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In the presence of crystalline symmetries, topological phases of matter acquire a host of invariants
leading to nontrivial quantized responses. Here we study a particular invariant, the discrete shift S, for the
square lattice Hofstadter model of free fermions. S is associated with a ZM classification in the presence of
M-fold rotational symmetry and charge conservation. S gives quantized contributions to (i) the fractional
charge bound to a lattice disclination and (ii) the angular momentum of the ground state with an additional,
symmetrically inserted magnetic flux. S forms its own “Hofstadter butterfly,” which we numerically
compute, refining the usual phase diagram of the Hofstadter model. We propose an empirical formula forS
in terms of density and flux per plaquette for the Hofstadter bands, and we derive a number of general
constraints. We show that bands with the same Chern number may have different values ofS, although odd
and even Chern number bands always have half-integer and integer values of S, respectively.
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Topological phases of matter are characterized by
invariants that give rise to quantized physical responses,
such as the Chern number and associated quantized Hall
conductivity. In the presence of spatial symmetries, addi-
tional invariants also arise, such as the Wen-Zee shift [1] in
clean isotropic continuum quantum Hall systems, which
characterizes the response to geometric curvature [2–11]. In
order to fully understand systems where lattice effects play
an important role, we must develop a complete under-
standing of invariants and their associated quantized
responses for topological phases with charge conservation
and crystalline symmetries. Recently, some of the authors
[12,13] developed such a systematic theory in two dimen-
sions by analyzing topological terms for crystalline gauge
fields and found several additional quantized invariants.
Some of these invariants have no continuum analog, while
others give a crystalline analog of invariants known from
the setting of continuum spatial symmetries.
In this Letter, we study one such invariant, the discrete

shift S and its physical consequences through numerical
studies of the square lattice Hofstadter model [14] of
spinless free fermions. S is an invariant that depends on
a discrete ZM rotational symmetry and U(1) charge con-
servation and is a discrete analog of the Wen-Zee shift
arising in continuum systems. For invertible fermionic
topological states [15–17], 2S is an integer defined mod
2M; we show that, for a fixed Chern number, S can, in
principle, take one of M distinct values, and odd (even)
Chern numbers must have half-integer (integer) values
of S [18].
Remarkably, S refines the known phase diagram of the

Hofstadter model, leading to a new Hofstadter butterfly
(Fig. 1), which we numerically compute. As we study

numerically in detail, S has a physical manifestation in
terms of a quantized contribution to the fractional charge
bound to lattice disclinations [see Eq. (2)] and, dually, the
fractional angular momentum bound to magnetic flux [see
Eq. (4)]. We theoretically justify several properties ofS that
are evident from Fig. 1, and also propose an empirical
formula for S [Eq. (5)].
Since the Hofstadter model has now been effectively

realized in moiré superlattice systems [19–22], ultracold

FIG. 1. S for Hofstadter model, from Eq. (5).
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atoms [23–25], and photonics [26,27], an experimental
verification of our results may be possible.
We note that [28–34] also study some aspects of the shift

in lattice settings, with limited results when Chern number
C ≠ 0, as discussed below and in the Supplemental
Material [35], Sec. I.
Model and response theory.—We consider a system of

fermions hopping on a lattice with a discrete Z4 rotational
symmetry, a background magnetic flux ϕ per unit cell, and
filling ν0 charge per unit cell. We focus on the Hofstadter
model on a square lattice, with the Hamiltonian H ¼
−t

P
hi;ji c

†
i cje

−iAbgd;ij þ H:c: This describes spinless free
fermions ci coupled to a background U(1) gauge field Abgd,
whose holonomy around each plaquette is ϕ. When ϕ ¼
2πðp=qÞ with coprime integers p and q, the system has q
bands. When r bands are filled, ν0 ¼ r=q. At any gapped
point in the parameter space ðν0;ϕÞ, the total Chern number
C of the filled bands is determined by the conditions
ν0 ¼ ðp=qÞC mod 1; jCj ≤ ðq=2Þ [44]. Each connected
gapped region in this parameter space has a fixed value
of C. Simply connected gapped regions with Chern
number C (referred to as Chern number C lobes) are
separated by special values of ðϕ=2πÞwhich lie in the Farey
sequence of order 2jCj [45]. The continuum limit of n filled
Landau levels is obtained by taking ðp=qÞ → 0þ
and C ¼ n.
H has a symmetry group G, which is a central extension

of the wallpaper group p4 ¼ Z2⋊Z4 by U(1). This means
that the magnetic translations are generated by the many-
body operators Tx, Ty , which satisfy TxTy ¼ TyTxeiϕN̂,
where N̂ is the total particle number operator. The
Hamiltonian is invariant under a “magnetic” rotation

operator C̃4;λ ≡ Ĉ4e
i
P

j
λjc

†
j cj, where λj is a gauge trans-

formation at site j, which is fixed up to an overall constant
by Abgd. The usual rotation operator Ĉ4 acts as
Ĉ4cjĈ

†
4 ¼ cRðjÞ, where RðjÞ is a vertex-centered π=2

rotation of site j.
The quantized universal properties can be encoded by a

topological response theory involving a background G
gauge field B ¼ ðδA;  R;ωÞ, which is nonabelian [12]. Here
δA ¼ A − Abgd is the deviation of the total U(1) gauge field

A relative to Abgd, whileω,  R are the crystalline gauge fields
(see Supplemental Material [35], Sec. VII for additional
details, which includes Refs. [36–42]). ω is a background
gauge field for the Z4 rotational symmetry; in the con-
tinuum limit, it is identified with the spin connection.  R is a
two-component gauge field for the Z2 translational sym-
metry. In terms of  R and ω we also define an area element
AXY , which counts the number of unit cells [12]. Note that
the integral δΦW ≡ R

W dδA over a two-dimensional region
W gives the total excess magnetic flux within W, not
including the background flux, while

R
W dω gives the total

disclination angle of disclinations within W. ω and  R are
taken to be real-valued fields with quantized periods, since
they are Z4 and Z2 gauge fields, respectively [46].
We can write all terms in the topological response theory

that depend on A or ω [12],

L ¼ C
4π

A ∧ dAþ S
2π

A ∧ dωþ
 Pc

2π
· A ∧  T þ k0

2π
A ∧ AXY

þ l̃s

4π
ω ∧ dωþ

 Ps

2π
· ω ∧  T þ ks

2π
ω ∧ AXY: ð1Þ

See Supplemental Material [35], Sec. VII for a discussion.
 T ¼ d  Rþ iσyω ∧  R is the torsion two-form. Here C and
2S must be quantized to integers. For fermionic invertible
phases there are some additional terms in the theory,
discussed in the Supplemental Material [35], Sec. VII.
The first term defines the Hall conductivity σ̄H ¼ ðC=2πÞ
in natural units and assigns charge to flux. The second term
assigns a fractional U(1) charge SðΩ=2πÞ to a defect with
disclination angle Ω. On a square lattice, it is topologically
trivial if a ðπ=2Þ disclination is assigned an integer charge,
which can be removed by applying local operators at the
disclination core. Thus, only S mod 4 is a symmetry-
protected invariant, in contrast to the continuum shift,
which is a Z invariant [47]. The second term can also
be written as ðS=2πÞω ∧ dA, which assigns angular
momentum SðdA=2πÞ to flux dA. In the Supplemental
Material [35], Sec. VIII we show the nontrivial result that
for spinless fermions in free or interacting systems, S is
quantized to a half-integer if C is odd and to integers if C is
even. The numerical values of S in Fig. 1 agree with this
result.
ν0 ¼ Cðϕ=2πÞ þ k0 and νs ¼ Sðϕ=2πÞ þ ks are the

charge and angular momentum per unit cell, with k0
and ks as integers. The terms with  T in Eq. (1) can be
detected by inserting defects with nontrivial dislocation
Burgers vector, but we do not consider such defects in this
Letter. Hereafter, we ignore these, as well as the ω ∧
dω term.
Fractional disclination charge.—Equation (1) predicts a

contribution to the charge localized at a ðπ=2Þ disclination
coming from S. Here we compare the field theory
prediction to microscopic calculations. The discussion
below applies to general lattices with p4 space group
symmetry.
We construct a ðπ=2Þ disclination at the point o by

deleting a quadrant from the infinite plane and reconnecting
sites using the operator C̃4;λ (see Supplemental Material
[35], Sec. III, which includes Ref. [43]). In particular, if
each unit cell in the disclination lattice has the same flux,
we show that λo ¼ 0. Now consider a region W enclosing
the disclination, such that the distance between the dis-
clination and the boundary ∂W is much greater than the
correlation length. The total charge is
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QW ¼
Z
W

δL
δA0

¼ C
δΦW

2π
þS

ΩW

2π
þ ν0nu.c.;W; ð2Þ

where nu.c.;W , ΩW , and δΦW are the number of unit cells in
W, disclination angle, and excess magnetic flux (on top of
the background flux nu.c.;Wϕ), respectively. Here we use
that

R
W dA ¼ δΦW þ nu.c.;Wϕ and v0 ¼ Cϕ=2π þ k0. In

order to use Eq. (2), W should enclose a definite integer
number of unit cells. Furthermore, in order to ensure that the
conditionQW þQW0 ¼ QW∪W0 holds microscopically, as in
the field theory, we define QW ≡P

i∈W wtðiÞQi where the
weight wtðiÞ ¼ 1 for interior points andwtðiÞ ¼ 1

4
; 2
4
; 3
4
if the

interior ofW subtends an angle ðπ=2Þ; π; ð3π=2Þ at site i [see
Fig. 2(a)]. Note that our definition of disclination charge
differs from previous work [30].
The charge on a site Qi is simply hc†i cii in the ground

state. We choose W such that it encloses a single discli-
nation with ΩW ¼ ðπ=2Þ. We set the excess flux δΦW ¼ 0
in our numerics. ν0 can be defined as the filling of a
corresponding clean lattice on a torus with the same flux
per unit cell ϕ. On a lattice with disclinations, ν0 is also the
charge per unit cell far away from the disclination. Suppose
we define the excess charge inW as Q̄W ≡QW − ν0nu.c.;W .
We can then extract the shift S to be ðS=4Þ ¼ Q̄W .
Numerically, we find that Q̄W , and hence the computed
S, is indeed independent of the size of W for large enough
W. We show this by explicitly plotting Qi and the size
dependence of Q̄W for three representative sets of param-
eters in the Hofstadter butterfly (Fig. 3). We can thus use
this procedure to calculate S throughout the Hofstadter
butterfly; this is shown in Fig. 1. In the Landau level limit,
we numerically recover the result S ¼ ðC2=2Þ [1].
It is instructive to apply Eq. (2) when W is the entire

surface of a cube, which has eight ðπ=2Þ disclinations
corresponding to the eight corners. In this case, we obtain

Qcube ¼ 2Sþ ν0nu.c.;cube: ð3Þ
Thus, in order to be in the same gapped phase as a state on a
torus with filling ν0 and identicalϕ andChern numberC, the
total charge on the cube is shifted from the naïve expectation
of ν0nu.c.;cube by 2S. Numerically, this agrees with the
number of extra single particle states we need to fill.
Note that the weighting procedure and the numerical

result Q̄W ¼ ðS=4Þ generalize to any C4 symmetric lattice.
The details are described in the Supplemental Material
[35], Sec. V.
Let us now introduce bond and on site potential disorder,

which break the crystalline symmetry. In this case, the
value of S extracted from Q̄W through S ¼ 4Q̄W deviates
from its quantized value for each disorder realization,
although it remains quantized after disorder averaging.
The standard deviation σS computed from Q̄W grows to
order 1 with an increase in disorder strength, as shown for
two representative lobes in Fig. 2(b). The value of S
extracted from Qcube is much more robust (i.e., much
smaller standard deviation) as long as the chemical poten-
tial is far from the band edge, since in this case Qcube can
change only if a given disorder configuration moves a
single particle state across the chemical potential.
Angular momentum due to flux.—Since ω is a

rotation gauge field, the angular momentum is the charge

FIG. 2. (a) Lattice disclination with disclination angle
Ω ¼ ðπ=2Þ. The blue region W covers 11 unit cells. Qi is
weighted by the indicated amount when calculating QW or
Q̄W . (b) Standard deviation of S as a function of bond disorder
σbond or on site disorder σon site for C ¼ 1 and C ¼ 2main Landau
level (average hopping is one).

FIG. 3. (a)–(c) Qi for each site i in a clean system with
parameters (a) ðϕ=2πÞ ¼ ϵ, C ¼ 1, (b) ðϕ=2πÞ ¼ 1

2
− ϵ, C ¼ −2,

(c) ðϕ=2πÞ ¼ 1
3
þ ϵ, C ¼ 3. The color bar is in units of ν0. ϵ is a

small fraction that opens up the band gap. (d) Q̄W for (a)–(c) is
quantized at ðS=4Þ when R ≥ 9. R is the distance from the
disclination center to ∂W (total side length is L ¼ 24 unit cells).
Here we have cropped out the edges to show the bulk features
more clearly; the full figures with edges are given in the
Supplemental Material [35], Sec. V.
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under rotations, given by l ¼ R ðδL=δω0Þ ¼ S½ðδΦ=2πÞ þ
ðϕ=2πÞnu.c.� þ ksnu.c. mod 4. Below, we compare this
topological field theory (TFT) prediction to microscopic
calculations. Consider the Hofstadter Hamiltonian on an
L × L torus, with L even and ϕ flux per plaquette. By
turning on δA, we add a flux 2πΔm, also distributed
uniformly. If the system has Chern number C, we fill ΔmC
additional single particle states in order to get a gapped
many-body state with the same C. This state has m ¼
ðϕL2=2πÞ þ Δm flux quanta.

We use the same magnetic rotation operator C̃4;λ that we
used to define the disclination. This means that we require
λo ¼ 0, where o is a fixed point of the rotation.

Note that the holonomies e−i
H
ðδAþAbgdÞ·dl along the two

noncontractible cycles of the torus are position dependent.
Translation by one site changes the holonomy by a factor
ei2πðm=LÞ and is therefore an exact symmetry only for the
infinite system; for any finite system, translation by one site
can only be an approximate symmetry. On a finite size torus
with evenL, there are two points, o1 and o2, distinguished by
having holonomy 1 or eiπm along both directions. The vertex-
centeredπ=2 rotational symmetry is only exact for a finite size
system when o1 and o2 are both fixed points of this rotation.
Since we have two distinct fixed points o1 and o2, there

are two distinct choices of gauge satisfying the above
condition, either λo1 ¼ 0 and λo2 ¼ mðπ=2Þ, or λo2 ¼ 0 and
λo1 ¼ −mðπ=2Þ. In what follows, we pick the first choice,
denoted C̃4; the second is related by an overall U(1)
rotation e−iN̂mðπ=2Þ, as will be discussed in the Supplemental
Material [35], Sec. VI.
The many-body ground state jΨmi satisfies C̃4jΨmi ¼

eilðmÞðπ=2ÞjΨmi. Since C̃4
4 ¼ 1, lðmÞ is an integer mod 4.

In this setup, we require each rotation center to be a
vertex. On a torus, this forces L to be even: if L were odd,
any rotation would leave two points invariant, one at a
vertex and the other at a plaquette center. If the rotation
center was at a plaquette center, then the original C̃4

rotation would be modified by a lattice translation. The
associated eigenvalue would receive a contribution from the
A ∧  T term in Eq. (1), which we do not wish to consider
here. Indeed, the numerical result with plaquette centered
rotations is not consistent with Fig. 1.
We find from direct numerical calculation,

lðmÞ ¼ Smþ C
m2

2
þ KðC;LÞ mod 4: ð4Þ

The quadratic dependence on m is beyond the TFT
description; while it is well-known from the continuum
Landau level problem, it has not been derived using effective
field theory [48]. For a given lobe, KðC;LÞ is an integer that
does not depend onm, but does depend on C and L. We can
obtain S by subtracting the quadratic term and taking the
difference: S ¼ lðmþ 1Þ − lðmÞ − Cm − ðC=2Þ mod 4.

For each lobe with a given C, the value of S obtained from
Eq. (4) matches the result using Eq. (3), confirming the
expected duality.
Instead of inserting additional Δm flux uniformly every-

where, we can insert it locally in a smaller region W
symmetrically around the rotation center. We find that the
value ofS remains constant for different sizes ofW, even in
the limit when W contains just four plaquettes (when C is
small enough).
We can also extract S using partial rotations [31,49].

That is, in a system with background flux 2πm0 we
insert a local flux of 2πΔm in a region W, and we
compute hΨΔm;m0

jC̃4jDjΨΔm;m0
i, where C̃4jD is the restric-

tion of C̃4 to a region D containing W and jΨΔm;m0
i is the

ground state. Let us fix W and D to be centered on o2
and continue with our previous gauge choice λo1 ¼ 0.
The ground state expectation value can be written as
hΨΔm;m0

jC̃4jDjΨΔm;m0
i ¼ e−γDðΔm;m0ÞþilDðΔm;m0Þπ=2. The

magnitude e−γDðΔm;m0Þ has an exponentially decaying
envelope as the perimeter ∂D increases, as expected, in
addition to an oscillatory behavior that we do not study in
detail. We empirically find lDðΔm;m0Þ ¼ lDð0; m0Þ þ
SΔmþ CmΔmþ ½CðΔmÞ2=2� mod 4. This matches the
expectation from Eq. (4). One can also perform the partial
rotation computation in the case where the total system is
defined with open boundary conditions, as discussed in the
Supplemental Material [35], Sec. VI.
On the torus, we find that the formula for lDðΔm;m0Þ −

lDð0; m0Þ is sensitive in complicated ways to the gauge
choice λo1 ¼ 0 or λo2 ¼ 0 and whether D is centered on o1
or o2; these dependencies are not fully understood. We
discuss this and related issues arising for open boundary
conditions in the Supplemental Material [35], Sec. VI.
Theoretical analysis.—As a function of μ and ϕ, S

and C have the following general properties (note
S is defined mod 4): (1) S mod 1 ¼ ðC=2Þ mod 1.
(2) Sðμ;ϕÞ ¼ Sðμ; 2π − ϕÞ, i.e., S is invariant under time
reversal. (3) For the bands with the same Chern number C,
Sðμ;ϕÞ ¼ 1 − Sð−μ;ϕÞ. (4) When S changes, ðϕ=2πÞ
must lie in the Farey sequence of order jCj.
(5) Sðμ; 0þÞ ¼ ðC2=2Þ for C > 0.Properties (1–3) will
be justified in the Supplemental Material [35], Sec. VIII.
We explain (1) also for general interacting systems, using
the classification of invertible topological phases in
Ref. [15]. Property (2) follows for general interacting
systems from the time-reversal invariance of the field
theory term ω ∧ dA, while (5) reproduces the known
results in the continuum Landau level limit [1].
Now let us explain property (4). Consider all possible

fractions ðp=qÞ with 0 ≤ ðp=qÞ ≤ 1 and 1 ≤ q ≤ 2jCj and
p, q coprime. Arrange them in increasing order, with zero
being the first element and one being the last. The resulting
sequence is called the “Farey sequence” of order 2jCj. Now,
the different lobes with Chern number C are uniquely
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specified by the intervals of ðϕ=2πÞ obtained from this
sequence [45]. Moreover, each lobe has a constant value of
shift. In our numerics, when S jumps, ϕ=2π must lie at
fractions ðp=qÞ in a smaller set, namely, the Farey sequence
of order jCj; see Supplemental Material [35], Sec. II.
Empirical formula for S.—Suppose we fix a C > 0 and

consider SðϕÞ as ðϕ=2πÞ ¼ ðp=qÞ is increased from 0 to 1.
As stated above, SðϕÞ jumps by integers at specific
values of ðp=qÞ, where q ≤ jCj. At a given ðp=qÞ, the
total jump, defined as limϵ→0þS½2πðp=qÞ þ ϵ�−
S½2πðp=qÞ − ϵ�, is the sum of two contributions: A con-
tribution of −C − 1 whenever q divides C and another
contribution of 2bðCþ qÞ=2qc whenever q is odd. Both
contributions are automatically zero if q > jCj. The
observed jumps are tabulated in the Supplemental
Material [35], Sec. II, up to C ¼ 12. From these observa-
tions, we propose the following empirical formula by
summing over all jumps that occur at 2πðp=qÞ < ϕ. For
C > 0,

SðϕÞ¼C2

2
−ðCþ1Þ

�
Cϕ
2π

�
þ2

X
p
q<

ϕ
2π

odd q

�
Cþq
2q

�
mod 4; ð5Þ

where in the third term we sum over all ðp=qÞ in the Farey
sequence of order C that satisfy ðp=qÞ < ðϕ=2πÞ and q
odd. S for C < 0 can be obtained from the symmetry
transformation Sðμ;ϕÞ ¼ 1 −Sð−μ;ϕÞ, which flips the
sign of C. We numerically checked Eq. (5) for all jCj ≤ 7
lobes using Eq. (3) on a cube of side length L ¼ 28. We
also checked all jCj ≤ 12 lobes using Eq. (4) on a torus
with side length L ¼ 140, and we checked some repre-
sentative jCj ¼ 45 lobes with L ¼ 180. We use (5),
together with an eigenvalue database [45], to gener-
ate Fig. 1.
Lobes with the same ðC; k0Þ can have distinct values of

S. For example, when ðC; k0Þ ¼ ð4;−1Þ we can take
ðϕ=2πÞ ¼ 1=3 ∓ ϵ and find S ¼ 3; 1 mod 4, respectively.
Also note that, in Fig. 1, we do not see any bands with total
shift S ¼ 3=2 or 7=2. However, there is no theoretical
obstruction to realizing this in a system with odd C. Indeed,
there are several examples of single excited bands that have
odd C and S ¼ 3=2 or 7=2 in this model.
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