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Resilient Distributed Optimization*

Jingxuan Zhu Yixuan Lin

Abstract— This paper considers a distributed optimization
problem in the presence of Byzantine agents capable of intro-
ducing untrustworthy information into the communication net-
work. A resilient distributed subgradient algorithm is proposed
based on graph redundancy and objective redundancy. It is
shown that the algorithm causes all non-Byzantine agents’ states
to asymptotically converge to the same optimal point under
appropriate assumptions. A partial convergence rate result is
also provided.

I. INTRODUCTION

Distributed optimization has attracted considerable atten-
tion and achieved remarkable success in both theory and
practice. The distributed convex optimization problem was
first studied in [2] where a distributed subgradient algorithm
was proposed. After this, various distributed optimization
algorithms have been crafted and studied; see survey papers
[3]-[5]. Distributed optimization techniques are also widely
applied to decentralized deep learning [6].

Information exchange between neighboring agents is nec-
essary for a multi-agent network for distributed optimiza-
tion. However, agents’ states may be corrupted and they
may not adhere to the designed algorithm due to faulty
processes or external attacks. An agent is called Byzantine
if it updates its state in an arbitrary, unknown manner, and
can send conflicting values to different neighbors [7]. Such
attacking agents can know global information of the network,
play arbitrarily and strategically, and even be coordinated.
Consider a network of agents in which Byzantine agents
exist. An ideal resilient algorithm is the one which can
lead non-Byzantine (or normal) agents to cooperatively solve
the corresponding distributed optimization problem in the
presence of Byzantine agents as if they do not exist. Such
a resilient algorithm is highly desirable for the safety and
security of multi-agent systems as faulty processes and
external attacks are inevitable.

*Proofs of the main results in this paper are omitted due to space
limitations; they can be found in [1] and will be included in an expanded
version of the paper.
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Resilient distributed optimization has recently received
increasing attention, probably originating from the work of
[8]. Almost all the existing works cannot guarantee full
resilience; what they can guarantee is all normal agents’
states converge to a bounded neighborhood of the desired
optimal point whose bound is not controllable [9]-[13], or
an optimal point of an unspecified convex combination of all
normal agents’ objective functions [8], [14], [15], or a convex
combination of all normal agents’ local optimal points [16].
The only exceptions are [17]-[19] in which the underlying
communication graph is assumed to be a complete graph,
namely, each agent is allowed to communicate with all other
agents. All [17]-[19] rely on the idea of “objective function
redundancy”. The idea has also been applied to the federated
setting and achieved full resilience [20], [21]. In the federated
setting, a central coordinator agent is able to communicate
with all worker agents, which is more or less equivalent to a
complete graph in the distributed setting (or sometimes called
decentralized setting). It is worth noting that [8], [14]-[16],
[19] only consider special one-dimensional optimization.

Resilient distributed optimization is also related to resilient
federated optimization/learning in the coordinator-workers
setting (e.g., [21]-[23]), which has attracted increasing atten-
tion recently. The key problem is how the central coordinator
aggregates the received information to eliminate or attenuate
the effects of Byzantine worker agents. Various Byzantine-
resilient information aggregation methods have been pro-
posed for high-dimensional optimization/learning, focusing
on stochastic gradient descent (SGD); see an overview of
recent developments in this area in [24]. It is doubtable that
these methods can be applied to achieve full resilience in the
distributed setting.

From the preceding discussion, and to the best of our
knowledge, a fully resilient distributed optimization algo-
rithm for general non-complete communication graphs does
not exist, even for one-dimensional optimization problems.
This gap is precisely what we study in this paper. We
consider a distributed convex optimization problem in the
presence of Byzantine agents and propose a fully resilient
distributed subgradient algorithm based on the ideas of
objective redundancy (cf. Definition 1) and graph redun-
dancy (cf. Definition 2). The algorithm is shown to cause
all non-Byzantine agents’ states to asymptotically converge
to the same desired optimal point under appropriate as-
sumptions. The proposed algorithm works theoretically for
multi-dimensional optimization but practically not for high-
dimensional optimization, as will be explained and discussed
in the concluding remarks.

This work is motivated by two recent ideas. The first is the
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quantified notion of objective function redundancy proposed
in [25] where a couple of different definitions of objective
redundancy are studied, based on which fully resilient dis-
tributed optimization algorithms have been crafted either for
a federated setting [20], [21], [25] or a distributed setting
over complete graphs [17]-[19]; such redundancy has been
shown necessary for achieving full resilience in multi-agent
optimization [20]. We borrow one notation in [25] and further
develop it. It is worth emphasizing that the results in [17]—
[19] rely on objective redundancy among non-Byzantine
agents, whereas ours depend on objective redundancy among
all agents. This subtle difference is important for equipping
a multi-agent network with a certain level of redundancy at
a network design stage as which agents are non-Byzantine
cannot be assumed a priori.

The second idea is so-called “Byzantine vector consensus”
[26] whose goal is, given a set of both Byzantine and non-
Byzantine vectors, to pick a vector lying in the convex hull
of the non-Byzantine vectors, based on Tverberg’s theorem
[27], [28]. The idea has been very recently improved in [29]
which can be used to achieve resilient multi-dimensional
consensus exponentially fast. Exponential consensus is crit-
ical in the presence of diminishing disturbance [30]. We are
prompted by this improved idea and utilize a resilient vector
picking process, simplified from that of [29, Algorithm 1].
There are other recent approaches appealing to the idea
of centerpoint [31], [32]. We expect that these approaches
can also be applied to resilient optimization, provided that
exponential consensus is guaranteed, e.g., in [32].

II. PROBLEM FORMULATION

Consider a network consisting of n agents, labeled 1
through n for the purpose of presentation. The agents are not
aware of such global labeling, but can differentiate between
their neighbors. The neighbor relations among the n agents
are characterized by a directed graph G = (V,£) whose
vertices correspond to agents and whose directed edges (or
arcs) depict neighbor relations, where V = {1,...,n} is
the vertex set and &€ C V x V is the directed edge set.!
Specifically, agent j is an neighbor of agent ¢ if (j,4) € &.
Each agent can receive information from its neighbors. Thus,
the directions of edges represent the directions of information
flow. We use N; to denote the neighbor set of agent 4,
excluding i, i.e.,, N; = {j € V: (j,4i) € E}.

Each agent ¢ € V has a “private” convex (not necessarily
differentiable) objective function, f; : R? — IR, only known
to agent ¢. There exist Byzantine agents in the network
which are able to transmit arbitrary values to others and
capable of sending conflicting values to different neighbors
at any time. The set of Byzantine agents is denoted by F
and the set of normal (non-Byzantine) agents is denoted
by H. Which agents are Byzantine is unknown to normal
agents. It is assumed that each agent may have at most (8
Byzantine neighbors.

'We use A C B to denote that A is a subset of .

The goal of the normal agents is to cooperatively minimize
the objective functions

fu(@) =" fix) and  f(z) =) fi(x).
i€H i€y
We will show that minimizing the above two objective
functions can be achieved simultaneously with appropriate
redundancy in objective functions (cf. Definition 1 and
Corollary 1). It is assumed that the set of optimal solutions
to f, denoted by X'*, is nonempty and bounded.

Since each f; is not necessarily differentiable, the gradient
descent method may not be applicable. Instead, the subgra-
dient method [33] can be applied. For a convex function
h:RY — IR, a vector g € R is called a subgradient of h
at point z if

h(y) > h(z) + g (y— =) forall ye R (1)

Such a vector g always exists and may not be unique. In the
case when h is differentiable at point z, the subgradient g is
unique and equals Vh(z), the gradient of h at x. Thus, the
subgradient can be viewed as a generalization of the notion
of the gradient. From (1) and the Cauchy-Schwarz inequality,
h(y)—h(x) > —G||ly—=x||, where G is an upper bound for the
2-norm of the subgradients of h at both x and y. We will use
this fact without special mention in the sequel. Throughout
this paper, we use || - || for the 2-norm.

The subgradient method was first proposed in [33] and the
first distributed subgradient method was proposed in [2] for
undirected graphs. Its extension to directed graphs has been
studied in [34] and recently further analyzed in [35].

A. Redundancy

To make the resilient distributed optimization problem
solvable, certain redundancy is necessary. We begin with
objective redundancy.

Definition 1: An n-agent network is called k-redundant,
k € {0,1,...,n — 1}, if for any subsets S;,Ss C V with
|S1]| = |S2| = n — k, there holds?
arg min Z fi(z) = arg min Z fi(x).
Y ooies Ties,
The above definition of objective redundancy originated
in [25, Definition 2]. It has the following properties.

Lemma 1: If an n-agent network is k-redundant, then for

any subsets S, £ C V with |S| =n—k and |£| > n —k,
arg min Z fi(xz) = arg min Z fi(x).
¥ des Y dec

Proof of Lemma 1: Let Z = argmin, ), fi(x) and
Q={P P C L, |P| = n — k}. From Definition 1,
argmin, Y . p fi(r) = Z for any P € Q. For each i € L,
let Q;={P : PCL, |Pl=n—k, i€ P} Itis easy to
see that for each i € £,2

oA lf-1
Qil=q= (nkl)

2We use |S| to denote the cardinality of a set S.
3 (Z) denotes the number of k-combinations from a set of n elements.
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Then,

SN filw) =q)_ filx). )

PeQiceP i€L
Pick any z € Z. From (2),

ming Y fi(e) =min Y Y fi(e) > Y miny_ fi(z)

€L PeQicP PeQ i€P
=D D Jix) =a3 fi2),
PeQieP €L

which implies that z € argmin, )., fi(z), and thus Z C
argmin, 3, fi().

To prove the lemma, it is sufficient to prove that
argmin, Y. fi(x) C Z. Suppose that, to the contrary,
there exists a y such that y € argmin, ), . fi(z) and
y & Z. Since y, z € argmin,, ), - fi(x), from (2),

> A0 =X f) =7 XY ()

€L €L PeQicP
1
<= > Ry = fily),
q PeEQcP €L

which is impossible. Thus, argmin, ... fi(z) CZ. =

The following corollaries are immediate consequences of
Lemma 1.

Corollary 1: If an n-agent network is k-redundant, then
for any subsets S C V with |S| > n — k,

arg minz filx) = X",
¥ es
Corollary 2: If an n-agent network is (k 4+ 1)-redundant
with k > 0, then it is k-redundant.

We also need redundancy in graph connectivity.

A vertex i in a directed graph G is called a root of G if
for each other vertex j of G, there is a directed path from
i to j. Thus, ¢ is a root of G if it is the root of a directed
spanning tree of G. We will say that G is rooted at 4 if 7 is
in fact a root. It is easy to see that a rooted graph G has a
unique strongly connected component whose vertices are all
roots of G.

Definition 2: An (r, s)-reduced graph of a directed graph
G with n vertices, with r,s > 0 and r +s < n — 1, is
a subgraph of G obtained by first picking any vertex subset
S C V with |S§| = n—r and then removing from each vertex
of the subgraph induced by S, Ggs, arbitrary s incoming
edges in Gs. A directed graph G is called (r, s)-resilient if
all its (r, s)-reduced graphs are rooted.

It is easy to see that if a directed graph is (r1, s1)-resilient,
then for any nonnegative 7o < r; and so < s, the graph is
also (rg, s9)-resilient.

In the case when r = s = f, the resilient graph is
equivalent to rooted “reduced graph” in [36] which was
used to guarantee resilient one-dimension consensus; see
Definition 4 and Theorem 2 in [36]. Thus, the definition
here can be viewed as a simple generalization of the rooted
“reduced graph”.

Definition 2 implicitly requires that each vertex of an
(r, s)-resilient graph have at least r + s neighbors. More can
be said.

Lemma 2: If a directed graph is (r, s)-resilient, then each
of its vertices has at least (r 4+ s + 1) neighbors.

Proof of Lemma 2: Suppose that, to the contrary, there
exists a vertex ¢ in G whose |N;| <r+s. If V| <r+s, it
is easy to see that G does not satisfy Definition 2. We thus
consider the case when |N;| = r + s. Let R be the set of
arbitrary r neighbors of vertex i, and S = V\ R, where V is
the vertex set of G.* It is clear that |S| = n — r, and in the
subgraph induced by S, G, vertex ¢ has exactly s neighbors.
Then, after vertex ¢ removes s incoming edges in Gs, and
each out-neighb()r5 of vertex ¢ in Gg, if any, removes its
incoming edge from ¢, vertex ¢ becomes isolated. But it is
impossible for an (r, s)-resilient graph. [ |

III. ALGORITHM

To describe our algorithm, we need the following notation.

Let A; denote the collection of all those subsets of A
whose cardinality is (d + 1) + 1. It is obvious that the
number of all such subsets is

aé( IVl )
! (d+1)B+1)’

and label them A;1,..., A;,. For each j € {1,...,a;}, let
B;; denote the collection of all those subsets of A;; whose
cardinality is df + 1. For any subset of agents S C V, let
Cs(t) denote the convex hull of all z;(¢), i € S.

Algorithm: At each discrete time ¢ € {0,1,2,...}, each
agent ¢ first picks an arbitrary point

3)

i) e () Cs(t) )
SeB;j;
foreach j € {1,...,a;}, and then updates its state by setting
1 X
wlt) = 1 (wilt) + ; vi®), 6
zi(t+1) = vi(t) — at)gi(vi(t)), (6)

where a(t) is the stepsize and g;(-) is a subgradient of f;(-).

In the special one-dimensional case with d = 1, it is
not hard to check that the steps (4) and (5) simplifies to
the resilient scalar consensus algorithm in [36], which is
essentially equivalent to the trimmed mean method and has
been improved in [37].

The convergence and correctness of the proposed algo-
rithm rely on the following assumptions.

Assumption 1: X* has a nonempty interior.

It is easy to see that Assumption 1 implies that f(z) is
differentiable at any x € int(X'™*), where int(-) denotes the
interior of a set. More can be said.

“We use A \ B to denote the set of elements that are in .A but not in B.
5 A vertex i is called an out-neighbor of vertex 7j if the latter is a neighbor
of the former.
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Lemma 3: Under Assumption 1, if the n-agent network
is k-redundant with & > 1, then f;(z) is differentiable at x
with V f;(z) =0 for all i € V and z € int(X™).

Proof of Lemma 3: Since int(X™*) is nonempty, for any
xz* € int(X*), there exist a positive number 7 and an open
ball in int(X*) centered at x* with radius r, denoted as
B(z*,r) C int(X*). Let h; be a vector in IR? whose jth
entry is € and the remaining entries all equal zero. Since
x* + h; € B(xo,r) C int(X™*) for sufficiently small e

0 0wy o [+ hy) — fz¥)
%jf(z ) = lim ]6
- lg% Y iev(fila® Jrehj) — fi(z")) —0.

For each i € V, since f;(x) is convex, both

o B R = fET) S hy) — i)

e—0— € e—0t €
exist and

lim fi(z™ + hy) — fi(z") < lim filz* + hy) — fi(z™)
e—0— € e—0t €

for all j € {1,...

> lim

,d} [38, Theorem 24.1]. It follows that
fe(@® + hy) — fr(z¥)

e—0— €
key
* N *
< i TR+ hy) — fi(z)
e—0t €
key

Note that from (7),

> lim

(" + hy) — fu(a")

e—0— €
kev
lim Ju(@* + hy) — fk(ﬁﬂ*)'
e—0t €
kev
Thus,
i £ )~ F@) oy BET R = fileT)
e—0~ € e—0t €
ie., Ofi(z*)/Ox; exists for all i € V and j € {1,...,d}.

To proceed, let hi(z) = > 4cy gy fu(x) for all i €
V. From Corollary 1, argmin, h;(z) = X*. Since z* €
int(X*), both f(x) and h;(z) are differentiable at x*,
implying that %(x*) = gh (z*) = 0 for all ¢ € V and
j € {1, ,d}. Since fi(z) = f(z) = hile), 2(a%) =0
for all ¢ € V and j € {1,...,d}. Note that ‘this holds
for all 2* € int(X™*). From [39, Section 8.4.2], fi;(z) is
differentiable at x* with V f;(z*) = 0 for all 1 € V. [ |

Lemma 3 has the following important implication.

Corollary 3: Under Assumption 1, if the n-agent network
is k-redundant with £ > 1, then for all 7 € V),

X* C argmin f;(x).
x

Corollary 3 immediately implies that

Margmin f(r) = ¥

i€y

Proof of Corollary 3: Suppose that, to the contrary, there
exist * € X* and ¢ € V such that * ¢ argmin, f;(z).
Pick a z € int(X™*). From Lemma 3, z € argmin, f;(z).
It is then clear that f;(z*) > fi(z). Let hi(z) =
> kev, ki Jk(x). From Corollary 1, argmin, h;(z) = X,
and thus h;(z*) = h;(2). It follows that f(z*) = f;(x*) +
hi(z*) > fi(z) + hi(z) = f(z), which contradicts the fact
that x* € X'*. |

Assumption 2: The subgradients of all f;, ¢ € V, are
uniformly bounded, i.e., there exists a positive number D
such that ||g;(z)|| < D for all i € V and = € R".

Assumption 3: The step-size sequence {a(t)} is posi-
tive, non-increasing, and satisfies Y ,o,a(t) = oo and

e a?(t) < oo

The above two assumptions are standard for subgradient
methods.

To state our main results, we need the following concepts.
For a directed graph G, we use R, ;(G) to denote the set
of all (r, s)-reduced graphs of G. For a rooted graph G, we
use x(G) to denote the size of the unique strongly connected
component whose vertices are all roots of G; in other words,
%(G) equals the number of roots of G. For any (r, s)-resilient
graph G, let

Ko (G) 2

min

H).
HeR, s (G) K( )

which is well-defined and denotes the smallest possible
number of roots in any (7, s)-reduced graphs of G.

Theorem 1: Under Assumptions 1-3, if G is (5,dB)-
resilient and the n-agent network is (n — kg q3(G))-
redundant, then all z;(t), ¢ € H will asymptotically reach
a consensus at a point in X'*.

The following example shows that (n — kg qs(G))-
redundancy is necessary. For simplicity, set d = 1. Consider
a 4-agent network whose neighbor graph is the 4-vertex
complete graph C, which is (1,1)-resilient. Suppose that
agent 4 is Byzantine and the other three are normal. It is
possible that, with a carefully crafted attack strategy of the
Byzantine agent, the three normal agents update their states
mathematically equivalent to the case as if their neighbor
graph is the 3-vertex (1,1)-reduced graph with the arc set
{(1,2),(1,3),(2,3)}, which is rooted (cf. Lemma 6 in [1]).
In this case, since vertex 1 is the only root and agent 1 does
not have any neighbor, it follows the single-agent subgradient
algorithm, and thus its state will converge to a minimum
point of fi(z), denoted x*. Since all normal agents will
eventually reach a consensus (cf. Lemma 9 in [1]), both
states of agents 2 and 3 will converge to x*. To guarantee the
resilient distributed optimization problem is solvable in this
case, there must hold that z* € arg min,, f;(x), ¢ € {1,2,3},
which implies that the network needs to be 3-redundant. It
is easy to see that k1 1(C) =1, and thus n — K1 1(G) = 3.

Theorem 1 shows that the proposed algorithm achieves full
resiliency. We next partially characterize the convergence rate
of the algorithm.
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Theorem 2: Under Assumptions 1 and 2, if G is (3, df)-
resilient, the n-agent network is (n — kg 43(G))-redundant,
and a(t) = 1/V/T for T > O steps, i.e., t € {0,1,...,T—1},
then there exist a subset of normal agents S C H with |S| >
ka,43(G), a positive constant C' > 1, and a time subsequence
T c{0,1,...,T — 1} with |T| > T/C such that for any
j € H and z* € X*,
Zfz(Zteij )

7]

€S

> filat

=)

<0(—=). ®
i€S \/T

The existing distributed convex optimization litera-
ture (without Byzantine agents) typically characterizes
convergence rates by bounding the difference between
Siev fil Zt o ' 2:(t)) and > icy fi(z*). The above the-
orem can be viewed as a “partial” convergence rate result
in that it only reckons a subset S of normal agents and
a subsequence 7 in a finite time horizon. Notwithstanding
this, it is worth noting that min ) ;s fi(x) is equivalent to
min )., fi(z) in the setting here with Byzantine agents
(cf. Corollary 1) and that |T| O(T). Therefore, the
theorem still to some extent evaluates the convergence rate
of the resilient distributed subgradient algorithm under con-
sideration. It is well known that the optimal convergence rate
of subgradient methods for convex optimization is O(1/+/1).
Whether f3,(-) = > ;4 fi(-) converges at this optimal rate
or not, has so far eluded us.

Theorem 2 is an immediate consequence of the following
proposition.

Proposition 1: Under Assumptions 1 and 2, if G is
(B8, dB)-resilient, the n-agent network is (n — kg q3(G))-
redundant, and o(t) = 1/y/T for t € {0 1,...,T — 1},
then for any integer b € [kg q3(G),n ], there exist a
subset of normal agents S C H with b > |S| > kg .q45(G)
and a time subsequence 7 C {0,1,...,7 — 1} with || >
T/ Zk gy © ("771) such that (8) holds for any j € H
and z* €

The proposition further quantifies a trade-off between the
number of normal agents in S and the length of time sub-
sequence 7. Roughly speaking, the fewer the normal agents
involved in (8), the denser would the time subsequence be.
In the special case when b = kg q3(G), the proposition
simplifies to the following corollary.

Corollary 4: Under Assumptions 1 and 2, if G is (5, d3)-
resilient, the n-agent network is (n — kg 43(G))-redundant,
and a(t) = 1/V/T for t € {0,1,...,T — 1}, then there exist
(G)
and a time subsequence 7 C {0,1,...,7 — 1} with || >

T/ (H:;/L](:é)) such that (8) holds for any j € H and z* € X*.

IV. CONCLUDING REMARKS

This paper has proposed a distributed subgradient al-
gorithm which achieves full resilience in the presence of
Byzantine agents, with appropriate redundancy in both graph
connectivity and objective functions. The algorithm and
convergence results can be easily extended to time-varying

neighbor graphs, provided that the neighbor graph is (5, d3)-
resilient all the time. One immediate next step is to relax As-
sumption 1, possibly appealing to gradient descent for differ-
entiable convex functions. The concepts and tools developed
in the paper are expected to be applicable to other consensus-
based distributed optimization and computation problems.

Although the algorithm theoretically works for multi-
dimensional convex optimization, it has the following limi-
tations which preclude its applicability to high-dimensional
optimization. First, from Lemma 2, the algorithm implicitly
requires that each agent have at least (d+1)3+ 1 neighbors,
which is impossible for high dimensions. Second, picking a
point in the intersection of multiple convex hulls (cf. step (4)
in the algorithm) can be computationally expensive in high
dimensions, although the issue has been attenuated in [29,
Algorithm 2] and [32, Section 5.1]. Last, building (3, dS5)-
resilient graphs is not an easy job, especially when d or S is
large. Another practical issue of the algorithm, independent
of dimensions, is how to measure and establish objective
function redundancy. Studies of (r, s)-resilient graphs and k-
redundant multi-agent networks are of independent interest.

Considering that nowadays distributed optimization algo-
rithms in machine learning are frequently high-dimensional,
there is ample motivation to design fully resilient high-
dimensional distributed optimization algorithms. A future di-
rection of this paper aims to tackle this challenging problem
by combining the proposed algorithm with communication-
efficient schemes in which each agent can transmit only low-
dimensional signals. Possible approaches include entry-wise
or block-wise updating [40], [41], limited information fusion
[42], and dimension-independent filtering [17].
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