a distributed
algorithm in finite time [29]. It is worth emphasizing that
zi,k(t) and mi,k(t) are updated in a distributed manner as they
only use information from agent i’s neighbors. The purpose
of zi,k(t) and mi,k(t) is for agent i to locally estimate the
network-wise true reward mean of arm k, µk, and the maximal
number of pulls on arm k at one agent till time t over the entire
network, maxj∈[N ] nj,k(t), respectively.

A detailed description of our algorithm is given as follows.

Initialization: At time t = 0, each agent i samples each arm
k exactly once, sets ni,k(0) = 1, zi,k(0) = x̄i,k(0) = Xi,k(0),
mi,k(0) = 1, and C(0, ni,k(0)) = 0.

Between clock times t and t+1, t ∈ {0, 1, . . . , T}, each agent i
performs the steps enumerated below in the order indicated.

1) Decision Making:
a) If there is no arm k such that ni,k(t) ≤ mi,k(t)−

M , agent i computes the index

Qi,k(t) = zi,k(t) + C(t, ni,k(t)),

1The uniform lower bound is a widely-adopted technical assumption in
consensus literature for guaranteeing exponentially fast consensus.
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and then pulls the arm ai(t + 1) that maximizes
Qi,k(t), with ties broken arbitrarily, and receives
reward Xi,ai(t+1)(t+ 1).

b) If there exists at least one arm k such that ni,k(t) ≤
mi,k(t)−M , agent i randomly pulls one such arm.

2) Transmission: Agent i broadcasts mi,k(t) and zi,k(t),
k ∈ [M ], to all its current out-neighbors; at the same
time, agent i receives mj,k(t) and zj,k(t), k ∈ [M ],
from each current neighbor j ∈ Ni(t).

3) Updating:

ni,k(t+ 1) =

{
ni,k(t) + 1 if k = ai(t+ 1),

ni,k(t) if k ̸= ai(t+ 1),

x̄i,k(t+ 1) =
1

ni,k(t+ 1)

t+1∑
τ=0

1(ai(τ) = k)Xi,k(τ),

zi,k(t+ 1) =
∑

j∈Ni(t)

wij(t)zj,k(t)

+ x̄i,k(t+ 1)− x̄i,k(t),

mi,k(t+ 1) = max
{
ni,k(t+ 1), mj,k(t), j ∈ Ni(t)

}
.

Before proceeding, let us elaborate the Decision Making
step. As one bottleneck of a (distributed) MAB process,
insufficient exploration on some arms would cause agents to
keep pulling a sub-optimal arm; this is why we have case (a).
The index computed in case (a) is the summation of the local
estimate on reward mean of arm k and the upper confidence
bound C(t, ni,k(t)). Since C(t, ni,k(t)) is designed to be
decreasing with respect to ni,k(t), pulling the arm with largest
Qi,k(t) can be understood as the agent makes a trade-off
between picking the arms with currently largest reward mean
(exploitation) and the arms so far least explored (exploration).
In this sense, the algorithm ensures that each arm to be
sufficiently explored. In the single-agent MAB problem [3],
such an exploitation/exploration trade-off is the main issue
in algorithm design. However, for the heterogeneous multi-
agent case under study, there is an additional critical issue:
the exploration process of each agent may not be on the same
page. Specifically, if an agent insufficiently explores an arm, its
possibly “poor” estimation of the arm would become a drag on
the estimation quality of all other agents via information fusion
over the network, because the accurate estimate of the true
reward mean relies on all the agents’ locally observed reward
means. In other words, even if an agent has made sufficient
exploration on one arm, it may still be “misled” by another
agent if the latter has not; this is a critical feature and challenge
in the heterogeneous setting. With this in mind, case (b) is thus
designed to tackle the challenge by restricting a quantitative
relation between agent i’s local sampling number ni,k(t) and
the estimated global maximum sampling times mi,k(t). The
relation guarantees that no agent in the network would fall
behind in the exploration process for each arm.

For a concise presentation of the algorithm, we refer to the
pseudocode in Algorithm 1.

We first consider the case when the neighbor graph is time-
invariant, i.e., G(t) = G for all time t, and G is strongly
connected. In this case, Ni(t) = Ni and W (t) = W for all

Algorithm 1: Distributed UCB
Input: G(t), T, C(t, ni,k(t))

1 Initialization Each agent samples each arm exactly
once. Set zi,k(0) = x̄i,k(0) = Xi,k(0),
mi,k(0) = ni,k(0) = 1, and C(0, ni,k(0)) = 0.

2 for t = 0, . . . , T do
3 Ai = ∅
4 if ni,k(t) ≤ mi,k(t)−M then
5 Agent i puts index k into set Ai

6 end
7 if Ai = ∅ then
8 for k = 1, . . . ,M do
9 Qi,k(t) = zi,k(t) + C(t, ni,k(t))

10 end
11 ai(t+ 1) = argmaxk Qi,k(t)
12 else
13 ai(t+ 1) is randomly chosen from Ai

14 end
15 Agent i sends mi,k(t) and zi,k(t), ∀k ∈ [M ], to

those agents j for which i ∈ Nj(t)
16 Agent i receives mj,k(t), zj,k(t), ∀k ∈ [M ], from

each j ∈ Ni(t)
17 ni,k(t+ 1) = ni,k(t), ∀k ∈ [M ]
18 ni,ai(t+1)(t+ 1) = ni,ai(t+1)(t) + 1
19 zi,k(t+ 1) =∑

j∈Ni(t)
wij(t)zj,k(t) + x̄i,k(t+ 1)− x̄i,k(t)

mi,k(t+1) = max{ni,k(t+1),mj,k(t), j ∈ Ni(t)}
20 end

i ∈ [N ] and time t, and W is an irreducible doubly stochastic
matrix whose diagonal entries are all positive. Let 1 denote
the N -dimensional vector whose entries all equal 1. It is well
known that W t converges to 1

N 11⊤ exponentially fast as t →
∞, i.e., there exist constants c > 0 and ρ2 ∈ [0, 1) such that∥∥∥W t − 1

N
11⊤

∥∥∥
2
≤ cρt2. (5)

Here ρ2 equals the second largest magnitude among all the
eigenvalues of W . In the special case when W is symmetric,
c = 1; see Lemma 8. Define ∆k = µ1 − µk, k ∈ [M ], as
the gap of mean reward between arm 1 and arm k. Then, the
regret Ri(T ) defined in (1) can be rewritten as

Ri(T ) =
∑

k:∆k>0

∆kE(ni,k(T )). (6)

The performance of the proposed algorithm is characterized
in the following theorem.

Theorem 1: Suppose that G is strongly connected and all
N agents adhere to Algorithm 1. Then, with

C(t, ni,k(t)) = (1 + βi)

√
3 log t

|Ni|ni,k(t)
+

1

2t
,

where βi is an arbitrary positive constant, the regret of each
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agent i until time T satisfies

Ri(T ) ≤
∑

k:∆k>0

(
max

{
12(1 + βi)

4 log T

|Ni|∆2
k

,K1

}
+K2

)
∆k,

where K1 and K2 are constants defined in Remark 4.

The theorem implies that for sufficiently large T , the log T
term dominates the regret bound, and thus Ri(T ) = O( log T

|Ni| ),
which is of the same order as the classic single-agent (non-
cooperative) UCB algorithms, e.g., UCB1 and UCB2 in [3],
and shows that cooperation with neighbors improves the regret.

Remark 1: Compared with the classic single-agent
UCB [3], the upper confidence bound in our algorithm
has an additional O(1/t) term, that is because it is shown
in the proof of Theorem 1 that to ensure optimal rate
convergence, the upper confidence bound should be designed
as a summation of a O(log T ) term and an extra term
upper bounded by c

√
Nρt2, which is originated from the

heterogeneous observation setting. Since ρ2 is a global
information that no agent is aware of, it cannot be used in
the design of the upper confidence bound. Thus, we use a
O(1/t) term to bound the term. Indeed, any function that
converges to zero at a decaying rate slower than exponential
can be used here, while this term will influence the value of
constant K1 and thus the finite-time regret bound. Study of
this influence is not the focus on this paper. □

Remark 2: Consider the homogeneous case in which µi,k =
µk for all i ∈ [N ] and k ∈ [M ]. From Theorem 1,

lim
T→∞

Ri(T ) ≤
∑

k:∆k>0

(
12(1 + βi)

4

|Ni|∆k
+ o(1)

)
log T.

It is easy to see that the asymptotic regret bound is increasing
in terms of βi, and when it is chosen to be sufficiently small,
the asymptotic bound of the regret Ri(T ) is close to∑

k:∆k>0

(
12

|Ni|∆k
+ o(1)

)
log T.

Note that when each agent independently applies the classic
(single-agent) UCB1 [3], the asymptotic regret bound is∑

k:∆k>0

(
8

∆k
+ o(1)

)
log T.

Since |Ni| ≥ 2 for all i ∈ [N ] in a strongly connected G with
self-arcs, we can conclude that for the homogeneous setting,
with sufficiently small βi, the asymptotic regret bound of each
agent in our distributed algorithm is always better than the
single-agent counterpart. For the more general heterogeneous
setting, if each agent independently applies the classic UCB1
without communicating with neighbors, its regret can be as
bad as linear in T , as illustrated in Fig. 2 in Section V. □

Remark 3: From Theorem 1, if G is a complete graph in
which |Ni| = N for all i, the asymptotic regret bound for each
agent becomes O( log T

N ), which is the largest “collaborative
gain” in regret improvement it could possibly be for an N -
agent network. Such a largest collaborative gain can also be

achieved if each agent is assumed to be aware of the network
size N . In this case, with

C(t, ni,k(t)) = (1 + βi)

√
3 log t

Nni,k(t)
+

1

2t

and the same arguments as in the proof of Theorem 1, it can
be shown that Ri(T ) ≤ O( log T

N ). □

Now we consider more general time-varying neighbor
graphs. To this end, we need the following concepts.

Let Gp and Gq be two directed graphs with the same vertex
set V . By the composition of Gp with Gq , written Gq ◦ Gp,
is meant the directed graph with vertex set V and arc set
defined in such a way so that (i, j) is an arc of the composition
whenever there is a vertex k ∈ V such that (i, k) is an arc of
Gp and (k, j) is an arc of Gq . It is clear that composition is
an associative binary operation, and thus the definition extends
unambiguously to any finite sequence of directed graphs with
the same vertex set. A simple but important fact is the union
of the arc sets of a sequence of directed graphs with self-arcs
at all vertices, as considered in this paper, must be contained
in the arc set of their composition, but not vice versa.

To proceed, a finite sequence of directed graphs
G1,G2, . . . ,Gq with the same vertex set is called jointly
strongly connected if their composition Gq ◦ G2 ◦ · · · ◦ G1

is strongly connected. We say that an infinite sequence of
directed graphs G1,G2, . . . with the same vertex set is uni-
formly strongly connected if there exists a positive integer l
such that for each integer k ≥ 0, the sequence of l graphs
Gk+1,Gk+2, . . . ,Gk+l is jointly strongly connected, i.e., the
composed graph Gk+l◦· · ·◦Gk+2◦Gk+1 is strongly connected.
If such an integer exists, we sometimes say that the sequence
is uniformly strongly connected by sub-sequences of length l.
Thus, if G(1),G(2), . . . is a sequence of neighbor graphs
which is uniformly strongly connected by sub-sequences of
length l, then over any l consecutive iterations, each proper
subset of the N agents can receive information from the rest.

It is easy to prove that the above definition is equivalent
to the two popular joint connectivity definitions in consensus
literature, namely “repeatedly jointly strongly connected” [30]
and “B-connected” [31].

In the case when G(t) is time-varying and uniformly
strongly connected, the corresponding sequence of doubly
stochastic matrices W (t), whose nonzero entries have a uni-
form positive lower bound, has the property that its backward
product W (t − 1) · · ·W (1)W (0) converges to 1

N 11⊤ expo-
nentially fast as t → ∞, i.e., there exist constants c′ > 0 and
ρ ∈ [0, 1) such that∥∥∥W (t− 1) · · ·W (1)W (0)− 1

N
11⊤

∥∥∥
2
≤ c′ρt, (7)

whose proof can be found in, for example, [31], [32].
The performance of Algorithm 1 over a time-varying neigh-

bor graph is characterized in the following theorem.

Theorem 2: Suppose that G(0),G(1),G(2), . . . are uni-
formly strongly connected by sub-sequences of length l and
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all N agents adhere to Algorithm 1. Then, with

C(t, ni,k(t)) = (1 + βi)

√
3 log t

δi(t)ni,k(t)
+

1

2t
,

where βi is an arbitrary positive constant and δi(t) =
max0≤t′≤t |Ni(t

′)|, the regret of each agent i satisfies

Ri(T ) ≤
∑

k:∆k>0

(
max

{
12(1 + βi)

4 log T

δi(K̃1)∆2
k

, K̃1

}
+ K̃2

)
∆k,

where K̃1 and K̃2 are constants defined in Remark 4.

Remark 4: We provide here the constants appearing in the
regret bounds in Theorems 1 and 2. For Theorem 1,

K1 = max{F1(βi), 2F2(βi)},
K2 = M2 + 2MN +N +N(π2/3 +K1 − 1),

where for any ϵ > 0, F1(ϵ) is defined in (29) and F2(ϵ) =
max{f(ϵ), 2(M2+2MN+N)}, with f(ϵ) being the infimum
of x such that when n ≥ x, it always holds that

ρn2 +
n∑

h=2

ρn−h
2

(h− 1)h
≤ ϵ

cNn
.

It will be shown in the proof of Lemma 9 that F2(ϵ) is well-
defined. For Theorem 2,

K̃1 = max{F̃1(βi), 2F̃2(βi)},
K̃2 = M2 + (M + 1)(N − 1)l +N(π2/3 + K̃1 − 1),

where for any ϵ > 0,

F̃1(ϵ) = max
{1 + ϵ

ϵ∆
, inf

x

{
c′
√
Nρt <

1

2t
, ∀t ≥ x

}}
,

F̃2(ϵ) = max
{
f̃(ϵ), 2(M2 + (M + 1)(N − 1)l)

}
,

with ∆ = mink:∆k>0 ∆k and f̃(ϵ) being the infimum of x
such that when n ≥ x, it always holds that

ρn +
n∑

h=2

ρn−h

(h− 1)h
≤ ϵ

c′Nn
.

Using the similar arguments to those in the proofs of Lemma 9
and Theorem 1, both F̃1(ϵ) and F̃2(ϵ) are well defined. □

From Theorem 2, it is easy to see that when T is sufficiently
large, the log T term is the dominant in the regret bound, and
thus Ri(T ) = O( log T

δi(K̃1)
), which is of the same order of the

fixed graph case; see Theorem 1 and Fig. 7.
Note that δi(t) in Theorem 2 makes the algorithm involve

an additional updating step for each agent at each iteration,
which tracks the largest number of neighbors in history, and
that δi(K̃1) appearing in the regret bound is a positive constant
bounded above by N . A simpler version of C(t, ni,k(t))
without involving δi(t) is given in the following corollary,
which yields a slightly worse regret bound and is an immediate
consequence of Theorem 2 using the same analysis.

Corollary 1: Suppose that G(0),G(1),G(2), . . . are uni-
formly strongly connected by sub-sequences of length l and
all N agents adhere to Algorithm 1. Then, with

C(t, ni,k(t)) = (1 + βi)

√
3 log t

ni,k(t)
+

1

2t
,

where βi is an arbitrary positive constant, the regret of each
agent i until time T satisfies

Ri(T ) ≤
∑

k:∆k>0

(
max

{
12(1 + βi)

4 log T

∆2
k

, K̃1

}
+ K̃2

)
∆k,

where K̃1 and K̃2 are constants defined in Remark 4.

IV. ANALYSIS

This section provides the analysis of Algorithm 1 and proofs
of the two theorems stated in the previous section.

Let zk(t) and x̄k(t) be the column stacks of all zi,k(t)
and x̄i,k(t), respectively. Then, the N equations in (3) can
be combined as

zk(t+ 1) = W (t)zk(t) + x̄k(t+ 1)− x̄k(t), (8)

where each W (t) is an irreducible doubly stochastic matrix.
We will need the following concept. A random variable X

with E[X] = µ is called σ2 sub-Gaussian if there exists a
positive constant σ such that

E(eλ(X−µ)) ≤ e
σ2λ2

2 , ∀λ ∈ IR.

Such σ2 is called a variance proxy, and the smallest variance
proxy is called the optimal variance proxy. Sub-Gaussian
random variables have the following three properties, namely
Lemmas 1 to 3. The proofs for the first two lemmas can
be found in Section 5.3 in [33], and Lemma 3 is a direct
consequence of Hoeffding’s Lemma [34].

Lemma 1: For any a ≥ 0 and σ2 sub-Gaussian random
variable X with E[X] = µ,

P(X − µ ≥ a) ≤ e−
a2

2σ2 , P(µ−X ≥ a) ≤ e−
a2

2σ2 .

Lemma 2: Let X1, . . . , Xn be n independent random vari-
ables such that Xi is σ2

i sub-Gaussian random variable for all
i ∈ [N ], then X1+ · · ·+Xn is (σ2

1 + · · ·+σ2
n) sub-Gaussian.

Lemma 3: If a random variable X has a finite mean and
a ≤ X ≤ b almost surely, then X is 1

4 (b− a)2 sub-Gaussian.

More can be said. Let {X1, . . . , Xn} be a finite set of
independent random variables such that for all i ∈ [n], Xi

satisfies: 1) Xi ∈ [ai, bi], 2) E(Xi) = µi, and 3) Xi is σ2
i sub-

Gaussian, then from the above three lemmas, for any η ≥ 0,

P

( n∑
i=1

Xi −
n∑

i=1

µi ≥ η

)
≤ exp

(
−2η2∑n

i=1(bi − ai)2

)
,

P

( n∑
i=1

µi −
n∑

i=1

Xi ≥ η

)
≤ exp

(
−2η2∑n

i=1(bi − ai)2

)
.

(9)

A. Time-invariant Neighbor Graph
We begin with the proof of Theorem 1. To proceed, for

any i, j ∈ [N ], we use di,j to denote the “distance” from
vertex i to vertex j in the time-invariant neighbor graph G.
For a strongly connected graph, the distance from vertex i
to vertex j is defined as the number of directed edges in a
shortest directed path from vertex i to vertex j in the graph.
It is natural to define di,i = 0 for any vertex i, and easy to
see that di,j ≤ N .
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For the purpose of analysis, we define ni,k(t) = mi,k(t) =
0 for all i ∈ [N ] and k ∈ [M ] when t < 0.

Lemma 4: For any i ∈ [N ] and k ∈ [M ],

mi,k(t) = max
j∈[N ]

{nj,k(t− dj,i)} . (10)

Proof: We will prove the lemma by induction on t.
For the basis step, suppose that t = 0. In this case,
mi,k(1) = max{ni,k(0), mj,k(0), j ∈ Ni} = 1. Note that
maxj∈[N ]{nj,k(t − dj,i)} = ni,k(0) = 1. Thus, (10) holds
when t = 0.

For the inductive step, assume (10) holds at time t, and now
consider time t+ 1. Note that

mi,k(t+ 1) = max{ni,k(t+ 1), mj,k(t), j ∈ Ni}
= max{ni,k(t+ 1), nh,k(t− dj,h),

h ∈ [N ], j ∈ Ni}.

It is easy to see that dh,i ≤ dj,i + dh,j = 1 + dh,j . Since
ni,k(t) is a non-decreasing function of t by its definition,

mi,k(t+ 1) ≤ max
h∈[N ]

{ni,k(t+ 1), nh,k(t− dh,i + 1)}

= max
j∈[N ]

{nj,k(t− dj,i + 1)}. (11)

Fix any vertex j ∈ [N ] and let p = (j, vdj,i
, . . . , v2, i) be a

shortest path from j to i in G. From (4),

mi,k(t+ 1) ≥ mv2,k(t) ≥ · · · ≥ mvdj,i
,k(t− dj,i + 2)

≥ mj,k(t− dj,i + 1) ≥ nj,k(t− dj,i + 1). (12)

Since j is arbitrarily chosen from [N ], mi,k(t + 1) ≥
maxj∈[N ]{nj,k(t− dj,i + 1)}. Combining with (11),

mi,k(t+ 1) = max
j∈[N ]

{nj,k(t− dj,i + 1)}.

So (10) also holds at t+ 1, which completes the induction.

Lemma 5: For any i ∈ [N ] and k ∈ [M ],

ni,k(t) > mi,k(t)−M(M + 2N).

Proof: We will prove the lemma by contradiction. Suppose
that, to the contrary, there exist i and k1 such that ni,k1(t) ≤
mi,k1

(t)−M(M +2N). Let t′ denote the first time at which
the equality holds, i.e.,

ni,k1(t
′) = mi,k1(t

′)−M(M + 2N).

Here t′ must exist. To see this, first note that at initial time
t = 0, ni,k(0) > mi,k(0)−M(M + 2N). Since both ni,k(t)
and mi,k(t) either do not change or increase by 1 at each
time instance, if there exists some t for which ni,k1

(t) <
mi,k1

(t)−M(M+2N), there must exist a t′ between 0 and t
such that ni,k1

(t′) = mi,k1
(t′)−M(M+2N). From Lemma 4,

there exists a j ∈ [N ] such that

mi,k1
(t′) = nj,k1

(t′ − dj,i). (13)

Then,

nj,k1(t
′ − dj,i)− ni,k1(t

′) = M(M + 2N). (14)

Also from Lemma 4, mi,k1(t) ≥ nj,k1(t− dj,i) always holds.
Thus, for t < t′,

nj,k1(t− dj,i)− ni,k1(t) ≤ mi,k1(t)− ni,k1(t)

< M(M + 2N). (15)

Since ni,k(t) is non-decreasing for any fixed i ∈ [N ] and
k ∈ [M ], (14) and (15) imply that nj,k1(t

′−dj,i) > nj,k1(t
′−

dj,i − 1). This further implies that at time t′ − dj,i, agent j
pulls arm k1. Since each agent must pull an arm at each time,∑M

k=1 ni,k(t) = t+M, ∀i ∈ [N ]. Then,∑
k∈[M ]\k1

ni,k(t
′)−

∑
k∈[M ]\k1

nj,k(t
′ − dj,i)

> M(M + 2N) + dj,i.

Applying the Pigeonhole principle, ∃ k2 ∈ [M ] such that

ni,k2
(t′)− nj,k2

(t′ − dj,i) ≥
M(M + 2N)

M − 1
> M + 2N.

According to the definition of ni,k(t), it holds that ni,k(t +
1) ≤ ni,k(t)+ 1, which implies that ni,k(t+ τ) ≤ ni,k(t)+ τ
for any positive integer τ . Then,

ni,k2(t
′) = ni,k2(t

′ − dj,i − di,j + dj,i + di,j)

≤ ni,k2(t
′ − dj,i − di,j) + dj,i + di,j .

Thus,

ni,k2
(t′ − dj,i − di,j)− nj,k2

(t′ − dj,i)

> ni,k2
(t′)− nj,k2

(t′ − dj,i)− dj,i − di,j

> M + 2N − dj,i − di,j > M.

Using (12), mj,k2
(t′ − dj,i) ≥ ni,k2

(t′ − dj,i − di,j). Thus,

mj,k2
(t′ − dj,i)− nj,k2

(t′ − dj,i) > M.

From the description of Algorithm 1, k2 ∈ Aj . Since Aj is not
empty, agent j randomly picks an arm in Aj at time t′ − dj,i
according to the Decision Making step. Meanwhile, from the
preceding analysis, agent j in fact pulls arm k1 at t′ − dj,i,
which implies that k1 ∈ Aj , and thus

mj,k1
(t′ − dj,i)− nj,k1

(t′ − dj,i) ≥ M > 0. (16)

Note that from (12),

mi,k1
(t′) ≥ mj,k1

(t′ − dj,i). (17)

Combining (13)–(17) together,

nj,k1(t
′ − dj,i) = mi,k1(t

′) ≥ mj,k1(t
′ − dj,i)

> nj,k1(t
′ − dj,i),

which is a contradiction. Therefore, the lemma is true.

Lemma 6: For any i ∈ [N ] and k ∈ [M ], if ni,k(t) ≥
2(M2 + 2MN +N), then for any h ∈ [N ],

1

2
nh,k(t) ≤ ni,k(t) ≤

3

2
nh,k(t).

Proof: From (12), mi,k(t) ≥ nh,k(t − dh,i), ∀h ∈ [N ].
Note that for any i ∈ [N ], k ∈ [M ], and t ≥ 0, it holds that
ni,k(t+1) ≤ ni,k(t) + 1. Thus, for all i, h ∈ [N ], there holds

mi,k(t) ≥ nh,k(t)− dh,i ≥ nh,k(t)−N.
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Combining this with Lemma 5, for any i, h ∈ [N ],

ni,k(t) ≥ nh,k(t)− (M2 + 2MN +N),

ni,k(t) ≤ nh,k(t) + (M2 + 2MN +N).
(18)

Then, when ni,k(t) ≥ 2(M2 + 2MN +N), for any h ∈ [N ],

nh,k(t) +
1

2
ni,k(t) ≥ ni,k(t) ≥ nh,k(t)−

1

2
ni,k(t).

Simplifying this inequality immediately implies the lemma.

Lemma 7: If W is an irreducible doubly stochastic matrix
with positive diagonal entries, then there exists a positive
constant c such that∥∥∥W t − 1

N
11⊤

∥∥∥
2
≤ cρt2, (19)∣∣∣[W t]ij −

1

N

∣∣∣ ≤ cρt2 (20)

for all i, j ∈ [N ], where ρ2 is the second largest magnitude
among all the eigenvalues of W .

The lemma is well-known and its proof can be found in
[35]; see the proof of Theorem 1 in [35]. More can be said
for symmetric matrices.

Lemma 8: If W is a symmetric, irreducible, (doubly)
stochastic matrix with positive diagonal entries, then∥∥∥W t − 1

N
11⊤

∥∥∥
2
≤ ρt2,

∣∣∣[W t]ij −
1

N

∣∣∣ ≤ ρt2

for all i, j ∈ [N ], where ρ2 is the second largest magnitude
among all the eigenvalues of W .2

The proof of Lemma 8 is standard and thus omitted due to
space limitations.

Lemma 9: For any i ∈ [N ], k ∈ [M ], and time t, zi,k(t) is
a linear combination of Xj,k(τ), j ∈ [N ], τ ∈ {0, 1, . . . , t}.
For any ϵ > 0, the absolute value of the coefficient of each
Xj,k(t) is bounded above by (1+ϵ)

Nnj,k(t)
when nj,k(t) ≥ F2(ϵ),

where F2(ϵ) is defined in Remark 4.

Proof: From (2) and (3), zi,k(t) is a linear combination of
Xj,k(τ) with all j ∈ [N ] and τ ∈ {1, 2, . . . , t}. Let c(τ)i,k,j(t)
denote the coefficient of Xj,k(τ). Note that from (8),

zk(t) = Wzk(t− 1) + x̄k(t)− x̄k(t− 1)

= W tzk(0) +
t−1∑
τ=0

W τ (x̄k(t− τ)− x̄k(t− τ − 1))

=
t−1∑
τ=0

(W t−τ −W t−τ−1)x̄k(τ) + x̄k(t).

Thus,

zi,k(t) =
∑
j

{ t−1∑
τ=0

[W t−τ −W t−τ−1]ij x̄j,k(τ)

+ [W 0]ij x̄j,k(t)

}
.

Denote τi,1, τi,2, . . . , τi,ni,k(t) as the ascending sequence of all
time instances before time t at which agent i pulls arm k. From

2Since W is symmetric, all its eigenvalues are real, and ρ2 equals its second
largest singular value.

the initialization step of the algorithm, it is clear that τi,1 = 0.
According to update (2), for τ ∈ [τi,m, τi,m+1), there holds
x̄i,k(τ) = x̄i,k(τi,m), ∀i ∈ [N ]. Then,

zi,k(t) =
∑
j

{ nj,k(t)−1∑
h=1

[
W t−τj,h −W t−τj,h+1

]
ij
x̄j,k(τj,h)

+
[
W

t−τj,nj,k(t)
]
ij
x̄j,k(τj,nj,k(t))

}
, (21)

where we use [·]ij to denote the ijth entry of a matrix. It is
not hard to see from above equation that c(τ)i,k,j(t) = 0 when
τ ̸= τj,1, τj,2, . . . , τj,nj,k(t). Specifically, for all i ∈ [N ] and
k ∈ [M ], it holds that

c
(0)
i,k,j(t) =

[ nj,k(t)−1∑
h=1

W t−τj,h −W t−τj,h+1

h

+
W

t−τj,nj,k(t)

nj,k(t)

]
ij

, (22)

which can also be written as

c
(0)
i,k,j(t) =

[
W t −

nj,k(t)∑
h=2

W t−τj,h

(h− 1)h

]
ij

.

From (20), c(0)i,k,j(t) satisfies

∣∣c(0)i,k,j(t)
∣∣ ≤ 1

N

(
1−

nj,k(t)∑
h=2

1

(h− 1)h

)
+ cρt2

+

nj,k(t)∑
h=2

cρ
t−τj,h
2

(h− 1)h

=
1

Nnj,k(t)
+ cρt2 +

nj,k(t)∑
h=2

cρ
t−τj,h
2

(h− 1)h
.

Since 0 < ρ2 < 1, the smaller t− τj,h is, the larger the right
side of the inequality would be, so ρ

t−τj,h
2 ≤ ρ

nj,k(t)−h
2 . Thus,

for l ∈ (2, nj,k(t)),

nj,k(t)∑
h=2

ρ
t−τj,h
2

(h− 1)h
≤

nj,k(t)∑
h=2

ρ
nj,k(t)−h
2

(h− 1)h
(23)

=

( l∑
h=2

+

nj,k(t)∑
h=l+1

)
ρ
nj,k(t)−h
2

(h− 1)h

= ρ
nj,k(t)−1
2 +

l∑
h=2

ρ
nj,k(t)−h
2 (1− ρ2)

h
− ρ

nj,k(t)−l
2

l

+

nj,k(t)∑
h=l+1

ρ
nj,k(t)−h
2

(h− 1)h

≤ ρ
nj,k(t)−1
2 +

l−1∑
h=2

ρ
nj,k(t)−h
2 (1− ρ2) +

nj,k(t)∑
h=l+1

1

(h− 1)h

= ρ
nj,k(t)−l+1
2 +

1

l
− 1

nj,k(t)
.
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Let s = nj,k(t)− l. Then,

nj,k(t)∑
h=2

ρ
nj,k(t)−h
2

(h− 1)h
≤ ρs+1

2 +
s

nj,k(t)(nj,k(t)− s)
.

Setting l = nj,k(t) − ⌈2 log1/ρ2
nj,k(t)⌉, it follows that s =

⌈2 log1/ρ2
nj,k(t)⌉ and

lim
nj,k(t)→∞

[( nj,k(t)∑
h=2

ρ
nj,k(t)−h
2

(h− 1)h

)
· nj,k(t)

]
≤ lim

nj,k(t)→∞

(
1

nj,k(t)
+

s

(nj,k(t)− s)

)
= 0,

which implies that

nj,k(t)∑
h=2

ρ
nj,k(t)−h
2

(h− 1)h
= o

( 1

nj,k(t)

)
.

Similarly, ρnj,k(t)
2 = o( 1

nj,k(t)
). Thus, F2(ϵ) in Remark 4 is

well-defined, and when nj,k(t) ≥ F2(ϵ),

ρ
nj,k(t)
2 +

nj,k(t)∑
h=2

ρ
nj,k(t)−h
2

(h− 1)h
≤ ϵ

cNnj,k(t)
.

Then, from (23), when nj,k(t) ≥ F2(ϵ),

∣∣c(0)i,k,j(t)
∣∣ ≤ 1

Nnj,k(t)
+ c

(
ρt2 +

nj,k(t)∑
h=2

ρ
t−τj,h
2

(h− 1)h

)

≤ 1

Nnj,k(t)
+ c

(
ρ
nj,k(t)
2 +

nj,k(t)∑
h=2

ρ
nj,k(t)−h
2

(h− 1)h

)
≤ 1 + ϵ

Nnj,k(t)
.

It is not hard to see from the definition that c(τj,h)i,k,j is the last
nj,k(t) − h + 1 term of c

(0)
i,k,j(t) in (22) for all h > 1. Thus,

following the same arguments as above, we can conclude that

∣∣c(τj,h)i,k,j (t)
∣∣ ≤ 1 + ϵ

Nnj,k(t)

holds under the same condition of nj,k(t) as above, which
completes the proof.

Now we are in a position to prove Theorem 1.

Proof of Theorem 1: Let

L = max

{
12(1 + βi)

4 log T

|Ni|∆2
k

,K1

}
.

From the Decision Making step of the algorithm,

ni,k(T ) = 1 +
T∑

t=1

1(ai(t) = k)

≤ L+
T∑

t=1

1(ai(t) = k, ni,k(t− 1) ≥ L)

≤ L+
T∑

t=1

1
(
zi,k(t) + C(t, ni,k(t)) ≥ zi,1(t)+

C(t, ni,1(t)), ni,k(t− 1) ≥ L
)

+
T∑

t=1

1(ai(t) = k, k ∈ Ai(t), ni,k(t− 1) ≥ L).

Thus,

E(ni,k(T ))

≤ L+
T∑

t=1

P
(
zi,k(t) + C(t, ni,k(t)) ≥ zi,1(t)+

C(t, ni,1(t)), ni,k(t− 1) ≥ L
)

+ E
( T∑

t=1

1(ai(t) = k, k ∈ Ai(t), ni,k(t− 1) ≥ L)
)
, (24)

in which the second and third terms stand for the number of
pulls on arm k made by agent i in case a) and case b) of
the Decision Making step after agent i have pulled L times
of arm k, respectively. We thus divide the remaining analysis
into two parts to estimate these two terms separately.

Part A: For the second term on the right hand side of (24),
T∑

t=1

P
(
zi,k(t) + C(t, ni,k(t)) ≥ zi,1(t) + C(t, ni,1(t)),

ni,k(t− 1) ≥ L
)

≤
T∑

t=1

t−1∑
Ni1=1

t−1∑
Nik=L

P
(
zi,k(t) + C(t, ni,k(t)) ≥ zi,1(t)

+ C(t, ni,1(t)), ni,k(t) = Nik, ni,1(t) = Ni1

)
≤

T∑
t=1

t−1∑
Ni1=K1

t−1∑
Nik=L

P
(
zi,k(t) + C(t, ni,k(t)) ≥ zi,1(t)

+ C(t, ni,1(t)), ni,k(t) = Nik, ni,1(t) = Ni1

)
+

T∑
t=1

K1−1∑
Ni1=1

P
(
ni,1(t) = Ni1

)
. (25)

For the second summation of (25), it holds that
T∑

t=1

K1−1∑
Ni1=1

P(ni,1(t) = Ni1)

=

K1−1∑
Ni1=1

T∑
t=1

P(ni,1(t) = Ni1)

≤
K1−1∑
Ni1=1

1 = K1 − 1. (26)
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For each term in the first summation of (25), it can be divided
into three cases as follows:

P
(
zi,k(t) + C(t, ni,k(t) ≥ zi,1(t) + C(t, ni,1(t)),

ni,k(t) = Nik, ni,1(t) = Ni1

)
≤ P

(
zi,k(t)− µk ≥ C(t, ni,k(t)), ni,k(t) = Nik

)
+ P

(
µ1 − zi,1(t) ≥ C(t, ni,1(t)), ni,1(t) = Ni1

)
+ P

(
µ1 − µk < 2C(t, ni,k(t)), ni,k(t) = Nik

)
, (27)

where Nik ≥ L ≥ K1 and Ni1 ≥ K1. As the analyses for
estimating the first two terms on the right hand side of (27)
are the same, we will only work on the first one in the sequel.

Note that zi,k(t) =
∑

j∈[N ]

∑t
τ=1 c

(τ)
i,k,j(t)Xj,k(τ). We thus

decompose zi,k(t)− µk as

zi,k(t)− µk =
∑
j∈[N ]

t∑
τ=1

c
(τ)
i,k,j(t)

(
Xj,k(τ)− µjk

)
+
( ∑

j∈[N ]

t∑
τ=1

c
(τ)
i,k,j(t)µjk − µk

)
. (28)

We first bound the second term in (28). Note that from (21),

∑
j∈[N ]

t∑
τ=1

c
(τ)
i,k,j(t)Xj,k(τ)

=
∑
j∈[N ]

{ t−1∑
τ=0

[W t−τ −W t−τ−1]ij x̄j,k(τ) + [W 0]ij x̄j,k(t)

}
,

which, with the definition of x̄i,k(t), implies that

t∑
τ=1

c
(τ)
i,k,j(t)Xj,k(τ) =

{ t−1∑
τ=0

[W t−τ −W t−τ−1]ij x̄j,k(τ)

+ [W 0]ij x̄j,k(t)

}
.

It is clear that the sum of the coefficients of Xj,k(τ), j ∈ [N ]
in (2) equals 1 for any fixed i ∈ [N ] and k ∈ [M ]. Thus,

t∑
τ=1

c
(τ)
i,k,j(t) =

t−1∑
τ=0

[W t−τ −W t−τ−1]ij + [W 0]ij = [W t]ij ,

which implies that

∑
j∈[N ]

t∑
τ=1

c
(τ)
i,k,j(t)µjk = W t

[
µ1 µ2 . . . µM

]⊤
.

Then, from (19),∣∣∣ ∑
j∈[N ]

t∑
τ=1

c
(τ)
i,k,j(t)(µjk − µk)

∣∣∣
=

∣∣∣(W t − 1

N
11⊤

) [
µ1 µ2 . . . µM

]⊤ ∣∣∣
≤

∥∥∥W t − 1

N
11⊤

∥∥∥
2
·
∥∥ [µ1 µ2 . . . µM

] ∥∥
2
≤ c

√
Nρt2.

To proceed, let

F1(βi) = max

{
1 + βi

βi∆
, inf

x

{
c
√
Nρt2 <

1

2t
, ∀t ≥ x

}}
,

(29)

where ∆ = mink:∆k>0 ∆k. Since tρt2 converges to 0 when t
goes to infinity, F1(βi) is well-defined, and when t ≥ F1(βi),
it holds that∣∣∣ ∑

j∈[N ]

t∑
τ=1

c
(τ)
i,k,j(t)(µjk − µk)

∣∣∣ ≤ c
√
Nρt2 ≤ 1

2t
. (30)

To simplify notation, let

h(ni,k(t)) = C(t, ni,k(t))−
1

2t
for each time t > 0. From (21) and (30),

P
(
zi,k(t)− µk ≥ C(t, ni,k(t)), ni,k(t) = Nik

)
≤ P

( ∑
j∈[N ]

t∑
τ=1

c
(τ)
i,k,j(t)

(
Xj,k(τ)− µjk) ≥ h(ni,k(t),

ni,k(t) = Nik

)
≤ P

( ∑
j∈[N ]

Njk∑
h=1

c
(τj,h)
i,k,j (t)

(
Xj,k(τj,h)− µjk) ≥ h(Nik),

nj,k(t) = Njk for all j ∈ [N ]
)
, (31)

where τj,h is defined in the proof of Lemma 9. For any fixed
i ∈ [N ] and k ∈ [M ], define the following set B and event C:

B =
{
(N1k, . . . , NNk) : Njk ∈

[Nik

2
,
3Nik

2

]
, ∀ j ∈ [N ]

}
,

C =
{ ∑

j∈[N ]

Njk∑
h=1

c
(τj,h)
i,k,j (t)

(
Xj,k(τj,h)− µjk) ≥ h(Nik)

}
.

From Lemma 6, when Nik ≥ L ≥ K1, B is always nonempty.
Then, expanding the right hand side of (31),

P
(
zi,k(t)− µk ≥ C(t, ni,k(t)), ni,k(t) = Nik

)
≤ max

B
P(C)P

(
nj,k(t) = Njk for all j ∈ [N ] | C

)
≤ max

B
P(C).

Note that for any fixed time t, all c(τj,h)i,k,j (t) are constants and all
Xj,k(τj,h) are i.i.d. samples drawn from arm k for all j ∈ [N ]
and h ∈ {1, 2 . . . , Njk}. Then, applying (9),

P
(
zi,k(t)− µk ≥ C(t, ni,k(t)), ni,k(t) = Nik

)
≤ max

B
P(C) ≤ max

B
exp

(
− 2h2(ni,k(t))∑

j∈[N ]

∑Njk

h=1 c
(τj,h)
i,k,j (t)

)

≤ max
B

exp

(
−

6(1+βi)
2 log t

NNik∑
j∈[N ]

∑Njk

n=1
(1+βi)2

N2N2
jk

)

≤ max
B

exp

(
− 6N∑

j∈[N ]
Nik

Njk

log t

)
≤ exp

(
− 6N

3N/2
log t

)
≤ t−4.
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Similarly, for the second term on the right hand side of (27),
it holds that for Ni1 ≥ K1,

P
(
µ1 − zi,1(t) ≥ C(t, ni,1(t)), ni,1(t) = Ni1

)
≤ t−4.

As for the last term on the right hand side of (27), it is easy to
verify that when ni,k(t) ≥ 12(1+βi)

4 log T
|Ni|∆2

k
, it always holds that

µ1 − µk > 2C(t, ni,k(t)). Substituting the preceding results
to (27), it follows that when Nik, Ni1 ≥ K1,

P
(
zi,k(t) + C(t, ni,k(t)) ≥ zi,1(t) + C(t, ni,1(t)),

ni,k(t) = Nik, ni,1(t) = Ni1

)
≤ 2t−4.

Combining this with (25) and (26),

T∑
t=1

P
(
zi,k(t) + C(t, ni,k(t)) ≥ zi,1(t) + C(t, ni,1(t)),

ni,k(t− 1) ≥ L
)

≤
T∑

t=1

t−1∑
Ni1=K1

t−1∑
Nik=L

2t−4 +K1 − 1 ≤ π2

3
+K1 − 1. (32)

Part B: Now what is left is to estimate the last term on
the right hand side of (24), which stands for the expected
number of pulls on arm k by agent i in case b) in the
Decision Making step after time instance t1 defined as t1 ≜
argmint{ni,k(t− 1) = L}, and can be intuitively understood
as the extra pulls an agent makes in order to “catch up” with
the largest sample count among all the agents on arm k. In this
sense, it is easy to see that any decision made according to case
b would not affect the global maximal sample count, while
any pull made according to case a would at most increase
the global maximal sample count by 1. With this is mind, let
i1 = argmaxi ni,k(t1) be the agent who makes the most pulls
on arm k at t1, and gi,k be the number of pulls made by i on
arm k in case a after t1, then for all i ∈ [N ], it holds that

ni,k(T ) ≤ max
j

nj,k(T ) ≤ ni1,k(t1) +
∑
j∈[N ]

gj,k.

Thus,

E
( T∑

t=1

1(ai(t) = k, k ∈ Ai(t), ni,k(t− 1) ≥ L)
)

= E
(
ni,k(T )− ni,k(t1)− gi,k

)
≤ ni1,k(t1)− ni,k(t1) +E

( ∑
j∈[N ]

gj,k − gi,k

)
.

From (32), E(gj,k) =
π2

3 +K1 − 1 for all j ∈ [N ], and from
(18), ni1,k(t1)−ni,k(t1) ≤ M2+2MN +N , which together
imply that

E
( T∑

t=1

1(ai(t) = k, k ∈ Ai(t), ni,k(t− 1) ≥ L)
)

≤ M2 + 2MN +N + (N − 1)
(π2

3
+K1 − 1

)
= K2.

Combining this with (24) and (32), we have

E
(
ni,k(T )

)
≤ L+K2.

Thus, from (6),

Ri(T ) =
∑

k:∆k>0

E(ni,k(T ))∆k ≤
∑

k:∆k>0

(L+K2)∆k,

which completes the proof.

B. Time-varying Neighbor Graph

Now we analyze the time-varying neighbor graph case for
proving Theorem 2.

We need the following concept for a time-varying graph
sequence. Define a route over a given sequence of directed
graphs with the same vertex set, G1,G2, . . . ,Gp, as a sequence
of vertices i0, i1, . . . , ip such that for each k ∈ {1, 2, . . . , q},
(ik−1, ik) is an arc in Gk. It is easy to see that a route over a
sequence of directed graphs which are all the same graph G, is
a walk in G. The definition of composition of directed graphs
with self-arcs at all vertices implies that if i = i0, i1, . . . , ip =
j is a route over a sequence G1,G2, . . . ,Gp, then (i, j) must
be an arc in the composed graph Gq ◦ Gq−1 ◦ · · · ◦ G1, and
vice versa.

In this subsection, we use di,j(t) to denote the shortest
period of time, starting from time instant t, with which there
is a route from vertex i to vertex j over the time-varying
neighbor graph sequence {G(t)}; that is,

di,j(t) = argmin
t′

{
(i, j) is an arc in G(t+ t′) ◦ · · · ◦G(t)

}
.

Since G(0),G(1),G(2), . . . are uniformly strongly connected
by sub-sequences of length l, by definition and the fact that
any sequence of N−1 or more strongly connected graphs with
self-arcs at all N vertices is a complete graph [30, Proposi-
tion 4], the composition of any (N−1)l consecutive graphs in
G(0),G(1),G(2), . . . is a complete graph. Thus, for any t ≥ 0,
there is an arc from vertex i to vertex j for any i, j ∈ [N ] in
the composed graph G(t+(N−1)l−1)◦· · ·◦G(t+1)◦G(t).
Combining this and the fact that for any two directed graphs
with self-arcs at all vertices, Gp and Gq , the arc set of Gp

is a subset of the arc set of Gq ◦ Gp, we have the following
uniform bound for di,j(t):

di,j(t) ≤ (N − 1)l.

It is worth noting that di,j(t) is not necessarily increasing with
respect to t. For example, if (i, j) is not an arc in G(1) but is
one in G(2), then di,j(1) > di,j(2) = 1.

We use the following notation to describe the latest infor-
mation j receives from i till time t :

Di,j(t) = argmax
t′

{t− (N − 1)l < t′ ≤ t, t′ + di,j(t
′) ≤ t}.

(33)

It can be derived directly from the definition that (i, j) is an
arc of G(t) ◦ · · · ◦G(Di,j(t)).

With the preceding definitions, variables ni,k(t) and mi,k(t)
in Algorithm 1 over time-varying neighbor graphs have similar
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properties to those in Lemmas 4–6 derived for time-invariant
neighbor graphs.

Lemma 10: For any i ∈ [N ] and k ∈ [M ],

mi,k(t) = max
j∈[N ]

{
nj,k(Dj,i(t))

}
. (34)

Proof: We will prove the lemma by induction on t. For
the basis step, suppose that t = 0. In this case, mi,k(0) =
max{ni,k(0), mj,k(0), j ∈ Ni(0)} = 1. Note that Dj,i(t) ≤
t, so maxj∈[N ] {nj,k(Dj,i(0))} = maxj∈[N ]{ni,k(0)} = 1.
Thus, (34) holds when t = 0.

For the inductive step, assume (34) holds at time t, and now
consider time t+ 1. Note that

mi,k(t+ 1) = max{ni,k(t+ 1), mj,k(t), j ∈ Ni(t)}
= max{ni,k(t+ 1), nh,k(Dh,j(t)),

h ∈ [N ], j ∈ Ni(t)}.

Since (h, j) is an arc of graph G(t) ◦ · · · ◦ G(Dh,j(t)) and
j ∈ Ni(t+1) (i.e., (j, i) is an arc of graph G(t+1)), it follows
that (h, i) must be an arc of graph G(t+1)◦ · · · ◦G(Dh,j(t)).
It implies that Dh,j(t) ∈ {t′ : t′ + dh,i(t

′) ≤ t+ 1}. Thus,

Dh,i(t+ 1) = argmax
t′

{t′ + dh,i(t
′) ≤ t+ 1} ≥ Dh,j(t).

Since ni,k(t) is a non-decreasing function of t,

mi,k(t+ 1) = max
{
ni,k(t+ 1), nh,k(Dh,j(t)),

h ∈ [N ], j ∈ Ni(t)
}

≤ max
h∈[N ]

{
ni,k(t+ 1), nh,k(Dh,i(t+ 1))

}
= max

j∈[N ]

{
nj,k(Dj,i(t+ 1))

}
. (35)

Fix any j ∈ [N ] and let p = (j, vdj,i(Dj,i(t)), . . . , v2, i) be a
route from vertex j to vertex i in G(t+1)◦· · ·◦G(Dj,i(t+1)).
Then, from (4),

mi,k(t+ 1) ≥ mv2,k(t) ≥ · · ·
≥ mvdj,i(Dj,i(t))

,k(t− dj,i(Dj,i(t+ 1)) + 1)

≥ mj,k(t− dj,i(Dj,i(t+ 1)))

≥ mj,k(Dj,i(t+ 1)) ≥ nj,k(Dj,i(t+ 1)). (36)

Since j is arbitrarily chosen from [N ], it follows that

mi,k(t+ 1) ≥ max
j∈[N ]

{
nj,k(Dj,i(t))

}
.

Combining with (35),

mi,k(t+ 1) = max
j∈[N ]

{
nj,k(Dj,i(t+ 1))

}
.

Thus, (34) holds at t+ 1, which completes the induction.

Lemma 11: For any i ∈ [N ] and k ∈ [M ],

ni,k(t) > mi,k(t)−M(M + (N − 1)l).

Proof: We will prove the lemma by contradiction. Suppose
that, to the contrary, there exist i and k1 such that ni,k1

(t) ≤
mi,k1

(t)−M(M + (N − 1)l). Let t′ denote the first time at
which the inequality holds. Then,

ni,k1
(t′) = mi,k1

(t′)−M(M + (N − 1)l)− C,

where 0 ≤ C ≤ (N − 1)l. Here t′ must exist. To see this,
note that at initial time t = 0, ni,k(0) > mi,k(1) −M(M +
(N − 1)l). In addition, ni,k(t) either does not change or
increases at most 1 at each time by its definition, and similarly,
mi,k(t) either does not change or increases at most (N − 1)l
at each time. Thus, if there exists some time instance t at
which ni,k1

(t) < mi,k1
(t) − M(M + (N − 1)l), there must

exist another time t′ between 0 and t such that ni,k1(t
′) =

mi,k1(t
′) −M(M + (N − 1)l) − C. From Lemma 10, there

exists a j ∈ [N ] such that

mi,k1
(t′) = nj,k1

(Dj,i(t
′)). (37)

Then, nj,k1(Dj,i(t
′)) − ni,k1(t

′) = M(M + (N − 1)l) + C.
Also from Lemma 10, mi,k1(t) ≥ nj,k1(Dj,i(t)) always holds.
Thus, for t < t′,

nj,k1
(Dj,i(t))− ni,k1

(t′) ≤ nj,k1
(Dj,i(t))− ni,k1

(t)

≤ mi,k1
(t)− ni,k1

(t) < M(M + (N − 1)l).

This implies that there exists a time instance t ∈ (Dj,i(t
′ −

1), Dj,i(t
′)] at which agent j pulls arm k1. Let t′′ ≤ Dj,i(t

′)
be the latest time instance, but no later than Dj,i(t

′), at which
agent j pulls arm k1. Then, from (37),

nj,k1
(t′′) = nj,k1

(Dj,i(t
′ + 1)) = mi,k1

(t′ + 1), (38)

and thus nj,k1(t
′′) − ni,k1(t

′) ≥ M(M + (N − 1)l). Since
t′′ ≤ Dj,i(t

′) ≤ t′,

nj,k1
(t′′)− ni,k1

(t′′) ≥ M(M + (N − 1)l).

Since each agent must pull an arm at each time,
∑

k ni,k(t) =
t+M, ∀i ∈ [N ]. Then,∑
k∈[M ]\k1

ni,k(t
′′)−

∑
k∈[M ]\k1

nj,k(t
′′) = nj,k1

(t′′)− ni,k1
(t′′)

≥ M(M + (N − 1)l).

Applying the Pigeonhole principle, ∃ k2 ∈ [M ] such that

ni,k2
(t′′)− nj,k2

(t′′) ≥ M(M + (N − 1)l)

M − 1
> M + (N − 1)l.

Since ni,k(t+1) ≤ ni,k(t)+1 and, from (33), t′′ ≤ Dj,i(t
′′)+

(N − 1)l,

ni,k2
(Di,j(t

′′))− nj,k2
(t′′)

≥ ni,k2
(t′′ − (N − 1)l)− nj,k2

(t′′)

≥ ni,k2
(t′′)− nj,k2

(t′′)− (N − 1)l

> M + (N − 1)l − (N − 1)l = M.

Using (36), mj,k2
(t′′) ≥ ni,k2

(Di,j(t
′′)). Thus,

mj,k2
(t′′)− nj,k2

(t′′) > M.

From the above analysis, agent j must pull arm k1 at time t′′.
According to the Decision Making step of the algorithm,

mj,k1
(t′′)− nj,k1

(t′′) ≥ M > 0. (39)

Note that from (36),

mi,k1(t
′) ≥ mj,k1(Dj,i(t

′)). (40)
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Combining (38)–(40) together,

nj,k1
(t′′) = mi,k1

(t′) ≥ mj,k1
(Dj,i(t

′)) ≥ mj,k1
(t′′)

> nj,k1
(t′′),

which is a contradiction. Therefore, the lemma is true.

Lemma 12: For any i ∈ [N ] and k ∈ [M ], if ni,k(t) ≥
2(M2 + (M +1)(N − 1)l), then for any j ∈ [N ], there holds

1

2
ni,k(t) ≤ nj,k(t) ≤

3

2
ni,k(t).

Proof: From (36), mi,k(t) ≥ nj,k(Dj,i(t)) for all i, j ∈ [N ].
With ni,k(t+ 1) ≤ ni,k(t) + 1 and (33), for any i, j ∈ [N ],

mi,k(t) ≥ nj,k(Dj,i(t)) ≥ nj,k(t− (N − 1)l)

≥ nj,k(t)− (N − 1)l.

Combining this inequality and Lemma 11, for any i, j ∈ [N ],

ni,k(t) ≥ nj,k(t)− (M2 + (M + 1)(N − 1)l).

Since the above inequality holds for any i, j ∈ [N ], exchanging
indices i and j in the inequality yields

nj,k(t) ≥ ni,k(t)− (M2 + (M + 1)(N − 1)l).

Then, when ni,k(t) ≥ 2(M2 + (M + 1)(N − 1)l),

ni,k(t)−
1

2
ni,k(t) ≤ nj,k(t) ≤ ni,k(t) +

1

2
ni,k(t)

for any j ∈ [N ], which completes the proof.

We are now in a position to prove Theorem 2.

Proof of Theorem 2: Following the same procedure of the
proof of Lemma 9 and replacing W t with W (t−1) · · ·W (0),
we can derive the estimation of the coefficient of each Xj,k(τ),
j ∈ [N ], τ ∈ {0, . . . , t} in zi,k(t) for any i ∈ [N ], k ∈
[M ], and t > 0 in terms of c′ and ρ given in (7). With these
estimations at hand, Theorem 2 can be proved using the same
arguments as those in the proof of Theorem 1.

V. SIMULATIONS

In this section, we provide a set of simulations to validate
the theorems and discuss the algorithm performance.

Note that the parameter βi can be taken arbitrarily close to 0
in both Theorem 1 and Theorem 2. The following simulations
are all performed with βi = 0.01 except for Section V-A
in which we compare the performance of each agent i with
different βi values.

A. Comparison with Different βi Values

For the first experiment, we consider the distributed multi-
armed bandit problem with 20 arms and 3 agents whose neigh-
bor graph is a complete graph. Thus, Ni = N = 3. Each agent
i chooses βi as 0.01, 0.1, or 1 in the design of C(t, ni,k(t)).
The reward distribution Xi,k(t) is set to be bounded and within
[0, 1]. The expectations µi,k of Xi,k(t), i ∈ [N ] are set to be
different. We average the results of 50 Monte-Carlo runs to
compare the regret of each agent; see Fig 1. The total time T
is chosen to be 10000.

Fig. 1. Performance comparison with different βi values

Fig. 2. Simulation results comparing the average regret for agents using
Algorithm 1 and UCB1 [3] under the heterogeneous setting

It can be seen from Fig. 1 that when other factors (e.g.,
the number of neighbors) are fixed, the lower βi is, the better
is the algorithm performance, which is consistent with our
theoretical results in Theorem 1 and Theorem 2. Because of
this, all βi are set to be 0.01 in the following simulations.

B. Comparison with the Non-cooperative Case
For this experiment, we consider the same distributed multi-

armed bandit problem setting as the previous one, namely
there are 20 arms and 3 agents whose neighbor graph is a
complete graph, the reward distribution Xi,k(t) is bounded
within [0, 1], and the expectations µi,k of Xi,k(t), i ∈ [N ]
are all different. The agents aim to find the arm with highest
average expectation µk so as to minimize the cumulative
regret. We average the results of 50 Monte-Carlo runs to
compare the averaged regret of all 3 agents using Algorithm 1
with that of the non-cooperative case in which each agent
independently applies UCB1 [3], a classic single-agent MAB
algorithm; see Fig. 2 and Fig. 3. The total time T is chosen
to be 10000.
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Fig. 3. Simulation of the average regret for agents using Algorithm 1
under the heterogeneous setting

Fig. 4. Neighbor relationships for a four-agent network

The simulation shows that the proposed Algorithm 1 works
correctly for the heterogeneous setting, with the time-regret
curve being logarithmic, whereas UCB1 [3] does not function
well in such a setting as the time-regret curve appears to
be linear, indicating that each agent cannot find the optimal
arm itself without communication with its neighbors under the
heterogeneous setting.

C. Time-varying Neighbor Graph

In the experiment below, we consider the distributed multi-
armed bandit problem with 20 arms and over a special
time-varying neighbor graph sequence. Specifically, there are
4 agents whose time-dependent neighbor relationships are
described by Fig. 4. It can be seen from the figure that
G(t) is disconnected at any time while G(2τ + 1) ◦ G(2τ)
is always connected for any nonnegative integer τ . Thus,
the neighbor graph sequence is uniformly strongly connected
by sub-sequences of length 2. Again, the reward distribution
Xi,k(t) is bounded within [0, 1], whose expectation is different
for differing agent index i, and the total time T is chosen to be
10000. See Fig. 5 for the averaged results of 50 Monte-Carlo
runs of Algorithm 1.

D. Comparison between Fixed and Time-varying Graphs

We compare the performance of a multi-agent network over
a fixed graph with that over a time-varying graph. Consider a

Fig. 5. Simulation of the average regret over the time-varying graph

six-agent network whose possible neighbor graphs are given
in Fig. 6 including three graphs (a)–(c). For the fixed graph
setting, the graph is a cycle graph given in (a). For the time-
varying graph setting, we consider the following three cases:

1) Neighbor graph G(t) is (b) whenever time t = 2τ , τ ∈
{0, 1, 2, . . .}, and (c) otherwise;

2) Neighbor graph G(t) is (a) whenever time t = 10τ ,
τ ∈ {0, 1, 2, . . .}, and an empty graph (i.e., a graph with
no edges) otherwise;

3) Neighbor graph G(t) is (a) whenever time t = 1000τ ,
τ ∈ {0, 1, 2, . . .}, and an empty graph otherwise.

The regret curves are shown in Fig. 7 and Fig. 8. It is easy
to see that |Ni| = δi(t) = 3 for all i ∈ [N ] and t ≥ 0,
and thus the upper confidence bound function design for the
six-agent fixed graph setting and the three time-varying graph
cases are identical. For both settings, we set 20 arms and T =
10000. The regret curves are obtained by averaging expected
cumulative regret over all six agents and 50 Monte-Carlo runs.

It can be observed in Fig. 7 that the curves appear to be
parallel, indicating that the corresponding coefficients of the
log T term are identical and that the only difference is the
constant term for the four cases (i.e., one fixed graph case
and three time-varying graph cases), which is consistent with
the theoretical results because Ni = δi(t) = 3. Recall the
consensus convergence rates ρ2 and ρ for fixed and time-
varying graphs, respectively given in (5) and (7). It is not
hard to compute that in terms of consensus convergence rate,

Case 3 ≫ Case 2 > fixed graph > Case 1,

implying that Case 3 has the slowest consensus fusion and
Case 1 is the fastest. From Remark 4, the constant term of the
regret is determined by the consensus convergence rate, ρ2 or
ρ, and uniformly strong connectedness sub-sequence length
l. The regret is an increasing function of both the consensus
convergence rate and sub-sequence length l. Such a pattern is
well-reflected in Fig. 7 and Fig. 8: the convergence constant
for time-varying graph Case 1 is a bit better than that for the
fixed graph setting; meanwhile, the length l for Case 1 (l = 2)
is slightly worse than that in the fixed graph setting (l = 1),
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Fig. 6. Neighbor relationships for a six-agent network

Fig. 7. Simulation comparison of the average regret between the fixed
and time-varying graphs

and thus the performance difference between the two cases
is almost negligible. For the time-varying graph Case 2, both
the consensus convergence rate and sub-sequence length are
worse than the fixed graph setting, and thus its performance
is always worse than the fixed graph setting. For the time-
varying graph Case 3, both the consensus convergence rate
and sub-sequence length are much worse than the fixed graph
setting, and thus the performance gap is relatively large.
Another remarkable point is that although theoretically both
the consensus convergence rate and sub-sequence length can
largely affect the constant term of the regret bound (e.g., there
is an (M + 1)(N − 1)l term in the expression of K̃2; see
Remark 4), such a theoretical effect (e.g., a slight increase in
l leads to a large increase in the regret) does not appear in the
simulations. Specifically, even with l = 10, the performance of
time-varying graph Case 2 is only slightly worse than the fixed
graph setting (with l = 1); see Fig. 8. Only in time-varying
graph Case 3 whose consensus convergence rate is sufficiently
close to 1 and sub-sequence length l is sufficiently large, can
we observe an obvious performance difference compared with
the fixed graph setting. This observation may be due to the
fact that we utilized an unknown “worst” case when deriving
the regret upper bounds and indicate that the constant terms
in our derived regret bounds have room to improve.

VI. CONCLUSION

In this paper, we have studied a distributed multi-armed ban-
dit problem with heterogeneous observations of rewards over a
multi-agent network. A fully distributed bandit algorithm has

Fig. 8. A detailed-up version for Fig. 7

been proposed which is shown to achieve guaranteed regret
for each agent at the order of O(log T ) provided the possibly
time-varying neighbor graph sequence is uniformly strongly
connected. The algorithm incorporates the conventional dis-
tributed averaging algorithm with doubly stochastic matrices,
which implicitly requires the underlying neighbor graph to be
undirected in implementation. An immediate future direction
is to relax the double stochasticity assumption for more gen-
eral directed graphs allowing uni-directional communication
among the agents. We will appeal to the idea of push-sum
[36], which has been recently shown to be successful for the
special homogeneous case [37].

For the heterogeneous setting considered here, there are
many other possible formulations for each arm’s true reward
mean, and the average of all agents’ observed mean rewards
is not always the best choice. The special average model
can be treated as a promising starting point of this line of
research. Our algorithm and results can be generalized to
the cases where the global reward mean is defined as any
convex combination of all local reward means using the push
sum idea [36] as long as each agent knows its own convex
combination weight. We do not include this generalization as
it will involve a different analysis approach, and leave it as
a future direction. A more interesting and important future
direction is to study more general and complex heterogeneous
reward settings. In some network applications, the straight
average, or even convex combination, of all local biased
observations may not be the optimal performance index. We
plan to borrow the concept of “contextual bandit” [38] to
model more realistic local-global interaction in network bandit
settings and “statistical heterogeneity” [39] to quantify the
level of heterogeneity among the agents.
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