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Abstract. Dynamically customizing processor architecture after fabri-
cation, also known as Post-Silicon Customization (PSC) is e↵ective in
balancing the conflicting demands of power and performance for vari-
ous applications. Existing approaches either use application-specific pro-
files or some adhoc heuristics or simpler machine learning models. These
techniques often do not unleash the full potential of PSC as they fail
to explore and exploit PSC opportunities to a larger extent. Towards
that end, we propose the first deep neural network (DNN) based PSC
technique, called Forecaster. Forecaster exploits several intuitive
observations to cope with the long inference latency of a DNN model
and boost customization impact. Forecaster works in two phases. In
Phase 1, Forecaster builds a dataset and then, selects and trains a suit-
able DNN model o✏ine. In Phase 2, Forecaster periodically collects
hardware telemetry and uses the trained model to customize hardware
resources. We provide a detailed design and implementation of Fore-
caster and compare its performance against a prior state-of-the-art ap-
proach. Our experimental results indicate that on average, Forecaster
provides 2.5X more power e�ciency gain over the best static configura-
tion setup while sacrificing less than 1.0% of overall performance and less
than 3.5% extra system power. Compared to the prior scheme, Fore-
caster increases the power e�ciency gain up to 1.5X while reducing the
performance degradation by 44%.
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1 Introduction

Dynamically customizing processor architecture after fabrication, also known as
Post-Silicon Customization (PSC) is an e↵ective technique to satisfy the con-
flicting demands of power and performance for a diverse set of applications [24].
There are three general approaches to implement PSC - profiling, heuristic, and
learning-based. Profiling-based approaches profile a particular application on
specific hardware or platform and use the profiling information to customize the
hardware or software [11, 12, 15]. This line of work requires each program to be
instrumented and profiled first. However, the profiled information is useful for
only that application. Heuristic-based approaches are built around some heuris-
tics which are often proposed by the architects or programmers based on their
experience or intuition [7, 20] on a limited number of hardware or applications.
Heuristics often work best for a certain class of applications while other classes
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may su↵er from poor results. Learning-based approaches try to overcome the
limitations of profiling and heuristic-based approaches. At the heart of these ap-
proaches are some machine learning models that predict application behavior,
processor performance, power consumption, or a combination of these factors.
Customization is done based on prediction [8, 22, 24]. Existing learning-based
approaches achieve some remarkable results. However, they rely on simple and
shallow machine learning models which often fail to unleash the full potential
of learning-based approaches. This paper aims to change that by using a deep
neural network (DNN) for PSC.

We pinpoint two reasons why existing approaches did not rely on DNN mod-
els. First, most of the existing works were proposed before the advancement of
deep learning techniques [3, 6, 8, 13]. The recent explosion of DNN models and
their super-human ability in certain domains, coupled with the availability of
hardware accelerators for such models [4,5] makes DNNs the perfect and timely
choice to investigate whether they can improve PSC. Second, most of the ex-
isting works aim to customize hardware frequently (once in every 100K or less
instructions) [22, 24]. Therefore, DNNs with thousands of cycles per inference
operation (Table 6) may not be suitable.

To investigate the feasibility of DNNs for PSC, we make two observations.
First, applications show repetitive execution phases (Section 2). Although phases,
when defined at a fine-grained level, might change very frequently, PSC done at
such a high frequency does not yield many benefits due to the high customization
overhead. Therefore, we have to focus on coarse-grained phases and such phases
do not change frequently. Second, hardware resources that can be customized in

the background (without a↵ecting ongoing operations) can boost the customiza-

tion impact. Based on these observations, we propose a DNN-based PSC tech-
nique, called Forecaster. Forecaster relies on hardware telemetry (a set of
hardware performance counters) to approximate how an application behaves and
targets four hardware resources for customization - L2 and L3 caches, Branch
Target Bu↵er (BTB), and Prefetcher. We target these structures because they
consume significant power [14] and can be customized in the background. Fore-
caster works in two phases. In Phase 1, it builds a predictive model o✏ine to
learn application behavior and the corresponding level of hardware resources to
maximize the power e�ciency. We use Instruction Per Second (IPS)3/Power

as the metric to calculate power e�ciency. This is similar to prior work [8].
Forecaster builds a training dataset based on the data collected from all pos-
sible configurations of the selected hardware resources. This dataset is used to
train and determine the best DNN model for PSC. In Phase 2, Forecaster
initializes a DNN hardware with the model selected from Phase 1. During a
program’s execution, Forecaster collects hardware telemetry at regular in-
tervals and uses the DNN model to predict the best configuration of hardware
resources. Forecaster customizes those resources accordingly to maximize the
power e�ciency. In summary, we make the following contributions:

1. We propose Forecaster, the first PSC technique to use a DNN model. We
used a DNN model with over 9 billion parameters.
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2. We propose to use a longer customization interval and choose hardware
resources carefully to cope up with the long inference delay of a DNN model
and boost the customization impact.

3. We provide a detailed design and implementation of Forecaster using
Multi2Sim [25] simulator. Our experimental results using PARSEC 3.0 bench-
marks show that on average, Forecaster provides 2.5X more power e�-
ciency over the best static configuration while sacrificing less than 1.0% of
overall performance. Compared to a prior learning scheme [8], Forecaster
increases the power e�ciency gain up to 1.5X while reducing the performance
degradation by 44%.

(a) branch predictions (b) L1-data accesses

Fig. 1: Number of branch predictions and L1-data accesses over time (x-axis unit
is number of instructions). Similarities are highlighted in colored boxes.

2 Intuition

Forecaster is grounded on two simple hypotheses - (i) there are significant

similarities in execution phases across applications, and (ii) each execution phase

requires a specific hardware configuration to maximize the power e�ciency with-

out hurting performance.
To support the first hypothesis, we analyze two applications - canneal and

fluidanimate from Parsec. Figure 1a & 1b show the number of branch predictions
and L1-data accesses over execution time. The red-colored boxes in Figure 1a
show that one execution phase of canneal is similar to two execution phases of
fluidanimate where the number of branch predictions is steady at around 20K.
Thus, the control flow structure of these execution phases between two di↵erent
applications is similar. If we consider L1-data accesses, Figure 1b shows that one
execution phase of canneal is similar to 6 other execution phases of fluidanimate.
Therefore, the data access patterns of these phases of the applications should be
similar too. In other words, despite being two completely di↵erent applications
with di↵erent functionalities, canneal and fluidanimate share a lot of similarities
in their execution phases. In addition to this, we notice in both figures that
each execution phase usually contains a significant number of instructions (more
than a few millions). Therefore, we do not need frequent customization of L1
and BTB structures.

Figure 2 shows the detailed time-series characteristics of L2 and L3 usage as
well as branch mispredictions of fluidanimate. It shows that the first execution
phase (shown in green boxes) has di↵erent L2, L3 access, and branch charac-
teristics than the second phase (shown in red boxes). Therefore, the hardware
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Fig. 2: Time-series data of branch misprediction rate, L2 and L3 usage of flu-
idanimate during execution.

configuration that provides the optimal trade-o↵ between power e�ciency and
performance for the first phase is di↵erent than that of the second phase. For
example, since the first phase uses about 45% of L2 and 25% of L3, an optimal
cache configuration of the first phase consists of 60% of L2 and 40% of L3. Sim-
ilarly, the optimal configuration for the second phase is a combination of 40% of
L2 and 20% of L3. This clearly demonstrates that every distinct phase requires
a di↵erent hardware configuration to maximize the power e�ciency while main-
taining performance. Note that the fourth phase (in yellow box) is quite similar
to the second phase and therefore, require the same hardware configuration as
the second phase.

3 Background & Related Work
There is a considerable amount of prior work on reconfigurable architecture [2,3,
6–8,11–13,15,20,22,24], which can be grouped into three categories: profiling [11,
12,15], heuristic [2, 6, 7, 20], and learning-based [3, 8, 13, 22,24].

Heuristic-Based Techniques: Choi and Yeung [6] perform microarchitectural
resources distribution in an SMT processor using hill-climbing algorithm. Pet-
rica et al. [20] present Flicker, a general-purpose multicore architecture that
dynamically adapts to varying limits on allocated power. A Flicker core has re-
configurable lanes through the pipeline that allows tailoring an individual core
to the running application with lower overhead.

Profiling-Based Techniques: Hubert et al. [11] propose MEMTRACE, a profil-
ing tool that analyzes memory accesses and runtime performance of applications,
enabling a variety of optimization opportunities. Ripple [15] introduces a profil-
ing technique that minimizes the instruction cache miss rate. First, the program
is profiled o✏ine to get the basic blocks and reconstruct the oracle replacement
behavior. Next, Ripple forcefully evicts those basic blocks that is likely to be
evicted under the oracle policy by modifying the program binary code.

Learning-Based Techniques: Dubach et al. [8] use Maximum Likelihood Esti-
mation (MLE) to dynamically reconfigure the processor’s components. At run-
time, whenever the program encounters a new phase, the system enters a profiling
period. During this time, The system collects performance counters and converts
them into histograms representing the hardware resource usage of that interval.
The MLE model uses these histograms as input to predict the optimal configura-
tion to apply for this phase. To reduce noise, the hardware is always reverted to
the default configuration during the profiling period, allowing the model to col-
lect unbiased input data. This technique doubles the reconfiguration cost, since
the hardware is changed two times per phase: (1) reverting to default configura-
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tion for profiling and (2) reconfiguring to the model’s prediction. Additionally,
the conversion from runtime counters to histograms may produce extra com-
putational latency and hardware support. On the contrary, Forecaster can
work with simple performance counters and does not need a dedicated profiling
period, minimizing runtime overheads. Bitirgen et al. [3] combine performance
prediction model of multiple applications to get an aggregate performance pre-
diction of the overall resource distribution. Ravi et al. [22] propose CHARSTAR,
a clock tree aware resource optimizing mechanism. CHARSTAR incorporates a
shallow multi-layer perceptron with one hidden layer to predict the optimal
configuration in each execution phase. The model’s performance is then tested
on single-threaded programs. Tarsa et al. [24] propose a lightweight ML frame-
work that can be distributed through firmware updates to the microcontroller
for post-silicon CPUs. The ML model is first trained o✏ine with a collection of
applications to avoid statistical blind spots. During execution, the CPU dynam-
ically sets the issue width of a clustered hardware component while clock-gating
unused resources.

There is also a well-established line of work that tries to achieve an energy-
performance trade-o↵ without any hardware structural adaptation. Prominent
works that fall in this category use dynamic voltage-frequency scaling (DVFS) [7,
10, 19]. However, applying this technique in real-world systems can be tricky
because reduced frequency means longer execution time.

4 Main Idea: Forecaster
Forecaster works in two phases - (i) building a model that predicts the best
configuration of hardware resources for maximizing the power e�ciency (i.e.,
IPS

3
/Power) and (ii) changing the hardware resources accordingly. Figure 3

shows the overall workflow. Forecaster works in the first phase only once using
a set of applications whereas the second phase happens at runtime repeatedly
during the execution. Both phases use hardware telemetry collected during the
execution of an application. The telemetry consists of various hardware event
counters that implicitly capture the behavior of the application. The first phase
uses telemetry to build a dataset which is used to train a DNN model. The
second phase uses the trained DNN model to customize hardware resources.

Fig. 3: Overall workflow of Forecaster.

4.1 Phase 1: Building a Predictive Model

Forecaster builds a predictive model by first collecting hardware telemetry
on a set of benchmarks for di↵erent configurations of hardware resources and
then, training a DNN model on the dataset.
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Tunable Resource Configuration

BTB Size 0.5K, 1K,

2K, and 4K Entries

Prefetcher On, Off

L2 (private) cache 256K, 512K,

768K, and 1024K Bytes

L3 (shared LLC) cache 4M, 8M, 12M,

and 16M Bytes

Table 1: List of reconfigurable
hardware. Initial configuration
is in bold-face.

Features Correlation Coe�cient

L2 most usage 0.633786
normalized commit float 0.615692
normalized commit mem 0.505695
normalized commit int 0.450328
L1 data access 0.443464
normalized commit ctrl 0.436718
L2 avg eviction rate 0.337137
L2 most hit rate 0.295210
L3 usage 0.264086
branch mispred rate 0.242080

Table 2: Pearson correlation co-
e�cients of counters.

Selecting Hardware Resources As reconfigurable hardware resources, we
choose L2 and L3 caches, Branch Target Bu↵er (BTB) and Prefetcher. We choose
caches because they are the most power-hungry resources in a modern chip [14].
We choose the other resources because they can be easily clock-gated without
making intrusive changes to the pipeline (Section 4.2). Moreover, as shown in
prior work [8], these structures can be customized in the background with min-
imal impact on performance. Table 1 shows the reconfigurable resources and
possible configurations.

Selecting Hardware TelemetryModern processors provide hundreds of hard-
ware event counters as the telemetry. Not all of them are relevant in deciding
how to reconfigure various resources. Therefore, to select the most relevant ones,
we use Pearson correlation coe�cient. We first extract a large set of 24 mi-
croarchitectural counters closely related to those four hardware resources that
we want to optimize. These 24 counters capture both program characteristics
and their interaction with system components. We then compute the absolute
value of Pearson correlation coe�cient between the input features and the out-
put label, which is the power e�ciency. After doing some experiments we decide
to select features having the absolute correlation coe�cient value greater than
0.20. Table 2 shows the features that have their correlation coe�cients greater
than the cuto↵ value. The rest of the features can be discarded to prevent the
classifier from learning redundant information. Reducing the size of the feature
set minimizes the computational cost and time since we need to train classifiers
on large dataset. Those counters, combined with the last interval configuration
which are consolidated into 4 inputs, form the final set of 14 input features of
our DNN model.

Building Dataset With 4 reconfigurable resources, there are N = 4⇤2⇤4⇤4 =
128 possible configurations. Each application is executed and profiled under each
of these configurations. During the execution of an application, Forecaster
collects hardware telemetry, calculates the power e�ciency periodically after
every I instructions and records them in a profiling file. Let us call every I
instruction an Interval. Let us denote the telemetry as T = {ti}ni=1, where each
ti is an individual hardware counter and the power e�ciency as E. Thus, the
profiling file contains a set of records of < T,E >, one record for each interval.
Forecaster keeps the input fixed for an application during profiling. Still,
there could be slight perturbation during some execution due to the di↵erence
in hardware configurations and thread scheduling (in the case of a multithreaded
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Fig. 4: How training samples are
formed from profiles.

Fig. 5: Timing of various steps of Fore-
caster.

application). Therefore, we choose I to be large enough so that the number of
intervals remains the same in every profiling file of an application. As a result,
each corresponding interval in di↵erent profiling files represents (roughly) the
same code region of the application. Whatever little di↵erence that could exist
among the code regions of similar intervals, adds noise to the training dataset.
Such noise works in favor of DNN models to improve their generality.

Let us consider an interval i. The profiling record for i is < Tf
i ,E

f
i > in the

profiling file for Config � f (Config � f could be any of the N configurations
i.e., 1  f  N). Forecaster finds the maximum among E1

i to EN
i . The config-

uration corresponding to the maximum, say Config �M, provides the highest
power e�ciency. Therefore, at runtime, when Forecaster tries to predict the
best configuration at the beginning of interval i, it should predict Config�M as
the output of the DNN model. That is why phase 1 forms a training sample by
using Tf

i�1 as the input and Config�M as the output. Note that Forecaster

uses Tf
i�1 instead of Tf

i as the input because the telemetry collected at the be-
ginning of interval i is the telemetry corresponding to interval i� 1. Thus, DNN
should be trained to predict Config �M (the best configuration for interval i)
by using the telemetry collected at the beginning of interval i. Figure 4 shows
the telemetry and power e�ciency of di↵erent intervals across di↵erent configu-
rations. Last but not least, in addition to Tf

i�1, the corresponding configuration
i.e., Config� f is provided as part of the input in the training sample. In other
words, the training sample is formed by using < Config�f,Tf

i�1 > as the input
and Config �M as the output. So, there are N training samples for interval i.

Selecting a Predictive Model The dataset built previously is used to train
a machine learning model. We initially experiment with simple models such as
logistic regression or MLE. Our experiments reveal that such simple models are
not able to substantially improve the power e�ciency of the system (Section 7).
We then use more sophisticated models including LSTM, Reinforcement Learn-
ing, DNN and see that the fully connected DNN model strikes a good balance
between performance and implementation cost. Therefore, we finalize our de-
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sign with a fully connected DNN model. To find the best model architecture,
Forecaster searches all possible network configurations (e.g., topology, learn-
ing rate, activation functions, etc.) within a constrained search space (e.g., all
topologies up to the maximum of H hidden layers and L neurons per layer)
and picks the one with the highest accuracy. We use cross-validation for model
training and tuning to avoid overfitting. The training strategy for both single-
program and multi-program scenarios is discussed in Section 6. The final DNN
architecture and its hardware implementation cost is discussed in Section 7.

4.2 Phase 2: Prediction-based Hardware Reconfiguration

During this phase, Forecaster loads the trained DNN model in a DNN hard-
ware and uses it to predict the configuration of hardware resources for maxi-
mizing the power e�ciency. When an application starts execution, Forecaster
starts with maximum resources. This prevents any initial slowdown due to insuf-
ficient resources. Forecaster collects hardware telemetry after every interval
of I instructions. Suppose the telemetry after interval t is Tt and the resource
configuration is Ct. Forecaster uses the DNN hardware with < Ct,Tt > as
the input to infer the new configuration Ct+1. Figure 5 shows the timing of
the inference step. After DNN hardware calculates the predicted configuration,
Ct+1, Forecaster customizes the hardware resources according to Ct+1. Now,
we describe how each resource is customized.

Fig. 6: SRAM Cell
Design (6T-MC) with
the gated-Vdd shown
on the bottom.

(a) BTB. (b) L2 and L3 caches.

Fig. 7: Logic for customizing hardware components.

L2 and L3 Caches Caches, mainly designed in SRAM (we are not considering
eDRAM in this paper) are sources of both static and dynamic power consump-
tion. Dynamic power is consumed in row-decoder, column-decoder, pre-charge
circuit and some parts of the core cell and depends on the access pattern. Static
power, mainly leakage, is dissipated in every cell of the SRAM cache. With the
continuous reduction in transistor sizes and, consequently, the switching thresh-
old voltage of the transistor, static power becomes the major source of power
dissipation in caches [26]. Therefore, when we turn o↵ parts of the cache, we want
to ensure that we target leakage current. For that, we use gated-ground [1,18,21].

There are several ways of implementing SRAM cells. The one most widely
used, due to its relatively high noise immunity, is the 6-transistors Memory Cell
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(6T-MC), shown in Figure 6. The left part of the figure shows the gate level of
a single SRAM cell. The right part shows the circuit level. There is an extra
transistor, shown circled, that is used to reduce leakage current that constitutes
the major part of the static power dissipation in caches. In our design of cache
resizing, we turn-o↵ individual blocks and never a full-set. Therefore, we can use
a single transistor per block. That is, one extra transistor per 64 cells for a 64-
byte block. This design does not use more than 4% of extra area with around 5%
increase in cache latency [1]. The increased access latency has been taken into
consideration in our simulation. When a block is turned-o↵, that extra transistor
is also turned o↵ causing a stacking e↵ect that reduces leakage current by orders
of magnitude [1].

The next step is to control which blocks will be gated (for static power)
and control which parts will be clock-gated to avoid accessing the blocks that
are turned-o↵. From Table 1, we can see that we have four configurations for
the cache. We need two bits to represent those configurations. A 2x4 decoder is
enough, as shown in Figure 6b. The output of the decoder that is set to one,
is used to turn o↵ the corresponding transistors in the data lines. We turn o↵
blocks starting from the last way in each set. For example, in LLC cache, if
we want to go from 16MB to 12MB in a 16-way, we turn-o↵ ways 15, 14, 13,
and 12. In the current design, Forecaster only turns o↵ invalid ways, thus
incurring no extra data writeback cost. The output of the decoder is also used
to clock-gate parts of the column and row decoders to avoid accessing the parts
of the cache that are turned o↵. The customization of the cache does not happen
in the critical path of the execution. Therefore, it does not have any e↵ect on
performance, except the negligible area and latency increase stated above.

Branch Target Bu↵er (BTB) BTB has 4 possible configurations (Table 1).
Therefore, we can partition BTB into 4 sections - B1, B2, B3, and B4 (Fig-
ure 6a). For the first configuration (i.e., 0.5K entries), sections (B2, B3, B4) are
clock-gated. Similarly, for the second and third configurations, sections (B3, B4)
and (B4) are clock-gated respectively. The last configuration does not clock-gate
any section at all. On the other hand, Section B1 is never clock-gated because at
least those entries in BTB are used in all configurations. We add a customization
logic that creates the appropriate clock-gating signal to enable the appropriate
sections. Moreover, for each configuration, the indexing logic needs to customize
the indexing bits accordingly. The extra logic circuits add negligible latency and
require less than 200 cycles for customization [8]. The majority of those cycles
are hidden in the background. In a multicore processor with one BTB per core,
Forecaster customizes all BTBs to the same configuration. This is done is to
simplify the prediction and customization logic in Forecaster.

Prefetcher Prefetcher is used either completely or not at all. Therefore, the
prefetcher is clock-gated entirely or not at all. So, the customization logic simply
generates a single clock-gating signal for the entire prefetcher. Customization is
completely done in the background.
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5 Implementation
In this section, we outline the implementation of DNN in Forecaster. We
implement a simple DNN accelerator in FPGA and add a CPU-side DNN Driver
Module to control the operation of the accelerator. The module forms inputs,
collects outputs from the accelerator, and sends control signals to the FPGA.

There are many DNN accelerator designs in the literature [5, 9, 23]. We use
one similar to the one proposed by Yuanfang Li [17]. Figure 8 shows the overview
of our design. The accelerator is constructed as a systolic array of Processing
Elements (PEs). The systolic array supports the fast broadcast of inputs and
partial sum generation using row and column buses. Each PE contains 2 mem-
ories for storing activations and weights, 2 Multiplier, 1 Adder, 2 output bu↵ers
for sending results to the row and column buses, 2 input bu↵ers for loading
data from the row and column buses, and 4 multiplexers for handling reduc-
tion operation during the forward propagation. We consider an extra module for
calculating the Softmax function. We distribute the weights of all layers among
PEs and stream the inputs.

(a) (b)

Fig. 8: Detailed design of the DNN module.

The DNN driver module has an input bu↵er, a prediction register, and a
control logic. The input bu↵er is responsible to generate inputs that are provided
to the DNN accelerator to infer the predictions. An input consists of various
hardware counters and current configuration. Each core collects the counters
and current configuration of resources independently and sends them to the
driver module after every n (e.g., say n=10,000) instructions. When the module
receives counters of at least a total of I (e.g., I = interval size) instructions,
Forecaster assumes the start of a new interval. The module aggregates the
counters and normalizes each counter with respect to the total instructions of
the interval that just finished. The driver module then sends the formed input
to the DNN accelerator and receives the predicted configuration. The predicted
configuration is stored in the prediction register. The control logic sends the new
configuration to the cores and cache controllers to initiate the reconfiguration.

6 Experimental Setup
Interval Size: Determining the right interval size is crucial to strike the opti-
mal balance between performance gain and system overhead. Figure 9 shows the
e�ciency of di↵erent interval sizes across applications, both single and multi-
program scenarios. On average, an interval size of 0.5M instructions is the opti-
mal setting, outperforming the second-best by 1.4%.

Simulators and Benchmarks: We use Multi2Sim [25] and McPAT [16] to eval-
uate Forecaster and its power consumption. We implement the DNN in the
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Fig. 9: E�ciency vs. baseline (%) comparison between di↵erent interval sizes.
Xilinx FPGA to calculate the latency and overhead. This latency is then used
in Multi2Sim. Table 3 shows the hardware parameters for the experiments. We
use 8 Parsec 3.0 benchmarks (blackscholes, bodytrack, canneal, facesim, fluidan-

imate, freqmine, streamcluster, swaptions) with small inputs. All benchmarks
are run to completion or 1.0B instructions. The interval size I is set to 0.5M
instructions.

Parameter Value

CPU 8-core @ 2.4Ghz, SMT o↵
Private L1 cache (I/D) 32KB, 64B line, 8-way
Private L2 Cache 1MB, 64B line, 16-way
Shared L3 Cache 16MB, 64B line, 16-way
Coherence Protocol Directory-based MOESI

Table 3: Parameters of the simulated hardware.

DNN Training and Tuning: For the single-program scenario, we use leave-
one-out cross-validation for model training and tuning. This approach ensures
the DNN model is not trained with the application it is optimizing. For the
multi-program scenario, we randomly select 5 combinations of programs, each
containing 4 di↵erent programs. The other 4 that are not chosen are used for
training. Two instances of each program are launched during the execution of
that combination.

Comparison Work: We compare Forecaster with 5 other schemes. First,
we implement the Maximum Likelihood Estimation (MLE) model from [8]. We
call this MLE-histogram. Second, we implement a version of Forecaster us-
ing an MLE model (MLE-vanilla) instead of a DNN model. This is to compare
the performance of the DNN model to the simpler MLE model. Third, to verify
the potential of the dynamic optimization scheme, we profile all applications and
make two configurations: best-static and oracle. For best-static, we select the best
overall static setting for all applications, assuming no dynamic reconfiguration.
For the oracle, we dynamically apply the optimal setting for all hardware com-
ponents for each execution phase. This serves as the upper bound for this study.
Finally, we also compared our scheme with the DVFS algorithm from [19].

7 Results
E�ciency Evaluation: The e�ciency of single-program and multi-program
experiments are shown in Figure 10. In both cases, our scheme outperforms all
other tuning techniques, especially in the multi-program scenario. On average,
Forecaster improve the system e�ciency by 18.1% compared to the baseline
in single-program workloads and 15.8% in multi-program workloads. These im-
provements account for 80% of the highest achievable e�ciency, represented by
the oracle configuration.
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Fig. 10: Normalized e�ciency gain vs. baseline (%) of Forecaster.

Compared to the best static configuration, our technique provides almost
2X more e�ciency gain in single-program and 3X more e�ciency gain in multi-
program scenario. Compared to the MLE-histogram model in [8], Forecaster
provides 15.3% and 49.3% more e�ciency in the single and multi-program sce-
nario, respectively. One of the things that separate our work from [8] is that
they do not consider the performance of their prediction model in multi-core,
multi-program mode, which is a more realistic scenario. The 1.5X performance
upgrade in multi-program experiment justifies the use of a more complex DNN
model in Forecaster over the simple MLE technique. The DVFS algorithm
we are using puts priority on preserving performance rather than saving power,
which is why it has the lowest performance loss, but also the least e�ciency gain.
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Fig. 11: Normalized power savings vs. baseline (%) of Forecaster.

This result is achieved thanks to the capability of Forecaster to accu-
rately predict the hardware demand of applications in each phase to save the
most possible amount of power, as shown in Figure 11. In general, Forecaster
manages to save 16% and 15.3% in power compared to the baseline in the single
and multi-program scenarios, respectively. For multi-program workload, Fore-
caster outperforms all other techniques.

Cache Module swaptions combine-5

L2-0 0.67 0.64
L2-1 0.67 0.62
L2-2 0.67 0.65
L2-3 0.67 0.64
L2-4 0.67 0.62
L2-5 0.67 0.65
L2-6 0.67 0.65
L2-7 0.67 0.65

L3 (last level cache) 0.61 0.67

Table 4: Average percentage saving in cache static power of swaptions (single-
program) and combine-5 (multi-program).
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Detailed Analysis: Figures 12 and 13 show how Forecaster manages the
hardware resources during program execution in single (swaptions) and multi-
program (combination-5 ) scenarios. Forecaster accurately estimates the de-
mand of swaptions, then turns o↵ excessive resources, saving a lot of power while
maintaining the same performance. Sometimes Forecaster decision cannot be
fully satisfied as shown in Figure 13(a). In some intervals, only around 65% to
70% amount of L2 cache is disabled even though the prediction is 75%. This is
because those cache blocks are valid. To preserve performance, we do not force-
fully turn o↵ resources that are being used. Table 4 shows the break down in
cache static power savings of Forecaster. For the single-program scenario, the
amount of power saved is identical between L2 private caches. In multi-program
scenario, this number is di↵erent because it depends on the application running
on the core. In general, using gated-ground technique [1,18,21] to turn o↵ cache
blocks, we manage to save approximately 90% of static power of L2 and L3
caches. In swaptions, since Forecaster turns o↵ 75% of L2 and 68% of L3, the
actual amounts of static power saved are 67% and 61%, respectively.

(a) L2 Cache (b) L3 Cache (c) BTB

Fig. 12: Average turned o↵ amount of (a) L2, (b) L3, and (c) BTB during the
execution of swaptions.

(a) L2 Cache (b) L3 Cache (c) BTB

Fig. 13: Average turned o↵ amount of (a) L2, (b) L3, and (c) BTB during the
execution of combination-5 .

Runtime Overhead: The runtime cost of the proposed design can be divided
into two parts: prediction/reconfiguration latency, and the DNN module power
consumption. As for the latency cost, hardware telemetry reading and reconfig-
uration do not happen in the critical path. The hardware will continue in its
old configuration till the decision is made for a new configuration. [24] shows
that the reconfiguration time is negligible (tens of cycles). We use this number
in our simulation. Overall, our approach manages to reduce the IPS degradation
by about 44% compared to MLE-histogram, as shown in Table 5.

The main power cost of Forecaster comes from the DNN driver module
and the Processing Elements (PEs). With 16x16 configuration, the PE array
of Forecaster consumes a total power of 4.94W, as shown in Table 6. For
the DNN driver module, its total power consumption measured by McPAT is
only 0.032W. Altogether, the total power usage of Forecaster is 4.97W. As
the system overall power consumption measured by McPAT is 142W for the
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Technique single-program multi-program mean

DVFS (0.1) 0.2 0.1
Best-static 0.0 (0.8) (0.4)

Forecaster (0.3) (0.7) (0.5)
MLE-histogram (0.4) (1.4) (0.9)
MLE-vanilla (0.6) (1.3) (1.0)

Oracle 0.5 0.9 0.7

Table 5: IPS degradation (%) vs. base-
line. Negative numbers in parentheses.

PE Array Frequency Latency Slice Power (W)
(MHz) Reg Static Dynamic

8*8 268 6352 79566 0.20 2.51
12*12 258 3200 93179 0.21 4.36
16*16 247 1896 109972 0.22 4.72

Table 6: Cost of di↵erent DNN hard-
ware. This power usage is less than
3.5% of the overall system power.

single-program scenario and 153W for the multi-program scenario, the power
consumption of Forecaster is just 3.49% and 3.24% extra. Furthermore, since
the DNN model is only used once per 0.5M instructions, its actual energy cost
is minimal.
Hardware Implementation Cost The hardware cost consists of the DNN
hardware and the extra hardware used to implement the knobs. The DNN uses
a four-hidden-layer fully connected neural network with the neuron configuration
of 384/384/256/256. There are also an input layer of 14 neurons and an output
layer of 128 neurons. We use ReLU activation for the input and hidden layers
and Softmax for the output layer. For the hardware implementation, we consider
several design points as shown Table 6. We use 16*16 PE array size in our final
design.

The hardware needed for the knobs is straightforward. The prefetcher is just
clock-gated as the knob is on/o↵. The BTB also uses clock-gating depending
on the configuration. We have four configurations so a small 2x4 decoder will
do the job as shown in the customization logic in Figure 6a. Clock gating the
cache ways is simplified by the fact that the way-reconfiguration logic, shown
in Figure 6b, never gates a valid entry so no change to the cache controller or
coherence hardware is needed. The way-reconfiguration logic is not complicated
because it exploits the fact that large caches (such as L3) are usually partitioned.
Therefore we have one logic circuitry per partition.

8 Conclusions

The work presents the first DNN-based PSC technique, called Forecaster.
Forecaster exploits two intuitive observations to cope with the long inference
latency of a DNN model and boost customization impact. Forecaster works
in two phases - o✏ine training and online reconfiguration. We provide a de-
tailed design and implementation of Forecaster and compare its performance
against a prior state-of-the-art approach. Overall, Forecaster provides 2.5X
and 1.5X more power e�ciency gain over the best static configuration and prior
state-of-the-art approach.
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