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1. Introduction

In its simplest form the well known consensus problem [1]
for a networked family of autonomous agents is to devise a set of
protocols or update rules, one for each agent, which can enable all
of the agents to adjust or tune their “agreement variable” to the
same value by utilizing real-time information obtained from their
“neighbors” within the network. The consensus problem is one of
the most fundamental problems in the area of distributed com-
putation and control. Consensus algorithms can be found as com-
ponents of a large variety of more specialized algorithms in the
area of distributed computation and control such as distributed
algorithms for solving linear algebraic equations [2], distributed
optimization problems [3], distributed estimation problems [4],
and even some distributed control problems [5].

There are a great many variations of the consensus problem.
For example, the agreement variables could be restricted to real-
valued vectors or alternatively integer-valued vectors [6]. The
updating of agreement variables could be executed either syn-
chronously or asynchronously [7]. The topology of the network
could be fixed or changing with time [8]. There could be ma-
licious agents attempting to prevent consensus [9]. There could

™ The work of J. Zhu, Y. Lin, and J. Liu was supported in part by the National
Science Foundation (NSF) under Grant No. 2230101 and by the Air Force Office
of Scientific Research (AFOSR) under Grant No. FA9550-23-1-0175. The work of
AS. Morse was supported in part by the NSF under Grant No. 1917879 and by
the AFOSR under Grant No. F9550-20-1-0037 and FA9550-23-1-0175.

* Corresponding author.

E-mail addresses: jingxuan.zhu@stonybrook.edu (J. Zhu),

yixuan.lin.1@stonybrook.edu (Y. Lin), ji.liu@stonybrook.edu (J. Liu),
as.morse@yale.edu (A.S. Morse).

https://doi.org/10.1016/j.sysconle.2023.105524
0167-6911/© 2023 Elsevier B.V. All rights reserved.

be communication delays [10] or bit-rate constraints [11]. The
target value of the agreement variables could be unconstrained
or it could be some specified function of the initial values of
the agents’ agreement variables as for example in distributed
averaging [12] or gossiping [13]. Some versions of the problem
such as when agreement variables take values in a finite set,
defy deterministic solutions [6] whereas other versions of the
problem do not.

The aim of this paper is to study the problem of achieving
a consensus in the face of limited information transfer between
agents. The problem setup is as follows. We consider a group of
m > 1 autonomous agents labeled 1 to m. Each agent i has a
set of neighbors from whom agent i can receive information; the
set of labels of agent i’s neighbors (excluding itself), denoted by’
NiCm 4 {1, 2, ..., m}, is part of the problem formulation. The
neighbor sets A, i € m, determine an m-vertex directed graph N
defined so that there is an arc (or a directed edge) from vertex
j to vertex i just in case agent j is a neighbor of agent i. Each
agent i has an agreement variable or state x; € R" which it can
adjust synchronously at times t € {0, 1, 2, ...}. At time t, agent i
receives from each neighbor j € A; a signal s;i(t) = Cjix;(t) where
G is a fixed real-valued matrix. Associating each arc (j, i) in N
with matrix Gj; leads to a matrix-valued weighted neighbor graph
N. It is assumed that for each j € A, i € m, both agents i and j
know Cj;. There are no priori constraints on Cj;. Some could, for
example, be matrices with less rows then columns in which cases
the information transferred by each such corresponding signal
sii(t) = Gix;(t) would be insufficient to determine x;(t). In this

1 We use A C B to denote that A is a subset of 5.
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sense the information agent i receives from neighbor j at time t
is limited to only a “part of” x;(t). Given this setup, the consensus
problem of interest is to devise update rules using the s;i(t), one
for each agent, which if possible will cause all m agents’ states x;,
i € m, to converge to the same value in the limit as t — oo.

2. Well-configured systems

Consider the multi-agent system just described. We say that
the m agents are in local agreement with specific states x;, i € m, if
Cix; = Cjx; for all i € m and j € ;. We say that the m agents have
reached a consensus with specific states x;, i € m, if x; = x; for all
i,j € m. A weighted neighbor graph N is called well-configured if
local agreement implies consensus.

A well-configured weighted neighbor graph N has the follow-
ing equivalent mathematical description. For each vertex i in N,
let d; denote the number of neighbors of agenti. Then d = Z:”:] d;
equals the total number of directed edges in &. Let kjy, . . ., kig, be
an arbitrary ordering of the labels in Aj;. Label all the d arcs from
1 to d according to the sequence ki1, ..., Kig;, - - -, Km1, - - -, Kmdy,-
Define the corresponding incidence matrix | as an m x d matrix in
which column k has exactly one 1 in row i and exactly one —1 is
row j if the kth arc in N is (j, i). For any finite set of matrices
{M1, M5, ..., M}, we use blockdiag{M;, M-, ..., M} to denote
the block diagonal matrix whose ith diagonal block is M;. Define

C = blockdiag {Ceyy 1.+ Chygy 1+ Gl -+ Clgm |

Let] =J®I,and I = 1,; ® I, where ® denotes the Kronecker
product, I, denotes the n x n identity matrix, and 1,, denotes
the m-dimensional column vector whose entries all equal 1. Then
it is not hard to verify that a weighted neighbor graph N is
well-configured if and only if

kernel CJ' = span | (1)

In the case when N is weakly connected,? kernel ] = span I [14,
Theorem 8.3.1]; then (1) will be true if and only if

span J' N kernel C =0 2)

It is worth emphasizing that C and J are defined according to the
same ordering of the arcs in N, and the necessary and sufficient
condition (1) or (2) is independent of the ordering.

With the above in mind, the following two questions arise.
First, what are the necessary and/or sufficient conditions on N
for which there exist C; matrices so that N is well-configured?
Second, if N is well-configured, how one can construct a recursive
distributed algorithm for each agent which will drive the system
from arbitrary start states to local agreement and thus to a
consensus? These are precisely what we consider in this paper.

3. System design

The goal of this section is to derive graph-theoretic conditions
on which a multi-agent system can be well-configured.

As described, for any pair of neighboring agents, say agent i
and its neighbor j, agent j only sends Cjx; to agent i so that
the transmitted vector size may be reduced and x; may not be
identified. Thus it is sometimes desirable that K; # 0, where
Kji denotes the kernel of Cj;; otherwise, x; can be uniquely de-
termined from Cx;. Also, if K; # 0, the size of Cjx; will be no
smaller than that of x;.

A directed graph G is called rooted if it contains a directed
spanning tree of G, and called strongly connected if there is

2 A directed graph is weakly connected if there is an undirected path between
each pair of distinct vertices.
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a directed path between each pair of distinct vertices. Every
strongly connected graph is rooted, but not vice versa.

First, it is easy to see that if N is not rooted, a consensus cannot
be guaranteed for arbitrary initial values. We next consider some
examples of rooted graphs.

3.1. Rooted graphs

If N is rooted, N cannot be always well-configured with all
Kji # 0, as shown in the following lemma for path graphs.

Lemma 1. If N is a directed path, then N can be well-configured
only if all Kj; = 0.

Proof of Lemma 1. For a directed path with m vertices 1 — 2 —
--- — m, local agreements are Cj(x;—x;,1) =0,i € {1,...,m—1}.
Suppose to the contrary that there exists an i such that K; # 0,
then there exists a nonzero x such that CGix = 0. Let

Xj = X1, jefl,...,i}
Xi=x1+x, jeli+1,...,m}
Then Ci(x; —x;,1) =0 foralli e {1,...,m— 1}, while all x;, i € m

do not reach a consensus. H
The following example shows that there exists a rooted graph
which can be well-configured with all £;; # 0.

Example 1. Consider a three-agent network with arcs 1 —
2,2 - 1,3 - 1,3 — 2. Then local agreement equations are

Cip(x1 — %) =0
Gilxa —x1)=0 (3)
Gi(x3 —x1)=0

Caa(x3 —%) =0
Note that the existence x; satisfying the four equalities above
imply that there are vectors p1, p2, p3, namely p; = X1 — Xy,
P2 = X3 — X1, P3 = X2 — X3, such that
p1+p2+p3=0

P1 € K12 N Ky

P2 € K31

P3 € K32

Conversely, for any set of vectors pi, p2, p3 satisfying (4), there
are vectors x;, namely x; = p1, X = 0, X3 = p3 for which the
four equalities in (3) hold. Note that there will exist py, po, p3 for
which (4) holds if and only if
p1 € K12 N Ka1 N (K31 + K32)
P2 € K31 N (K12 N K1 + K32)
p3 € K32 N (K12 N K21 N K31)

(4)

Thus the conditions for the p; to all equal zero are

K12 MKy N (K31 +K32)=0
K31 N (K12 N K21 +K32)=0
K N(KizNKy NK31)=0

which are the conditions for the three subspaces K12 N K31, K31
and X3, to be independent. Thus the weighted neighbor graph
of interest is well-configured just in case the three subspaces are
independent, and do not necessarily have to equal 0. O

It turns out that well-configuration characterization of rooted
graphs is quite complicated. We thus leave it as a future direction
and focus on strongly connected graphs in the next subsection.
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Fig. 1. An example of different ear decompositions of a strongly connected graph. The number associated to each arc represents the index of the ear which the arc

belongs to in an ear decomposition.

3.2, Strongly connected graphs

Strong connectedness itself cannot guarantee well-configurat-
ion. To state our sufficient condition for well-configuration, we
need the following concept from graph theory [15].

An ear decomposition of a directed graph without self-arcs
G = (v, &) with at least two vertices is a sequence of subgraphs
of G, denoted {Eo, E4, ..., Ep}, in which E, is a directed cycle,
and each E;, i € p, is a directed path or a directed cycle with the
following properties:

3

1. {Eo, Eq, ..., E,} form an arc partition of G, i.e., E; and E;
are arc disjoint if i # j, and (J}_, Ex = G;

2. For eachi e p, if E; is a directed cycle, then it has precisely
one vertex in common with Ji_ Ex; if E; is a directed

path, then its two end-vertices are the only two vertices

. . —1
in common with J,_ Ex.

Each of Eg, E4,...,E, is called an ear of the decomposition.
Not all directed graphs admit an ear decomposition. It has been
proved that a directed graph has an ear decomposition if and only
if it is strongly connected [15, Theorem 7.2.2]. It is also known
that there exists a linear algorithm to find one ear decomposition
of a strongly connected graph [15, Corollary 7.2.5]. A strongly
connected graph may admit multiple ear decompositions, and ap-
parently, the number of all possible different ear decompositions
of a strongly connected graph is finite. It turns out that every ear
decomposition of a strongly connected graph with m vertices and
e arcs has e—m+ 1 ears [ 15, Corollary 7.2.3]. To help understand
the concept, an illustrative example is provided in Fig. 1.

Two subspaces S; and S, of R" are independent if their
intersection is the zero subspace, i.e., if S;(S; = 0. A finite
family of subspaces {S1, Sy, ..., Sp} is independent if

S{](ZS;) =0, iep

J#

Theorem 1. Suppose that N is strongly connected and let D be an
ear decomposition of N. If for each ear E € D, {Kj; : (j, i) € E} is an
independent family, then N is well-configured.

To prove the theorem, we first study directed cycles and paths
since they are basic components in ear decompositions.

To simplify notation, we label the vertices of an m-vertex
directed cycle as 1 — 2 — ... — m — 1. Suppose that
C1, G, ..., Gy are given matrices, each with n columns. Suppose
that for each i € m, agent i receives Cix;_; from agent i — 1, where
it is understood that agent 0 and agent m are one and the same,
and that xg 2 Xm. Thus for this N to be well-configured means
that the relations

CGxi =Cxi—1, 1ie€em (5)

3 The definition can be extended to more general directed multigraphs with
self-arcs [15].

must imply that x; = x;_1, i € m. Let K; denote the kernel of G
for alli € m.

If N is an m-vertex directed cycle, then N is well-
s Km}

Lemma 2.
configured by matrices G, i € m, if and only if {Kq, K2, ...
is an independent family.

Proof of Lemma 2. Since N is a cycle, m > 2. We first prove the
sufficiency. Let {K;, i € m} be an independent family. Suppose
to the contrary that N is not well-configured. Then there must
exist a non-consensus set {xq,...,Xp,} which satisfies (5). Let
yi = X — Xxj41 foreachi € {1,...,m — 1} and y, = X — X3.
Then at least one of yq, ..., ¥y is nonzero. Since Z;’;ly,- =0, at
least two of yq, ...,y are nonzero. Let A = {i € m : y; # O}
Then |A| > 2 and ZieA y; = 0. Since each y; € K; and {K;, i € A}
is an independent family, y;, i € 4, are linear independent, which
is contradictory to ", , yi = 0.

We next prove the necessity. Let {Cy, ..., Cn} be any set of
matrices which make N well-configured. Suppose to the contrary
that {K,..., Ky} is not an independent family, which implies
that there exists an index p such that &, N (D, 4p Ki) # 0. Then

there exist k; € K;, i € m, such that k, = Zi#p ki, which is
nonzero. For any xq, let ;1 = x; + k; for eachi € {1,...,p —
1,p+1,...,m— 1} and x,41 = X, — kp. It is easy to see check
that such a set of non-consensus vectors X1, . . . , X, satisfy (5). But
this is impossible as N is well-configured. ®

It is easy to see that n is the maximum possible number of
subspaces in an independent family of nonzero subspaces of R".
We thus have the following immediate consequence of Lemma 2.

Corollary 1. If N is an m-vertex directed cycle, then N can be
well-configured with all K; # 0, i € m, if and only if m < n.

More can be said.

Lemma 3. Let N be an m-vertex directed cycle with &y being the
edge set and x; being the state of vertex i. Let £ be a subset of &y
defined as € = {(i,j) € & : Xi = X;}. Then N is well-configured by
matrices G, i € m, if and only if {K; : i e m, (i — 1,i) ¢ £} is an
independent family.

Proof of Lemma 3. The case of m — |£] = 0 is trivial. We
claim that m — |&| # 1. To see this, suppose to the contrary that
m — |£] = 1. Then the edges in £ forms a directed spanning path
of N, which guarantees that all m agents reach a consensus. This
implies that all the edges of N belong to &, which is impossible.
Thus we focus on m — |£] > 2 in the remaining proof.

Each vertex i in directed cycle N has a unique outgoing neigh-
bor, denoted as v[i]. Let V be the vertex subset defined as v =
{iem: (i, v[i]) ¢ £}. Then |[V| = m — |&|. Relabel the vertices in
Vasvi,..., U, p=m—|&] > 2, along with the same direction
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as the directed cycle. It is not hard to verify that

Cv1(xv1 - Xuz) =0

CUp,] (xvp,<1 - xvp) =0
Cop(xy, —Xy,) =0

which are mathematically equivalent to (5) with m being replaced

by p. Thus the above equations are equivalent to local agree-

ments of an p-vertex directed cycle. From Lemma 2, N can be

well-configured with all €,;, #0,i e p,ifandonlyifp<n. ®
Lemma 3 immediately implies the following result.

Corollary 2. Let N be an m-vertex directed cycle with edge set &xy.
Let £ be a subset of &y defined as € = {(i, j) € & : X; = X;}. Then N
can be well-configured with all K; # 0 if and only if m — |&] < n.

The above results can be directly applied to the following
special case of path graphs.

To simplify notation, we label the vertices of an m-vertex
directed pathas 1 — 2 — --- — m. Suppose that C;, ..., G, are
given matrices, each with n columns. Suppose that for each i € m,
agent i receives Cix;_; from agent i — 1. Thus for this N to be well-
configured means that the relations Cix; = Cix;_1,1 € {2,...,m},
must imply that x; = x;_1, i € {2, ..., m}. Adding the arc (m, 1)
to the above path and imposing x; = x,; will lead to a special
case satisfying the condition in Lemma 3 and Corollary 2, which
immediately implies the following result.

Corollary 3. If N is an m-vertex directed path with x; = X,
then N is well-configured by matrices G, i € {2,...,m}, if and
only if {Ka, ..., Km} is an independent family, and thus N can be
well-configured with all K&; # 0,1 € {2,...,m}, if and only if
m—1<n

Compared with Lemma 1, it is worth emphasizing that as-
suming X; = X, significantly changes the condition for well-
configuration of path graphs.

We are now in a position to prove Theorem 1.

Proof of Theorem 1. Let D = {Eo, Eq, ..., Ep} be the given ear
decomposition of N. We claim that for each i € {0,1,...,p},
UL:O Ey is well-configured. The claim will be proved by induction
on the index i.

By definition, Ey is a directed cycle. From Lemma 2, Eq is well-
configured. Now suppose that the claim holds for all i in the range
0 < i < j, where j is a nonnegative integer smaller than p.
Consider ear E;; 1, which is either a directed cycle or a directed
path. We treat these two cases separately. If E;,; is a directed cy-
cle, using the preceding argument, it is well-configured. Since ear
Eiy1 shares one common vertex with |J;_o Ex, Uy p Ex is well-
configured. If E;; is a directed path, its two end-vertices belong
to UL:O Ex. Since the well-configuration of UL:O E, guarantees
that the two end-vertices have the same value, from Corollary 3,
Ei1 is well-configured, and so is U;;lo Ey. By induction, the claim
is established. Since ULO Er = N, the proof is complete. ®

Theorem 1 is not a necessary condition. To see this, con-
sider the strongly connected graph given in Fig. 2 which has 4
agents and 6 arcs. If {K12, K21}, {K34, K43}, and {Ky3, K41} are
independent families, then from Lemmas 2 and 3 the weighted
neighbor graph is well-configured. However, if in addition none
of {Ka3, K34, K41}, {Ka1, K12, K23}, and {K41, K12, K23, K34} is an
independent family, then none of the ear decompositions of the
strongly connected graph satisfies the condition in Theorem 1.

Given a strongly connected weighted neighbor graph, if an ear
decomposition satisfies the condition in Theorem 1, the condition

Systems & Control Letters 176 (2023) 105524
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Fig. 2. A four-agent strongly connected graph.

may not hold for the other ear decompositions. To see this, still
consider the graph in Fig. 2. If {K2, K21} and {Ka3, K34, K41}
are independent families, then the ear decomposition E, =
(1,2)2,1), E;1 = (2,3)3,4)4,1), E; = (4,3) satisfies the
condition in Theorem 1 provided KC43 = 0. Meanwhile, if neither
{K41, K12, K23} or {Ka1, K12, K23, K34} is an independent family,
it is easy to verify that all the other ear decompositions do not
satisfy the condition.

The proof of Theorem 1 provides a constructive approach
that systematically designs C; matrices for a strongly connected
multi-agent system to be well-configured.

For each ear decomposition, say D = {Eo, Eq,...,E,}, let
I(E;) denote the length of ear E;, i.e., the number of arcs in E;.
Theorem 1 immediately implies the following sufficient condi-
tions for well-configuration.

Corollary 4. Suppose that N is strongly connected and let D be an
ear decomposition of N. If

maxl(E) <n
EeD

then N can be well-configured with all K # 0, i € m, j € .

More can be said. For a strongly connected graph G, write D
for the set of all possible ear decompositions of G. Define
x(G) = min max [(E)
DeD EeD
Since each ear decomposition begins with a directed cycle and
the shortest possible length of a cycle is two, e.g., a pair of agents
which are neighbors of each other, x(G) > 2.

Corollary 5. If N is strongly connected and x(N) < n, then N can
be well-configured with all K;j # 0,i e m, j € N,

Although Corollary 5 provides a weaker condition, to our
knowledge, it is still an open problem to construct an effi-
cient algorithm to find all ear decompositions of a strongly
connected graph.

3.3. Symmetric directed graphs

A directed graph is called symmetric if whenever (i, j) is an arc
in the graph, so is (j, i). A symmetric directed graph is often called
undirected in the literature, which simplifies each pair of directed
edges, say (i, j) and (j, i), to one undirected edge between vertices
i and j. We stick to the term “symmetric directed graphs” because
of definition of the incidence matrix given in Section 2. Consider
a symmetric directed graph with m vertices and d directed edges.
Then d must be an even number. Our definition of an incidence
matrix is of size m x d, while the standard definition of an
incidence matrix of the corresponding undirected graph is of size
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mx(d/2). Thus using the term “undirected” may cause confusion.
It is worth noting that rooted and strong connectedness boil
down to the same connectivity for symmetric directed graphs.

For any symmetric directed graph G, since each pair of arcs
between any pair of neighboring agents in a symmetric directed
graph is a cycle with length 2, all these cycles form an ear decom-
position, which leads to x(G) = 2. The following necessary and
sufficient condition on well-configuration for symmetric directed
graphs is easy to derive from Corollary 5.

Theorem 2. If N is a symmetric directed graph, then N can be
well-configured with all Kj # 0,1 € m, j € A, if and only if N is
strongly connected and n > 2.

As will be seen in the next section, there is a motivation, for
the purpose of algorithm design, to figure out a condition under
which a symmetric directed graph can be well-configured with
the additional constraint that C; = Cj for alli € m and j € M.
Note that any weighted symmetric directed graph with Gj = Cj;
can be equivalently simplified as an undirected graph with each
edge (i, j) associated with matrix C;, whenever vertices i and j
are a pair of neighbors. We thus need the following concept of
ear decompositions for undirected graphs.

An ear decomposition of an undirected graph without self-
loops G = (V, &) with at least two vertices is a sequence of
undirected subgraphs of G, denoted {Eo, Eq, ..., E,}, in which Eg
is an undirected cycle, and each E;, i € p, is an undirected path
or cycle with the following properties:

1. {Eo, Eq, ..., E,} form an edge partition of G, i.e., E; and E;
are arc disjoint if i # j, and (J}_, Ex = G;

2. For each i € p, if E; is an undirected cycle, then it has
precisely one vertex in common with U;::]O Ey; if E; is an
undirected path, then its two end-vertices are the only two
vertices in common with | Jj_} Ex.

Each of Eo, Eq, ..., E, is called an ear of the decomposition. Not
all undirected graphs admit an ear decomposition. An undirected
graph is called k-edge-connected if, upon removal of any k — 1
edges, the resulting graph is still connected. It has been proved
that an undirected graph has an ear decomposition if and only
if it is 2-edge-connected [16]. A 2-edge-connected undirected
graph may admit multiple ear decompositions, and apparently,
the number of all possible different ear decompositions is finite.
For each ear decomposition, say D = {Eq, E4, ..., Ep}, let I(E;)
denote the length of ear E;, i.e., the number of edges in E;.

Let us agree to say that D is an undirected ear decomposition
of a symmetric directed graph G if D is an ear decomposition
of the undirected graph generated by replacing each pair of arcs
(i,j) and (j, i) with an edge between neighboring vertices i and
j in G. We call G 2-connected if the undirected graph is 2-edge-
connected. From the preceding a symmetric directed graph has
an undirected ear decomposition if and only if it is 2-connected.

Using the same arguments as in the proof of Theorem 1, we
have the following result.

Theorem 3. Suppose that N is 2-connected symmetric directed
graph and let D be an undirected ear decomposition of N. If for each
ear E € D, {Kj v Kji : (i,)) € E}* is an independent family, then
N is well-configured by matrices Gi=GCi,iemje NIfin
addition, maxgep I(E) < n, then N can be well-configured with all
IC,-]-:ICJ-,-#O,iem,je/\/,-.

In the sequel, we will propose and analyze a few distributed
algorithms for well-configured systems under different scenarios.

4 we use {a v b} to denote that either a or b is an element in the set.
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4. Algorithms for symmetric directed graphs

In this section, we assume that the neighbor graph is sym-
metric and C; = C; whenever agents i and j are a pair of
neighbors. The following algorithms (6)-(8) all involve a term
(GiGyj + CiGi)(xi(t) — x;(t)) in each agent i's update, where j is
any neighbor of agent i; with C; = Gj;, only one signal, Cjx;(t),
is transferred from agent j to agent i. It is worth noting that
in this case the underlying symmetric directed graph will need
to be 2-connected to guarantee well-configuration. If G; # Cj;,
it will implicitly require that each agent i receives two signals,
Ciixj(t) and Cyx;(t), from each of its neighbors at each time step.
Although allowing C; # Cj; in a symmetric directed graph does
not affect the proofs and makes well-configuration easier in light
of Theorem 2, transmitting two signals could be an issue in
communication.

We begin with the simplest case in which the neighbor graph
N is fixed.

4.1. Fixed symmetric directed graphs

Consider any strongly connected, symmetric directed graph N
with m agents. Our first algorithm appeals to the idea of gradient
descent in convex optimization, which is for each agent i,

xi(t + 1) = xi(t) — a(t) Y (GG + GGi)xi(t) — x(t) (6)
JeN;

where «(t) is a positive time-varying stepsize satisfying >, «(t)

=ooand ), a(t) < oo.

Theorem 4. If N is a strongly connected symmetric directed graph
and N is well-configured, then algorithm (6) will lead all the agents
to reach a consensus.

Proof of Theorem 4. The m update equations in (6) can be
combined into one state form as

x(t + 1) = x(t) — a(t)JC'CJ'x(t)

where x = column{xq, X3, ..., X}, which is exactly the gra-
dient descent of minimizing the convex function ||C]_’x||§. Thus
with appropriate time-varying stepsize «(t) (ie., ), a(t) = oo
and ), a?(t) < o0), x(t) will asymptotically converge to an
optimal point of ||C]_’x||§, which must be a consensus vector as
kernel CJ' = spanl. m

The above algorithm requires all m agents share the same
sequence of diminishing stepsizes. Our second algorithm gets
around this limitation and is thus fully distributed, which is
described as follows.

Since well-configuration only depends on Kj, the kernel of Cj;,
i € m j e N, without loss of generality, we assume each Cj;
has full row rank and its rows are orthonormal, which implies
that C,»jCi} = I and P; 2 Ci}(CijCi;.)‘lC,»j = Ci}C,j is an orthogonal
projection matrix. For each agent i € m,

1
xi(t +1) = x(t) — AW+ Z(Cl‘/jcij + GiGi)(xi(t) — x(t))  (7)
' JeNi

Theorem 5. If N is symmetric, strongly connected and N is well-
configured, then algorithm (7) will lead all the agents to reach a
consensus exponentially fast.

To prove the theorem, we need the following lemmas.

Lemma 4. If N is well-configured, then JC'CJ’ is positive semidefi-
nite with exactly m eigenvalues at zero.
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Proof of Lemma 4. It is clear tklatj_g’C]_/ is positive semidefinite.
Since kernel CJ’ = span I, JC'CJ’ has exactly rank(I) = n
eigenvalues at zero. W

Lemma 5. Let W=wael, where W is a positive diagonal matrix.
If N is well-configured, then WJC'CJ’ has exactly n eigenvalues at
zero, and all the remaining eigenvalues are positive.

P_rotl)f _of Ler_nrpe} 5. Nf)t]e_that_ﬂ_/j_lc 'CJ’ has the same_sllagctru_m_a]s
W 2WJC'CJWz2 = W2ZJC'CJ/Wz2. It is clear ¥hat W2JC'CJ'W?2
is positive semidefinite. From Lemma 4, CJ'W2x = 0 if and only
if W2x e span I, which implies that kernel CJ'W? = span W21
and thus WJC’CJ’ has exactly n eigenvalues at zero. M

We also need the following “mixed matrix norm” concept
introduced in [2]. Let || - || oo denote the induced infinity norm and
write R™>*™ for the vector space of all m x m block matrices
Q = [Q;] whose ijth entry is an n x n matrix Q; € R"*". Define
the (2, oo0) norm of Q € R™*™", written ||Q||2,, to be

1Ql2.00 = Q) oo

where (Q) is the m x m matrix in R™*™ whose ijth entry is ||Q;]l2,
where || - ||, denotes the induced 2-norm. It has been shown in
[2, Lemma 3] that || - ||2.00 iS @ sub-multiplicative matrix norm.
In the sequel, for a matrix Q € R™*™", we use [Q];, i,j € m
to denote the ijth block of Q, which is an n x n matrix.
We are now in a position to prove Theorem 5.

Proof of Theorem 5. The m update equations in (7) can be
combined into one state form as

x(t + 1) = x(t) — DJC'CJ'x(t)

where D = blockdiag{ 2(d1]+1)1m’ .
block of DJC’CJ’. For any i € m,

_— _ 1 1
D|C'C])jj = ———— ClCit+CCi) —— P & P
[DJC'CJ i z(di+1)§( 1Cif + CiGi) 2(di+1)1§( i + Pi)

., 2(dn3+1)1m}‘ Consider each

and for anyi e m, j € A,
L o+ = Ly +p)
2d;+1) T 2+

Since each P; is an orthogonal projection matrix, ||Pjll. = 1.
Consider the 2-norm for each block. For any i € m,

[DJC'cl' ) = —

- 1 .
IDIC'CT Nl < 55— 2 _UIPill2 + IPil2) = e
JeN;
and for anyi e m, j € Nj,
IPyllz + IPill _ 1
2di+1) T di+1
Next consider the (2, co)-norm of DJC'CJ":
IDIC'CT 12,00 = min [IIDJC'CT iilla + Y NIDJC'CT 112
iem o
JEN;

IDIC'CIll2 <

. d;
< mln(

£ )= min 2 o
<
iem \d; + 1 di+1/ = iem d; + 1

JeN;
which implies that the spectral radius of DJC'CJ’ is less than 2.
It follows that I — DJC'CJ’ has n eigenvalues at one and all the
other eigenvalues lie in (—1, 1), which implies that x(t) will reach
a consensus exponentially fast. ®
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4.2. Time-varying symmetric directed graphs

In this subsection, we consider the following scenario of time-
varying symmetric directed graphs. Let an m-vertex symmetric
directed graph N represent all allowable communication among
the m agents. In other words, agents i and j are allowed to
communicate with each other if and only if (i, j) is an arc in N.
For each time t, we use a time-dependent m-vertex symmetric
directed graph N(t) to describe the neighbor relations among the
m agents at time t. That is, if agents i and j communicate at time ¢,
then (i, j) is an arc in N(t). It is easy to see that N(t) is a spanning
subgraph of N, and all such possible spanning subgraphs is a finite
set. We assume that N is well-configured, i.e., each arc (i, j) in N
is associated with a matrix G such that kernel CJ’ = span I, with
J being the incidence matrix of N.

For any time-varying symmetric directed graph sequence just
described, we propose the following algorithm using the
Metropolis weights:

1
M+ 1) =x(0) = 5 Y wilelCiGy + GGlu(t) = x(0)  (8)
JEN;(t)
where Nj(t) is the neighbor set of agent i at time t and wj(t)
are the Metropolis weights corresponding to N(t), which are
proposed in [17] for solving the distributed averaging problem
over symmetric directed graphs and defined as

1
= 1+ max{di(t), di(6)}

where d;(t) = |NVj(t)| denotes the number of neighbors of agent i
at time t.

wi(t) , JeN(E)

Theorem 6. Suppose that N is well-configured. If N is symmetric,
strongly connected and each edge of N appears infinitely often in
the infinite sequence of neighbor graphs N(1), N(2), N(3), ..., then
algorithm (8) will guarantee all m agents to reach a consensus.

To prove the theorem, we first combine the m update equa-
tions in (8) into one state form. To this end, we tailor the defi-
nition of an incidence matrix for spanning subgraphs as follows.
Consider a directed graph G with m vertices and d directed edges.
Let £ denote the arc set of G and J denote the m x d incidence
matrix of G according to some ordering of the arcs in £. Let H be a
spanning subgraph of G. We define the spanning incidence matrix
of H as an m x d matrix in which column k has exactly one 1 in
row i and exactly one —1 is row j if the kth arc in G is (j, i) and
(j, 1) is also an arc in H. It is clear that the spanning incidence
matrix of any spanning subgraph of G has the same size as the
incidence matrix of G. If the kth arc in G is not in a spanning
subgraph, then the kth column of the incidence matrix of G is
replaced by a zero vector in the spanning incidence matrix.

We also need the following definition. Consider a symmet-
ric directed graph G with d arcs. Let G be a spanning sub-
graph of G which is also symmetric. Since G is symmetric, its
Metropolis weights w;; are well-defined; specifically, w; = 1/(1+
max{d;, d;}), where d; denotes the number of neighbors of vertex
k in G. Given an ordering of all the arcs in G, the spanning weight
matrix of G is the d x d diagonal matrix whose kth diagonal entry
equals wy if the kth arc in G is (j, i) and (j, i) is also an arc in G,
or 0 if the kth arc in G is not in G.

With the above definitions, it is not hard to verify that the m
update equations in (8) can be written as

1- o
x(t+1) = x(t) — Ej(t)C’W(t)CJ’(t)X(t) 9)

where J(t) = J(t) ® I, with J(t) being the spanning incidence
matrix of N(t), and W(t) = W(t) ® I, with W(t) being the
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spanning weight matrix of N(t). It is worth noting that all W(t)
are nonnegative diagonal matrices with the same size. It is also
worth emphasizing that the definitions of C, J(t), and W(t) are
based on the same ordering of the arcs in N, and the equality (9)
is independent of the ordering.

To proceed, we need the following concept and result.

A square matrix M is called paracontracting with respect to a
vector norm || - || if ||Mx|| < ||x|| and the strict inequality holds
whenever Mx # x. It is easy to see that any symmetric matrix is
paracontracting with respect to the 2-norm if all its eigenvalues
lie in the interval (—1, 1].

For a square matrix M, we define its fixed point set as

F(M) = {x: Mx = x}

Paracontracting matrices have the following properties.

Lemma 6. Suppose that a finite set of square matrices {M;, M, ...,
M,} are paracontracting with respect to the same vector norm. Let
o(1),0(2), ... be an infinite sequence of integers taking values in
{1,2,...,p} and T be the set of all integers that appears infinitely
often in the sequence. Then for any initial vector z(0), the sequence
of vectors generated by z(t + 1) = My»z(t) has a limit z* €
Miez F(M)

The lemma is a special case of Theorem 1 in [18].
We also need the following lemmas.

Lemma 7. Let W = W ®I, where W is a positive diagonal matrix.
If N is well-configured, then JC'WCJ’ has exactly n eigenvalues at
zero, and all the remaining eigenvalues are positive.

Proof of Lemma 7. It is clear that JC'W(CJ' is positive semidefi-
nite. Note that for any x and y = W/2(J'x, there holds CJ'x =
W12y, From this fact and Lemma 4, C['x = W~12y = 0 if
and only if x € span I, which implies that WY/2CJ'x = y = 0,
i.e, kernel W/2CJ’ = span I, and thus JC'WCJ’ has exactly n
eigenvalues at zero. M

Lemma 8. Let G be a symmetric, spanning subgraph of N, W be
the spanning weight matrix of G, and | be the spanning incidence
matrix of G. Then all the eigenvalues of I — %]C’WC]’ liein (—1, 1].
If furthermore G = N, I — %jC’WC ']’ has exactly n eigenvalues at
one and all the remaining eigenvalues lie in (—1, 1).

Proof of Lemma 8. Consider each block of 1JC'WCJ'. For any
i € m, each diagonal block is

1- - - 1 1
[EJC/WC]/]ﬁ =5 Z(qu Gy + wiGiGi) = 5 Z(wijpij + w;iPji)
JeN; JeN;
and for any i € m,j € N, each off-diagonal block is
 —— w;i
[zewd]; = — Py + By)
Note that [|Pyll> = 1, wy = w; < 1, and } ;.\ w; < 1. Consider
2-norm for each block. For any i € m,
||[5J'c’v'\/ci/]ii||z =3 Z wi(lIPyll> + IPill2) < D wy
JEN; JEN;

(C Gj + GiGi) =

and for any i e m, j € A,

1 1
”[EJC w(cj ],j||2 < Ewij(”Pij”Z + IPill2) < wy
Next consider the (2, co)-norm of 1JC'W(J'":

1- - - S P 1- - -
| ICWCT 200 = min [ JJCWC] ] ll2 + ZN I[5Icwar] s
JEN;
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< min(Z wij + Z wij)
iem
jeN; JeN;
2 mi !
= <zNin Z ———
i 1+ max(d;, d;
iem e, + ma (d,, dj)
d,‘ 2 min,-em d,’
1+ mingem di

< 2min
iem 1+ MiNgem dk

<2

which implies that the spectral radius of JC'W (]’ is less than 2.
It follows that [ — %]C/WC]’ has n eigenvalues at one and all the

other eigenvalues lie in (—1, 1).
In the case when G = N, W is positive diagonal matrix. Then
the lemma is true by Lemma 7. H

The above lemma implies that each update matrix (I — = (t)
C’'W(t)CJ'(t))in (9) is paracontracting with respect to the 2- norm.

Lemma 9. Let Gy, Gy, ..., Gy be a finite set of symmetric, span-
ning subgraphs of G. If the union of G1,Gy,...,Gp is G, then
kernel CJ’ = kernel C( W” Ji), where ] is the incidence
matrix of G, J; is the spanning mczdence matrix of G;, and W; is the
spanning weight matrix of G;.

Proof of Lemma 9. If (i, j) is an edge in G but not in Gy, then the
corresponding Metropolis Weight wj; = 0 for Gy, which implies
that W,/%J; = W.?J". Then c(3-"_, W}/*]/) = (3P, W,y =
o w, 1/2)('] Slnce the union of G1,Gy, ..., Gp is G, Y1,
Wi” Zis a positive diagonal matrix and thus nonsingular Then
kernel  C(3°7_, W'’y = kemnel (X, W)
kernel C/. =

Now we are in a position to prove Theorem 6.

Proof of Theorem 6. Let S denote the set of all possible spanning
subgraphs of N, which apparently is a finite set. Let Z C S denote
the set of those spanning subgraphs which appears infinitely
often in the infinite sequence N(1), N(2), N(3),.... Denote all
spanning graphs in Z as Ny, N,, ..., N,. Since each edge of N
appears infinitely often, the union of Ny, N,, ..., N, is N.

Let J be the incidence matrix of N and J; be the spanning
incidence matrix of N; for all i € p. Let W and W; be the
spanning weight matrices of N and Nl, ie p, respectlvely From
Lemma 8, each update matrix (I — —]( JC'W(t)CJ'(t)) in (9) is
paracontracting with respect to 2-norm for all t. From Lemma 6,
x(t) will asymptotically converge to a common fixed point all
(I — 2],C W,Cj) iep.ltis easy to see that F(I — zle wiCjl) =

kernel W C] = kernel CW2] Thus x(t) will converge to a point
in the intersection of kernel CW,zjl, iep.

_ 1
It is clear that the intersection of kernel CW?J/,i € p is a
subset of kernel C( W” J{). From Lemma 9, kernel C(
Wl/ J)) = kernel C]. Slnce N is well-configured, kernel CJ/ =

_ 1
span I, which implies that the intersection of kernel CW,*J/, i € p,
isasubset of spanl. W

1 1

5. Algorithms for directed graphs

In this section, we discuss some special types of strongly
connected graphs. We begin with directed cycles, the simplest
strongly connected graphs.

5.1. Directed cycles with specific initial states

Consider an m-vertex directed cycle 1 - 2 —» -+ > m — 1
whose local agreement equations are given in (5). The agents
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update their states as follows:
1 .
xi(t+1) = x(t) — Epi(xi(t) —x1(t)), iem (10)

where P; = C/(G;C/)~'C; is a projection on Ki-. In this subsection,
we assume that each agent i initializes its state x;(0) € image P;,
which can be implemented in a distributed manner.

Proposition 1. If N is an m-vertex directed cycle, then algorithm
(10) with x;(0) € image P;, i € m, will lead all m agents to reach a
consensus exponentially fast.

Proof of Proposition 1. It is easy to see that with the specific
initialization x;(t) € image P; for all time t. Then the individual
update can be written as

1 1 1
X(E+1) = Pix(t) = 3PAx(0) = xi1(0) = P (52(0) + 5%1(0))

for all i € m, which leads to the system update as
x(t + 1) = P(F ® )x(t)

where P is the block diagonal matrix of all P; and F is the
flocking matrix® of the cycle. The update has the same form as
the distributed linear equation solver in [2], which guarantees
exponentially fast consensus. ®

5.2. Directed cycles with arbitrary initial states

In this subsection, we consider directed cycles and algorithm
(10) without any specific initialization.

Theorem 7. If N is an m-vertex directed cycle and N is well-
configured, then algorithm (10) will lead all m agents to reach a
consensus exponentially fast for any initial states.

To prove the theorem, we first rewrite the m equations in (10)
as one state form as

x(t + 1) = Mx(t) (11)

where M is an mn x mn matrix whose blocks can be easily figured
out via (10). The update matrix M has the following properties.

Lemma 10. If A # 1is an eigenvalue of M, then |A| < 1.

Proof of Lemma 12. Let v = [v] --- v;,]" # 0 be an eigenvector
of M for eigenvalue A # 1, with each v; € R", i € m. Then

1 1
(1 - EPI‘)U,' + Epivl = AV;

where =i+ 1whenie{l,...,m—1}and [ = 1 wheni = m.

Re-arranging the above equation yields

(1[)1. — (1 — )\)I)U,‘ = lPl-v, (12)
2 2

For any i,j € m, v; can be decomposed into v; = «;; + Bij,

where «;; € image P; and B;; € kernel P;. Since P; is symmetric,
such decomposition is unique for any j € m because image P; &
kernel P; = R". Thus o;x L pBj for any i, j, k. Substituting
vi =« + Bii and vy = «;; + By, into (12) leads to

1 1
(A — E)O‘i.i —(1=MBii= S

5 The flocking matrix of a directed graph G is defined as Dg 1A’G , Where Dg
is the diagonal matrix whose ith diagonal entry is the in-degree of vertex i in G
and Ag is the adjacency matrix of G. A flocking matrix is a stochastic matrix [19].
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Left multiplying /31',, ; on both sides of the above equation, (1 —
MBBii = 0.1f A # 1, then i; = 0, which implies that
v; € image P; when A # 1. Applying this fact to (12) with A # 1,

1
E(Ui-i-al,i) = Ay; (13)

Note that index I is dependent on index i and I # i. We claim that
there exists an index i € m such that v; # v;and ||vill2 > ||lv||2. To
prove the claim, suppose to the contrary that for each i € m there
holds v; = v; or ||vi|l2 < ||v]l2, which implies that |jvi]l2 < |luill2
for all i € m. Since the mapping from index i to index [ is
bijective from m to m, there cannot exist any index i for which
lvillz < llvillz, oF Yiem 1villz2 < Yyem lluill Which is impossible.
It then follows that v; = v; for all i € m, which with (12) implies
that either A = 1 or v = 0. But this conflicts with the facts that
A # 1or v # 0. Thus the claim is true. Pick any index i € m such
that v; # v and [|vill2 > [[vi]l2. Note that [[v[13 = llewill3 + I BLill3-
It follows that ||ay;ll2 < |lvill2. If v; = ay, then B; = 0, and thus
v = oy = v;, which contradicts with v; # v;. This observation
leads to v; # «;. This inequality, together with [loill2 < |lvill2,
implies that vjey; < ||v,<||%. Then taking squared 2-norm on both
sides of (13) leads to

R = 5 (Rl + el + 2vfen) < Hul?

which implies that [A]| < 1. &

Lemma 11. IfN is well-configured, {x : Mx = x} = span I.
Proof of Lemma 11. It is easy to verify that {x
span I, and we thus focus on {x : Mx = x} C span I in the

remaining proof. Let x = [x] --- x;,]' # 0 be an eigenvector of M
for eigenvalue 1, with each x; € R", i € m. Then for each i € m,

:Mx = x} D

1 1
(I — EPI‘)X,' + EPI‘X[ = X;

where | = i+1whenie {1,...,m—1}and = 1 wheni = m. Re-
arranging the above equation yields P;(x; —x;) = 0. Let y; = x; — x;
for all i € m. Then y; € kernel P; = K; and

Z%IZX;‘—Z&:O

iem iem lem

Note that if K; = 0, then y; = 0. Then

> =0 (14)

iem, K;#0

Since N is well-configured, from Lemma 2, {K; : i € m, K; # 0} is
an independent family. Since y; € k; for each i € m, (14) implies
that y; = O for all i € m such that K; # 0. Thus y; = 0 for all
i € m, namely, x; are all equal, which implies that x € span I and
thus {x : Mx =x} C spanl. ®

Lemma 12. IfN is well-configured, then M has exactly n eigenval-
ues at one.

Proof of Lemma 12. To prove the lemma, it is sufficient to show
that the algebraic and geometric multiplicity of eigenvalue one
are equal, namely, all the Jordan blocks of eigenvalue one are
of size 1. This and Lemma 11 will imply that M has exactly n
eigenvalues at one.

To this end, it is sufficient to prove that kernel (I — M) =
kernel (I — M)?. To see this, consider the Jordan canonical form
of M. From the proof of Theorem 3.1.11 in [20], dim(kernel (I —
M)?) — dim(kernel (I — M)) equals the number of those Jordan
blocks of eigenvalue one whose sizes are larger than 1, where
dim(-) denotes the dimension of a subspace. Since kernel (I —
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M) C kernel (I — M)?, all the Jordan blocks of eigenvalue one
being of size 1 is equivalent to the condition kernel (I — M) =
kernel (I — M)2.

To prove kernel (I — M) = kernel (I — M)?, suppose to the
contrary that there exists a nonzero vector y € kernel (I—M)? but
y ¢ kernel (I — M), which implies that (I — M)y € kernel (I — M).
From Lemma Lemma 11, kernel (I — M) = span I, and thus there
exists a nonzero vector z € R" for which (I — M)y = 1, ® z.
Writey = [y; --- y,,]' with each y; € R", i € m. Then it is
straightforward to verify that %P,-(yj —y) =2z wherel =i+ 1
whenie€ {1,...,m— 1} and I = 1 when i = m. These equations
imply that z € ()., image P; and thus

1 1
EP:'(}’:' -y —z= EPi(J’i -y —2z)=0

further implying that
¥i — Y1 — 2z € kernel P;

Note that index | is dependent on index i and that the map-
ping from index i to index [ is bijective from m to m. Taking
summation over index i on both sides of the above relation,

Z(Yi -yn—2z)= ny - Zyl —2mz = -2mz € Zkernel P;

iem iem lem iem

and thus z € Ziem kernel P;. Since each P; is symmetric, its
kernel is the orthogonal complement to its image. Recall that
Z € (\iemimage Pi. It follows that z L kernel P; for all i € m
and thus z L ), . kernel P;. Then it must be true that z = 0.
But it conflicts the fact that z is a nonzero vector. This completes
the proof. W

We are now in a position to prove Theorem 7.

Proof of Theorem 7. From Lemmas 10-12, the linear system (11)
will converge to the eigenspace of eigenvalue one as t — oo.
From Lemma 11, the eigenspace of eigenvalue one is span I,
which implies that all x;(t), i € m, will reach a consensus. Since
the linear system is time-invariant, the consensus will be reached
exponentially fast. W

5.3. A counterexample

One may conjecture that following algorithm

1
a7 2 Pl = x(0)
JEN;

x(t + 1) = xi(t) — (15)

where Pj; = Cj’i(Cj,-Cj/i)‘lCﬁ is a projection on Iij will lead to a con-
sensus for any strongly connected graphs, considering algorithm
(10) is a special case of (15). It turns out that it is not the case, as
shown in the following counterexample.

Consider a strongly connected graph with 3 vertices and 4
directed edges (1, 2)(2, 3)(3, 1)(2, 1). For simplicity, we write 4
matrices as Cq, Cy, C3, C4 for the 4 directed edges whose kernels
are K1, K3, K3, K4. The corresponding local agreements are

Ci(xa —x1)=0
G(x3 —x2) =

CG(x1 —x3)=0
Ca(x1 — %) =0

We claim that the weighted neighbor graph N is well-configured
with all K; # 0 if and only if {IC; N K4, K2, K3} is an independent
family, i.e.,
KiNKsN(Ky+K3) =

0
KoN(KiNKs+K3)=0
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KsN(K1NKs+K)=0

To prove the claim, let p; = x; — X3, p» = X, — x3 and

p3 = X3 — X1. From local agreements

Ci(x1 —x%)=Cp1 =0

G2 —x3)=Gp, =0

G3(x3 —x1) =C3p3 =0

Ca(x1 —x2) =Cyp1 =0
p1+p2+p3=0
from which

p1 € K1 NKsN(Ky + K3)
P2 € K2 N(K1 N K4+ K3)
p3 € K3N (K1 NKs + K3)

We first prove the sufficiency. Suppose (16) holds, that is,
{1 N K4, K2, K3} is an independent family, which implies that
p1=p2=p3=0,ie,x =x =x3. B

We next prove the necessity. Suppose to the contrary that N
is well-configured but (16) does not hold. Then there must exist
a nonzero vector y; € K1 N K4 N (K3 + K3), which implies that
there exist y, € K, and y3 € K3 such that y; = y, + y3 and
y1 € K1 N K4. Since y; is nonzero, so is either y, or ys. Letting
X1 = y1, X2 = 0, and x3 = y,, it is easy to check that all the local
agreement equations hold:

Ci(x1 —x2)=Ciy1 =0
Gxa —x3) = -Gy, =0
G(x3 —x1)=—Cy3 =0
Ca(x1 —x2) =Cay1 =10
p1+p2+p3s=0

while, since x; # x, N is not well configured. This completes the
proof of the claim.
For this example, the update matrix

— 3Py — 3P 1Py 3Ps
M = %Pl I — %Pl 0
0 P I1—1P

where P; = C/(GC/)7'Ci. However, its eigenspace of eigenvalue
one can be larger than span I even when N is well-configured.
To see this, set C; = (3, (3 = C4 and K; N K3 = 0, which
implies that {xC; N K4, K2, K3} is an independent family, and thus
N is well-configured. Picking any nonzero y € K, it is easy to
verify that

0
x:|:y:|e{x:Mx:x}
-y

which implies that span I is a proper subset of {x : Mx = x}. Thus
x(t + 1) = Mx(t) may converge to a non-consensus state, which
has also been validated by simulations.

Applying the algorithm (15) to Example 1 in Section 3, the
update matrix

I — 3Py — 3P 3P 3P
M = 3P12 I— 3Py — 3Ps  3Px
0 0 I

where Pj = Cj(CyCj)"'Cy. It is not hard to show that for this
matrix M its eigenspace of eigenvalue one is span I and all the
remaining eigenvalues are strictly less than one in magnitude.



J. Zhu, Y. Lin, J. Liu et al.

Note that in this example the neighbor graph is rooted with a
single root vertex 3, which makes the analysis easier.

Therefore the following two questions remain open. First,
what are the graphical conditions on N under which algorithm
(15) will lead all the agents to reach a consensus for arbitrary
initial states? Second, how one can construct a distributed algo-
rithm for each agent which will drive the system from arbitrary
start states to a consensus for any strongly connected graphs?

It is well known that a conventional consensus (with all G; =
I) can be achieved if and only if the neighbor graph is rooted,
i.e., contains a directed spanning tree. The results and examples
in this paper show that it is not the case for consensus with
limited information. The feasibility of consensus with limited
information depends on not only graph connectivity but also
weight matrices Gj.

6. Conclusion

In this paper, we have studied the problem of achieving a
consensus in the face of limited information transfer between
agents, in which each agent receives a linear function of the state
of each of its neighbors; in the case when the linear function
is realized by a matrix whose kernel is nonzero, the neighbor’s
state cannot be determined by the information transferred. From
this perspective, the problem studied here is related to so-called
privacy preserving consensus problems [21], which typically rely
on carefully designed additive noise. The limited information idea
here can be used to protect the privacy of agents’ states without
adding noise. The problem is also related to the compressed com-
munication techniques which have been recently used to address
the communication bottleneck in distributed optimization and
machine learning [22].

The feasibility of the problem of interest has been termed as
well-configuration. Sufficient conditions for a multi-agent system
to be well-configured have been provided for different types of
directed graphs. For well-configured multi-agent systems, prov-
ably correct distributed algorithms have been developed for a
number of special cases of the problem. It turns out that the state
forms of these algorithms share similarity with so-called matrix-
weighted consensus processes [23,24]. Our results imply that
the existing sufficient conditions for matrix-weighted consensus,
which usually require a tree whose matrix-valued weights are all
positive definite, can be significantly relaxed.

In addition to the two open questions stated at the end of
the preceding section, there are a number of directions of fu-
ture work, including to establish necessary and sufficient condi-
tions for a strongly connected system to be well-configured, to
study well-configuration for general rooted graphs, and to derive
convergence rates for the proposed algorithms.
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