
Systems & Control Letters 176 (2023) 105524

R
R
A
A

f
p
o
s
‘
t
p
p
a
a
o
a

F
v
u
c
c
l

Contents lists available at ScienceDirect

Systems & Control Letters

journal homepage: www.elsevier.com/locate/sysconle

Reaching a consensuswith limited information✩

Jingxuan Zhu a, Yixuan Lin a, Ji Liu b,∗, A. Stephen Morse c

a Department of Applied Mathematics and Statistics, Stony Brook University, United States of America
b Electrical and Computer Engineering, Stony Brook University, United States of America
c Department of Electrical Engineering, Yale University, United States of America

a r t i c l e i n f o

Article history:
eceived 30 July 2022
eceived in revised form 20 December 2022
ccepted 29 March 2023
vailable online xxxx

Keywords:
Multi-agent systems
Distributed control
Cooperative control
Consensus

a b s t r a c t

In its simplest form the well known consensus problem for a networked family of autonomous agents
is to devise a set of protocols or update rules, one for each agent, which can enable all of the agents
to adjust or tune their ‘‘agreement variables’’ to the same value by utilizing real-time information
obtained from their ‘‘neighbors’’ within the network. The aim of this paper is to study the problem of
achieving a consensus in the face of limited information transfer between agents. By this it is meant
that instead of each agent receiving an agreement variable or real-valued state vector from each of
its neighbors, it receives a linear function of each state instead. The specific problem of interest is
formulated and provably correct algorithms are developed for a number of special cases of the problem.
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1. Introduction

In its simplest form the well known consensus problem [1]
or a networked family of autonomous agents is to devise a set of
rotocols or update rules, one for each agent, which can enable all
f the agents to adjust or tune their ‘‘agreement variable’’ to the
ame value by utilizing real-time information obtained from their
‘neighbors’’ within the network. The consensus problem is one of
he most fundamental problems in the area of distributed com-
utation and control. Consensus algorithms can be found as com-
onents of a large variety of more specialized algorithms in the
rea of distributed computation and control such as distributed
lgorithms for solving linear algebraic equations [2], distributed
ptimization problems [3], distributed estimation problems [4],
nd even some distributed control problems [5].
There are a great many variations of the consensus problem.

or example, the agreement variables could be restricted to real-
alued vectors or alternatively integer-valued vectors [6]. The
pdating of agreement variables could be executed either syn-
hronously or asynchronously [7]. The topology of the network
ould be fixed or changing with time [8]. There could be ma-
icious agents attempting to prevent consensus [9]. There could
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be communication delays [10] or bit-rate constraints [11]. The
target value of the agreement variables could be unconstrained
or it could be some specified function of the initial values of
the agents’ agreement variables as for example in distributed
averaging [12] or gossiping [13]. Some versions of the problem
such as when agreement variables take values in a finite set,
defy deterministic solutions [6] whereas other versions of the
problem do not.

The aim of this paper is to study the problem of achieving
a consensus in the face of limited information transfer between
agents. The problem setup is as follows. We consider a group of
m > 1 autonomous agents labeled 1 to m. Each agent i has a
et of neighbors from whom agent i can receive information; the
set of labels of agent i’s neighbors (excluding itself), denoted by1

Ni ⊂ m ∆
= {1, 2, . . . ,m}, is part of the problem formulation. The

neighbor sets Ni, i ∈ m, determine an m-vertex directed graph N
defined so that there is an arc (or a directed edge) from vertex
j to vertex i just in case agent j is a neighbor of agent i. Each
gent i has an agreement variable or state xi ∈ Rn which it can
djust synchronously at times t ∈ {0, 1, 2, . . .}. At time t , agent i
eceives from each neighbor j ∈ Ni a signal sji(t) = Cjixj(t) where
ji is a fixed real-valued matrix. Associating each arc (j, i) in N
ith matrix Cji leads to a matrix-valued weighted neighbor graph

¯ . It is assumed that for each j ∈ Ni, i ∈ m, both agents i and j
now Cji. There are no priori constraints on Cji. Some could, for

example, be matrices with less rows then columns in which cases
the information transferred by each such corresponding signal
sji(t) = Cjixj(t) would be insufficient to determine xj(t). In this

1 We use A ⊂ B to denote that A is a subset of B.
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ense the information agent i receives from neighbor j at time t
s limited to only a ‘‘part of’’ xj(t). Given this setup, the consensus
problem of interest is to devise update rules using the sji(t), one
or each agent, which if possible will cause all m agents’ states xi,
∈ m, to converge to the same value in the limit as t → ∞.

. Well-configured systems

Consider the multi-agent system just described. We say that
hem agents are in local agreement with specific states xi, i ∈ m, if
jixi = Cjixj for all i ∈ m and j ∈ Ni. We say that them agents have
eached a consensus with specific states xi, i ∈ m, if xi = xj for all
i, j ∈ m. A weighted neighbor graph N̄ is called well-configured if
local agreement implies consensus.

A well-configured weighted neighbor graph N̄ has the follow-
ing equivalent mathematical description. For each vertex i in N,
et di denote the number of neighbors of agent i. Then d =

∑m
i=1 di

quals the total number of directed edges in E . Let ki1, . . . , kidi be
n arbitrary ordering of the labels in Ni. Label all the d arcs from
to d according to the sequence k11, . . . , k1d1 , . . . , km1, . . . , kmdm .
efine the corresponding incidence matrix J as an m×d matrix in
hich column k has exactly one 1 in row i and exactly one −1 is
ow j if the kth arc in N is (j, i). For any finite set of matrices
M1,M2, . . . ,Mk}, we use blockdiag{M1,M2, . . . ,Mk} to denote
he block diagonal matrix whose ith diagonal block is Mi. Define

= blockdiag
{
Ck11,1, . . . , Ck1d1 ,1, . . . , Ckm1,m, . . . , Ckmdm ,m

}
et J̄ = J ⊗ In and Ī = 1m ⊗ In, where ⊗ denotes the Kronecker
roduct, In denotes the n × n identity matrix, and 1m denotes
he m-dimensional column vector whose entries all equal 1. Then
t is not hard to verify that a weighted neighbor graph N̄ is
ell-configured if and only if

ernel CJ̄ ′ = span Ī (1)

n the case when N is weakly connected,2 kernel J̄ ′ = span Ī [14,
heorem 8.3.1]; then (1) will be true if and only if

pan J̄ ′ ∩ kernel C = 0 (2)

t is worth emphasizing that C and J are defined according to the
ame ordering of the arcs in N̄, and the necessary and sufficient
ondition (1) or (2) is independent of the ordering.
With the above in mind, the following two questions arise.

irst, what are the necessary and/or sufficient conditions on N
or which there exist Cji matrices so that N̄ is well-configured?
econd, if N̄ is well-configured, how one can construct a recursive
istributed algorithm for each agent which will drive the system
rom arbitrary start states to local agreement and thus to a
onsensus? These are precisely what we consider in this paper.

. System design

The goal of this section is to derive graph-theoretic conditions
n which a multi-agent system can be well-configured.
As described, for any pair of neighboring agents, say agent i

nd its neighbor j, agent j only sends Cjixj to agent i so that
he transmitted vector size may be reduced and xj may not be
dentified. Thus it is sometimes desirable that Kji ̸= 0, where
ji denotes the kernel of Cji; otherwise, xj can be uniquely de-
ermined from Cjixj. Also, if Kji ̸= 0, the size of Cjixj will be no
maller than that of xj.
A directed graph G is called rooted if it contains a directed

panning tree of G, and called strongly connected if there is

2 A directed graph is weakly connected if there is an undirected path between
ach pair of distinct vertices.
2

a directed path between each pair of distinct vertices. Every
strongly connected graph is rooted, but not vice versa.

First, it is easy to see that if N is not rooted, a consensus cannot
be guaranteed for arbitrary initial values. We next consider some
examples of rooted graphs.

3.1. Rooted graphs

If N is rooted, N̄ cannot be always well-configured with all
ji ̸= 0, as shown in the following lemma for path graphs.

emma 1. If N is a directed path, then N̄ can be well-configured
nly if all Kji = 0.

roof of Lemma 1. For a directed path with m vertices 1 → 2 →

· · → m, local agreements are Ci(xi−xi+1) = 0, i ∈ {1, . . . ,m−1}.
Suppose to the contrary that there exists an i such that Ki ̸= 0,
hen there exists a nonzero x such that Cix = 0. Let

j = x1, j ∈ {1, . . . , i}
xj = x1 + x, j ∈ {i+ 1, . . . ,m}

Then Ci(xi− xi+1) = 0 for all i ∈ {1, . . . ,m−1}, while all xi, i ∈ m
do not reach a consensus. ■

The following example shows that there exists a rooted graph
which can be well-configured with all Kji ̸= 0.

Example 1. Consider a three-agent network with arcs 1 →

2, 2 → 1, 3 → 1, 3 → 2. Then local agreement equations are

C12(x1 − x2) = 0
C21(x2 − x1) = 0
C31(x3 − x1) = 0

32(x3 − x2) = 0

(3)

Note that the existence xi satisfying the four equalities above
imply that there are vectors p1, p2, p3, namely p1 = x1 − x2,
2 = x3 − x1, p3 = x2 − x3, such that

p1 + p2 + p3 = 0
p1 ∈ K12 ∩ K21

p2 ∈ K31

p3 ∈ K32

(4)

Conversely, for any set of vectors p1, p2, p3 satisfying (4), there
are vectors xi, namely x1 = p1, x2 = 0, x3 = p3 for which the
four equalities in (3) hold. Note that there will exist p1, p2, p3 for
which (4) holds if and only if

p1 ∈ K12 ∩ K21 ∩ (K31 + K32)
p2 ∈ K31 ∩ (K12 ∩ K21 + K32)
p3 ∈ K32 ∩ (K12 ∩ K21 ∩ K31)

Thus the conditions for the pi to all equal zero are

K12 ∩ K21 ∩ (K31 + K32) = 0
K31 ∩ (K12 ∩ K21 + K32) = 0
K32 ∩ (K12 ∩ K21 ∩ K31) = 0

which are the conditions for the three subspaces K12 ∩ K21, K31
and K32 to be independent. Thus the weighted neighbor graph
of interest is well-configured just in case the three subspaces are
independent, and do not necessarily have to equal 0. □

It turns out that well-configuration characterization of rooted
graphs is quite complicated. We thus leave it as a future direction

and focus on strongly connected graphs in the next subsection.
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Fig. 1. An example of different ear decompositions of a strongly connected graph. The number associated to each arc represents the index of the ear which the arc
belongs to in an ear decomposition.
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3.2. Strongly connected graphs

Strong connectedness itself cannot guarantee well-configurat-
on. To state our sufficient condition for well-configuration, we
eed the following concept from graph theory [15].
An ear decomposition of a directed graph without self-arcs3
= (V, E) with at least two vertices is a sequence of subgraphs

f G, denoted {E0,E1, . . . ,Ep}, in which E0 is a directed cycle,
nd each Ei, i ∈ p, is a directed path or a directed cycle with the
ollowing properties:

1. {E0,E1, . . . ,Ep} form an arc partition of G, i.e., Ei and Ej
are arc disjoint if i ̸= j, and

⋃p
k=0 Ek = G;

2. For each i ∈ p, if Ei is a directed cycle, then it has precisely
one vertex in common with

⋃i−1
k=0 Ek; if Ei is a directed

path, then its two end-vertices are the only two vertices
in common with

⋃i−1
k=0 Ek.

Each of E0,E1, . . . ,Ep is called an ear of the decomposition.
Not all directed graphs admit an ear decomposition. It has been
proved that a directed graph has an ear decomposition if and only
if it is strongly connected [15, Theorem 7.2.2]. It is also known
that there exists a linear algorithm to find one ear decomposition
of a strongly connected graph [15, Corollary 7.2.5]. A strongly
connected graph may admit multiple ear decompositions, and ap-
parently, the number of all possible different ear decompositions
of a strongly connected graph is finite. It turns out that every ear
decomposition of a strongly connected graph with m vertices and
e arcs has e−m+1 ears [15, Corollary 7.2.3]. To help understand
the concept, an illustrative example is provided in Fig. 1.

Two subspaces S1 and S2 of Rn are independent if their
intersection is the zero subspace, i.e., if S1

⋂
S2 = 0. A finite

family of subspaces {S1, S2, . . . , Sp} is independent if

Si

⋂(∑
j̸=i

Sj

)
= 0, i ∈ p

Theorem 1. Suppose that N is strongly connected and let D be an
ear decomposition of N. If for each ear E ∈ D, {Kji : (j, i) ∈ E} is an
ndependent family, then N̄ is well-configured.

To prove the theorem, we first study directed cycles and paths
ince they are basic components in ear decompositions.
To simplify notation, we label the vertices of an m-vertex

irected cycle as 1 → 2 → · · · → m → 1. Suppose that
1, C2, . . . , Cm are given matrices, each with n columns. Suppose

that for each i ∈ m, agent i receives Cixi−1 from agent i−1, where
it is understood that agent 0 and agent m are one and the same,
and that x0

∆
= xm. Thus for this N̄ to be well-configured means

that the relations

Cixi = Cixi−1, i ∈ m (5)

3 The definition can be extended to more general directed multigraphs with
elf-arcs [15].
3

must imply that xi = xi−1, i ∈ m. Let Ki denote the kernel of Ci
or all i ∈ m.

emma 2. If N is an m-vertex directed cycle, then N̄ is well-
onfigured by matrices Ci, i ∈ m, if and only if {K1,K2, . . . ,Km}

s an independent family.

roof of Lemma 2. Since N is a cycle, m ≥ 2. We first prove the
ufficiency. Let {Ki, i ∈ m} be an independent family. Suppose
o the contrary that N̄ is not well-configured. Then there must
xist a non-consensus set {x1, . . . , xm} which satisfies (5). Let
i = xi − xi+1 for each i ∈ {1, . . . ,m − 1} and ym = xm − x1.
hen at least one of y1, . . . , ym is nonzero. Since

∑m
i=1 yi = 0, at

east two of y1, . . . , ym are nonzero. Let A = {i ∈ m : yi ̸= 0}.
hen |A| ≥ 2 and

∑
i∈A yi = 0. Since each yi ∈ Ki and {Ki, i ∈ A}

s an independent family, yi, i ∈ A, are linear independent, which
s contradictory to

∑
i∈A yi = 0.

We next prove the necessity. Let {C1, . . . , Cm} be any set of
atrices which make N̄ well-configured. Suppose to the contrary

hat {K1, . . . ,Km} is not an independent family, which implies
hat there exists an index p such that Kp ∩ (

∑
i̸=p Ki) ̸= 0. Then

here exist ki ∈ Ki, i ∈ m, such that kp =
∑

i̸=p ki, which is
onzero. For any x1, let xi+1 = xi + ki for each i ∈ {1, . . . , p −

, p + 1, . . . ,m − 1} and xp+1 = xp − kp. It is easy to see check
hat such a set of non-consensus vectors x1, . . . , xm satisfy (5). But
his is impossible as N̄ is well-configured. ■

It is easy to see that n is the maximum possible number of
ubspaces in an independent family of nonzero subspaces of Rn.
e thus have the following immediate consequence of Lemma 2.

orollary 1. If N is an m-vertex directed cycle, then N̄ can be
ell-configured with all Ki ̸= 0, i ∈ m, if and only if m ≤ n.

More can be said.

Lemma 3. Let N be an m-vertex directed cycle with EN being the
edge set and xi being the state of vertex i. Let E be a subset of EN
defined as E = {(i, j) ∈ EN : xi = xj}. Then N̄ is well-configured by
matrices Ci, i ∈ m, if and only if {Ki : i ∈ m, (i − 1, i) /∈ E} is an
ndependent family.

roof of Lemma 3. The case of m − |E| = 0 is trivial. We
claim that m− |E| ̸= 1. To see this, suppose to the contrary that
m− |E| = 1. Then the edges in E forms a directed spanning path
of N, which guarantees that all m agents reach a consensus. This
implies that all the edges of N belong to E , which is impossible.
Thus we focus on m− |E| ≥ 2 in the remaining proof.

Each vertex i in directed cycle N has a unique outgoing neigh-
bor, denoted as v[i]. Let V be the vertex subset defined as V =

i ∈ m : (i, v[i]) /∈ E}. Then |V| = m− |E|. Relabel the vertices in

V as v1, . . . , vp, p = m − |E| ≥ 2, along with the same direction
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s the directed cycle. It is not hard to verify that

Cv1 (xv1 − xv2 ) = 0
...

vp−1 (xvp−1 − xvp ) = 0
Cvp (xvp − xv1 ) = 0

hich are mathematically equivalent to (5) withm being replaced
y p. Thus the above equations are equivalent to local agree-
ents of an p-vertex directed cycle. From Lemma 2, N̄ can be
ell-configured with all Kvi ̸= 0, i ∈ p, if and only if p ≤ n. ■
Lemma 3 immediately implies the following result.

Corollary 2. Let N be an m-vertex directed cycle with edge set EN.
Let E be a subset of EN defined as E = {(i, j) ∈ EN : xi = xj}. Then N̄
can be well-configured with all Ki ̸= 0 if and only if m− |E| ≤ n.

The above results can be directly applied to the following
special case of path graphs.

To simplify notation, we label the vertices of an m-vertex
directed path as 1 → 2 → · · · → m. Suppose that C2, . . . , Cm are
iven matrices, each with n columns. Suppose that for each i ∈ m,
gent i receives Cixi−1 from agent i−1. Thus for this N̄ to be well-
onfigured means that the relations Cixi = Cixi−1, i ∈ {2, . . . ,m},
must imply that xi = xi−1, i ∈ {2, . . . ,m}. Adding the arc (m, 1)
to the above path and imposing x1 = xm will lead to a special
case satisfying the condition in Lemma 3 and Corollary 2, which
mmediately implies the following result.

orollary 3. If N is an m-vertex directed path with x1 = xm,
hen N̄ is well-configured by matrices Ci, i ∈ {2, . . . ,m}, if and
nly if {K2, . . . ,Km} is an independent family, and thus N̄ can be
ell-configured with all Ki ̸= 0, i ∈ {2, . . . ,m}, if and only if
− 1 ≤ n.

Compared with Lemma 1, it is worth emphasizing that as-
uming x1 = xm significantly changes the condition for well-
onfiguration of path graphs.
We are now in a position to prove Theorem 1.

roof of Theorem 1. Let D = {E0,E1, . . . ,Ep} be the given ear
ecomposition of N. We claim that for each i ∈ {0, 1, . . . , p},
i
k=0 Ek is well-configured. The claim will be proved by induction

n the index i.
By definition, E0 is a directed cycle. From Lemma 2, E0 is well-

onfigured. Now suppose that the claim holds for all i in the range
≤ i ≤ j, where j is a nonnegative integer smaller than p.

onsider ear Ei+1, which is either a directed cycle or a directed
ath. We treat these two cases separately. If Ei+1 is a directed cy-
le, using the preceding argument, it is well-configured. Since ear
i+1 shares one common vertex with

⋃i
k=0 Ek,

⋃i+1
k=0 Ek is well-

onfigured. If Ei+1 is a directed path, its two end-vertices belong
o

⋃i
k=0 Ek. Since the well-configuration of

⋃i
k=0 Ek guarantees

hat the two end-vertices have the same value, from Corollary 3,
i+1 is well-configured, and so is

⋃i+1
k=0 Ek. By induction, the claim

s established. Since
⋃p

k=0 Ek = N, the proof is complete. ■

Theorem 1 is not a necessary condition. To see this, con-
ider the strongly connected graph given in Fig. 2 which has 4
gents and 6 arcs. If {K12,K21}, {K34,K43}, and {K23,K41} are
ndependent families, then from Lemmas 2 and 3 the weighted
eighbor graph is well-configured. However, if in addition none
f {K23,K34,K41}, {K41,K12,K23}, and {K41,K12,K23,K34} is an
ndependent family, then none of the ear decompositions of the
trongly connected graph satisfies the condition in Theorem 1.
Given a strongly connected weighted neighbor graph, if an ear
ecomposition satisfies the condition in Theorem 1, the condition

4

Fig. 2. A four-agent strongly connected graph.

ay not hold for the other ear decompositions. To see this, still
onsider the graph in Fig. 2. If {K12,K21} and {K23,K34,K41}

re independent families, then the ear decomposition E0 =

1, 2)(2, 1), E1 = (2, 3)(3, 4)(4, 1), E2 = (4, 3) satisfies the
ondition in Theorem 1 provided K43 = 0. Meanwhile, if neither
K41,K12,K23} or {K41,K12,K23,K34} is an independent family,
it is easy to verify that all the other ear decompositions do not
satisfy the condition.

The proof of Theorem 1 provides a constructive approach
that systematically designs Cji matrices for a strongly connected
multi-agent system to be well-configured.

For each ear decomposition, say D = {E0,E1, . . . ,Ep}, let
l(Ei) denote the length of ear Ei, i.e., the number of arcs in Ei.
Theorem 1 immediately implies the following sufficient condi-
tions for well-configuration.

Corollary 4. Suppose that N is strongly connected and let D be an
ear decomposition of N. If

max
E∈D

l(E) ≤ n

then N̄ can be well-configured with all Kji ̸= 0, i ∈ m, j ∈ Ni.

More can be said. For a strongly connected graph G, write D
for the set of all possible ear decompositions of G. Define

χ (G) = min
D∈D

max
E∈D

l(E)

Since each ear decomposition begins with a directed cycle and
the shortest possible length of a cycle is two, e.g., a pair of agents
which are neighbors of each other, χ (G) ≥ 2.

Corollary 5. If N is strongly connected and χ (N) ≤ n, then N̄ can
be well-configured with all Kij ̸= 0, i ∈ m, j ∈ Ni.

Although Corollary 5 provides a weaker condition, to our
knowledge, it is still an open problem to construct an effi-
cient algorithm to find all ear decompositions of a strongly
connected graph.

3.3. Symmetric directed graphs

A directed graph is called symmetric if whenever (i, j) is an arc
in the graph, so is (j, i). A symmetric directed graph is often called
undirected in the literature, which simplifies each pair of directed
edges, say (i, j) and (j, i), to one undirected edge between vertices
i and j. We stick to the term ‘‘symmetric directed graphs’’ because
of definition of the incidence matrix given in Section 2. Consider
a symmetric directed graph with m vertices and d directed edges.
Then d must be an even number. Our definition of an incidence
matrix is of size m × d, while the standard definition of an
incidence matrix of the corresponding undirected graph is of size
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×(d/2). Thus using the term ‘‘undirected’’ may cause confusion.
t is worth noting that rooted and strong connectedness boil
own to the same connectivity for symmetric directed graphs.
For any symmetric directed graph G, since each pair of arcs

between any pair of neighboring agents in a symmetric directed
graph is a cycle with length 2, all these cycles form an ear decom-
position, which leads to χ (G) = 2. The following necessary and
ufficient condition on well-configuration for symmetric directed
raphs is easy to derive from Corollary 5.

heorem 2. If N is a symmetric directed graph, then N̄ can be
well-configured with all Kji ̸= 0, i ∈ m, j ∈ Ni, if and only if N is
strongly connected and n ≥ 2.

As will be seen in the next section, there is a motivation, for
the purpose of algorithm design, to figure out a condition under
which a symmetric directed graph can be well-configured with
the additional constraint that Cij = Cji for all i ∈ m and j ∈ Ni.
ote that any weighted symmetric directed graph with Cij = Cji

can be equivalently simplified as an undirected graph with each
edge (i, j) associated with matrix Cij, whenever vertices i and j
are a pair of neighbors. We thus need the following concept of
ear decompositions for undirected graphs.

An ear decomposition of an undirected graph without self-
loops G = (V, E) with at least two vertices is a sequence of
undirected subgraphs of G, denoted {E0,E1, . . . ,Ep}, in which E0
is an undirected cycle, and each Ei, i ∈ p, is an undirected path
or cycle with the following properties:

1. {E0,E1, . . . ,Ep} form an edge partition of G, i.e., Ei and Ej
are arc disjoint if i ̸= j, and

⋃p
k=0 Ek = G;

2. For each i ∈ p, if Ei is an undirected cycle, then it has
precisely one vertex in common with

⋃i−1
k=0 Ek; if Ei is an

undirected path, then its two end-vertices are the only two
vertices in common with

⋃i−1
k=0 Ek.

Each of E0,E1, . . . ,Ep is called an ear of the decomposition. Not
all undirected graphs admit an ear decomposition. An undirected
graph is called k-edge-connected if, upon removal of any k − 1
edges, the resulting graph is still connected. It has been proved
that an undirected graph has an ear decomposition if and only
if it is 2-edge-connected [16]. A 2-edge-connected undirected
graph may admit multiple ear decompositions, and apparently,
the number of all possible different ear decompositions is finite.
For each ear decomposition, say D = {E0,E1, . . . ,Ep}, let l(Ei)
denote the length of ear Ei, i.e., the number of edges in Ei.

Let us agree to say that D is an undirected ear decomposition
of a symmetric directed graph G if D is an ear decomposition
of the undirected graph generated by replacing each pair of arcs
(i, j) and (j, i) with an edge between neighboring vertices i and
j in G. We call G 2-connected if the undirected graph is 2-edge-
connected. From the preceding a symmetric directed graph has
an undirected ear decomposition if and only if it is 2-connected.

Using the same arguments as in the proof of Theorem 1, we
have the following result.

Theorem 3. Suppose that N is 2-connected symmetric directed
graph and let D be an undirected ear decomposition of N. If for each
ear E ∈ D, {Kij ∨ Kji : (i, j) ∈ E}4 is an independent family, then
N̄ is well-configured by matrices Cij = Cji, i ∈ m, j ∈ Ni. If, in
addition, maxE∈D l(E) ≤ n, then N̄ can be well-configured with all
Kij = Kji ̸= 0, i ∈ m, j ∈ Ni.

In the sequel, we will propose and analyze a few distributed
algorithms for well-configured systems under different scenarios.

4 We use {a ∨ b} to denote that either a or b is an element in the set.
5

4. Algorithms for symmetric directed graphs

In this section, we assume that the neighbor graph is sym-
metric and Cij = Cji whenever agents i and j are a pair of
neighbors. The following algorithms (6)–(8) all involve a term
C ′

ijCij + C ′

jiCji)(xi(t) − xj(t)) in each agent i’s update, where j is
ny neighbor of agent i; with Cij = Cji, only one signal, Cijxj(t),

is transferred from agent j to agent i. It is worth noting that
in this case the underlying symmetric directed graph will need
to be 2-connected to guarantee well-configuration. If Cij ̸= Cji,
it will implicitly require that each agent i receives two signals,
Cjixj(t) and Cijxj(t), from each of its neighbors at each time step.
Although allowing Cij ̸= Cji in a symmetric directed graph does
not affect the proofs and makes well-configuration easier in light
of Theorem 2, transmitting two signals could be an issue in
communication.

We begin with the simplest case in which the neighbor graph
N is fixed.

4.1. Fixed symmetric directed graphs

Consider any strongly connected, symmetric directed graph N
with m agents. Our first algorithm appeals to the idea of gradient
descent in convex optimization, which is for each agent i,

xi(t + 1) = xi(t)− α(t)
∑
j∈Ni

(C ′

ijCij + C ′

jiCji)(xi(t)− xj(t)) (6)

here α(t) is a positive time-varying stepsize satisfying
∑

t α(t)
∞ and

∑
t α

2(t) < ∞.

heorem 4. If N is a strongly connected symmetric directed graph
nd N̄ is well-configured, then algorithm (6) will lead all the agents
o reach a consensus.

roof of Theorem 4. The m update equations in (6) can be
ombined into one state form as

(t + 1) = x(t)− α(t)J̄C ′CJ̄ ′x(t)

here x = column{x1, x2, . . . , xm}, which is exactly the gra-
ient descent of minimizing the convex function ∥CJ̄ ′x∥22. Thus
ith appropriate time-varying stepsize α(t) (i.e.,

∑
t α(t) = ∞

nd
∑

t α
2(t) < ∞), x(t) will asymptotically converge to an

ptimal point of ∥CJ̄ ′x∥22, which must be a consensus vector as
ernel CJ̄ ′ = span Ī . ■

The above algorithm requires all m agents share the same
equence of diminishing stepsizes. Our second algorithm gets
round this limitation and is thus fully distributed, which is
escribed as follows.
Since well-configuration only depends on Kij, the kernel of Cij,
∈ m, j ∈ Ni, without loss of generality, we assume each Cij
as full row rank and its rows are orthonormal, which implies
hat CijC ′

ij = I and Pij
∆
= C ′

ij(CijC ′

ij)
−1Cij = C ′

ijCij is an orthogonal
rojection matrix. For each agent i ∈ m,

i(t + 1) = xi(t)−
1

2(di + 1)

∑
j∈Ni

(C ′

ijCij + C ′

jiCji)(xi(t)− xj(t)) (7)

Theorem 5. If N is symmetric, strongly connected and N̄ is well-
configured, then algorithm (7) will lead all the agents to reach a
consensus exponentially fast.

To prove the theorem, we need the following lemmas.

Lemma 4. If N̄ is well-configured, then J̄C ′CJ̄ ′ is positive semidefi-
nite with exactly m eigenvalues at zero.
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roof of Lemma 4. It is clear that J̄C ′CJ̄ ′ is positive semidefinite.
ince kernel CJ̄ ′ = span Ī , J̄C ′CJ̄ ′ has exactly rank(Ī) = n
igenvalues at zero. ■

emma 5. Let W̄ = W ⊗ I , where W is a positive diagonal matrix.
f N̄ is well-configured, then W̄ J̄C ′CJ̄ ′ has exactly n eigenvalues at
ero, and all the remaining eigenvalues are positive.

roof of Lemma 5. Note that W̄ J̄C ′CJ̄ ′ has the same spectrum as
W̄−

1
2 W̄ J̄C ′CJ̄ ′W̄

1
2 = W̄

1
2 J̄C ′CJ̄ ′W̄

1
2 . It is clear that W̄

1
2 J̄C ′CJ̄ ′W̄

1
2

s positive semidefinite. From Lemma 4, CJ̄ ′W̄
1
2 x = 0 if and only

f W̄
1
2 x ∈ span Ī , which implies that kernel CJ̄ ′W̄

1
2 = span W̄−

1
2 Ī

and thus W̄ J̄C ′CJ̄ ′ has exactly n eigenvalues at zero. ■

We also need the following ‘‘mixed matrix norm’’ concept
ntroduced in [2]. Let ∥·∥∞ denote the induced infinity norm and
rite Rmn×mn for the vector space of all m × m block matrices
= [Qij] whose ijth entry is an n × n matrix Qij ∈ Rn×n. Define

he (2,∞) norm of Q ∈ Rmn×mn, written ∥Q∥2,∞, to be

Q∥2,∞ = ∥⟨Q ⟩∥∞

here ⟨Q ⟩ is the m×m matrix in Rm×m whose ijth entry is ∥Qij∥2,
here ∥ · ∥2 denotes the induced 2-norm. It has been shown in
2, Lemma 3] that ∥ · ∥2,∞ is a sub-multiplicative matrix norm.

In the sequel, for a matrix Q ∈ Rmn×mn, we use [Q ]ij, i, j ∈ m
to denote the ijth block of Q , which is an n× n matrix.

We are now in a position to prove Theorem 5.

Proof of Theorem 5. The m update equations in (7) can be
ombined into one state form as

(t + 1) = x(t)− D̄J̄C ′CJ̄ ′x(t)

where D̄ = blockdiag{ 1
2(d1+1) Im, . . . , 1

2(dm+1) Im}. Consider each
lock of D̄J̄C ′CJ̄ ′. For any i ∈ m,

D̄J̄C ′CJ̄ ′]ii =
1

2(di + 1)

∑
j∈Ni

(C ′

ijCij + C ′

jiCji) =
1

2(di + 1)

∑
j∈Ni

(Pij + Pji)

and for any i ∈ m, j ∈ Ni,

D̄J̄C ′CJ̄ ′]ij = −
1

2(di + 1)
(C ′

ijCij + C ′

jiCji) = −
1

2(di + 1)
(Pij + Pji)

ince each Pij is an orthogonal projection matrix, ∥Pij∥2 = 1.
onsider the 2-norm for each block. For any i ∈ m,

[D̄J̄C ′CJ̄ ′]ii∥2 ≤
1

2(di + 1)

∑
j∈Ni

(∥Pij∥2 + ∥Pji∥2) ≤
di

di + 1

nd for any i ∈ m, j ∈ Ni,

[D̄J̄C ′CJ̄ ′]ij∥2 ≤
∥Pij∥2 + ∥Pji∥2

2(di + 1)
≤

1
di + 1

Next consider the (2,∞)-norm of D̄J̄C ′CJ̄ ′:

∥D̄J̄C ′CJ̄ ′∥2,∞ = min
i∈m

∥[D̄J̄C ′CJ̄ ′]ii∥2 +
∑
j∈Ni

∥[D̄J̄C ′CJ̄ ′]ij∥2

≤ min
i∈m

( di
di + 1

+

∑
j∈Ni

1
di + 1

)
≤ min

i∈m

2di
di + 1

< 2

hich implies that the spectral radius of D̄J̄C ′CJ̄ ′ is less than 2.
t follows that I − D̄J̄C ′CJ̄ ′ has n eigenvalues at one and all the
other eigenvalues lie in (−1, 1), which implies that x(t) will reach
a consensus exponentially fast. ■
6

4.2. Time-varying symmetric directed graphs

In this subsection, we consider the following scenario of time-
varying symmetric directed graphs. Let an m-vertex symmetric
directed graph N represent all allowable communication among
the m agents. In other words, agents i and j are allowed to
communicate with each other if and only if (i, j) is an arc in N.
For each time t , we use a time-dependent m-vertex symmetric
directed graph N(t) to describe the neighbor relations among the
m agents at time t . That is, if agents i and j communicate at time t ,
then (i, j) is an arc in N(t). It is easy to see that N(t) is a spanning
subgraph of N, and all such possible spanning subgraphs is a finite
set. We assume that N̄ is well-configured, i.e., each arc (i, j) in N
is associated with a matrix Cij such that kernel CJ̄ ′ = span Ī , with
being the incidence matrix of N.
For any time-varying symmetric directed graph sequence just

escribed, we propose the following algorithm using the
etropolis weights:

i(t + 1) = xi(t)−
1
2

∑
j∈Ni(t)

wij(t)(C ′

ijCij + C ′

jiCji)(xi(t)− xj(t)) (8)

where Ni(t) is the neighbor set of agent i at time t and wij(t)
are the Metropolis weights corresponding to N(t), which are
proposed in [17] for solving the distributed averaging problem
over symmetric directed graphs and defined as

wij(t) =
1

1+max{di(t), dj(t)}
, j ∈ Ni(t)

here di(t) = |Ni(t)| denotes the number of neighbors of agent i
t time t .

heorem 6. Suppose that N̄ is well-configured. If N is symmetric,
trongly connected and each edge of N appears infinitely often in
he infinite sequence of neighbor graphs N(1),N(2),N(3), . . ., then
lgorithm (8) will guarantee all m agents to reach a consensus.

To prove the theorem, we first combine the m update equa-
ions in (8) into one state form. To this end, we tailor the defi-
ition of an incidence matrix for spanning subgraphs as follows.
onsider a directed graph G with m vertices and d directed edges.
et E denote the arc set of G and J denote the m × d incidence
atrix of G according to some ordering of the arcs in E . Let H be a
panning subgraph of G. We define the spanning incidence matrix
f H as an m× d matrix in which column k has exactly one 1 in
ow i and exactly one −1 is row j if the kth arc in G is (j, i) and
j, i) is also an arc in H. It is clear that the spanning incidence
atrix of any spanning subgraph of G has the same size as the

ncidence matrix of G. If the kth arc in G is not in a spanning
ubgraph, then the kth column of the incidence matrix of G is
eplaced by a zero vector in the spanning incidence matrix.

We also need the following definition. Consider a symmet-
ic directed graph G with d arcs. Let Ḡ be a spanning sub-
raph of G which is also symmetric. Since Ḡ is symmetric, its
etropolis weights w̄ij are well-defined; specifically, w̄ij = 1/(1+
ax{d̄i, d̄j}), where d̄k denotes the number of neighbors of vertex
in Ḡ. Given an ordering of all the arcs in G, the spanning weight
atrix of Ḡ is the d×d diagonal matrix whose kth diagonal entry
quals w̄ij if the kth arc in G is (j, i) and (j, i) is also an arc in Ḡ,
r 0 if the kth arc in G is not in Ḡ.
With the above definitions, it is not hard to verify that the m

pdate equations in (8) can be written as

(t + 1) = x(t)−
1
2
J̄(t)C ′W̄ (t)CJ̄ ′(t)x(t) (9)

where J̄(t) = J(t) ⊗ In with J(t) being the spanning incidence
matrix of N(t), and W̄ (t) = W (t) ⊗ I with W (t) being the
n
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panning weight matrix of N(t). It is worth noting that all W (t)
are nonnegative diagonal matrices with the same size. It is also
worth emphasizing that the definitions of C , J(t), and W (t) are
based on the same ordering of the arcs in N, and the equality (9)
is independent of the ordering.

To proceed, we need the following concept and result.
A square matrix M is called paracontracting with respect to a

vector norm ∥ · ∥ if ∥Mx∥ ≤ ∥x∥ and the strict inequality holds
whenever Mx ̸= x. It is easy to see that any symmetric matrix is
paracontracting with respect to the 2-norm if all its eigenvalues
lie in the interval (−1, 1].

For a square matrix M , we define its fixed point set as

F(M) = {x : Mx = x}

Paracontracting matrices have the following properties.

Lemma 6. Suppose that a finite set of square matrices {M1,M2, . . . ,
Mp} are paracontracting with respect to the same vector norm. Let
σ (1), σ (2), . . . be an infinite sequence of integers taking values in
{1, 2, . . . , p} and I be the set of all integers that appears infinitely
often in the sequence. Then for any initial vector z(0), the sequence
of vectors generated by z(t + 1) = Mσ (t)z(t) has a limit z∗ ∈⋂

i∈I F(Mi).

The lemma is a special case of Theorem 1 in [18].
We also need the following lemmas.

Lemma 7. Let W̄ = W ⊗ I , where W is a positive diagonal matrix.
If N̄ is well-configured, then J̄C ′W̄C J̄ ′ has exactly n eigenvalues at
zero, and all the remaining eigenvalues are positive.

Proof of Lemma 7. It is clear that J̄C ′W̄CJ̄ ′ is positive semidefi-
nite. Note that for any x and y = W̄ 1/2CJ̄ ′x, there holds CJ̄ ′x =

W−1/2y. From this fact and Lemma 4, CJ̄ ′x = W−1/2y = 0 if
and only if x ∈ span Ī , which implies that W 1/2CJ̄ ′x = y = 0,
i.e., kernel W 1/2CJ̄ ′ = span Ī , and thus J̄C ′W̄CJ̄ ′ has exactly n
eigenvalues at zero. ■

Lemma 8. Let G be a symmetric, spanning subgraph of N, W be
the spanning weight matrix of G, and J be the spanning incidence
matrix of G. Then all the eigenvalues of I− 1

2 J̄C
′W̄CJ̄ ′ lie in (−1, 1].

f furthermore G = N, I − 1
2 J̄C

′W̄C J̄ ′ has exactly n eigenvalues at
one and all the remaining eigenvalues lie in (−1, 1).

Proof of Lemma 8. Consider each block of 1
2 J̄C

′W̄CJ̄ ′. For any
i ∈ m, each diagonal block is[1
2
J̄C ′W̄C J̄ ′

]
ii =

1
2

∑
j∈Ni

(wijC ′

ijCij + wjiC ′

jiCji) =
1
2

∑
j∈Ni

(wijPij + wjiPji)

nd for any i ∈ m, j ∈ Ni, each off-diagonal block is
1
2
J̄C ′W̄C J̄ ′

]
ij = −

wij

2
(C ′

ijCij + C ′

jiCji) = −
wij

2
(Pij + Pji)

ote that ∥Pij∥2 = 1, wij = wji ≤ 1, and
∑

j∈Ni
wij < 1. Consider

-norm for each block. For any i ∈ m,[1
2
J̄C ′W̄CJ̄ ′

]
ii∥2 ≤

1
2

∑
j∈Ni

wij(∥Pij∥2 + ∥Pji∥2) ≤
∑
j∈Ni

wij

nd for any i ∈ m, j ∈ Ni,[1
2
J̄C ′W̄CJ̄ ′

]
ij∥2 ≤

1
2
wij(∥Pij∥2 + ∥Pji∥2) ≤ wij

Next consider the (2,∞)-norm of 1
2 J̄C

′W̄C J̄ ′:

∥
1
2
J̄C ′W̄C J̄ ′∥2,∞ = min

i∈m
∥
[1
2
J̄C ′W̄C J̄ ′

]
ii∥2 +

∑
∥
[1
2
J̄C ′W̄C J̄ ′

]
ij∥2
j∈Ni

7

≤ min
i∈m

(∑
j∈Ni

wij +
∑
j∈Ni

wij

)
= 2min

i∈m

∑
j∈Ni

1
1+max(di, dj)

≤ 2min
i∈m

di
1+mink∈m dk

=
2mini∈m di

1+mink∈m dk
< 2

which implies that the spectral radius of 1
2 J̄C

′W̄CJ̄ ′ is less than 2.
It follows that I − 1

2 J̄C
′W̄C J̄ ′ has n eigenvalues at one and all the

other eigenvalues lie in (−1, 1).
In the case when G = N, W is positive diagonal matrix. Then

the lemma is true by Lemma 7. ■

The above lemma implies that each update matrix (I − 1
2 J̄(t)

C ′W̄ (t)CJ̄ ′(t)) in (9) is paracontracting with respect to the 2-norm.

emma 9. Let G1,G2, . . . ,Gp be a finite set of symmetric, span-
ning subgraphs of G. If the union of G1,G2, . . . ,Gp is G, then
kernel CJ̄ ′ = kernel C(

∑p
i=1 W̄

1/2
i J̄ ′i ), where J is the incidence

matrix of G, Ji is the spanning incidence matrix of Gi, and Wi is the
spanning weight matrix of Gi.

Proof of Lemma 9. If (i, j) is an edge in G but not in Gk, then the
corresponding Metropolis weight wij = 0 for Gk, which implies
that W̄ 1/2

k J̄ ′k = W̄ 1/2
k J̄ ′. Then C(

∑p
i=1 W̄

1/2
i J̄ ′i ) = C(

∑p
i=1 W̄

1/2
i )J̄ ′ =∑p

i=1 W̄
1/2
i )CJ̄ ′. Since the union of G1,G2, . . . ,Gp is G,

∑p
i=1

W̄ 1/2
i is a positive diagonal matrix and thus nonsingular. Then

kernel C(
∑p

i=1 W̄
1/2
i J̄ ′i ) = kernel (

∑p
i=1 W̄

1/2
i )CJ̄ ′ =

kernel CJ̄ ′. ■

Now we are in a position to prove Theorem 6.

Proof of Theorem 6. Let S denote the set of all possible spanning
subgraphs of N, which apparently is a finite set. Let I ⊂ S denote
the set of those spanning subgraphs which appears infinitely
often in the infinite sequence N(1),N(2),N(3), . . .. Denote all
spanning graphs in I as N1,N2, . . . ,Np. Since each edge of N
appears infinitely often, the union of N1,N2, . . . ,Np is N.

Let J be the incidence matrix of N and Ji be the spanning
incidence matrix of Ni for all i ∈ p. Let W and Wi be the
spanning weight matrices of N and Ni, i ∈ p, respectively. From
Lemma 8, each update matrix (I − 1

2 J̄(t)C
′W̄ (t)CJ̄ ′(t)) in (9) is

paracontracting with respect to 2-norm for all t . From Lemma 6,
x(t) will asymptotically converge to a common fixed point all
(I − 1

2 J̄iC
′W̄iCJ̄ ′i ), i ∈ p. It is easy to see that F(I − 1

2 J̄iC
′W̄iCJ̄ ′i ) =

ernel W̄
1
2
i CJ̄ ′i = kernel CW̄

1
2
i J̄ ′i . Thus x(t) will converge to a point

in the intersection of kernel CW̄
1
2
i J̄ ′i , i ∈ p.

It is clear that the intersection of kernel CW̄
1
2
i J̄ ′i , i ∈ p is a

ubset of kernel C(
∑p

i=1 W̄
1/2
i J̄ ′i ). From Lemma 9, kernel C(

∑p
i=1

¯ 1/2
i J̄ ′i ) = kernel CJ̄ ′. Since N̄ is well-configured, kernel CJ̄ ′ =

pan Ī , which implies that the intersection of kernel C̄W
1
2
i J̄ ′i , i ∈ p,

is a subset of span Ī . ■

5. Algorithms for directed graphs

In this section, we discuss some special types of strongly
connected graphs. We begin with directed cycles, the simplest
strongly connected graphs.

5.1. Directed cycles with specific initial states

Consider an m-vertex directed cycle 1 → 2 → · · · → m → 1
whose local agreement equations are given in (5). The agents



J. Zhu, Y. Lin, J. Liu et al. Systems & Control Letters 176 (2023) 105524

u

x

f

x

w
f
t
e

5

(

T
c
c

a

x

w
o

L

P
o(
R(

i
a

L
λ

v

t
λ

t
I
v

l
i
s

|

s
r
f(
a
f∑
N

i

S
a
t
i
t

L
u

P
t
a
o
e

k
o
M
b
d

pdate their states as follows:

i(t + 1) = xi(t)−
1
2
Pi(xi(t)− xi−1(t)), i ∈ m (10)

where Pi = C ′

i (CiC ′

i )
−1Ci is a projection on K⊥

i . In this subsection,
we assume that each agent i initializes its state xi(0) ∈ image Pi,
which can be implemented in a distributed manner.

Proposition 1. If N is an m-vertex directed cycle, then algorithm
(10) with xi(0) ∈ image Pi, i ∈ m, will lead all m agents to reach a
consensus exponentially fast.

Proof of Proposition 1. It is easy to see that with the specific
initialization xi(t) ∈ image Pi for all time t . Then the individual
update can be written as

xi(t + 1) = Pixi(t)−
1
2
Pi(xi(t)− xi−1(t)) = Pi

(1
2
xi(t)+

1
2
xi−1(t)

)
or all i ∈ m, which leads to the system update as

(t + 1) = P(F ⊗ I)x(t)

here P is the block diagonal matrix of all Pi and F is the
locking matrix5 of the cycle. The update has the same form as
he distributed linear equation solver in [2], which guarantees
xponentially fast consensus. ■

.2. Directed cycles with arbitrary initial states

In this subsection, we consider directed cycles and algorithm
10) without any specific initialization.

heorem 7. If N is an m-vertex directed cycle and N̄ is well-
onfigured, then algorithm (10) will lead all m agents to reach a
onsensus exponentially fast for any initial states.

To prove the theorem, we first rewrite the m equations in (10)
s one state form as

(t + 1) = Mx(t) (11)

here M is an mn×mn matrix whose blocks can be easily figured
ut via (10). The update matrix M has the following properties.

emma 10. If λ ̸= 1 is an eigenvalue of M, then |λ| < 1.

roof of Lemma 12. Let v = [v′

1 · · · v′
m]

′
̸= 0 be an eigenvector

f M for eigenvalue λ ̸= 1, with each vi ∈ Rn, i ∈ m. Then

I −
1
2
Pi

)
vi +

1
2
Pivl = λvi

where l = i+ 1 when i ∈ {1, . . . ,m− 1} and l = 1 when i = m.
e-arranging the above equation yields

1
2
Pi − (1− λ)I

)
vi =

1
2
Pivl (12)

For any i, j ∈ m, vi can be decomposed into vi = αi,j + βi,j,
where αi,j ∈ image Pj and βi,j ∈ kernel Pj. Since Pj is symmetric,
such decomposition is unique for any j ∈ m because image Pj ⊕
kernel Pj = Rn. Thus αi,k ⊥ βj,k for any i, j, k. Substituting
vi = αi,i + βi,i and vl = αl,i + βl,i into (12) leads to

(λ −
1
2
)αi,i − (1− λ)βi,i =

1
2
αl,i

5 The flocking matrix of a directed graph G is defined as D−1
G A′G , where DG

s the diagonal matrix whose ith diagonal entry is the in-degree of vertex i in G
nd A is the adjacency matrix of G. A flocking matrix is a stochastic matrix [19].
G

8

eft multiplying β ′

i,i on both sides of the above equation, (1 −

)β ′

i,iβi,i = 0. If λ ̸= 1, then βi,i = 0, which implies that
i ∈ image Pi when λ ̸= 1. Applying this fact to (12) with λ ̸= 1,

1
2
(vi + αl,i) = λvi (13)

Note that index l is dependent on index i and l ̸= i. We claim that
there exists an index i ∈ m such that vi ̸= vl and ∥vi∥2 ≥ ∥vl∥2. To
prove the claim, suppose to the contrary that for each i ∈ m there
holds vi = vl or ∥vi∥2 < ∥vl∥2, which implies that ∥vi∥2 ≤ ∥vl∥2
for all i ∈ m. Since the mapping from index i to index l is
bijective from m to m, there cannot exist any index i for which
∥vi∥2 < ∥vl∥2, or

∑
i∈m ∥vi∥2 <

∑
l∈m ∥vl∥2 which is impossible.

It then follows that vi = vl for all i ∈ m, which with (12) implies
hat either λ = 1 or v = 0. But this conflicts with the facts that
̸= 1 or v ̸= 0. Thus the claim is true. Pick any index i ∈ m such

hat vi ̸= vl and ∥vi∥2 ≥ ∥vl∥2. Note that ∥vl∥
2
2 = ∥αl,i∥

2
2+∥βl,i∥

2
2.

t follows that ∥αl,i∥2 ≤ ∥vi∥2. If vi = αl,i, then βli = 0, and thus
l = αl,i = vi, which contradicts with vi ̸= vl. This observation
eads to vi ̸= αl,i. This inequality, together with ∥αl,i∥2 ≤ ∥vi∥2,
mplies that v′

iαl,i < ∥vi∥
2
2. Then taking squared 2-norm on both

ides of (13) leads to

λ|2∥vi∥
2
=

1
4

(
∥vi∥

2
+ ∥αl,i∥

2
+ 2v′

iαl,i

)
< ∥vi∥

2

which implies that |λ| < 1. ■

Lemma 11. If N̄ is well-configured, {x : Mx = x} = span Ī .

Proof of Lemma 11. It is easy to verify that {x : Mx = x} ⊃

pan Ī , and we thus focus on {x : Mx = x} ⊂ span Ī in the
emaining proof. Let x = [x′1 · · · x′m]

′
̸= 0 be an eigenvector of M

or eigenvalue 1, with each xi ∈ Rn, i ∈ m. Then for each i ∈ m,

I −
1
2
Pi

)
xi +

1
2
Pixl = xi

where l = i+1 when i ∈ {1, . . . ,m−1} and l = 1 when i = m. Re-
rranging the above equation yields Pi(xi−xl) = 0. Let yi = xi−xl
or all i ∈ m. Then yi ∈ kernel Pi = Ki and

i∈m

yi =
∑
i∈m

xi −
∑
l∈m

xl = 0

ote that if Ki = 0, then yi = 0. Then∑
∈m, Ki ̸=0

yi = 0 (14)

ince N̄ is well-configured, from Lemma 2, {Ki : i ∈ m,Ki ̸= 0} is
n independent family. Since yi ∈ Ki for each i ∈ m, (14) implies
hat yi = 0 for all i ∈ m such that Ki ̸= 0. Thus yi = 0 for all
∈ m, namely, xi are all equal, which implies that x ∈ span Ī and
hus {x : Mx = x} ⊂ span Ī . ■

emma 12. If N̄ is well-configured, then M has exactly n eigenval-
es at one.

roof of Lemma 12. To prove the lemma, it is sufficient to show
hat the algebraic and geometric multiplicity of eigenvalue one
re equal, namely, all the Jordan blocks of eigenvalue one are
f size 1. This and Lemma 11 will imply that M has exactly n
igenvalues at one.
To this end, it is sufficient to prove that kernel (I − M) =

ernel (I − M)2. To see this, consider the Jordan canonical form
f M . From the proof of Theorem 3.1.11 in [20], dim(kernel (I −
)2) − dim(kernel (I − M)) equals the number of those Jordan
locks of eigenvalue one whose sizes are larger than 1, where
im(·) denotes the dimension of a subspace. Since kernel (I −
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) ⊂ kernel (I − M)2, all the Jordan blocks of eigenvalue one
eing of size 1 is equivalent to the condition kernel (I − M) =

ernel (I −M)2.
To prove kernel (I − M) = kernel (I − M)2, suppose to the

contrary that there exists a nonzero vector y ∈ kernel (I−M)2 but
y /∈ kernel (I −M), which implies that (I −M)y ∈ kernel (I −M).
From Lemma Lemma 11, kernel (I −M) = span Ī , and thus there
exists a nonzero vector z ∈ Rn for which (I − M)y = 1m ⊗ z.
Write y = [y′1 · · · y′m]

′ with each yi ∈ Rn, i ∈ m. Then it is
straightforward to verify that 1

2Pi(yi − yl) = z, where l = i + 1
when i ∈ {1, . . . ,m− 1} and l = 1 when i = m. These equations
imply that z ∈

⋂
i∈m image Pi and thus

1
2
Pi(yi − yl)− z =

1
2
Pi(yi − yl − 2z) = 0

urther implying that

i − yl − 2z ∈ kernel Pi

ote that index l is dependent on index i and that the map-
ing from index i to index l is bijective from m to m. Taking
ummation over index i on both sides of the above relation,

i∈m

(yi − yl − 2z) =
∑
i∈m

yi −
∑
l∈m

yl − 2mz = −2mz ∈
∑
i∈m

kernel Pi

and thus z ∈
∑

i∈m kernel Pi. Since each Pi is symmetric, its
kernel is the orthogonal complement to its image. Recall that
z ∈

⋂
i∈m image Pi. It follows that z ⊥ kernel Pi for all i ∈ m

and thus z ⊥
∑

i∈m kernel Pi. Then it must be true that z = 0.
But it conflicts the fact that z is a nonzero vector. This completes
the proof. ■

We are now in a position to prove Theorem 7.

Proof of Theorem 7. From Lemmas 10–12, the linear system (11)
ill converge to the eigenspace of eigenvalue one as t → ∞.
rom Lemma 11, the eigenspace of eigenvalue one is span Ī ,
hich implies that all xi(t), i ∈ m, will reach a consensus. Since
he linear system is time-invariant, the consensus will be reached
xponentially fast. ■

.3. A counterexample

One may conjecture that following algorithm

i(t + 1) = xi(t)−
1

di + 1

∑
j∈Ni

Pji(xi(t)− xj(t)) (15)

here Pji = C ′

ji(CjiC ′

ji)
−1Cji is a projection on K⊥

ji , will lead to a con-
ensus for any strongly connected graphs, considering algorithm
10) is a special case of (15). It turns out that it is not the case, as
hown in the following counterexample.
Consider a strongly connected graph with 3 vertices and 4

irected edges (1, 2)(2, 3)(3, 1)(2, 1). For simplicity, we write 4
atrices as C1, C2, C3, C4 for the 4 directed edges whose kernels
re K1,K2,K3,K4. The corresponding local agreements are

1(x2 − x1) = 0

2(x3 − x2) = 0

3(x1 − x3) = 0

4(x1 − x2) = 0

We claim that the weighted neighbor graph N̄ is well-configure
ith all Ki ̸= 0 if and only if {K1 ∩K4,K2,K3} is an independent

amily, i.e.,

1 ∩ K4 ∩ (K2 + K3) = 0

∩ (K ∩ K + K ) = 0 (16)
2 1 4 3

9

3 ∩ (K1 ∩ K4 + K2) = 0

To prove the claim, let p1 = x1 − x2, p2 = x2 − x3 and
p3 = x3 − x1. From local agreements

C1(x1 − x2) = C1p1 = 0
C2(x2 − x3) = C2p2 = 0
C3(x3 − x1) = C3p3 = 0
C4(x1 − x2) = C4p1 = 0

1 + p2 + p3 = 0

rom which

1 ∈ K1 ∩ K4 ∩ (K2 + K3)
p2 ∈ K2 ∩ (K1 ∩ K4 + K3)
p3 ∈ K3 ∩ (K1 ∩ K4 + K2)

We first prove the sufficiency. Suppose (16) holds, that is,
{K1 ∩ K4,K2,K3} is an independent family, which implies that
p1 = p2 = p3 = 0, i.e., x1 = x2 = x3.

We next prove the necessity. Suppose to the contrary that N̄
is well-configured but (16) does not hold. Then there must exist
nonzero vector y1 ∈ K1 ∩ K4 ∩ (K2 + K3), which implies that

here exist y2 ∈ K2 and y3 ∈ K3 such that y1 = y2 + y3 and
1 ∈ K1 ∩ K4. Since y1 is nonzero, so is either y2 or y3. Letting
1 = y1, x2 = 0, and x3 = y2, it is easy to check that all the local
greement equations hold:

C1(x1 − x2) = C1y1 = 0
C2(x2 − x3) = −C2y2 = 0
C3(x3 − x1) = −C3y3 = 0
C4(x1 − x2) = C4y1 = 0

1 + p2 + p3 = 0

hile, since x1 ̸= x2, N̄ is not well configured. This completes the
roof of the claim.
For this example, the update matrix

=

⎡⎢⎣I − 1
3P4 −

1
3P3

1
3P4

1
3P3

1
2P1 I − 1

2P1 0

0 1
2P2 I − 1

2P2

⎤⎥⎦
where Pi = C ′

i (CiC ′

i )
−1Ci. However, its eigenspace of eigenvalue

ne can be larger than span Ī even when N̄ is well-configured.
o see this, set C1 = C2, C3 = C4 and K2 ∩ K3 = 0, which
mplies that {K1∩K4,K2,K3} is an independent family, and thus
¯ is well-configured. Picking any nonzero y ∈ K1, it is easy to
erify that

=

[ 0
y
−y

]
∈ {x : Mx = x}

hich implies that span Ī is a proper subset of {x : Mx = x}. Thus
(t + 1) = Mx(t) may converge to a non-consensus state, which
as also been validated by simulations.
Applying the algorithm (15) to Example 1 in Section 3, the

pdate matrix

=

⎡⎢⎣I − 1
3P21 −

1
3P31

1
3P21

1
3P31

1
3P12 I − 1

3P12 −
1
3P32

1
3P32

0 0 I

⎤⎥⎦
where Pij = C ′

ij(CijC ′

ij)
−1Cij. It is not hard to show that for this

atrix M its eigenspace of eigenvalue one is span Ī and all the
emaining eigenvalues are strictly less than one in magnitude.
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ote that in this example the neighbor graph is rooted with a
ingle root vertex 3, which makes the analysis easier.
Therefore the following two questions remain open. First,

hat are the graphical conditions on N under which algorithm
15) will lead all the agents to reach a consensus for arbitrary
nitial states? Second, how one can construct a distributed algo-
ithm for each agent which will drive the system from arbitrary
tart states to a consensus for any strongly connected graphs?
It is well known that a conventional consensus (with all Cij =

) can be achieved if and only if the neighbor graph is rooted,
.e., contains a directed spanning tree. The results and examples
n this paper show that it is not the case for consensus with
imited information. The feasibility of consensus with limited
nformation depends on not only graph connectivity but also
eight matrices Cij.

. Conclusion

In this paper, we have studied the problem of achieving a
onsensus in the face of limited information transfer between
gents, in which each agent receives a linear function of the state
f each of its neighbors; in the case when the linear function
s realized by a matrix whose kernel is nonzero, the neighbor’s
tate cannot be determined by the information transferred. From
his perspective, the problem studied here is related to so-called
rivacy preserving consensus problems [21], which typically rely
n carefully designed additive noise. The limited information idea
ere can be used to protect the privacy of agents’ states without
dding noise. The problem is also related to the compressed com-
unication techniques which have been recently used to address

he communication bottleneck in distributed optimization and
achine learning [22].
The feasibility of the problem of interest has been termed as

ell-configuration. Sufficient conditions for a multi-agent system
o be well-configured have been provided for different types of
irected graphs. For well-configured multi-agent systems, prov-
bly correct distributed algorithms have been developed for a
umber of special cases of the problem. It turns out that the state
orms of these algorithms share similarity with so-called matrix-
eighted consensus processes [23,24]. Our results imply that
he existing sufficient conditions for matrix-weighted consensus,
hich usually require a tree whose matrix-valued weights are all
ositive definite, can be significantly relaxed.
In addition to the two open questions stated at the end of

he preceding section, there are a number of directions of fu-
ure work, including to establish necessary and sufficient condi-
ions for a strongly connected system to be well-configured, to
tudy well-configuration for general rooted graphs, and to derive
onvergence rates for the proposed algorithms.
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