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Abstract—We examine a new measure of the explo-
ration/exploitation trade-off in reinforcement learning (RL)
called the occupancy information ratio (OIR). We derive the
Information-Directed Actor-Critic (IDAC) algorithm for solving
the OIR problem, provide an overview of the rich theory
underlying IDAC and related OIR policy gradient methods,
and experimentally investigate the advantages of such methods.
The central contribution of this paper is to provide empirical
evidence that, due to the form of the OIR objective, IDAC enjoys
superior performance over vanilla RL methods in sparse-reward
environments.

Index Terms—reinforcement learning, exploration vs. exploita-
tion, sparse rewards

I. INTRODUCTION

The field of reinforcement learning (RL) [1] has seen many
attempts to address the exploration/exploitation trade-off by in-
centivizing exploration with various types of exploration bonus
[2]–[5]. Few works have attempted to first directly quantify,
then optimize the exploration/exploitation trade-off, however.
Prior works in multi-armed bandits (MABs) and RL [6], [7]
seek to balance the goals of exploration and exploitation by
minimizing an information ratio, defined as the ratio of cost
incurred – formulated as regret – to information acquired. A
key insight of these works is that explicitly optimizing the
rate of reward accrued per quantity information acquired about
the system leads to more intelligent exploration behaviors
and improved regret. However, the same information-theoretic
quantities and assumptions on problem structure that make
their key insights possible also limit the practical utility of the
information ratios proposed in [7] as tools for guiding action-
selection. Due to these issues, the information ratio and its
proxies explored in [7] suffer from tractability and scalability
issues in realistic settings.

The occupancy information ratio (OIR) is a new RL objec-
tive that quantifies the exploration/exploitation trade-off using
the ratio of the average cost of a policy to the entropy of
its state occupancy measure. Occupancy measure entropy, or
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occupancy information, has recently been used as an optimiza-
tion objective [8]–[10] that captures the informativeness of a
policy by measuring the uniformity of its state space coverage.
The occupancy information of a policy has the important ad-
vantage of being tractable for policy gradient methods, unlike
the notions of information gain used in existing information
ratios. It is well-known that policy gradient methods [11] are
well-suited to problems with large, continuous spaces [3]–[5],
and recent progress has also been made in providing global
optimality guarantees for policy gradient methods [10], [12]–
[15]. As we will show, the OIR is amenable to policy search
in parameter space and enjoys a rich underlying theory with
convergence guarantees, providing a promising proxy for the
information ratios of [7].

Reward engineering is a challenging problem in RL with
strong connections to the exploration/exploitation dilemma.
Handcrafting dense rewards in complex environments can
rapidly become intractable, so specifying tasks using sparse
rewards is a common approach in many applications, such
as robotics [16], [17]. Using sparse rewards introduces an
exploration problem, however, as the agent is forced to system-
atically explore in order to uncover rewarding states that it can
subsequently exploit [18], [19]. As recently demonstrated in
the unsupervised learning community, intrinsic objectives like
the occupancy information used in the OIR can be leveraged to
explore effectively in the absence of rewards [9], [20], [21]. As
we will experimentally illustrate, OIR-based methods provide
a promising tool for intelligently balancing exploration with
exploitation in sparse-reward settings.

In this work, we present the OIR and derive the Information-
Directed Actor-Critic (IDAC) algorithm for optimizing it.
Moreover, we provide results showing that this objective has
no spurious extrema (Theorem 2), implying that IDAC exhibits
convergence to global optimality as described in Theorems
3 and 4. Finally, we experimentally illustrate that the OIR
yields policies that avoid spurious, suboptimal behavior in
a variety of sparse-reward gridworld environments, whereas
benchmarks exhibit a tendency to converge prematurely.

II. PROBLEM FORMULATION

In this section we describe our problem setting and formu-
late the occupancy information ratio objective. We first define



an underlying Markov decision process, then formulate the
OIR as an objective to be optimized over it.

Markov Decision Processes. Consider a finite, average-cost
MDP (S,A, p, c), where S is the state space, A is the action
space, p : S × A → D(S) is the transition probability kernel
mapping state-action pairs to distributions D(S) over S , and
c : S ×A → R+ is the cost function. Let some parameterized
family {πθ : S → D(A)}θ∈Θ of policies be given, where
Θ ⊂ Rd. For θ ∈ Θ, let dθ(s) = limt→∞ P (st = s | πθ)
denote the steady-state occupancy measure over S induced
by πθ, assumed to be independent of the initial start-state.
In addition, let λθ(s, a) = limt→∞ P (st = s, at = a | πθ)
denote the state-action occupancy measure induced by πθ over
S × A. Furthermore, let J(θ) =

∑
s dθ(s)

∑
a πθ(a|s)c(s, a)

denote the long-run average cost of using policy πθ. Finally,
define the state entropy by H(dθ) = −

∑
s dθ(s) log dθ(s).

This quantity measures how well πθ covers S in the long run.
Policy Gradients. Given an MDP (S,A, p, c)

and policy πθ, define the relative state value
function Vθ(s) =

∑∞
t=0 Eπθ

[c(s, a)− J(θ) | s0 = s]
and relative action value function Qθ(s, a) =∑∞

t=0 Eπθ
[c(s, a)− J(θ) | s0 = s, a0 = a] . We are guaran-

teed by the policy gradient theorem [11] that, under certain
conditions, ∇J(θ) =

∑
s dθ(s)

∑
aQθ(s, a)∇πθ(a|s) =

Eπθ

[
(c(s, a)− J(θ))∇ log πθ(a|s)

]
.

Occupancy Information Ratio. In this paper we consider
the OIR objective

ρ(θ) =
J(θ)

κ+H(dθ)
, (1)

where κ > −minθH(dθ) is a user-specific constant used
primarily to ensure the denominator remains positive. Given
an MDP (S,A, p, c), our goal is to find a policy parameter θ∗

such that πθ∗ minimizes (1) over the MDP, i.e., subject to its
costs and dynamics.

Remark 1. Though we stipulated that κ > −minθH(dθ) in
the definition of the OIR above, by letting κ < −maxθH(dθ),
the expected cost J(θ) of the underlying MDP is instead
treated as an expected reward to be maximized. Any algorithm
for minimizing the OIR will therefore balance maximizing the
reward J(θ) with maximizing the shifted entropy |κ+H(dθ)|,
allowing the OIR framework to accommodate rewards by
simply replacing the cost function c in the MDP with a reward
function r, and choosing κ < −maxθH(dθ).

III. ALGORITHM

In this section we derive an actor-critic scheme for maxi-
mizing (1). We assume that an average-cost MDP (S,A, p, c)
is fixed. The reward setting can be accommodated with minor
changes by Remark 1. We aim to perform policy gradient
descent on (1), yet sampling the gradient of (1) is not straight-
forward using existing tools, as obtaining stochastic estimates
of ∇ρ(θ) involves estimating

∇ρ(θ) = ∇J(θ)(κ+H(dθ))− J(θ)∇H(dθ)

[κ+H(dθ)]2
. (2)

Though we can use the classical policy gradient theorem [11]
to estimate ∇J(θ) and we can empirically estimate J(θ) and
H(dθ), it is not obvious how to estimate ∇H(dθ). Fortunately,
the following extension of the classic policy gradient theorem
allows us to tractably estimate ∇H(dθ).

Lemma 1. Let a differentiable parameterized policy
class {πθ}θ∈Θ be given and fix a policy parameter
iterate θt at time-step t. We have ∇H(dθ)

∣∣
θ=θt

=

Eπθt

[
(− log dθt(s)−H(dθt))∇ log πθt(a|s)

]
.

This result implies the following OIR policy gradient theorem:

Theorem 1. Let a differentiable parameterized policy class
{πθ}θ∈Θ and a constant κ ≥ 0 be given. We have ∇ρ(θt) =

Eπθt

[
δJt

(
κ+H(dθt)

)
− J(θt)δ

H
t

[κ+H(dθt)]
2 ∇ log πθt(a|s)

]
, (3)

where δJt = c(s, a)− J(θt), δHt = − log dθt(s)−H(dθt).

Armed with Theorem 1, we now present an actor-critic algo-
rithm for minimizing the OIR.

Information-Directed Actor-Critic. Information-Directed
Actor-Critic (IDAC) is a variant of the classic actor-critic
algorithm [22], [23] with two critics: the standard critic
corresponding to average cost J(θ), and an entropy critic
corresponding to the shadow MDPs (S,A, p, rt), t ≥ 0,
where rt(s, a) = − log dθt(s) is a “shadow reward” associated
with the gradient in Lemma 1. For ease of exposition, we
assume access to an oracle DENSITYESTIMATOR that returns
the occupancy measure dθ = DENSITYESTIMATOR(θ), given
θ ∈ Θ. See Algorithm 1 for IDAC pseudocode.

IV. THEORETICAL RESULTS

In this section we provide key results underpinning policy
search for the OIR problem Taken together, these results
demonstrate that our IDAC algorithm achieves global opti-
mality under suitable conditions.

A. Stationarity Implies Global Optimality
The OIR optimization problem enjoys a powerful hidden

quasiconcavity property: under certain conditions on the set
Θ and the policy class {πθ}θ∈Θ, stationary points of ρ(θ)
correspond to global optima of the OIR minimization problem

min
θ ∈ Θ

ρ(θ) =
J(θ)

κ+H(dθ)
. (4)

This result is surprising, as the objective function ρ(θ) is
typically highly non-convex. Let Θ ⊂ Rk be convex and let
a parametrized policy class {πθ}θ∈Θ be given. Let λ : Θ →
D(S×A) be a function mapping each parameter vector θ ∈ Θ
to the state-action occupancy measure λ(θ) := λθ := λπθ

induced by the policy πθ over S ×A. We make the following
assumptions.

Assumption 1. The set Θ is compact. For any s ∈ S, a ∈ A,
πθ(a|s) is continuously differentiable on Θ, and the Markov
chain induced by πθ on S is ergodic.



Algorithm 1 IDAC

1: Initialization: Select rollout length K, stepsize sequences
{αt}, {βt}, {τt}, parametrized policy class {πθ}θ∈Θ,
parametrized critic class {vω}ω∈Ω, and entropy additive
constant κ ≥ 0. Randomly sample s0, θ0, ωJ

0 , ω
H
0 , select

µH
−1, µJ

−1 > 0, and set t← 0.
2: repeat
3: Generate trajectory {(si, ai)}i=1,...,K using πθt
4: µJ

t = (1− τ)µJ
t−1 + τ 1

K

∑K
i=1 c(si, ai)

5: dθt = DENSITYESTIMATOR(θt)
6: µH

t = (1− τ)µH
t−1 + τ 1

K

∑K
i=1 (− log dθt(si))

7: for i = 1, . . . ,K do
8: Set vωJ

t
(sK+1) = vωH

t
(sK+1) = 0

9: δJi = c(si, ai)− µJ
t + vωJ

t
(si+1)− vωJ

t
(si)

10: δHi = − log dθt(si)− µH
t + vωH

t
(si+1)− vωH

t
(si)

11: ψi = ∇ log πθt(ai|si)
12: end for
13: ωJ

t+1 = ωJ
t + α 1

K

∑K
i=1 δ

J
i ∇vωJ

t
(si)

14: ωH
t+1 = ωH

t + α 1
K

∑K
i=1 δ

H
i ∇vωH

t
(si)

15: ∇̂ρ(θt) = 1

[κ+µH
t ]2

1
K

∑K
i=1

[
δJi

(
κ+ µH

t

)
− µJ

t δ
H
i

]
ψi

16: θt+1 = θt − β∇̂ρ(θt)
17: t← t+ 1
18: until convergence

Assumption 2. The following statements hold:
1. λ(·) gives a bijection between Θ and its image λ(Θ), and
λ(Θ) is compact and convex.
2. Let h(·) := λ−1(·) denote the inverse mapping of λ(·). h(·)
is Lipschitz continuous.
3. The Jacobian matrix ∇λ(θ) is Lipschitz on Θ.

We have the following theorem.

Theorem 2. Let Assumptions 1 and 2 hold. Let θ∗ be a
stationary point of (4), i.e., ∇ρ(θ∗) = 0. Then θ∗ is globally
optimal for (4).

This powerful hidden quasiconcavity property implies that
any policy gradient algorithm that can be shown to con-
verge to a stationary point of the OIR optimization problem
minθ∈Θ ρ(θ) in fact converges to a global optimum. This
greatly strengthens the convergence results provided next by
guaranteeing that they apply to global optima. In contrast to
the global optimality guarantees for tabular, softmax policy
search established in [10], [12]–[15] using persistent explo-
ration conditions, our result instead builds on hidden concavity
arguments from [10], which apply to parameterized policies.
However, Theorem 2 generalizes these results in important
ways. First, it applies to ratio objectives, which have not
been addressed in prior work. In addition, we establish hid-
den quasiconcavity for ratio objectives, not hidden concavity,
which requires reformulation via a novel application of the
perspective transform. Theorem 2 is thus a strict generalization
of existing results for the landscape of RL objectives.

B. Non-Asymptotic Convergence without Approximation Error

Next, we establish a non-asymptotic convergence rate for
the following projected gradient descent scheme for solving
the OIR minimization problem (4):

θt+1 = ProjΘ (θt − η∇ρ(θt)) (5)

= argmin
θ

[ρ(θt) + ⟨∇ρ(θt), θ − θt⟩+
1

2η
∥θ − θt∥2],

for a fixed stepsize η > 0, where ProjΘ denotes euclidean
projection onto Θ and the second equality holds by the
convexity of Θ. The updates (5) can be viewed as an idealized
version of the gradient descent scheme underlying IDAC. We
assume the projection operation, which is typically not needed
in practice, for the purposes of analysis.

Consider the mapping ζ : D(S × A) → R|S||A|+1, defined
to be ζ(λ) = (λ/c⊤λ, 1/c⊤λ), where c ∈ R|S||A|, c > 0 is
a vector of positive costs. Under the ergodicity conditions in
Assumption 1 and properties of entropy, minθ ρ(θ) > 0 and
maxθ ρ(θ) <∞. In addition to Assumptions 1 and 2, we will
need the following.

Assumption 3. ∇ρ(θ) is Lipschitz and L > 0 is the smallest
number such that ∥∇ρ(θ)−∇ρ(θ′)∥ ≤ L ∥θ − θ′∥ , for all
θ, θ′ ∈ Θ.

We have the following convergence rate result for (5).

Theorem 3. Let Assumptions 1, 2, and 3 hold. Let Dζ =
maxz,z′∈(ζ◦λ)(Θ) ∥z − z′∥ denote the diameter of the con-
vex, compact set (ζ ◦ λ)(Θ). Define M = maxθ∈Θ ρ(θ),
m = minθ∈Θ ρ(θ), K = max{m2L,M2m2L}, and L1 =
max{L,M2L}. Then, with η = 1/K, for all t ≥ 0,

ρ(θt)− ρ(θ∗) ≤
4M2L1ℓ

2D2
ζ

t+ 1
. (6)

Coupled with Theorem 2, this result provides a non-asymptotic
convergence rate to global optimality for algorithms solving
the OIR minimization problem (4).

C. Asymptotic Convergence with Approximation Error

We conclude this section by proving almost sure (a.s.)
convergence of IDAC to a neighborhood of a stationary point
of (4). By Theorem 2, this implies IDAC converges a.s. to
a neighborhood of a global optimum. This result is stronger
than typical asymptotic results for actor-critic schemes, which
usually guarantee convergence to a neighborhood of a local
optimum or saddle point [13], [23], [24].

We analyze the algorithm as given in Algorithm 1 under the
assumption that τt = αt, for all t ≥ 0, that K = 1, and with
the addition of a projection operation to the policy update:

θt+1 = Γ
[
θt−βt

δJt (κ+ µH
t )− µJ

t δ
H
t(

κ+ µH
t

)2 ∇ log πθt(at|st)
]
, (7)

where Γ : Rd → Θ maps any parameter θ ∈ Rd back onto
the compact set Θ ⊂ Rd of permissible policy parameters. In
addition to Assumption 1, we impose the following:



Assumption 4. Stepsizes {αt}, {βt} satisfy
∑

t αt =
∑

t βt =

∞,
∑

t α
2
t + β2

t <∞, limt
βt
αt

= 0.

Assumption 5. The value function approximators vω
are linear, i.e., vω(s) = ω⊤ϕ(s), where ϕ(s) =
[ϕ1(s) · · · ϕK(s)]⊤ ∈ RK is the feature vector associated
with s ∈ S . The feature vectors ϕ(s) are uniformly bounded
for any s ∈ S , and the feature matrix Φ = [ϕ(s)]⊤s∈S ∈
R|S|×K has full column rank. For any u ∈ RK , Φu ̸= 1,
where 1 is the vector of all ones.

We now present the main result of this subsection, which
establishes convergence of the actor-critic algorithm. Consider
the ordinary differential equation (ODE)

θ̇ = Γ̂(∇ρ(θ)), (8)

where Γ̂(∇ρ(θ)) := limη→0+ [γ (θ + η∇ρ(θ))− θ] /η. We
note here that (8) can be interpreted as the projected ODE
θ̇ = ∇ρ(θ)+ z(θ), where z(θ) is the minimal force necessary
to project θ back onto Θ.

Theorem 4. Let Z denote the set of asymptotically sta-
ble equilibria of the ODE (8). Given any ε > 0, define
Zε = {z | infz′∈Z ∥z − z′∥ ≤ ε}. For any θ ∈ Θ,
let εθ = (ϵJθ [κ+H(dθ)] − J(θ)ϵHθ )/([κ+H(dθ)]

2
). Under

Assumptions 1, 4, and 5, given any ε > 0, there exists δ > 0
such that, for {θt} obtained from Algorithm 1 with projection
(7), if supt ∥ϵθt∥ < δ, then θt → Zε a.s. as t→∞.

Combined with Theorem 2, Theorem 4 establishes almost
sure convergence of IDAC to a neighborhood of a global
optimum of the OIR minimization problem (4). Note that if
the linear approximation and features are expressive enough,
then ε will be small or even zero.

V. EXPERIMENTS

The experiments presented in this section demonstrate that,
when the reward signal is sparse, OIR methods can lead
to improved performance when compared with vanilla RL
methods. To illustrate this, we present two different sets of
experiments on gridworld environments of varying complexity.
In the first set of experiments, we compared tabular imple-
mentations of IDAC and vanilla actor-critic (AC) on three
relatively small gridworlds. For the second set of experiments
we compared a neural network version of IDAC with the
Stable Baselines implementations1 of A2C, DQN, and PPO
on a larger, more complex gridworld. In all cases, the vanilla
methods prematurely converge to suboptimal policies, whereas
IDAC solves the problem.

A. Setup

Environments. As pictured in Figure 2, each gridworld has
designated start and goal states sstart and sgoal, and a set of
blocked states the agent cannot enter. Episodes are of fixed
length K. In a given state s, the agent chooses an action a ∈
A(s) ⊂ {stay,move up,move down,move left,move right},

1https://stable-baselines3.readthedocs.io/en/master

Fig. 1: Comparison of neural network IDAC with common
deep RL methods on the sparse-reward LargeGridWorld.
Plots give means and 95% confidence intervals. Optimal
average cost is 0.1. Training took place over 1e+6 timesteps;
no further improvement occurred beyond timestep 1.2e+5.

where A(s) is the set of actions not running into a blocked
state or off the grid when executed in s. Transitions are
deterministic. The cost function is given by:

c(s, a) =


cgoal if s = sgoal and a ∈ A(s),
callowed if s ̸= sgoal and a ∈ A(s),
cblocked if a /∈ A(s),

where 0 < cgoal < callowed < cblocked.
Implementation. For the first set of experiments, we im-

plemented a tabular version of Algorithm 1. In order to have
a baseline to compare against, we also implemented vanilla
average-cost AC. For both algorithms, we used tabular softmax
policies: πθ(ai|s) = exp(θTψ(s, ai))/(

∑
j exp(θ

Tψ(s, aj))),

where θ ∈ R|S|·|A| and ψ : S×A → R|S|·|A| maps each state-
action pair to a unique standard basis vector ek ∈ R|S|·|A|,
where ek has a 1 in its kth entry and 0 everywhere else. We
similarly used tabular representation for the value functions:
vω(s) = ωTϕ(s), where ω ∈ R|S| and ϕ : S → R|S| maps
each state si to a unique standard basis vector ei.

For the second set of experiments, we implemented IDAC
with a categorical policy using two-layer, fully connected
neural networks for both the policy and value functions, and
we compared against the Stable Baselines implementations of
A2C, DQN, and PPO with two-layer, fully connected neural
networks for all policies and value function approximators.

B. Tabular Experiment Results

Figures 3, 4, and 5 compare IDAC and vanilla AC on the
GridWorld environments with cgoal = 1, callowed = 10, and
cblocked = 100. To generate these figures, 15 instances of
each algorithm were run on the environment, the average cost
and entropy were computed for each episode, and the sample
means and 95% confidence intervals for the cost, entropy, and
corresponding OIR over the 15 runs were used to generate



Fig. 2: GridWorld environments. For Gridworlds 1, 2,
and 3, the start state is S and goal state is G. Shaded regions
represent blocked states. For LargeGridWorld, the blue
square is the start state and the green square is the goal state.

the learning curves. Hyperparameters [cf., Algorithm 1] were
chosen through trial and error. As the figures show, the OIR
algorithm outperforms the vanilla algorithm in every case.

In all three figures, the average costs indicate that both
algorithms quickly learn to avoid actions moving off the grid
or into blocked states, decreasing to a value around 10. In
all cases, vanilla AC gets stuck near 10 for the remainder of
training. This corresponds to taking allowed actions, but not
attaining the goal state. The IDAC algorithm, on the other
hand, clearly spends an increasing amount of time in the goal
state, since its cost decreases well below 10. Vanilla actor-
critic converges fairly quickly to a policy visiting only a small
subset of the available states, indicating that vanilla AC’s
policies become deterministic before the state space has been
sufficiently explored. IDAC, in contrast, maintains policies
with higher state occupancy measure entropy early on, only
decreasing as the algorithm discovers the goal state, then seeks
to strike the right balance between cost and entropy. Finally,
in all cases IDAC naturally minimizes the OIR, while vanilla
AC consistently increases it.

C. Neural Network Experiment Results

Figure 1 compares the performance of neural IDAC and
A2C, DQN, and PPO on LargeGridWorld with cgoal =
0.1, callowed = 5, and cblocked = 10. To generate the data for
these figures, we first trained 48 instances of neural IDAC with
different random seeds. We next trained 15 instances of each
of the A2C, DQN, and PPO algorithms on the environment.
For each algorithm, the average cost was computed for each

episode, and the sample means and 95% confidence intervals
were used to create the learning curves. We note that, out of the
48 IDAC trials, 40 succeeded in finding the goal state, while 8
failed, an 83% success rate. To create Figure 1, we randomly
selected 15 of the 40 successful runs of IDAC to compare
with A2C, DQN, and PPO. As the figure illustrates, IDAC
outperformed all three. Furthermore, none of A2C, DQN, and
PPO found the goal state after 1 × 106 timesteps. Again,
hyperparameters were chosen through trial and error.

As in the tabular experiments, all algorithms quickly learn
to avoid blocked actions. In the case of A2C and PPO, this
leads to an average cost of exactly 5, while for DQN the
cost remains slightly above 5 due to exploration noise lower
bounded by 0.05. Though the optimal cost is 0.1, once they
have converged to these values, they remain there for the
remainder of training, reflecting premature convergence before
sufficient exploration has been achieved. Meanwhile, since
neural IDAC is minimizing ρ(θ) instead of J(θ), it swiftly
locates the goal state and finds an optimal policy with average
cost 0.1. This illustrates that, in sparse-reward environments,
OIR-based policy gradient methods can lead to improved
performance over vanilla techniques.

VI. CONCLUSION

In this paper we have addressed the exploration/exploitation
trade-off in reinforcement learning with sparse rewards via
a new RL objective: the OIR. Interesting future directions
include clarifying the relationship between optimal solutions
to the OIR and vanilla problems, development of continuous-
spaces version of IDAC, and thorough empirical evaluation of
deep RL variants of IDAC on a range of benchmark problems.
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