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Molecular motors, kinesin and myosin, are dimeric consisting of two linked identical
monomeric globular proteins. Fueled by the free energy generated by ATP hydrolysis,
they walk on polar tracks (microtubule or !lamentous actin) processively, which means
that only one head detaches and executes a mechanical step while the other stays bound
to the track. One motor head must regulate the chemical state of the other, referred
to as “gating”, a concept that is still not fully understood. Inspired by experiments,
showing that only a fraction of the energy from ATP hydrolysis is used to advance the
kinesin motors against load, we demonstrate that the rest of the energy is associated
with chemical transitions in the two heads. "e coordinated chemical transitions involve
communication between the two heads - a feature that characterizes gating. We develop
a general framework, based on information theory and stochastic thermodynamics, and
establish that gating could be quanti!ed in terms of information #ow between the motor
heads. Applications to kinesin-1 and Myosin V show that information #ow, with positive
cooperativity, at external resistive loads less than a critical value, Fc . When force exceeds
Fc , e$ective information #ow ceases. Interestingly, Fc , which is independent of the
input energy generated through ATP hydrolysis, coincides with the force at which the
probability of backward steps starts to increase. Our !ndings suggest that transport
e%ciency is optimal only at forces less than Fc , which implies that these motors must
operate at low loads under in vivo conditions.

molecular motor | stochastic thermodynamics | information flow | gating

Molecular motors utilize chemical energy released by ATP hydrolysis in order to carry
out multiple cellular functions that include transportation of vesicles (1–3). Dimeric
cytoplasmic motors (kinesin and myosin), constructed from two identical ATPases referred
to as motor heads, walk on polar tracks (F-actin or microtubule [MT]) by a hand-over-
hand mechanism (Fig. 1A) (4–6). In order for dimeric motors to take multiple steps
in the forward direction, without disengaging from the polar track, there has to be
coordination or communication between the motor heads. !is implies that the trailing
head (TH) should detach with substantially higher probability than the leading head
(LH) (a manifestation of interhead communication), while the LH should remain strongly
bound to the polar track. Because the nucleotide state (for example, ATP bound or ADP
bound) of the motor heads dictates the a"nity for the polar track, it follows that the
ATPase cycle in the TH and LH should be partially out of phase (7) to ensure e#ective
interhead communication. In kinesin-1 (Kin-1), ATP binds to the LH only after the ADP-
bound TH detaches from the MT (8–10). In myosin V, interhead communication results
from faster ADP release from the TH than from the LH (11, 12). !us, chemical state
(CS) regulation of one motor head by the other plays a signi$cant role in the ability of the
motor to take multiple steps on the polar track. !is is referred to as “gating,” which may
be viewed as a form of allosteric regulation (13), in molecular motors. Gating, which is
necessary for dimeric motors to maintain processivity, is possibly mediated by interhead
mechanical strain through the structural elements connecting the two heads (14–25).
Decrease in the gating e"ciency in arti$cial constructs that mutate these elements (for
example, elongation of the neck linker in conventional kinesin) results in the reduction
of velocity and run length, and a decrease in the stall force (15, 19, 20, 24). From
these observations, we surmise that communication between the dimeric motors must
be directly linked to energy costs needed to drive stepping.

In order to describe gating, we lean on the thermodynamics of small systems, termed
stochastic thermodynamics (26, 27). Unlike conventional thermodynamics, where ther-
mal noise is negligible in the thermodynamic limit, stochastic thermodynamics describes
the energetics where the relevant energy scale is comparable to thermal energy. Molecular
machines operate in such an environment, and thus the language of stochastic thermo-
dynamics is appropriate to investigate the thermodynamics of molecular motors. In this
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Fig. 1. Kinesin stepping and associated transitions. (A) Schematics of a
typical optical trap experiment used tomonitor stepping on theMT. A resistive
force, F , acts on the cargo. (B) Example of transitions for interacting systems
with X and Y being the leading and trailing heads, respectively. The CSs
associated with X and Y are denoted by circled letters A, B, and C. In this
example, the transition in X is described as (x0, y0) = (A, A) −→ (x1, y0) =
(B, A), and the transition in Y is given by (x1, y0) = (B, A) −→ (x1, y1) = (B, C).
Transitions occur at times t1, t2, t3, · · · . (C) Forward stepping cycle for kinesin.
The cycle is divided into CS transitions (yellow) and mechanical stepping
(green). The CS of the TH is in blue, and that of the LH is shown in red. The
nucleotide state T denotes ATP, Φ means the nucleotide state is not bound, D
denotes ADP, and DP is the post hydrolyzed state with the trailing containing
ADP plus the inorganic phosphate, Pi . The caricatures for the physical states
of the motor corresponding to each CS are displayed.

formulation, which we exploit here, entropy production is an
essential element (28, 29). In particular, mutual information (MI)
characterizes the correlations between two variables and can be
treated on the same footing as work and free energy (30–33), an
insight that is the basis of our work.

!e importance of information theory in biology has been
previously recognized. For example, information transduction in
the adaptive sensory system and description of molecular motors
from the perspective of information storage have been investigated
(34–38). More recently, Lathouwers and Sivak (39) examined
power and information transduction in F0F1-ATP synthase, and
Amano et al. (40) studied an arti$cial chemical nanomachine
driven by an information ratchet. Our goal here is to use in-
formation transfer between the heads of dimeric motors as the
basis of communication—an issue that has not been considered
before. We build on the previous studies and develop a framework,
based on stochastic network models, to quantify gating in terms
of information theory.

We were motivated to cast gating in light of information
theory because astounding developments in experimental tech-
niques have made it possible to measure energetics in molecular
motors with high accuracy (33, 41). In a recent single-molecule
experiment, Ariga et al. (41) measured energetics of kinesin by
attaching a probe to the motor. !e experiments produced two
important results. 1) !ey established that the motor functions
out of equilibrium by showing that the relation between response
and correlation function, expected for a system at equilibrium,
does not hold. !e extent of violation of the %uctuation re-
sponse relation was quanti$ed by using the Harada–Sasa equality
(42, 43). 2) Based on the experimental data and a theoretical
model, it was suggested (41) that the total heat dissipated is≈80%
of the input energy, which implies that only ≈20% of the energy
from ATP hydrolysis is utilized in performing work.

Our theory is based on stochastic network models. We assume
that, in the process stepping along the cytoskeletal $lament, the
dimeric motor could be driven into a nonequilibrium steady state
(NESS) (26, 29, 44–48), provided that it does not detach from
the polar track. !e present work, which provides a framework for
understanding gating in cytoplasmic motors in terms of informa-
tion %ow, utilizes and builds on the most insightful formulation
by Horowitz and Esposito (49). In the process, we establish precise
connections between interhead communication and energetics in
dimeric motors. Although we only consider stepping in Kin-1
and myosin V, our approach is general, and could be used to
understand gating and energy costs in other molecular machines
(29). We show that the energy costs involved in the operation of
the motors is related to information %ow (gating) between the
motor heads.

Theory

Notations and Assumptions. We consider two subsystems, la-
beled X and Y (49), which, in the context of molecular motors,
represent the LH and the TH, respectively. Each subsystem is
speci$ed by microstates x and y (Fig. 1B). A pair of states
associated with X and Y is labeled (x , y). We restrict ourselves
to a network connecting (x , y) that is bipartite, which means
that only X or Y can alter its state in a single transition. In
other words, the transitions (x1, y1) → (x2, y1) and (x1, y1) →
(x1, y2) are allowed, but not (x1, y1) → (x2, y2), with x1 #= x2

and y1 #= y2. However, we require the bipartite structure only
along the path in which we calculate the interaction between X
and Y . A nonbipartite feature, which is needed in describing
stepping in molecular motors, is allowed otherwise.

Consider the chemomechanical cycle of Kin-1 in Fig. 1C. First,
let us divide the whole chemomechanical cycle of the motor into
chemical and mechanical processes, and then introduce bipartite
constraints only on the chemical process. TH in blue and LH in
red are the two subsystems transitioning between the CSs [(1) →
(5); yellow arrow] maintains the bipartite structure. However, the
mechanical steps ((5) → (1); green arrow), that result in switching
of the positions of the two heads, exchange the roles of LH and
TH. !us, mechanical steps are nonbipartite.

We describe the properties of the motor in the steady state
using the joint probability p(x , y) for the state (x , y), and the
marginal probabilities for X and Y , pX (x ) =

∑
y p(x , y) and

pY (y) =
∑

x p(x , y), respectively. We set the temperature T to
unity, unless speci$ed.

Information Flow on CS Transitions. !e point-wise MI (PMI),
which plays an important role in this study, in the energy unit,
i(x , y), for a state (x , y), is

i(x , y) = kB ln
p(x , y)

pX (x )pY (y)
, [1]

where kB is the Boltzmann constant. It is necessary to introduce
PMI, instead of considering only the MI, because information
%ow in motors requires quantifying the microscopic transitions
in each step in the catalytic cycle (Fig. 1C ). !e MI is the average
over all the states,

∑
x ,y p(x , y)i(x , y).

One can compute the change of PMI between two arbitrary
states. We de$ne the change of PMI from the state (x0, y0) to
(xn , yn) as

∆i ≡ i(xn , yn) − i(x0, y0). [2]
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For a bipartite path, Eq. 2 has a clear interpretation: ∆i
quanti$es the net information transferred between X and Y
along the transitions. We show the computation of ∆i for a
bipartite path in Information Flow on Chemical State Transitions
in the Methods section.

We are interested in how the input energy, arising from ATP
hydrolysis, is parsed into the “invisible” CS transitions (from (1) to
(5) in the catalytic cycle in Fig. 1C ), and the mechanical transition
((5)→ (1) in Fig. 1C ). !erefore, it is the information %ow along
a speci$c path (for instance, (2)→ (3) in Fig. 1C ), rather than
information %ow in the closed cycle (transition starting in (1) and
ending in (1), resulting in the LH and TH switching positions on
the polar track) that is relevant for gating. In contrast, for di#erent
reasons, previous studies (39, 49–51) focused on the information
%ow using the MI. !erefore, information %ow of interest in
these studies is restricted to a closed cycle in which all the edges
in the network are bipartite. As a result, the net information
transfer between two subsystems is zero in NESS. In Eq. 2, the net
information %ow between two subsystems need not be zero along a
speci$c path but vanishes only when we compute the information
%ow for a closed path. In molecular motors, we need to quantify
heat dissipation along the invisible CS transitions. For this reason,
we calculate path or transition speci$c energy cost for a $xed input
energy.

Entropy Production and Information Flow. Entropy production,
ρ, plays a central role in nonequilibrium systems, quantifying the
deviation from the equilibrium. In bipartite systems, it is possible
to derive a simple equality connecting the entropy production and
information %ow (Eq. 2). We delegate the derivation to Entropy
Production and Information Flow. !e relation reads

ρ = σ −∆i . [3]

σ is the apparent entropy production, quantifying the dissi-
pation when we do not take into account the communication
(correlation) between the two variables. In the context of dimeric
motors, σ is the dissipation from the motor when we do not take
into account the e#ect of the gating mechanism. When there is
no communication between the two motor heads (∆i = 0), σ
coincides with ρ.

!e entropy production, ρ, is always positive in the direction
of stationary %ow. !erefore, the lower bounds for the apparent
entropy production are ∆i . !e value of σ is allowed to be
negative provided ∆i ≤ σ. Negative values might be indicative of
an apparent violation of the second law of thermodynamics, and
are sometimes taken to be a signature of a Maxwell demon (49,
52–54). We discuss the Maxwell demon regime (MDR) further
below.

Free-Energy Transduction and Information. We consider an
isothermal environment at temperature T with the possibility
that material exchange occurs, resulting in the breakdown of the
detail balance condition. In the context of molecular motors, this
is realized by maintaining the concentrations of the ligands (ATP,
ADP, phosphate [Pi ]) at constant values (46). For the chemical
transition network in the NESS, it is possible to identify the
chemical free-energy transduction with the entropy production
along the path connecting any two states (55). !is, in turn,
allows us to compute the free-energy transduction (∆µ) using the
entropy production along the path: ∆µ = ρ. We note that the
same concept is formulated in terms of energy balance condition
(56). If the CS transitions are driven by ATP hydrolysis generating
energy input ∆µ, then the free-energy transduction for the
cyclic CS transition path (initial and $nal state is identical) is

∆µ = ρ = Q , where Q is the heat dissipated during the cycle. In
general, however, the starting and ending states do not necessarily
coincide. In such cases, ρ should include not only Q but also the
di#erence in the internal energy.

It is clear from Eq. 3 that the free-energy transduction in the
motors may be written, using the apparent entropy production
and the associated information %ow terms, as

∆µ = σ −∆i . [4]

!e equation above relates the free-energy transduction during
the CS transitions and information operation associated with
coordination between the two heads in the dimeric motors. If
there is no interaction or communication between the two motor
heads (∆i = 0), the total free-energy cost would simply be given
as the sum of the expenses from each motor head. How the infor-
mational term relates to the energetics and mechanical aspects of
the motor follows in the analysis given below.

Mechanochemistry and Information. We $rst illustrate the con-
nection between ∆i and motor movement using kinesin as an
example. We model the forward stepping cycle for kinesin using
the kinetic network shown in Fig. 1C. Completion of a single
step (cycle) begins by releasing ADP from the LH ((1) → (2)),
followed by ATP hydrolysis in the TH ((2) → (3)), release of
Pi ((3) → (4)), and ATP binding to the LH ((4) → (5)). !e
four chemical transitions poise the TH to take a mechanical step
((5) → (1)). !e catalytic cycle in Fig. 1C naturally decomposes
into CS transitions (state (1) to state (5)) (Πch ) that alter the
nucleotide states of the motor, and the mechanical stepping (state
(5) to state (1)) (Πmc). Once mechanical stepping is complete,
the next cycle of chemical transitions initiates. We here present the
main consequences of the theory applied to the kinetic network in
Fig. 1C. See Mechanochemistry and Information for more-detailed
calculations.

In anticipation of the link between information %ow and
gating, we begin with energy conservation associated with the
cycle in Fig. 1C. !e motor operates by input of energy, ∆µ,
arising from ATP hydrolysis. We partition this energy into two
contributions: ∆µch , associated with the chemical transitions,
and the energy ∆µmc expended in the mechanical step, which
advances the motor along the MT by one step (≈8 nm for
kinesin). Conservation of energy implies

∆µ = ∆µch + ∆µmc . [5]

∆µ, ∆µch , and ∆µmc can be written using the microscopic
rates in the kinetic diagram (Methods). Applying Eq. 4 to Πch , we
obtain

∆µch = σch −∆ich , [6]

where σch and ∆ich are the apparent entropy production and the
change of PMI in Πch , respectively. By conservation of the energy
(Eq. 5),

∆µmc = ∆µ − σch + ∆ich . [7]

Eq. 7 quanti$es the following physical intuition. !e energy
that the motor can spend for the mechanical steps (∆µmc)
is the total energy minus the dissipation (∆µ − σch ) plus the
correlation developed in Πch (∆ich ). !e %ux of the mechanical
stepping, Jmc , is written as

Jmc = p1w15(e(∆µmc−W )/kB − 1), [8]
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where W is the work done by the motor, p1 is the probability
in state 1, and w15 is the transition rate from state 1 to state 5.
From Eqs. 7 and 8, it follows that, when ∆ich > 0, the %ux
Jmc in Πmc increases. !is implies that, by increasing ∆ich ,
more energy (∆µmc) would be available during the mechanical
step (see Eq. 7). !erefore, positive ∆ich > 0 implies that the
communication between the heads is e"cient, a situation that
we refer to as positive cooperativity. In contrast, when ∆ich < 0
(negative cooperativity), the motor has to expend ∆ich in ad-
dition to σch to execute the chemical transitions in order to
complete the cycle (see Eq. 6), that is, maintaining coordination
costs additional energy for ∆ich < 0. !is results in a decrease
in the available energy for carrying out the mechanical step
(see Eq. 7). !erefore, we surmise that information %ow ∆ich
quanti$es the e"cacy of gating in dimeric motors.

Expressions for the key quantities using the steady-state prob-
ability, such as ∆ich , for the kinetic network in Fig. 1C are given
in SI Appendix, section I.

Kinesin

By using our theory, we $rst analyzed the energetics and in-
formation %ow in the forward stepping cycle of Kin-1 using
the experimental data (41). !e implementation of the theory
requires the rates of various transitions in the catalytic cycle of the
motor. We follow previous studies (44, 57) to extract the kinetic
rates in our model (Fig. 1C ). We emphasize that the current
analysis focuses only on the forward stepping cycle of kinesin.
Although the cycle for the backward steps is certainly necessary
to model the complete energetics of dimeric molecular motors,
the mechanism of how kinesin takes backward steps is still under
debate, which implies that there could be signi$cant uncertainties

in the energetics in modeling the backward steps. Nevertheless,
it is worth pointing out that as long as the probability of taking
backward steps is small, which is certainly the case as long as the
external load is below the stall force (58), the connection between
information transfer and gating predicted by the theory should be
valid. !e two new high spatial and temporal experiments (59,
60) suggest that the backward stepping of kinesin is the process
of recovering from the detachment on the polar track. !us, the
back steps for kinesins may not require any communication in
terms of chemical reactions, that is, purely mechanical slide on
MT. Fig. 1C focuses on the forward cycle of kinesin because
here the gating and its behavior in forward steps of the motor
is of interest. To minimize the e#ect of backward steps, we did
not consider negative velocities (5 pN ! F ) in the experimental
force–velocity data (41) in order to extract the kinetic parameters
needed to characterize the reaction cycle in Fig. 1C. !e detailed
description of the procedure to calculate the parameters and their
values is provided in SI Appendix, section II.

Because our theory is based on thermodynamics, it is im-
portant to assess whether the model in Fig. 1C re%ects the
energetics in kinesin in the experiment (41). Speci$cally, the
input energy needed to drive the catalytic cycle in the experiment
(∆µex ) has to equal to the sum of dissipated heat (Q) and
work done by kinesin (W ) calculated using the network shown
in Fig. 1C. In Fig. 2 A and B, we plot the rate for ∆µex and
∆µ ≡ Q + W , obtained by multiplying each quantity by the
steady-state current in the network using the parameters listed
in SI Appendix, Table S1. !e agreement between the calculations
and experiment is excellent for both two sets of nucleotide concen-
trations. !us, we conclude that the network used in the analysis
describes the thermodynamics of energy consumption in kinesin
accurately.

A

C

B

Fig. 2. (A and B) Rates of energy expenditure in kinesin as a function of the external load, F . The rates of work (power) performed by the motor and the rate of
heat dissipation calculated from the kinetic network in Fig. 1C are denoted as Ẇ and Q̇, respectively. The sum of Ẇ (blue dashed line) and Q̇ is ∆̇µ (green dashed
line). The rate of input energy in the single-molecule experiment (41) (black) is ∆̇µex . Insets show the corresponding bare quantities, W (blue dashed line), Q
(green dashed line), ∆µ (red dashed line), and ∆µex (black solid line). (A) [T] = 1 mM, [D] = 0.1 mM, and [Pi] = 1 mM. (B) [T] = 10 µM, [D] = 1 µM, and [Pi] =
1 mM. Under both conditions, ∆̇µ ≈ ∆̇µex , which not only validates the theory but also shows that the extracted parameters for kinesin (SI Appendix, Table S1)
using different observables are reasonable. (C) Allocation of the input chemical energy for mechanical transition (∆µmc) and chemical transitions (∆µch) as a
function of F . The results are obtained theoretically for the kinesin network in Fig. 1C. The black dashed line shows the experimental value, ∆µex , which is the
energy input. Solid lines are for [T] = 1 mM, [D] = 0.1 mM, [Pi] = 1 mM, and dotted lines are for [T] = 10 µM, [D] = 1 µM, [Pi] = 1 mM. The calculated sum,
∆µch + ∆µmc , is equal to ∆µex .
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Two di#erent nucleotide concentrations [T] = 1 mM, [D] =
0.1 mM, [P] = 1 mM and [T] = 10 µM, [D] = 1 µM, [P] =
1 mM were used in the experiments (41). Under both the con-
ditions, the input energy (∆µex = 84.5 pN · nm ≈ 20.5 kBT )
is the same because [T]/([D][P]) is identical. !e ideal stall
load (Fmax ) may be estimated using Fmax = 20.5 (kBT ) · 4.1
(nm · pN/kBT )/8(nm) = 10.5 pN, where 8 nm is the step size
of kinesin. However, the measured stall load (Fs ) for Kin-1 is
in the range 6 pN ! Fs ! 8 pN (61–63). !e reason for this is
that pathways, besides the forward steps, become relevant when
F exceeds a critical value (discussed further below).

!e mechanisms of stepping kinetics in motors are usually in-
ferred by applying an external load to the cargo (Fig. 1A) in single-
molecule optical tweezer experiments. In order to extract the
motor energetics from such experiments, one has to be cautious,
because heat dissipation occurs in a multidimensional energy
landscape, while experiments only report the dynamics along one
experimentally accessible dimension, stepping direction, which is
aligned with F . !is is clear because a source of hidden dissipa-
tion, which cannot be accessed by observing only the steps, is the
energy expended to drive the chemical transitions. !us, only a
portion of the input energy is used for mechanical stepping. We
calculated ∆µch and ∆µmc as a function of F (Fig. 2C ) in order
to determine the allocation of the input energy (∆µex ), at the two
di#erent nucleotide concentrations used in the experiment, for
mechanical stepping (∆µmc) and chemical transitions (∆µch ).
!e values of ∆µmc and ∆µch are almost identical under both
the conditions, suggesting that the allocation does not depend on
the nucleotide concentrations. From the plots in Fig. 2C, we $nd
that ∆µmc ≈ 9.2 kBT and ∆µch ≈ 11.3 kBT at F = 2 pN, the
value of resistive force used to estimate heat dissipation kinesin in
the experiment (41). !us, at most, 45% of the input energy is
used to drive mechanical stepping at F = 2 pN. As F increases,

the energy needed to drive the mechanical step increases, which
must come at the expense of a decrease in the ∆µch for executing
the chemical transitions. We note that the analysis by Pietzonka
et al. (64) and Seifert (65) using the thermodynamics uncertainty
relation also suggests similar e"ciency at 2 pN. Although, the-
oretically, the entire input energy could be used for stepping at
F = 10.5 pN (Fig. 2C ) only by maintaining the forward cycle at
equilibrium, it cannot be realized at all, because CS transitions
that cost energy have to occur for the motor to step forward.
It also follows that the ideal stall force Fmax = 10.5 pN, which
cannot be obtained in experiments because, at moderately high
forces (F > 5 pN), backward steps start to be prominent.

We note that some kinetic networks, which successfully repro-
duce negative velocity for kinesin at large F , are based on a dual
cycle network for the forward and backward cycles (44, 57). We
analyze such a model in SI Appendix, section V. It turns out that
the information %ow stemming from the backward cycle results
in a convex form of ∆i ; initially, ∆i decreases as F increases,
corresponding to the decrease in the information %ow in the
forward cycle. As F continues to increase, ∆i increases because
the information %ow in the backward steps starts to become
relevant. Nevertheless, if we separate the net information %ow
into the contributions from the forward and backward cycles, ∆i
in the forward cycle is qualitatively similar to the prediction in
Fig. 3A. We emphasize that the free-energy transduction occurs in
the two cycles independently. In other words, energy conservation
(∆µ = Q + W ) holds in both cycles independently. !us, we can
consider energetics in the forward steps separately from backward
steps, as discussed in this section.

!e discrepancy between Fmax and Fs is a consequence of the
nonequilibrium nature of the stepping transition, which creates
alternate stepping pathways that consume energy. !e stall of
kinesin is a consequence of the dynamic equilibrium between the

A B

C D

Fig. 3. Analysis of the experimental data using theory. (A and B) Contribution of each term in Eqs. 7. and 9; ∆µmc is the energy needed for driving the
mechanical step, σch is the apparent entropy production in the chemical transitions, ∆ich is the change in the PMI during chemical transitions, and ∆µex =
20.5 kBT is the input chemical energy from the experiment (41). The apparent energy expended to drive the chemical transitions is ∆µ̃ch. The gray colors and
the corresponding numbers are the three regimes explained in the text. (A) [T] = 1 mM, [D] = 0.1 mM, and [Pi] = 1 mM. (B) [T] = 10 µM, [D] = 1 µM, and
[Pi] = 1 mM. In both A and B, the regime corresponding to ∆µmc exceeding ∆µex is physically not allowed. (C) The probability for the forward step (Pf ; blue),
the backward step (Pb; yellow), and the fraction (Pb/Pf ; black), calculated from ref. 44 (SI Appendix, section III). F = 5 pN is highlighted by the gray line where
∆ich = 0. (D) Same as C except the stepping probabilities are calculated using a theory developed elsewhere (10).
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cycles for forward and backward stepping. It is important to note
that backward steps start to be prominent, typically at ≈5 pN (44,
62) in kinesin, leading to the experimentally observed value of Fs

that is considerably less than Fmax . We discuss this discrepancy
by computing ∆ich , the quanti$cation of the cooperativity.

Cooperative Information Flow Ceases as Backward Step Proba-
bility Increases. In Fig. 3, we plot the F -dependent information
%ow, ∆ich , and the apparent entropy production σch during the
chemical transitions. !e plot naturally divides itself into three
regimes, depending on the signs of ∆ich and σch . In regime I,
F ! 5 pN, where 0 ≤∆ich and 0 ≤ σch . In this force range,
there is positive cooperativity between the TH and the MT
bound LH, thus making the gating process e#ective, which, in
turn, results in the motor walking processively on the MT. Pb ,
backward step probability, is small (Pb ≤ 0.05). In regime II, in
the range 5pN ! F ! 8 pN to 9 pN, ∆ich ≤ 0 and 0 ≤ σch . At
F = 5pN, ∆ich vanishes (Fig. 3 A and B). Not coincidentally,
Pb starts to increase rather steeply at F ≈ 5pN (Fig. 3 C and D).
Interestingly, the value of F at which ∆ich = 0 is independent
of the nucleotide concentrations, as can be noted by comparing
Fig. 3 A and B. !e near independence of Fc on nucleotide
concentration is dramatically illustrated in SI Appendix, Fig. S2.
It shows that Fc changes by less than 0.2 pN as ATP and ADP
concentrations change by nearly three orders of magnitude. In
regime III, in the force range 8 pN to 9 pN ! F , both ∆ich ≤ 0
and σch ≤ 0. Note that, at F > 10.5 pN, the direction of the
stationary %ow reverses, leading to the theoretical possibility of
ATP synthesis with∆µmc > ∆µex . Although ATP synthesis with
a slow rate for kinesin is possible (66), the backward step by ATP
synthesis and release of products has not been observed. Hence,
this regime is excluded in our analysis.

!e results in Fig. 3 along with Eqs. 6–8 allow us to make the
following observations. In regime I, ∆ich is positive, which shows
that gating is most e#ective. Interestingly, Hwang and Hyeon (44)
have shown, using the thermodynamic uncertainty relation, that
transport e"ciency is optimized in this force range. In regime II,
the information %ow is less than optimal. !is regime (≈5 pN)
coincides with the initiation of backward stepping by kinesin,
as shown in Fig. 3 C and D (further explained below). !us,
the loss of e"cient communication between the motor heads
(∆ich < 0) leads to kinesin taking backward steps (the LH could
detach prematurely and goes toward the minus end of MT by
hydrolyzing ATP). In regime III, σch is negative, which we refer
to as the MDR.

Fig. 3 C and D shows the probability of forward step (Pf ),
backward step (Pb), and the ratio (Pb/Pf ) calculated in previ-
ous studies (10, 44) (SI Appendix, section III). !e probabilities
shown in Fig. 3C are from the six-state double-cycle model in
ref. 45, and the probabilities in Fig. 3D are from the random walk
model (10). In light of recent studies (59, 60), it is unclear whether
either study, which account for backward steps for the purposes
of $tting experimental data, is correct. Our unicycle model only
considers the forward cycle. We remark that, because the two
studies (10, 44) used kinetic models di#erent from the current
network model in Fig. 1C, the connection to our study is indirect.
Nevertheless, the results in Fig. 3 C and D allow us to provide the
physical meaning of Fc that emerges from the use of information
theory for gating: ∆ich = 0 signi$es the transition from positive
cooperativity to negative cooperativity. It is gratifying that, despite
signi$cant di#erences between the kinetic models used in the
previous studies (10, 44), it is clear that the e#ect of backward
steps becomes prominent at Fc ≈ 5 pN. Furthermore, the loss of
information %ow at Fc is a robust feature.

It is possible to give an intuitive explanation for MDR
by thermodynamic interpretation. Let us de$ne ∆µ̃ch and
∆µ̃mc as

∆µ̃ch = σch , [9]
∆µ̃mc = ∆µ − σch . [10]

!e above two equations, Eqs. 9 and 10, should be compared
with Eqs. 6 and 7, respectively; ∆µ̃ch (∆µ̃mc) is the apparent
energy expended for chemical (mechanical) transition if we have
no knowledge of interhead communication∆ich . We can imagine
such a scenario for dimeric motors if one can only access the
chemical transitions in one head. If we construct the network of
CSs for the dimeric motor by simply integrating the observation
from a single motor head, it would lead to the apparent energy
transduction given in Eqs. 9 and 10. In Fig. 3, ∆µ̃mc reaches
and exceeds ∆µex in MDR. !is super$cially suggests that the
motor could use more energy to execute the mechanical transition
than the input energy ∆µex . !us, without accounting for the
interhead communication, ∆ich , we would obtain inconsistent
energetics in motors. In this interpretation, the bound head may
be thought of as the Maxwell demon in the sense that it has
information about the trailing or di#using head. !is could be the
thermodynamic interpretation of the Maxwell demon in dimeric
motors.

Myosin V

In order to establish that gating, controlled by information %ow
between the motor heads, is applicable to other motors, we next
considered the chemomechanical network for myosin V (Fig. 4A),
a motor that also walks by a hand-over-hand mechanism on F-
actin by taking 36-nm steps. !e chemomechanical model with
three cycles was proposed by Bierbaum and Lipowsky (67). !e
energetic cost, precision, and e"ciency associated with the net-
work were investigated recently by Hwang and Hyeon (44). !e
cycle, F , is the one that requires chemical coordination leading to
the mechanical step. !e cycle ε is the futile cycle that consumes
energy but does not lead to a mechanical step. !e cycle M is
spontaneous stepping without chemical reactions.

Our focus is on the information %ow in the cycle F in
which mechanical transition requires the coordination of the CSs
between the two motor heads. Because experimental data for
the concentration of ADP and phosphate for myosin V are not
available, we set [D] = 70 µM and [Pi ] = 1 mM, which is appro-
priate for the in vivo condition (44). We analyzed the high ATP
concentration [T] = 1 mM and low ATP concentration [T] =
1 µM. !e nucleotide concentrations [T] = 1mM [D] = 70 µM
[Pi ] = 1 mM give chemical energy input ∆µ ≈ 22.7 kBT ,
and [T] = 1 µM [D] = 70 µM [Pi ] = 1 mM gives chemical
energy input ∆µ ≈ 15.8 (kBT ). !ese values were calculated
using the relation µ = kBT ln Keq [T]/([D][P]), where Keq =
4.9 · 1011µM is the corresponding equilibrium constant (68).
!e expected ideal stall load is Fmax ≈ 2.6 pN and Fmax ≈
1.8 pN for [T] = 1 mM [D] = 70 µM [Pi ] = 1 mM and [T] =
1 µM [D] = 70 µM [Pi ] = 1 mM, respectively. Note that the
two set nucleotide concentrations yield di#erent amounts of input
energy.

Just as in Kin-1, there are three regimes. In regime I, ∆ich ≥ 0
and σch ≥ 0 if F ! 1 pN; in regime II,∆ich ≤ 0 and σch ≥ 0 for
1pN ! F ! 1.4 pN to 1.8 pN; and, in regime III, ∆ich ≤ 0 and
σch ≤ 0 for 1.4 pN to 1.8 pN ! F , depending on the nucleotide
concentrations. In regime I (Fig. 4 C and D), ∆ich is positive,
suggesting that communication between the motor heads is ef-
$cient, resulting in the forward stepping of the motor with the
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A B

C D

Fig. 4. (A) Chemomechanical cycle for myosin V. The diagram shows three cycles, F , ε, and M. F is associated with stepping utilizing chemical energy by
ATP hydrolysis; ε is a futile cycle in which ATP is consumed but the motor does not step; M describes mechanical stepping without ATP hydrolysis. In yellow
are the chemical transitions, and the transitions in dashed green are mechanical transitions. Blue and red colors describe the CSs in the two heads of the
motor. The cycle is adopted from refs. 44 and 67. (B) The probability for the forward step (Pf ), the backward step (Pb), and the fraction (Pb/Pf ), digitized from
ref. 25. The gray line highlights F ≈ 1 pN where ∆ich becomes negative. Note that, at all values of F , Pf + Pb $= 1, because there are pathways associated with
stomping of the LH and TH (25). (C and D) Plots for the terms in Eqs. 7 and 9. for myosin V. ∆µmc is the chemical energy allocated to the mechanical stepping,
σch is the apparent entropy production during chemical transitions, ∆ich is the change of PMI during chemical transitions, and ∆µ is the chemical energy input
at given nucleotide concentrations. ∆µ̃ch is the apparent energy spent for chemical transitions. Gray regions and the corresponding numbers are the three
regimes explained in the text. [T] = 1 mM, [D] = 70 µM, [P] = 1 mM and [T] = 1 µM, [D] = 70 µM, [P] = 1 mM for C and D, respectively. The regimes in
which∆µmc exceeding∆µex (ATP synthesis) cannot occur. Regime III would be prevented, in practice, by enhanced probabilities of other cycles (for instance, ε
and M).

probability of stepping backward being negligible. In regime II,
the motor loses e"cient interhead communication (∆ich ≤ 0),
and the amount of available energy from the gating for mechanical
transition diminishes, which is indicated by the negative ∆ich .
!is may trigger the increased propensity for the myosin V to step
backward. A previous theoretical study (25) showed that backward
steps start to be relevant at F ≈ 1 pN (Fig. 4B), which is the value
of force at which∆ich = 0. !e concentrations of ADP and Pi are
typically not controlled explicitly in experiments, which may lead
to variations in ∆µex . !us, estimates of the energetics, Fs for
instance, in various experiments and physiological concentrations
for myosin V from di#erent experiments may not be comparable
to the results in Fig. 4 C and D. Nevertheless, the resistive load
that signals the transition from regime II to III is in the range
of the experimentally observed stall force [1.6 pN ! Fs ! 2.0 pN
(69–75)].

Discussion and Conclusion

!e language and interpretation from information theory are
extended to illustrate the meaning of gating, an elusive but impor-
tant concept, in molecular motors. In the framework developed
here, gating is viewed as information %ow between the two heads
of the motor. Communication between the motor heads, which
is a qualitative description of gating, has been invoked as the basis
for processivity in molecular motors. Our theory quanti$es the
gating phenomenon in terms of parameters that characterize the
steps in the catalytic cycle of dimeric molecular motors. !e theory
is potentially applicable to a broad class of biological machines.

We $rst derived an equality relating the change in PMI to heat
dissipation along a transition in a driven kinetic network. By using
our theory, we quanti$ed gating in Kin-1 and myosin V. !e two
most important $ndings are the following. First, we showed that
gating is cooperative at resistive forces less than a critical value,
Fc , which means that communication between the two heads is
e#ective. As a consequence, the chemical transitions results in the
TH detaching with much greater probability than the LH. In this
case, the probability that the motor takes a forward step far exceeds
the probability of backward steps.

Second, as the magnitude of the force increases, there is a
loss in gating e"ciency, and information ∆ich becomes negative.
!e transition between low-force positive cooperative interaction
between the motor heads and loss of interhead communication,
due to negative cooperativity, occurs at Fc where ∆ich = 0. At
Fc , there is a lack of correlation (or communication) between
the two heads. Surprisingly, for both the motors, the values of
Fc , which is independent of the input energy, coincide when the
probability for backward transition starts to increase.

Our $ndings show that, despite the signi$cant di#erences in
the chemical cycle and the architecture of Kin-1 and myosin
V, we obtain similar results with regard to the force-dependent
information %ow, and hence gating. !is is not a coincidence; this
class of motors has evolved to work e"ciently at forces less than
Fc . E"cient gating could be the universal working principle in
dimeric molecular motors, which means that F < Fc under in
vivo conditions.

Our main result for kinesin, using the cycle sketched in Fig. 1C,
does not consider the information %ow associated with backward
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steps. Because the mechanism of backward steps is still under
debate (59, 60), a quantitative measure of information %ow in
the net cycle for kinesin (forward plus backward steps) cannot
be provided at present. !e information %ow at high external
loads could depend on the CSs that the motor explores during
the backward cycle. When the mechanism of backward steps is
made clear, the theory can be extended to model the entire cycle.
However, we believe that one of our key results concerning the
loss of coordination between the motor heads at forces less than
the stall force but greater than Fc is likely to be robust.

We are now in a position to provide an interpretation of
positive information %ow, which results in kinesin taking multiple
steps toward the plus end of the MT without detaching. !e
coordination between motors (Fig. 1C ) may be quanti$ed using

∆i = kB
(

ln
p(X = T,Y = D)

pX (T)pY (D)
− ln

p(X = D,Y = T)

pX (D)pY (T)

)
.

[11]
We identi$ed X is the LH and Y is the TH. For this value

to be large and positive, which implies e#ective communica-
tion, the CSs of the two heads must be more correlated in
state 5 (before the mechanical step) than in state 1 (after the
step). In other words, (p(X = T,Y = D)/pX (T)pY (D)) >
(p(X = D,Y = T)/pX (D)pY (T)). !e reason for this is in-
tuitive: Once the CS before the mechanical step is reached, it
does not behoove the motor to leave that state, and thus it is
bene$cial to have strong correlation between the CSs of the two
heads. In contrast, after the mechanical step is completed (state 1),
the CS of the two heads should be loosely correlated, in order to
immediately leave the landing state, which is amenable to revert
the step. We note that this is realized in molecular motors: Upon
completing a mechanical step by binding to the track, kinesin and
myosin release ADP and phosphate, respectively, which consoli-
dates the two-head-bound state, which, in the framework of this
paper, means that p(X = D,Y = T)/pX (D)pY (T) should be
small.

!e asymmetry between the CSs, that arises in our formulation,
could be related to the notion of “kinetic asymmetry” (76–78) for
the gating in motors. From Eq. 8, we realize that e(∆µmc−W )/kB

creates asymmetry in the steps. When e(∆µmc−W )/kB > 1, then
the motor steps forward, and, when e(∆µmc−W )/kB < 1, the
motor takes reverse steps. One can show that ∆µmc − W = ρ
increases with ∆ich . !is indicates that the positive ∆ich indeed
ampli$es the asymmetry in the steps that the motor takes. Quan-
tifying the asymmetry in the selection of the forward cycle over
the backward cycle requires understanding the mechanism of the
backward steps in motors. Future experimental and theoretical
studies would elucidate the connection of our study to the kinetic
asymmetry (76–78).

Our analysis explains the reason for the apparent ine"ciency
of kinesin (41). For mechanical stepping to happen ((5)→ (1) in
Fig. 1C ), kinesin has to $rst undergo chemical transitions ((1)→
(5) in Fig. 1C ). If the motor were to take a forward step, a certain
amount of energy has to be expended to complete the chemical
transitions at all values of F . At forces exceeding Fc ≈ 5 pN,
there is a breakdown in interhead communication. As a result of
loss of communication between the two heads and the increase
in the mechanical energy to complete a step, other pathways
(in particular, backward steps) become prominent. Although an
experiment similar to the one for kinesin (41) has not been
performed for myosin V, our prediction is that the results would
be similar (myosin V would be most e"cient if F ≤ Fc ≈ 1 pN).

From a structural perspective, information %ow between the
heads must be linked to action at a distance expressed in terms

of allostery (13). In kinesin, that walks on MT, the two heads
are about 8 nm apart, whereas the distance between the motor
heads in the F-actin bound myosin V is about 36 nm. How ∆ich ,
the information %ow, is linked to the structural changes in the
motor driven by binding and hydrolysis of ATP followed by ADP
release is unclear. !e molecular link needs to be established before
the design principles in naturally occurring motors can be fully
understood.

Methods
Information Flow on CS Transitions. Let X(Y ) undergo nX (nY ) transitions
along a specific path. The difference in the PMI between the initial and final state
associated with the path,∆i, can be calculated as ∆iX + ∆iY , where

∆iX =
nX−1∑

i=0

[i(xi+1, yi) − i(xi, yi)]

= kB ln
nX−1∏

i=0

p(yi|xi+1)
p(yi|xi)

,

[12]

where p(yi|xi) = p(xi, yi)/pX(xi) is a conditional probability. A similar expres-
sion holds for ∆iY .

The bipartite property allows us to count the transitions for X and Y separately.
Thus, (xi, yi) means the state of X and Y before the (i + 1)th transition for X, and,
similarly, (xj, yj) for Y (Fig. 1B). The change in PMI along a path (for example,
(1)→ (2) transition in Fig. 1C),∆i, is given by

∆i = kB ln
nX−1∏

i=0

p(yi|xi+1)
p(yi|xi)

nY−1∏

j=0

p(xj|yj+1)

p(xj|yj)
. [13]

Entropy Production and Information Flow. Entropy production, ρ, along a
path in steady state can be decomposed as (26)

ρ = Q + ∆sXY , [14]

where

Q = kB ln
n−1∏

i=0

w yi yi+1
xi xi+1

w yi+1yi
xi+1xi

[15]

is the dissipated heat, and

∆sXY = kB ln
n−1∏

i=0

p(xi, yi)
p(xi+1, yi+1)

[16]

is the change of the entropy for the system. In Eq. 15, w yi yi+1
xi xi+1 is the transition

rate from state (xi, yi) to (xi+1, yi+1). We do not explicitly consider changes in
the entropy of the motor protein due to conformational changes that invariably
occur during the catalytic cycle. Although we could include it explicitly, this is not
necessary, because heat dissipation together with the changes in the internal
entropy could be lumped together (26). We avoid this unneeded complication
because our theory is valid irrespective of the changes in internal conformational
entropy of the motor.

Entropy production is always positive along the direction of stationary flow be-
cause p(xi, yi)w yi yi+1

xi xi+1 − p(xi+1, yi+1)w yi+1yi
xi+1xi > 0 for all i. For a bipartite graph,

ρ can be decomposed as

ρ = ρX + ρY = (QX + ∆sX
XY) + (QY + ∆sY

XY), [17]

where

QX = kB ln
nX−1∏

i=0

wyi
xi xi+1

wyi
xi+1xi

; ∆sX
XY = kB ln

nX−1∏

i=0

p(xi, yi)
p(xi+1, yi)

;

QY = kB ln
nY−1∏

j=0

w
yj yj+1

xj

w
yj+1yj

xj

; ∆sY
XY = kB ln

nY−1∏

j=0

p(xj, yj)

p(xj, yj+1)
.

[18]
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The transition rate for (xi, yi) → (xi+1, yi) (and (xi, yi) → (xi, yi+1)) is de-
noted as w yi

xi xi+1 (wyi yi+1
xi ). We can show that the equalities,∆sX = ∆sX

XY + ∆iX

and ∆sY = ∆sY
XY + ∆iY , hold, where ∆sX = kB ln

∏nX−1
i=0 (pX(xi)/pX(xi+1))

and ∆sY = kB ln
∏nY−1

j=0 (pY(yi)/pY(yi+1)). Using these relations, we obtain,
for each X and Y ,

ρX(Y) = σX(Y) −∆iX(Y). [19]

In Eq. 19, we defined the apparent entropy production from X and Y as
σX ≡ QX + ∆sX and σY ≡ QY + ∆sY , respectively. By summing the terms in
Eq. 19 for X and Y , we obtain Eq. 3 by definingρ≡ ρX + ρY andσ ≡ σX + σY .

Mechanochemistry and Information. We write the probability in state (i) as
pi. Namely, we use the notation p(X = D, Y = T) = p1, p(X = Φ, Y = T) = p2,
and so forth. We denote the rate of transition from state (i) to state (j) as wij.

We can write the input chemical energy (∆µ) using the microscopic
transition rates as

∆µ = kB ln
w12w23w34w45w51

w21w32w43w54w15
+ W , [20]

where W is the mechanical work done by the motor. Eq. 20 states that the affinity
(driving force), kB ln(w12w23w34w45w51/w21w32w43w54w15), is obtained from the
sum of free energy supplied by the chemical reaction (∆µ) and the work done to
the motor (−W). For Πch where only chemical reactions matter, the affinity may
be supplied from the chemical energy (∆µch) and the change of internal energy
(−kB ln p1

p5
). Thus, we define

∆µch = kB ln
w12w23w34w45

w21w32w43w54
+ kB ln

p1

p5
. [21]

For Πmc , we include the contribution from the mechanical work,

∆µmc = kB ln
w51

w15
+ kB ln

p5

p1
+ W . [22]

The definition of Eqs. 21 and 22 satisfying Eq. 5 separates energy consump-
tion in the chemomechanical cycle into chemical and mechanical expenses. This
is explicitly demonstrated in Fig. 2for kinesin, in the following section.

For Πmc , we can rewrite Eq. 22 in the following form:

∆µmc − W = ρmc , [23]

where ρmc = kB ln w51p5
w15p1

is the entropy production in Πmc . ρmc quantifies the
nonequilibrium nature of the motor stepping; in other words,ρmc = 0 at equilib-
rium, which is a consequence of the detailed balance condition in Fig. 1C. Using
e(∆µmc−W)/kB = (p5w51)/(p1w15) from Eq. 23 and the flux associated with the
mechanical step, Jmc = p5w51 − p1w15, we obtain Eq. 8.

Data, Materials, and Software Availability. All study data are included in
the article and/or SI Appendix. The file used to generate the figures has been de-
posited in GitHub (https://github.com/kibidanngo/Information-flow-PNAS) (79).
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