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Abstract— The push-sum based subgradient is an important
method for distributed convex optimization over unbalanced
directed graphs, which is known to converge at a rate of
O(ln t/

√
t). This paper shows that the subgradient-push al-

gorithm actually converges at a rate of O(1/
√
t), which is the

same as that of the single-agent subgradient and thus optimal.
The proposed tool for analyzing push-sum based algorithms is
of independent interest.

I. INTRODUCTION

There are three major information fusion schemes in the
vast distributed algorithms literature: consensus via stochas-
tic matrices [1], distributed averaging via doubly stochastic
matrices [2], and push-sum via column stochastic matrices
[3].1 Among the three, the push-sum scheme is the only one
that is able to not only achieve agreement on the average,
but also works for directed graphs, allowing uni-directional
communication. Because of this, the push-sum scheme has
been widely utilized in various distributed algorithms includ-
ing distributed optimization [4]–[6], distributed deep learning
[7], and distributed reinforcement learning [8]–[10].

The push-sum algorithm was first proposed in [3] and
sometimes also called weighted gossip [11], ratio consensus
[12], [13], and double linear iteration [14]. Although the
analysis of the push-sum algorithm is elegant, the analyses
of push-sum based algorithms are often quite complicated,
e.g., subgradient-push [5], DEXTRA [15] (a push-sum based
variant of the well-known EXTRA algorithm [16]) and Push-
DIGing [17]. Actually, all these push-sum based algorithms
rely on the pioneering analysis and results in [5].

Distributed optimization originated from the work of [18]
and has achieved great success in both theory and practice;
see survey papers [19]–[21]. Most existing distributed opti-
mization algorithms require the underlying communication
network be described by an undirected graph or a balanced
directed graph (a directed graph is balanced if the sum of
all in-weights equals the sum of all out-weights at each
of its vertices [22]), which allows a distributed manner
to construct a doubly stochastic matrix. Such a distributed

This material is based upon work supported in part by the National Sci-
ence Foundation under Grant No. 2230101 and by Stony Brook University’s
Office of the Vice President for Research through a Seed Grant. The authors
wish to thank the anonymous reviewers for their helpful comments.

Y. Lin is with the Department of Applied Mathematics and Statistics
at Stony Brook University (yixuan.lin.1@stonybrook.edu). J. Liu
is with the Department of Electrical and Computer Engineering at Stony
Brook University (ji.liu@stonybrook.edu).

1A square nonnegative matrix is called a row stochastic matrix, or
simply stochastic matrix, if its row sums all equal one. Similarly, a square
nonnegative matrix is called a column stochastic matrix if its column sums
all equal one. A square nonnegative matrix is called a doubly stochastic
matrix if its row sums and column sums all equal one.

algorithm usually achieves the same order of convergence
rate as its single-agent counterpart, with a difference at a
constant coefficient depending on graph connectivity [23].

The push-sum based subgradient algorithm proposed in [5]
is the first distributed convex optimization algorithm which
works for unbalanced directed graphs without any network-
wide information. There are two “gaps” in the analysis in
[5]. First, the convergence rate analysis is based on a special
convex combination of the history of the states of all agents
(see Theorem 2 in [5]), which is “unusual” compared with
non-push-sum based distributed optimization algorithms (see
e.g. [18]). Second, more importantly, the convergence rate
derived in [5] is of order O(ln t/

√
t), which is slower than

that of the single-agent subgradient method, O(1/
√
t) (see

Theorem 7 in [23]). With these in mind, this paper aims to
close the theoretical gap between the convergence rates of
conventional single-agent subgradient and push-sum based
subgradient, by analyzing the “standard” convex combination
of the history of the states of all agents. We achieve this goal
by establishing the explicit “absolute probability sequence”
for the push-sum algorithm, which yields a novel analysis
tool for push-sum based distributed algorithms over possibly
time-varying, unbalanced, directed graphs.

II. SUBGRADIENT-PUSH

Consider a network consisting of n agents, labeled 1
through n for the purpose of presentation. The agents are
not aware of such a global labeling, but can differentiate
between their neighbors. The neighbor relations among the n
agents are characterized by a time-dependent directed graph
G(t) = (V, E(t)) whose vertices correspond to agents and
whose directed edges (or arcs) depict neighbor relations,
where V = {1, . . . , n} is the vertex set and E(t) ⊂ V × V
is the directed edge set at time t. Specifically, agent j is
an in-neighbor of agent i at time t if (j, i) ∈ E(t), and
similarly, agent k is an out-neighbor of agent i at time t
if (i, k) ∈ E(t). Each agent can send information to its
out-neighbors and receive information from its in-neighbors.
Thus, the directions of edges represent the directions of
information flow. For convenience, we assume that each
agent is always an in- and out-neighbor of itself, which
implies that G(t) has self-arcs at all vertices for all time t.
We use Ni(t) and N−

i (t) to denote the in- and out-neighbor
set of agent i at time t, respectively, i.e.,

Ni(t) = {j ∈ V : (j, i) ∈ E(t)},
N−

i (t) = {k ∈ V : (i, k) ∈ E(t)}.

It is clear that Ni(t) and N−
i (t) are nonempty as they both

contain index i. The goal of the n agents is to cooperatively
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to minimize the cost function

f(z) =
1

n

n∑
i=1

fi(z),

where each fi is a “private” convex (not necessarily differen-
tiable) cost function only known to agent i. It is assumed that
the set of optimal solutions to f , denoted by Z , is nonempty.

Since each fi is not necessarily differentiable, the gradient
descent method may not be applicable. Instead, the subgra-
dient method [24] can be applied. For a convex function
h : IRd → IR, a vector g ∈ IRd is called a subgradient of h
at point x if

h(y) ≥ h(x) + g⊤(y − x) for all y ∈ IRd. (1)

Such a vector g always exists and may not be unique. In the
case when h is differentiable at point x, the subgradient g is
unique and equals ∇h(x), the gradient of h at x. Thus, the
subgradient can be viewed as a generalization of the notion
of the gradient. From (1) and the Cauchy-Schwarz inequality,

h(y)− h(x) ≥ −G∥y − x∥2, (2)

where G is an upper bound for the 2-norm of the subgradi-
ents of h at both x and y.

The subgradient method was first proposed in [24] and the
first distributed subgradient method was proposed in [18],
which is based on average consensus. The subgradient-push
algorithm, proposed in [5], is as follows2:

xi(t+ 1) =
∑

j∈Ni(t)

wij(t)
[
xj(t)− α(t)gj(t)

]
, (3)

yi(t+ 1) =
∑

j∈Ni(t)

wij(t)yj(t), yi(0) = 1, (4)

where α(t) is the stepsize, gj(t) is a subgradient of fj(z)
at xj(t)/yj(t), and wij(t), j ∈ N (t), are positive weights
satisfying the following assumption.

Assumption 1: There exists a constant β > 0 such that for
all i, j ∈ V and t, wij(t) ≥ β whenever j ∈ Ni(t). For all
i ∈ V and t,

∑
j∈N−

i (t) wji(t) = 1.

A typical choice of wij(t) is 1/|N−
j (t)| for all j ∈ Ni(t)

which can be computed in a distributed manner and satisfies
Assumption 1 with β = 1/n. Let W (t) be the n × n
matrix whose ijth entry equals wij(t) if j ∈ Ni(t) and
zero otherwise; in other words, we set wij(t) = 0 for all
j /∈ Ni(t). From Assumption 1, each W (t) is a column
stochastic matrix that is compliant with the neighbor graph
G(t). Since each agent i is always assumed to be an in-
neighbor of itself, all diagonal entries of W (t) are positive.

To state the convergence result of the subgradient-push
algorithm, we need the following assumption and concept.

Assumption 2: The step-size sequence {α(t)} is posi-
tive, non-increasing, and satisfies

∑∞
t=0 α(t) = ∞ and∑∞

t=0 α
2(t) < ∞.

2The algorithm is written in a different but mathematically equivalent
form in [5].

Definition 1: A directed graph sequence {G(t)} is uni-
formly strongly connected if there exists a positive integer
L such that for any t ≥ 0, the union graph ∪t+L−1

k=t G(k) is
strongly connected. If such an integer exists, we sometimes
say that {G(t)} is uniformly strongly connected by sub-
sequences of length L.

It is not hard to prove that the above definition is equiv-
alent to the two popular joint connectivity definitions in
consensus literature, namely “B-connected” [25] and “re-
peatedly jointly strongly connected” [1].

Define zi(t) = xi(t)/yi(t) and z̄(t) = 1
n

∑n
i=1 zi(t).

Theorem 1: Suppose that {Gt} is uniformly strongly con-
nected and that ∥gi(t)∥2 is uniformly bounded for all i and t.

1) If the stepsize α(t) is time-varying and satisfies As-
sumption 2, then with z∗ ∈ Z ,

lim
t→∞

f

(∑t
τ=0 α(τ)z̄(τ)∑t

τ=0 α(τ)

)
= f(z∗).

2) If the stepsize is fixed and α(t) = 1/
√
T for T > 0

steps, i.e., t ∈ {0, 1, . . . , T − 1}, then with z∗ ∈ Z ,

f

(∑T−1
τ=0 z̄(τ)

T

)
− f(z∗) ≤ O

( 1√
T

)
.

The above theorem establishes the convergence rate
of f((

∑T−1
τ=0 z̄(τ))/T ), as conventionally did in average-

consensus-based subgradient [18], and the rate is of
O(1/

√
t), which is the same as that of the conventional

single-agent subgradient method [23, Theorem 7]. Thus, the
derived convergence rate is optimal.

Theorem 1 is actually a consequence of the following
refined result, which further provides finite-time error bounds
for the subgradient-push algorithm.

Theorem 2: Suppose that {Gt} is uniformly strongly con-
nected by sub-sequences of length L and that ∥gi(t)∥2 is
uniformly bounded above by a positive number G for all i
and t.

1) If the stepsize α(t) is time-varying and satisfies As-
sumption 2, then for all t ≥ 0,

f

(∑t
τ=0 α(τ)z̄(τ)∑t

τ=0 α(τ)

)
− f(z∗)

≤
∥z̄(0)− z∗∥22 +G2

∑t
τ=0 α

2(τ)∑t
τ=0 2α(τ)

+
2Gα(0)

∑n
i=1 ∥z̄(0)− zi(0)∥2

n
∑t

τ=0 α(τ)

+
32G

η

∥∥∥ n∑
i=1

xi(0) + α(0)gi(0)
∥∥∥
2

∑t−1
τ=0 α(τ)µ

τ∑t
τ=0 α(τ)

+
32nG2

η(1− µ)

∑t−1
τ=0 α(τ)

(
α(0)µτ/2 + α(⌈ τ

2 ⌉)
)∑t

τ=0 α(τ)
. (5)

2) If the stepsize is fixed and α(t) = 1/
√
T for T > 0
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steps, i.e., t ∈ {0, 1, . . . , T − 1}, then

f

(∑T−1
τ=0 z̄(τ)

T

)
− f(z∗)

≤
2G
∑n

i=1 ∥z̄(0)− zi(0)∥2
nT

+
∥z̄(0)− z∗∥22 +G2

2
√
T

+
32G

η(1− µ)T

∥∥∥ n∑
i=1

xi(0) +
1√
T
gi(0)

∥∥∥
2

+
32nG2

η(1− µ)
√
T
. (6)

Here η and µ are positive constants which satisfy η ≥ 1
nnL

and µ ≤ (1 − 1
nnL )

1/L, respectively, and ⌈·⌉ denotes the
ceiling function.

The above theorem characterizes convergence rates for a
network-wide averaged state. The following theorem pro-
vides convergence rates for each individual agent.

Theorem 3: Suppose that {Gt} is uniformly strongly con-
nected by sub-sequences of length L and that ∥gi(t)∥2 is
uniformly bounded above by a positive number G for all i
and t.

1) If the stepsize α(t) is time-varying and satisfies As-
sumption 2, then for all t ≥ 0 and k ∈ V ,

f

(∑t
τ=0 α(τ)zk(τ)∑t

τ=0 α(τ)

)
− f(z∗)

≤
∥z̄(0)− z∗∥22 +G2

∑t
τ=0 α

2(τ)∑t
τ=0 2α(τ)

+
Gα(0)

∑n
i=1(∥z̄(0)− zi(0)∥2 + ∥zk(0)− zi(0)∥2)

n
∑t

τ=0 α(τ)

+
32G

η

∥∥∥ n∑
i=1

xi(0) + α(0)gi(0)
∥∥∥
2

∑t−1
τ=0 α(τ)µ

τ∑t
τ=0 α(τ)

+
32nG2

η(1− µ)

∑t−1
τ=0 α(τ)

(
α(0)µτ/2 + α(⌈ τ

2 ⌉)
)∑t

τ=0 α(τ)
. (7)

2) If the stepsize is fixed and α(t) = 1/
√
T for T > 0

steps, i.e., t ∈ {0, 1, . . . , T − 1}, then for any k ∈ V ,

f

(∑T−1
τ=0 zk(τ)

T

)
− f(z∗)

≤ ∥z̄(0)− z∗∥22 +G2

2
√
T

+
32nG2

η(1− µ)
√
T

+
G
∑n

i=1 ∥z̄(0)− zi(0)∥2 + ∥zk(0)− zi(0)∥2
nT

+
32G

η(1− µ)T

∥∥∥ n∑
i=1

xi(0) +
1√
T
gi(0)

∥∥∥
2
. (8)

Here the positive constants η and µ < 1 are the same as in
Theorem 2.

Using the same argument as in the proof of Theorem 1,
we have for each agent k ∈ V , with a time-varying stepsize

α(t) satisfying Assumption 2,

lim
t→∞

f

(∑t
τ=0 α(τ)zk(τ)∑t

τ=0 α(τ)

)
= f(z∗),

and with a fixed stepsize α(t) = 1/
√
T for T > 0 steps,

f

(∑T−1
τ=0 zk(τ)

T

)
− f(z∗) ≤ O

( 1√
T

)
.

III. ANALYSIS

In this section, we provide a novel analysis of the
subgradient-push algorithm (3)–(4) and proofs of Theorems
1 and 2. The analysis appeals to the concept of “absolute
probability sequence” for push-sum. Thus, we begin with
revisiting the well-known push-sum algorithm.

A. Push-Sum

In the push-sum algorithm, each agent i has control over
two variables, xi(t) ∈ IRd and yi(t) ∈ IR, which are updated
as follows:

xi(t+ 1) =
∑

j∈Ni(t)

wij(t)xj(t), (9)

yi(t+ 1) =
∑

j∈Ni(t)

wij(t)yj(t), yi(0) = 1, (10)

where wij(t), j ∈ N (t), are positive weights satisfying
Assumption 1.

Let x(t) ∆
= [x1(t) · · · xn(t)]

⊤ ∈ IRn×d and y(t) be the
vector in IRn whose ith entry is yi(t). From (9) and (10),
x(t+1) = W (t)x(t) and y(t+1) = W (t)y(t). Since W (t) is
always column stochastic for all t ≥ 0, it is easy to show that∑n

i=1 xi(t) =
∑n

i=1 xi(0) and
∑n

i=1 yi(t) =
∑n

i=1 yi(0) =
n for all t ≥ 0.

Lemma 1: Suppose that {G(t)} is uniformly strongly con-
nected. Then, for any fixed τ ≥ 0, W (t) · · ·W (τ +1)W (τ)
will converge to the set {v1⊤ : v ∈ IRn,1⊤v = 1, v > 0}
exponentially fast as t → ∞.3

The lemma is essentially the same as Corollary 2 (a)
in [5]. Suppose {Gt} is uniformly strongly connected by
sub-sequences of length L, Lemma 1 implies that there exist
constants c > 0 and µ ∈ [0, 1) and a sequence of stochastic
vectors4 {v(t)} such that for all i, j ∈ V and t ≥ τ ≥ 0,∣∣[W (t) · · ·W (τ + 1)W (τ)

]
ij
− vi(t)

∣∣ ≤ cµt−τ , (11)

where [·]ij denotes the ijth entry of a matrix. In [5], it has
been shown that c = 4 and µ = (1− 1

nnL )
1/L.

To proceed, we define a time-dependent n×n matrix S(t)
whose ijth entry is

sij(t) =
wij(t)yj(t)

yi(t+ 1)
=

wij(t)yj(t)∑n
k=1 wik(t)yk(t)

. (12)

3We use 0 and 1 to denote the vectors whose entries all equal to 0 or
1, respectively, where the dimensions of the vectors are to be understood
from the context. We use v > 0 to denote a positive vector, i.e., each entry
of v is positive.

4A vector is called a stochastic vector if its entries are all nonnegative
and sum to one.
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It is worth emphasizing that S(t) is independent of x(t). The
following lemma guarantees that S(t) is well defined.

Lemma 2: Suppose that {G(t)} is uniformly strongly
connected, then there exists a constant η > 0 such that
n ≥ yi(t) ≥ η for all i and t.

The lemma is essentially the same as Corollary 2 (b)
in [5], which further proves that if {Gt} is uniformly strongly
connected by sub-sequences of length L, then η ≥ 1

nnL .
Define zi(t) = xi(t)/yi(t) for each i ∈ V . Then,

zi(t+ 1) =
xi(t+ 1)

yi(t+ 1)
=

∑n
j=1 wij(t)xj(t)∑n
j=1 wij(t)yj(t)

=
n∑

j=1

wij(t)xj(t)∑n
k=1 wik(t)yk(t)

=
n∑

j=1

[
wij(t)yj(t)∑n

k=1 wik(t)yk(t)

]
zj(t)

=
n∑

j=1

sij(t)zj(t), (13)

which implies that z(t + 1) = S(t)z(t) where z(t)
∆
=

[z1(t) · · · zn(t)]
⊤ ∈ IRn×d. Actually S(t) is always a

stochastic matrix, as we will show shortly.
Similar to the discrete-time state transition matrix, let

ΦW (t, τ) = W (t − 1) · · ·W (τ) with t > τ , and similarly,
let ΦS(t, τ) = S(t− 1) · · ·S(τ) with t > τ .

Lemma 3: For i, j ∈ V and t > τ ≥ 0, there holds
[ΦS(t, τ)]ijyi(t) = [ΦW (t, τ)]ijyj(τ).

Proof of Lemma 3: The claim will be proved by induction
on t. For the basis step, suppose that t = τ + 1. Then,
from (12), [ΦS(τ + 1, τ)]ij = sij(τ) =

yj(τ)wij(τ)
yi(τ+1) =

yj(τ)
yi(τ+1) [ΦW (τ + 1, τ)]ij . Thus, in this case the claim is
true. For the inductive step, suppose that the claim holds for
t = h > τ , where h is a positive integer, and that t = h+1.
Then,

[ΦS(h+ 1, τ)]ij =
n∑

k=1

sik(h) · [ΦS(h, τ)]kj

=
n∑

k=1

wik(h)yk(h)

yi(h+ 1)
· yj(τ)
yk(h)

[ΦW (h, τ)]kj

=
yj(τ)

yi(h+ 1)

n∑
k=1

wik(h) · [ΦW (h, τ)]kj

=
yj(τ)

yi(h+ 1)
[ΦW (h+ 1, τ)]ij ,

which establishes the claim by induction.

More can be said.

Lemma 4: Suppose that {G(t)} is uniformly strongly
connected. Then, for any fixed τ ≥ 0, S(t) · · ·S(τ +1)S(τ)
will converge to 1

n1y
⊤(τ).

Proof of Lemma 4: From Lemma 1, for any given τ ≥
0, there holds limt→∞[ΦW (t, τ)] = v(τ,∞)1⊤, with the
understanding that v(τ,∞) is not necessarily a constant
vector. From Lemma 3 and the fact that y(t) = ΦW (t, τ)y(τ)

for all t > τ , for any i, j ∈ V we have

lim
t→∞

[ΦS(t, τ)]ij

= lim
t→∞

yj(τ)

yi(t)
[ΦW (t, τ)]ij = lim

t→∞

yj(τ)[ΦW (t, τ)]ij∑n
k=1[ΦW (t, τ)]ikyk(τ)

=
yj(τ) limt→∞[ΦW (t, τ)]ij

limt→∞
∑n

k=1[ΦW (t, τ)]ikyk(τ)

=
yj(τ)vi(τ,∞)∑n
k=1 vi(τ,∞)yk(τ)

(a)
=

yj(τ)∑n
k=1 yk(τ)

(b)
=

yj(τ)

n
,

where in (a) we used the fact that v(τ,∞) > 0 by Lemma 1
and in (b) we used the fact that

∑n
i=1 yi(t) = n for all

t ≥ 0.

Proposition 1: Suppose that {G(t)} is uniformly strongly
connected. Then, for any fixed τ ≥ 0, S(t) · · ·S(τ +1)S(τ)
will converge to 1

n1y
⊤(τ) exponentially fast as t → ∞.

Proof of Proposition 1: The proof can be found in [26].

The proposition immediately implies the following results.

Corollary 1: Suppose that {G(t)} is uniformly strongly
connected. Then, S(t) · · ·S(1)S(0) will converge to 1

n11
⊤

exponentially fast as t → ∞.

Proof of Corollary 1: The corollary is a special case of
Proposition 1 by setting τ = 0.

Corollary 2: If {G(t)} is uniformly strongly connected,
then xi(t)/yi(t) for all i ∈ V converges to 1

n

∑n
i=1 xi(0)

exponentially fast.

Proof of Corollary 2: The proof can be found in [26].

Although the proof of Corollary 2 looks more complicated
than the conventional convergence proof of the push-sum
algorithm (e.g., [3], [12], [14]), it yields the following novel
and key property of push-sum.

To proceed, we rewrite the push-sum algorithm in a
different form which directly characterizes the dynamics
of zi(t) = xi(t)/yi(t). From (12) and (13), zi(t + 1) =∑n

j=1 sij(t)zj(t) and sij(t) satisfies the following assump-
tion.

Assumption 3: There exists a constant γ > 0 such that
for all i, j ∈ V and t, sii(t) ≥ γ and sij(t) ≥ γ whenever
sij(t) > 0. For all i ∈ V and t,

∑n
j=1 sij(t) = 1.

Lemma 5: Suppose that Assumption 1 holds. Then, sij(t)
satisfies Assumption 3 for each t ≥ 0.

Proof of Lemma 5: From Assumption 1, each W (t) is
a column stochastic matrix whose diagonal entries are all
positive and wij(t) ≥ β whenever wij(t) > 0. From (12),
sij(t) > 0 only if wij(t) > 0. From Lemma 2, when
wij(t) > 0,

sij(t) =
wij(t)yj(t)

yi(t+ 1)
≥ βη

n
.

The above inequality and Assumption 1 imply that sij(t)
satisfies the first condition of Assumption 3 with γ = βη/n.
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For the second condition of Assumption 3, it is clear that
n∑

j=1

sij(t) =
n∑

j=1

wij(t)yj(t)∑n
k=1 wik(t)yk(t)

= 1

for all i ∈ V and t, which completes the proof.

From Lemma 5, each S(t) is a row stochastic matrix
whose diagonal entries are all positive and whose nonzero
entries are all uniformly bounded below by some positive
number. More can be said. The following lemma shows that
each S(t) is compliant with the neighbor graph G(t).

Lemma 6: The graph of S(t) is the same as the graph of
W (t) for all t.5

Proof of Lemma 6: From (12) and Lemma 2, it is easy to
see that sij(t) > 0 if and only if wij(t), which proves the
lemma.

From (13), z(t+1) = S(t)z(t). The above lemmas imply
that the dynamics of z(t) is a nonlinear consensus process as
S(t) is dependent on z(t). Such a transition in analysis from
x(t) dynamics to z(t) dynamics has been used in [27]. To
analyze such a process, we appeal to the following concept,
which has been applied to analyze consensus processes [28],
[29] and consensus-based distributed optimization [30]. To
our knowledge, the concept has never been used to analyze
the push-sum algorithm and its applications.

Definition 2: Let {S(t)} be a sequence of stochastic ma-
trices. A sequence of stochastic vectors {π(t)} is an absolute
probability sequence for {S(t)} if π⊤(t) = π⊤(t + 1)S(t)
for all t ≥ 0.

This definition was first introduced by Kolmogorov [31].
It was shown by Blackwell [32] that every sequence of
stochastic matrices has an absolute probability sequence. In
general, a sequence of stochastic matrices may have more
than one absolute probability sequence; when the sequence
of stochastic matrices is “ergodic”,6 it has a unique absolute
probability sequence [29, Lemma 1]. It is easy to see that
when S(t) is a fixed irreducible stochastic matrix S, π(t) is
simply the normalized left eigenvector of S for eigenvalue
one, and when {S(t)} is an ergodic sequence of doubly
stochastic matrices, π(t) = (1/n)1. More can be said.

Lemma 7: (Theorem 4.8 in [28]) Let {S(t)} be a se-
quence of stochastic matrices satisfying Assumption 3. If the
graph sequence of {G(t)} is uniformly strongly connected,
then there exists a unique absolute probability sequence
{π(t)} for the matrix sequence {S(t)} and a constant πmin ∈
(0, 1) such that πi(t) ≥ πmin for all i and t.

A particular important property of the absolute probability
sequence for {S(t)} is as follows.

Proposition 2: Suppose that {G(t)} is uniformly strongly
connected. Then, the sequence of stochastic matrices {S(t)}

5The graph of an n×n matrix is a direct graph with n vertices and an arc
from vertex i to vertex j whenever the jith entry of the matrix is nonzero.

6A sequence of stochastic matrices {S(t)} is called ergodic if
limt→∞ S(t) · · ·S(τ + 1)S(τ) = 1v⊤(τ) for all τ , where each v(τ)
is a stochastic vector.

has a unique absolute probability sequence {π(t)} with
πi(t) =

yi(t)
n for all i ∈ V and t ≥ 0.

The proposition is a consequence of Lemma 1 in [29]. We
provide two alternative proofs.

Proof of Proposition 2: First, Lemma 4 shows that {S(t)}
is ergodic, so it must have a unique absolute probability
sequence {π(t)}. From Definition 2 and Lemma 4, for any
τ ≥ 0,

π⊤(τ) = π⊤(τ + 1)S(τ) = π⊤(τ + 2)S(τ + 1)S(τ)

= lim
t→∞

π⊤(t+ 1)S(t) · · ·S(τ + 1)S(τ)

= lim
t→∞

1

n
π⊤(t+ 1)1y⊤(τ) =

1

n
y⊤(τ),

which proves the statement.
Alternatively, we can also prove the proposition by show-

ing that the sequence {π(t)} with πi(t) = yi(t)
n satisfies

π⊤(t) = π⊤(t+1)S(t). To see this, from (12) and Assump-
tion 1, for j ∈ V

[π⊤(t+ 1)S(t)]j =
n∑

i=1

yi(t+ 1)

n
sij(t)

=
n∑

i=1

yi(t+ 1)

n

wij(t)yj(t)

yi(t+ 1)
=

n∑
i=1

wij(t)yj(t)

n

=
yj(t)

n
= π⊤

j (t).

This completes the proof.

Next we will appeal to this property to construct a novel
time-varying Lyapunov function for distributed convex opti-
mization which yields an improved convergence rate of the
subgradient-push algorithm.

Remark 1: Since the stochastic matrix sequence S(t) de-
fined by (12) is purely based on the yi(t) variables and
is thus independent of the xi(t) variables of the push-sum
algorithm, so its absolute probability sequence. Considering
the fact that the push-sum and subgradient-push algorithms
share the same yi(t) dynamics which is independent of their
xi(t) dynamics, all the results of {S(t)} and its absolute
probability sequence derived in this subsection also apply to
the subgradient-push algorithm. □

B. Subgradient-Push

We first rewrite the subgradient-push algorithm as follows.
From (3)–(4), we have

zi(t+ 1) =
xi(t+ 1)

yi(t+ 1)
=

∑n
j=1 wij(t)[xj(t)− α(t)gj(t)]∑n

j=1 wij(t)yj(t)

=
n∑

j=1

wij(t)[xj(t)− α(t)gj(t)]∑n
k=1 wik(t)yk(t)

=
n∑

j=1

[
wij(t)yj(t)∑n

k=1 wik(t)yk(t)

][
zj(t)− α(t)

gj(t)

yj(t)

]

=
n∑

j=1

sij(t)

[
zj(t)− α(t)

gj(t)

yj(t)

]
,
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where sij(t) is defined in (12). In addition,

z̄(t+ 1) =
1

n

n∑
i=1

zi(t+ 1)

=
1

n

n∑
i=1

n∑
j=1

sij(t)

[
zj(t)− α(t)

gj(t)

yj(t)

]
.

Define a time-varying Lyapunov function

⟨z(t)⟩ = π⊤(t)z(t).

Then, from Definition 2, we have

⟨z(t+ 1)⟩ =
n∑

i=1

πi(t+ 1)zi(t+ 1)

=
n∑

i=1

n∑
j=1

πi(t+ 1)sij(t)

[
zj(t)− α(t)

gj(t)

yj(t)

]

=
n∑

j=1

πj(t)

[
zj(t)− α(t)

gj(t)

yj(t)

]
= ⟨z(t)⟩ − α(t)

n

n∑
i=1

gi(t),

(14)

where we use the Proposition 2 in the last equality.
To prove Theorem 1, we need the following lemma.

Lemma 8: Suppose that {Gt} is uniformly strongly con-
nected by sub-sequences of length L and that ∥gi(t)∥2 is
uniformly bounded above by a positive number G for all i
and t. Then, for all t ≥ 0 and i ∈ V ,

∥∥∥zi(t+ 1)− 1

n

n∑
j=1

(xj(t)− α(t)gj(t))
∥∥∥
2

≤ 8

η
µt
∥∥∥ n∑

i=1

xi(0) + α(0)gi(0)
∥∥∥
2
+

8nG

η

t∑
s=1

µt−sα(s).

Suppose, in addition, that Assumption 2 holds. Then, for all
t ≥ 0 and i ∈ V ,

∥∥∥zi(t+ 1)− 1

n

n∑
j=1

(xj(t)− α(t)gj(t))
∥∥∥
2

≤ 8

η
µt
∥∥∥ n∑

i=1

xi(0) + α(0)gi(0)
∥∥∥
2

+
8nG

η(1− µ)

(
α(0)µt/2 + α(⌈t/2⌉)

)
.

Here η > 0 and µ ∈ (0, 1) are defined in Lemma 2 and (11),
respectively.

Proof of Lemma 8: The proof can be found in [26].

We are now in a position to prove Theorem 2.

Proof of Theorem 2: Note that for all t ≥ 0 and i ∈ V ,∥∥⟨z(t+ 1)⟩ − zi(t+ 1)
∥∥
2
+
∥∥z̄(t+ 1)− zi(t+ 1)

∥∥
2

≤
∥∥∥⟨z(t+ 1)⟩ − 1

n

n∑
k=1

(xk(t)− α(t)gk(t))
∥∥∥
2

+
∥∥∥z̄(t+ 1)− 1

n

n∑
k=1

(xk(t)− α(t)gk(t))
∥∥∥
2

+ 2
∥∥∥zi(t+ 1)− 1

n

n∑
k=1

(xk(t)− α(t)gk(t))
∥∥∥
2

=
∥∥∥ n∑

j=1

πj

(
zj(t+ 1)− 1

n

n∑
k=1

(xk(t)− α(t)gk(t))
)∥∥∥

2

+
∥∥∥ n∑

j=1

1

n

(
zj(t+ 1)− 1

n

n∑
k=1

(xk(t)− α(t)gk(t))
)∥∥∥

2

+ 2
∥∥∥zi(t+ 1)− 1

n

n∑
k=1

(xk(t)− α(t)gk(t))
∥∥∥
2

≤
n∑

j=1

πj(t)
∥∥∥zj(t+ 1)− 1

n

n∑
k=1

(xk(t)− α(t)gk(t))
∥∥∥
2

+
n∑

j=1

1

n

∥∥∥zj(t+ 1)− 1

n

n∑
k=1

(xk(t)− α(t)gk(t))
∥∥∥
2

+ 2
∥∥∥zi(t+ 1)− 1

n

n∑
k=1

(xk(t)− α(t)gk(t))
∥∥∥
2

≤ 32

η
µt
∥∥∥ n∑

i=1

xi(0) + α(0)gi(0)
∥∥∥
2
+

32nG

η

t∑
s=0

µt−sα(s),

(15)

where we used Lemma 8 in the last inequality. Similarly, in
the case when {α(t)} satisfies Assumption 2,∥∥⟨z(t+ 1)⟩ − zi(t+ 1)

∥∥
2
+
∥∥z̄(t+ 1)− zi(t+ 1)

∥∥
2

≤ 32

η
µt
∥∥∥ n∑

i=1

xi(0) + α(0)gi(0)
∥∥∥
2

+
32nG

η(1− µ)

(
α(0)µt/2 + α(⌈t/2⌉)

)
. (16)

From (14), ∥∥⟨z(t+ 1)⟩ − z∗
∥∥2
2

=
∥∥∥⟨z(t)⟩ − z∗ − α(t)

n

n∑
i=1

gi(t)
∥∥∥2
2

≤
∥∥⟨z(t)⟩ − z∗

∥∥2
2
+
∥∥∥α(t)

n

n∑
i=1

gi(t)
∥∥∥2
2

− 2
(
⟨z(t)⟩ − z∗

)⊤(α(t)
n

n∑
i=1

gi(t)
)

≤
∥∥⟨z(t)⟩ − z∗

∥∥2
2
+ α2(t)G2

− 2
(
⟨z(t)⟩ − z∗

)⊤(α(t)
n

n∑
i=1

gi(t)
)
. (17)
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Moreover,(
⟨z(t)⟩ − z∗

)⊤
gi(t)

=
(
⟨z(t)⟩ − zi(t)

)⊤
gi(t) +

(
zi(t)− z∗

)⊤
gi(t)

≥ fi(zi(t))− fi(z
∗)−G

∥∥⟨z(t)⟩ − zi(t)
∥∥
2

(18)

≥ fi(z̄(t))− fi(z
∗)−G

∥∥⟨z(t)⟩ − zi(t)
∥∥
2

−G
∥∥z̄(t)− zi(t)

∥∥
2
, (19)

where we used (1) and (2) in deriving (18), and made use
of (2) to get (19). Combining (17) and (19),∥∥⟨z(t+ 1)⟩ − z∗

∥∥2
2

≤
∥∥⟨z(t)⟩ − z∗

∥∥2
2
+ α2(t)G2 − 2α(t)

(
f(z̄(t))− f(z∗)

)
+

2Gα(t)

n

n∑
i=1

(∥∥⟨z(t)⟩ − zi(t)
∥∥
2
+
∥∥z̄(t)− zi(t)

∥∥
2

)
,

which implies that

2α(t)
(
f(z̄(t))− f(z∗)

)
≤
∥∥⟨z(t)⟩ − z∗

∥∥2
2
+ α2(t)G2 −

∥∥⟨z(t+ 1)⟩ − z∗
∥∥2
2

+
2Gα(t)

n

n∑
i=1

(∥∥⟨z(t)⟩ − zi(t)
∥∥
2
+
∥∥z̄(t)− zi(t)

∥∥
2

)
.

Summing this relation over time, it follows that
t∑

τ=0

2α(τ)
(
f(z̄(τ))− f(z∗)

)
≤
∥∥⟨z(0)⟩ − z∗

∥∥2
2
−
∥∥⟨z(t+ 1)⟩ − z∗

∥∥2
2
+

t∑
τ=0

α2(τ)G2

+
t∑

τ=0

2Gα(τ)

n

n∑
i=1

(∥∥⟨z(τ)⟩ − zi(τ)
∥∥
2
+
∥∥z̄(τ)− zi(τ)

∥∥
2

)
.

Note that

f

(∑t
τ=0 α(τ)z̄(τ)∑t

τ=0 α(τ)

)
− f(z∗)

≤
∑t

τ=0 2α(τ)(f(z̄(τ))− f(z∗))∑t
τ=0 2α(τ)

.

It follows that

f

(∑t
τ=0 α(τ)z̄(τ)∑t

τ=0 α(τ)

)
− f(z∗)

≤
∥⟨z(0)⟩ − z∗∥22 − ∥⟨z(t+ 1)⟩ − z∗∥22 +

∑t
τ=0 α

2(τ)G2∑t
τ=0 2α(τ)

+

∑t
τ=0

2Gα(τ)
n

∑n
i=1(∥⟨z(τ)⟩ − zi(τ)∥2 + ∥z̄(τ)− zi(τ)∥2)∑t

τ=0 2α(τ)

≤
∑t

τ=0 Gα(τ)
∑n

i=1(∥⟨z(τ)⟩ − zi(τ)∥2 + ∥z̄(τ)− zi(τ)∥2)
n
∑t

τ=0 α(τ)

+
∥⟨z(0)⟩ − z∗∥22 +

∑t
τ=0 α

2(τ)G2∑t
τ=0 2α(τ)

. (20)

We next consider the time-varying and fixed stepsizes
separately.

1) If the stepsize α(t) is time-varying and satisfies As-
sumption 2, then combining (16) and (20),

f

(∑t
τ=0 α(τ)z̄(τ)∑t

τ=0 α(τ)

)
− f(z∗)

≤
∥⟨z(0)⟩ − z∗∥22 +G2

∑t
τ=0 α

2(τ)∑t
τ=0 2α(τ)

+
Gα(0)

∑n
i=1(∥⟨z(0)⟩ − zi(0)∥2 + ∥z̄(0)− zi(0)∥2)

n
∑t

τ=0 α(τ)

+
32G

η

∥∥∥ n∑
i=1

xi(0) + α(0)gi(0)
∥∥∥
2

∑t−1
τ=0 α(τ)µ

τ∑t
τ=0 α(τ)

+
32nG2

η(1− µ)

∑t−1
τ=0 α(τ)(α(0)µ

τ/2 + α(⌈ τ
2 ⌉))∑t

τ=0 α(τ)
.

From Proposition 2 and yi(0) = 1, πi(0) =
1
n for all i ∈ V ,

which implies that ⟨z(0)⟩ = 1
n

∑n
i zi(0) = z̄(0). We thus

have derived (5).
2) If the stepsize is fixed and α(t) = 1/

√
T for all t ≥ 0,

then from (20),

f

(∑T−1
τ=0 z̄(τ)

T

)
− f(z∗)

≤
G
∑T−1

τ=0

∑n
i=1(∥⟨z(τ)⟩ − zi(τ)∥2 + ∥z̄(τ)− zi(τ)∥2)

nT

+
∥⟨z(0)⟩ − z∗∥22 +G2

2
√
T

(a)

≤
G
∑n

i=1(∥⟨z(0)⟩ − zi(0)∥2 + ∥z̄(0)− zi(0)∥2)
nT

+
∥⟨z(0)⟩ − z∗∥22 +G2

2
√
T

+
32nG2

Tη

T−2∑
τ=0

τ∑
s=0

µτ−s 1√
T

+
32G

Tη

∥∥∥ n∑
i=1

xi(0) +
1√
T
gi(0)

∥∥∥
2

T−2∑
τ=0

µτ

≤
G
∑n

i=1(∥⟨z(0)⟩ − zi(0)∥2 + ∥z̄(0)− zi(0)∥2)
nT

+
∥⟨z(0)⟩ − z∗∥22 +G2

2
√
T

+
32nG2

√
Tη(1− µ)

+
32G

Tη(1− µ)

∥∥∥ n∑
i=1

xi(0) +
1√
T
gi(0)

∥∥∥
2
,

where we used (15) in (a). Since ⟨z(0)⟩ = 1
n

∑n
i zi(0) =

z̄(0), we have derived (6).

We next prove Theorem 1.

Proof of Theorem 1: We consider the time-varying and
fixed stepsizes separately.

1) If the stepsize α(t) is time-varying and satisfies As-
sumption 2, then

lim
t→∞

∥⟨z(0)⟩ − z∗∥22 +
∑t

τ=0 α
2(τ)G2∑t

τ=0 2α(τ)
= 0,

lim
t→∞

∑n
i=1(∥⟨z(0)⟩ − zi(0)∥2 + ∥z̄(0)− zi(0)∥2)∑t

τ=0 α(τ)
= 0.
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Note that
∑t−1

τ=0 α(τ)µ
τ ≤ α(0)

1−µ and

t−1∑
τ=0

α(τ)
(
α(0)µτ/2 + α(⌈τ

2
⌉)
)
≤ α2(0)

1− µ1/2
+

t−1∑
τ=0

α2(⌈τ
2
⌉).

It follows that

lim
t→∞

∑t−1
τ=0 α(τ)µ

τ∑t
τ=0 α(τ)

= 0,

lim
t→∞

∑t−1
τ=0 α(τ)(α(0)µ

τ/2 + α(⌈ τ
2 ⌉))∑t

τ=0 α(τ)
= 0.

From (5),

lim
t→∞

f

(∑t
τ=0 α(τ)z̄(τ)∑t

τ=0 α(τ)

)
− f(z∗) = 0.

2) If the stepsize is fixed and α(t) = 1/
√
T for all t ≥ 0,

then from (6),

f

(∑T−1
τ=0 z̄(τ)

T

)
− f(z∗) ≤ O

( 1√
T

)
.

This completes the proof.

We finally prove Theorem 3.

Proof of Theorem 3: The proof can be found in [26].

IV. CONCLUSION

The well-know push-sum based subgradient algorithm for
distributed convex optimization over unbalanced directed
graphs has been revisited. A novel analysis tool has been
proposed, which improves the convergence rate of the
subgradient-push algorithm from O(ln t/

√
t) to O(1/

√
t),

which is the same as that of the single-agent subgradient
method and thus optimal. As a future work, the proposed tool
is expected to be applicable to analyze other push-sum based
algorithms and improve/simplify their convergence analyses,
for example, DEXTRA [15] and Push-DIGing [17]. Another
future direction is to extend the proposal tool to push-sum
based distributed algorithms with communication delays and
asynchronous updating.
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