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Abstract

(3+1)D topological phases of matter can host a broad class of non-trivial topological de-
fects of codimension-1, 2, and 3, of which the well-known point charges and flux loops
are special cases. The complete algebraic structure of these defects defines a higher cat-
egory, and can be viewed as an emergent higher symmetry. This plays a crucial role both
in the classification of phases of matter and the possible fault-tolerant logical operations
in topological quantum error-correcting codes. In this paper, we study several examples
of such higher codimension defects from distinct perspectives. We mainly study a class
of invertible codimension-2 topological defects, which we refer to as twist strings. We
provide a number of general constructions for twist strings, in terms of gauging lower
dimensional invertible phases, layer constructions, and condensation defects. We study
some special examples in the context of Z2 gauge theory with fermionic charges, in
Z2×Z2 gauge theory with bosonic charges, and also in non-Abelian discrete gauge theo-
ries based on dihedral (Dn) and alternating (A6) groups. The intersection between twist
strings and Abelian flux loops sources Abelian point charges, which defines an H4 coho-
mology class that characterizes part of an underlying 3-group symmetry of the topolog-
ical order. The equations involving background gauge fields for the 3-group symmetry
have been explicitly written down for various cases. We also study examples of twist
strings interacting with non-Abelian flux loops (defining part of a non-invertible higher
symmetry), examples of non-invertible codimension-2 defects, and examples of the in-
terplay of codimension-2 defects with codimension-1 defects. We also find an example
of geometric, not fully topological, twist strings in (3+1)D A6 gauge theory.
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1 Introduction

It is well-known that topologically ordered phases of matter are characterized by the existence
of topological excitations with certain fusion and braiding properties. In (2+1)D, these cor-
respond to anyons, which are point-like quasi-particles whose fusion and braiding properties
are described mathematically by a unitary modular fusion category [1, 2]. In (3+1)D, topo-
logically ordered phases possess point and loop excitations, with non-trivial mutual braiding
statistics. In particular, for discrete gauge theory with gauge group G, which is believed to
describe all (3+1)D topological phases [3, 4], the point and loop excitations correspond to
gauge charges and flux loops.

Over the last decade, it has been understood that there is significantly more to the story, in
the sense that there is an additional structure in the universal properties of topological phases
of matter. This structure corresponds to the distinct kinds of extrinsic topological defects of
varying codimension that can be supported [5–16]. Understanding the properties of these
defects is crucial to fully understand the types of physical phenomena that can occur, while
also providing the foundation for describing symmetry in topological phases of matter [17].
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For example, in (2+1)D, in addition to anyons, topologically ordered phases of matter can
support topologically non-trivial line defects, which are codimension-1 defects. In some cases,
anyons near a line defect can be annihilated or created by a local operator; in other cases,
an anyon may be converted to a topologically distinct anyon upon crossing the line defect.
In general, these line defects can be thought of as topologically distinct classes of gapped
interfaces between the given topological order and itself. The codimension-2 junction between
two distinct line defects can localize exotic zero modes and give rise to topologically protected
degeneracies, thus forming a non-Abelian defect (Ref. [18] Sec. V) [5, 9–16]. The anyons
themselves can be viewed as special kinds of codimension-2 defects.

Since the line and point defects can be fused together in myriad ways, it is expected that the
combined algebraic structure of line and point defects in (2+1)D topological phases of matter
is described mathematically by a unitary fusion 2-category [6, 19]. While this is understood
at a somewhat abstract mathematical level [19], it is ongoing work to fully understand this
structure in concrete terms amenable to calculations in physical models [20–22]. The proper-
ties of these line and point defects are crucial to understanding symmetry-enriched topological
phases of matter and their modern characterization in terms of G-crossed braided tensor cat-
egories [17,23–25].

Similarly, in (3+1)D, the point-like gauge charges and flux loops constitute only part of
the story. (3+1)D topological phases can support distinct types of codimension-1, 2, and 3
defects. The codimension-1 defects correspond to gapped interfaces between the topological
order and itself; the codimension-2 defects correspond to gapped interfaces between distinct
codimension-1 defects, and so on. The conventional gauge charges and flux strings constitute
just a special case of the more general kinds of codimension-3 and codimension-2 defects, re-
spectively. Extrapolating from (2+1)D, one expects that there exists a mathematical structure
corresponding to a unitary fusion 3-category, which would describe the combined algebraic
structure of codimension-1,2, and 3 defects in (3+1)D topologically ordered phases of matter.
However, the mathematics of fusion n-categories for n> 2 is much less well-developed.

From a contemporary perspective, the entire structure of these topological defects of vary-
ing codimension can be thought of as a “higher symmetry” [26–30]. For example, in a (d+1)-
dimensional topological phase, one can think of implementing a non-trivial symmetry opera-
tion on a (d − k+1)-dimensional subspace of the system by sweeping a codimension-k defect
along some closed trajectory in time. A special class of defects that are invertible, as we will
define more precisely below, define a higher group symmetry. Invertible codimension-k de-
fects define a (k − 1)-form symmetry [26]. In a (d + 1)-dimensional topological phase, this
leads to a series of groups Kk, for k = 1, . . . , d. Kk is an Abelian group if k > 1.

The non-trivial interaction between invertible defects of varying codimension implies a
higher group structure. In (2+1)D, the invertible defects are known mathematically to define
a categorical 2-group symmetry (see Ref. [31] and Appendix D of Ref. [17]). Extrapolating to
(3+1)D, one expects the invertible defects to define a categorical 3-group symmetry.1 Some
aspects of this 3-group symmetry in (3+1)D topological phases were studied in Refs. [32,33].

The purpose of this paper is to make progress in further understanding higher codimension
defects in (3+1)D topological phases of matter. A long-term goal is to develop a complete
understanding of the fusion 3-category of defects in (3+1)D topological phases of matter. In
the short term, a satisfactory understanding of the categorical 3-group of invertible defects
may be within reach.

Most of the focus in this paper is on studying a class of invertible codimension-2 defects,
which we refer to as “twist strings”. These can be thought of as loop-like defects in (3+1)D
topological phases, but which do not correspond to the conventional flux strings. Nevertheless,
the twist strings have several striking properties. For example, a twist string that crosses a flux

1A “categorical” n-group can also be thought of as an (n+ 1)-group.
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flux string

point charge appearing
at the intersection

twist string

flux string

point charge

twist string twist string

flux string

Figure 1: The vertical (green) line represents the topological twist string
(codimension-2 defect), and the horizontal (red) line is the flux string. When the
flux string is moved across the twist string, a point charge appears from their inter-
section.

(a)

(b)

Figure 2: Illustration of the generic properties of a non-topological twist string (green
line). There exist a certain flux string with an attached charge π, such that the trans-
formation of this charge depends on the detailed geometric trajectory of the flux
string and the charge. (a) If the worldline of the attached charge π (blue) intersects
with the geometric twist string, the attached charge will be transformed into π′ (pur-
ple). (b) If the worldline of the attached charge avoids the twist string, the attached
charge remains the same.

string can source a non-trivial point charge; state differently, the linking between twist strings
and flux strings can induce point charges in the system.

1.1 Overview of results

Here we provide a brief overview of our main results.
In Sec. 2, we provide a rough definition of the notion of codimension-k defects and some of

their basic properties. The definition is analogous to the definition of a gapped phase of matter,
except applied to a subspace of the total space. We also briefly explain how codimension-k
defects correspond to higher ((k− 1)-form) symmetries.

We study a class of invertible codimension-2 topological defects of (3+1)D discrete G gauge
theory, which we refer to as twist strings. One way to construct these twist strings is as follows.
First, we prepare a (3+1)D trivial invertible topological phase with G symmetry, which can be
either bosonic or fermionic. Then, we decorate the codimension-2 surface embedded in the
(3+1)D spacetime with a (1+1)D invertible topological phase with the same symmetry G.
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We then gauge the G symmetry of the whole spacetime. The resulting theory is given by
the (3+1)D G gauge theory, where the decorated (1+1)D invertible phase now defines an
invertible codimension-2 defect of the (3+1)D G gauge theory. Other constructions of twist
strings are given by layer constructions (Sec. 5) or the notion of condensation defects (Sec. 8).

The main defining property of the twist strings is that they have a nontrivial interplay with
the point charges and flux loops of the (3+1)D topological order (see Fig. 1). Namely, the
crossing between a twist string and a flux string sources a point charge. This relationship
between the twist string and the flux string in (3+1)D is reminiscent of the codimension-1
defects in (2+1)D topological orders that can permute anyons, which can also be regarded as
attaching an additional anyon to the anyon crossing the defect. In (3+1)D, a codimension-2
defect cannot permute the label of the flux strings, but it can still act on the flux string by
attaching a point charge upon linking:

flux string twist string

point	
charge

. (1)

In the most general situation, the flux string can be non-Abelian and is labeled by a con-
jugacy class [g] of the gauge group G. In these cases, one can consider charged flux loops,
where the charge is labeled by an irreducible representation (irrep) πg of the centralizer of g.2

When the flux string crosses the twist string, a point charge πg can appear on the string, whose
worldline emanates from the space-time crossing point between the twist string and the flux
string. πg must, on general grounds, be a one-dimensional irrep. In many simple examples,
the point charge is a deconfined Abelian point charge, although there are also examples where
the charge is confined to the flux string. The above process implies that the total charge of
the system is directly related to the linking number between twist strings and magnetic flux
strings.

In Sec. 3, we warm up by showing how some familiar invertible codimension-1 defects
(which we also refer to here as twist strings) in (2+1)D topological phases can be understood
in terms of gauging an invertible phase with a non-trivial (1+1)D invertible phase decorated
on the line defect. This includes in particular the e ↔ m twist string, permuting e and m
anyons in Z2 gauge theory, which arises from decorating a codimension-1 line with a gauged
Kitaev chain, where the procedure to gauge fermion parity on the 2d square lattice is reviewed
in Appendix. A.1. We show how this understanding can be used to provide exactly solvable
models with codimension-1 defects in the ground state, specifically focusing on the example
of Z2 gauge theory and Z2 × Z2 gauge theory. A codimension-1 defect in the Z2 × Z2 gauge
theory comes from gauging the (1+1)D Z2 ×Z2 cluster state. In Appendix C, it is shown that
1d Kitaev chains and 1d cluster states have exhausted all invertible codimension-1 defects in
the (2+1)D Z2 ×Z2 toric code. The same argument holds for the (2+1)D ZN

2 toric code.
We then generalize the (2+1)D analysis in Sec. 4 to construct exactly solvable Hamiltonian

models of (3+1)D topologically ordered phases that host the twist strings. This is done by per-
forming the gauging procedure on a 3d cubic lattice for a given trivial (3+1)D invertible phase,
in the presence of the (1+1)D invertible phase decorated on the 1d defect line embedded in
the 3d cubic lattice. Concretely, we describe the twist string realized in an exactly solvable
model of a (3+1)D Z2×Z2 toric code with bosonic particles, and a (3+1)D Z2 toric code with
a fermionic particle. The twist string in the (3+1)D Z2 ×Z2 toric code corresponds to the 1d
cluster state with Z2×Z2 symmetry before gauging, and the twist string in a (3+1)D Z2 toric

2These charges can be distinguished by a two-loop braiding process.
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Figure 3: Layers of (2+1)D anyon theories are prepared, and then pairs of particle
excitations in adjacent layers are condensed.

code with a fermionic particle is obtained by starting with a (3+1)D trivial fermionic invert-
ible phase with a decoration of the 1d Kitaev chain, and then gauging the Z f

2 fermion parity
symmetry by performing the bosonization valid for three spatial dimensions. The review of
the procedure to gauge fermion parity on the 3d cubic lattice is found in Appendix A.2.

In addition to the above perspective, we show in Sec. 5 that the twist strings can also
be understood from a layer construction, starting with layers of (2+1)D topological phases.
Any discrete G gauge theory in (3+1)D can arise from layering (2+1)D discrete G gauge
theories, and then condensing pairs of charges from neighboring layers; we present a layer
construction for general non-Abelian G in Sec. 5.2.1, which is a technical result that may be of
independent interest. The condensation causes the point charges to be fully mobile in 3d, and
confines the fluxes from different layers into flux strings. Invertible codimension-1 defects in
(2+1)D topological phases correspond to anyon permutation symmetries, such that anyons get
permuted into other anyons with identical braiding and fusion rules as they cross the defect.
We show that only certain invertible codimension-1 defects in a given layer are compatible with
the layer construction. After condensation of charges between layers, a compatible invertible
codimension-1 defect in (2+1)D becomes a twist string (invertible codimension-2 defect) in
the (3+1)D topological phase. (see Fig. 3). The compatibility conditions are that the anyon
permutations must (i) satisfy a flux-preserving condition in order to give rise to a twist string in
(3+1)D. However, this alone is not enough to guarantee that the properties of the twist string
are fully topological in (3+1)D. We find that a second, stronger condition (ii) is necessary: a
charge-independence condition that implies the anyon permutation only depends on the flux
label.

Armed with the above perspective on twist strings coming from the layer construction, we
use it to construct a non-trivial twist string in non-Abelian D4 and A6 gauge theories. These
examples give novel codimension-2 defects that lead to a rich structure of the global symmetry
involving the mixture of the non-invertible 1-form symmetry generated by magnetic strings,
invertible 1-form symmetry generated by the twist string, and the 2-form symmetry generated
by electric particles.

Remarkably, we find that there are examples, e.g., in A6 gauge theory, in which condition
(ii) above is violated while (i) is satisfied. In such cases, the twist strings are non-topological:
their properties have some geometric dependence as illustrated in Fig. 2, reminiscent of fracton
physics [34,35].

Next, we provide a general description of twist strings from the perspective of gauging
lower dimensional SPT phases. In Sec. 6, we generally derive the action of the twist strings on
the magnetic strings when the twist string corresponds to (1+1)D bosonic symmetry-protected-
topological (SPT) phase with G symmetry. We explain how a 1d G-SPT, when dimensionally
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reduced on a circle with G flux, has a G charge in its ground state. This dimensional reduction
argument can be used to understand in general why the decorated 1d SPT acts as a twist
string that attaches charge to a magnetic string crossing it. In Sec. 7, we further extend this
argument to derive the action of the twist string when it corresponds to a fermionic invertible
phase with Z f

2 or, more generally, a fermionic G f symmetry. We show explicitly in Sec. 6.3 that
the construction of twist strings from gauging (1+1)D SPTs can always be understood from the
layer construction perspective. In Sec. 5.2.5, we provide evidence, but not a complete proof,
that topological twist strings from the layer construction can always be obtained by gauging
(1+1)D invertible phases.

Yet another perspective on the twist strings, given in Sec. 8, is in terms of a so-called
“condensation defect” of a (3+1)D gauge theory. In general, a condensation defect in codimen-
sion-k is defined in Ref. [36] as a defect obtained by summing over insertions of defects with
codimension higher than k, supported on the codimension-k surface. In the case of (3+1)D
Z2 and Z2×Z2 gauge theory, we explicitly derive that the twist string can be described as the
condensation of the electric Wilson lines supported on the codimension-2 surface.

In Sec. 9, we explain how the structure of the global symmetries generated by twist strings,
flux strings, and point charges of the (3+1)D discrete Abelian gauge theory together form a
3-group. In particular, the 3-group is partially characterized by a 4-cocycle H4(B2K1, K2),
where K1 corresponds to the 1-form symmetry group generated by the worldsheets of the
twist string and magnetic string, and K2 corresponds to the 2-form symmetry generated by
the Wilson line of the electric particle and B2G is the Eilenberg-Maclane space K(G, 2). The
non-trivial 4-cocycle mathematically expresses the fact that the intersection of the twist string
and magnetic string produces a point charge. By utilizing the expression of the twist strings as
condensation defects, we show how this 4-cocycle can be computed mathematically. This can
be viewed as a higher dimensional version of the symmetry-localization obstructions discussed
in the condensed matter physics literature [17,37,38], which corresponds to an H3 class, and
which determines an underlying 2-group symmetry of the corresponding (2+1)D topological
quantum field theory.

Furthermore, in (3+1)D (Z2)3 gauge theory given by three copies of the Z2 toric code, it
is known that there is an interesting Z2 0-form symmetry that acts by permuting the magnetic
and twist strings in a nontrivial way [39, 40]. In this case, we derive a rich structure of the
3-group that involves the 0-form, 1-form, and 2-form symmetries realized in the (3+1)D (Z2)3

gauge theory. We explicitly present the equations satisfied for closed background gauge fields
of this 3-group.

Finally, an important aspect of the twist strings is that they are breakable, and can exist
on finite open segments. In Sec. 10, we discuss the codimension-3 defects that arise from
considering open segments of the twist strings. These codimension-3 defects are non-Abelian
defects, in the sense that they give rise to a topologically protected degeneracy that essentially
corresponds to the edge zero modes of a gauged (1+1)D invertible phase embedded in the
(3+1)D topological order. This gives a mechanism, for example, to have Majorana zero modes
dangling at certain points in a 3d space. We define logical operations for topological quantum
computation by explicitly constructing membrane operators on the lattice enclosing distinct
sets of codimension-3 defects.

We note that non-trivial codimension-1 and codimension-2 defects were also studied in
some examples in Ref. [41]. There, the notion of a particular kind of twist defect in (2+1)D,
referred to as a genon [9, 13, 18], was generalized to (3+1)D. The example of Ref. [41]
is properly thought of as a non-trivial codimension-1 defect, whose boundary gives a non-
trivial codimension-2 twist defect. In contrast, the codimension-2 defects studied in this
work are purely codimension-2, in the sense that they are not the boundary of a non-trivial
codimension-1 defect.
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More closely related to the present work are results from the quantum information lit-
erature [39, 40, 42–45]. In particular, Refs. [39, 42, 43] pointed out the possibility of codi-
mension-k defects decorated by SPT states before gauging and the connection to transversal
logical gates. In the context of the codimension-2 defects decorated by SPTs, which correspond
to our twist strings, Refs. [43] emphasized that these strings are unbreakable; however, we
show explicitly that these twist strings are indeed breakable (see Sec. 2 and 10). Ref. [40]
also discussed some examples of twist strings in (3+1)D Z2 and Z2 × Z2 gauge theory, and
pointed out the appearance of a point charge upon crossing with a flux string in these models.
Our work further develops these insights by providing a variety of general constructions and
computations valid for arbitrary gauge groups, examples of twist strings involving non-Abelian
gauge theories, a wide class of exactly solvable lattice models in the presence of open or closed
twist strings, and developing the relationship to higher group symmetries and field theory.

Finally, we note that a special class of codimension-2 defects, referred to as “Cheshire
charges”, were studied in Ref. [46]. Cheshire charges are examples of non-invertible defects,
which arise from breaking the G gauge symmetry down to a subgroup H along a loop. In
Appendix D, we provide a field theoretic description of Cheshire charge in (3+1)D Z2 gauge
theory using the ideas of gauging a lower dimensional spontaneous symmetry breaking phase
and a condensation defect.

1.2 Remark on terminology

In this paper, the flux loop excitation in (3+1)D discrete gauge theory is sometimes referred
to as a flux string, magnetic string, magnetic loop excitation, and so on. When we refer to a
codimension-2 surface operator that corresponds to the worldsheet of the flux loop excitation,
we sometimes call it a membrane operator, magnetic surface operator, Wilson surface operator,
and so on. Similarly, a line operator that corresponds to the worldline of an electric particle is
referred to as a Wilson line operator.

2 Codimension-k defects: basic concepts and definitions

2.1 Basic definitions

Let us begin by providing a rough definition of the notion of a codimension-k defect in a
topological phase of matter, and some basic properties like invertibility.

Our setup is a quantum many-body system on a Hilbert space H that decomposes as a
tensor product of local Hilbert spaces H = ⊗iHi , corresponding to a discretization of some
d-dimensional spatial manifold M d . The system is described by a geometrically local Hamil-
tonian H, with a bulk energy gap in the thermodynamic limit.

For each topologically ordered phase of matter, let us consider a translationally invariant,
gapped, local Hamiltonian H0 on a d-dimensional torus, T d . Next, let us consider a local
gapped Hamiltonian Hk = H0 + Vk, where Vk is a local potential with support on a T d−k ⊂ T d

submanifold. We require that Vk be translationally invariant in the (d − k)-dimensions along
T d−k.3 The ground states of Hk host a codimension-k defect along the support of Vk.

Next, we may group codimension-k defects with the same support into topological equiv-
alence classes. Let us consider two different Hamiltonians Hk = H0 + Vk and H ′k = H0 + V ′k ,
where V ′k also has support along the same submanifold T d−k and is translationally invariant.
The ground states of Hk and H ′k host topologically equivalent codimension-k defects if there is

3The requirement of translational invariance on H0 and Vk in principle can be replaced with a weaker notion
of homogeneity; however, a proper definition of homogeneity is beyond the scope of this work.
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an adiabatic path Vk(t) without closing the energy gap such that Vk(0) = Vk, Vk(1) = V ′k , and
Vk(t) only has non-trivial support on the same T d−k submanifold for all 0≤ t ≤ 1. Otherwise,
the codimension-k defects are topologically distinct.

Alternatively, we may instead adopt a definition based on ground states and finite depth
local quantum circuits [47]. For example, ground states |Ψk〉 and |Ψ ′k〉 of Hk and H ′k host
equivalent defects if there is a local constant depth circuit, with support only on the defect, that
approximately converts |Ψ ′k〉 to |Ψk〉. If no ground state of Hk can be approximately converted
to a ground state of H ′k by a local constant depth circuit, then the codimension-k defects are
topologically distinct.

We have for convenience defined the codimension-k defects to lie along a T d−k submani-
fold and to correspond to a ground state of Hk with a translationally invariant potential Vk. In
general, one can consider the codimension-k defects to lie along any codimension-k subman-
ifold, and one can also weaken the translation invariance condition. We will adopt this more
general perspective in this work, although giving a proper definition of topological equivalence
classes in such cases is more complicated and beyond the scope of this work.

The codimension-k defects we have defined so far are fully supported on a torus T d−k

in a translationally invariant way. We can further consider codimension-k domain walls be-
tween distinct codimension-(k − 1) defects, and similarly, we can group these domain walls
into topological equivalence classes. We will refer to a codimension-k defect as ‘pure’ if it
is not a domain wall between non-trivial codimension-(k − 1) defects. Alternatively, a ‘pure’
codimension-k defect can be thought of as a domain wall between trivial codimension-(k−1)
defects.

Flux strings and point charges in (3+1)D topological phases provide simple examples of
topologically non-trivial pure codimension-2 and codimension-3 defects, respectively. In order
to create a flux string along some loop γ out of the vacuum, for example, one must apply
a membrane operator to a sheet D2 such that γ = ∂ D2. Similarly, local operators cannot
create the non-trivial point charges, and can only be created at the boundaries of Wilson line
operators. However, there are in general many more topologically non-trivial defects, beyond
simply the well-known point charges and flux strings.

Finally, we will say that a codimension-k defect in the topological equivalence class A is
invertible if there exists another codimension-k defect in an equivalence class Ā, such that if
the two codimension-k defects are near each other, they are topologically equivalent to the
trivial codimension-k defect.

Not all defects are invertible. Simple examples of non-invertible point defects are gauge
charges corresponding to higher dimensional irreducible representations of the gauge group G.
Non-invertible codimension-2 defects include flux strings with non-Abelian flux, and ‘Cheshire’
charges (which we discuss in Appendix D). Invertible defects include Abelian point charges
(corresponding to 1-dimensional irreducible representations of the gauge group), Abelian flux
loops, and the twist strings studied in this paper.

In general, the set of topologically distinct codimension-k defects is infinite when d−k > 2,
since one can always decorate any (d − k)-dimensional topologically ordered phase of matter
on a (d−k)-dimensional submanifold. Nevertheless, the invertible codimension-k defects for a
given topological order may be finitely generated, similar to the case of invertible topological
phases of matter in a given dimension, and thus amenable to a complete description. As a
step towards fully describing the categorical 3-group of invertible codimension-k defects, in
this paper, we focus mainly on invertible codimension-2 defects in (3+1)D topological phases
of matter.

We note that while the familiar flux loops provide a special example of codimension-2
defects in (3+1)D topological phases, they also have a special status among codimension-2
defects. Namely, flux loops are distinguished by the conservation of flux and therefore it is not
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codimension-k defect

sweep 1

2

(a) (b)

Figure 4: (a) Sweeping the codimension-k defect on a codimension-(k−1) subman-
ifold (grey sheet) W d−k+1 gives rise to an emergent (k − 1)-form symmetry. The
swept region is an open manifold W d−k+1

cut (light green), while the codimension-k de-
fect (green) is located on its boundary Σd−k = ∂W d−k+1

cut . (b) For an invertible defect,
the corresponding (k−1)-form symmetry operator is a constant-depth local quantum
circuit, since the sweeping of the codimension-k invertible defect A can be done in
two steps in O(1) time: (1) Parallel creation of a defect A and its inverse Ā separated
with O(1) distance. (2) Parallel annihilation of the defect A with its neighboring in-
verse Ā on the other side. Note that the box in the figure represents a 3-torus with
periodic boundary conditions.

possible to have a segment of flux terminating on the vacuum. On the other hand, the pure
codimension-2 defects studied in this work can be supported on a line segment and terminate
on the vacuum.4 This property has implications for the dynamics and stability of defects, as
discussed below.

We have discussed topological equivalence classes for codimension-k defects; however,
there is another notion of a topological condition. One can ask whether, in the topological
quantum field theory (TQFT) description of the system, the given codimension-k defect is
fully topological in the sense that the path integral in the presence of the codimension-k defect
only depends on topology. It is possible to consider defects that are topologically non-trivial,
yet not fully topological in this way. For example, it is known that the TQFT path integrals for
(2+1)D chiral topological orders (with non-zero chiral central charge) are not fully topological
and depend on a choice of framing [48]. Similarly, one can envision codimension-1 defects
in (3+1)D topological orders corresponding to decorating with a chiral (2+1)D topological
phase, in which case the corresponding path integral of the TQFT would not be fully topological
in the presence of the defect, and would depend on additional geometric structure. It is unclear
how to define this field theoretic notion of a topological defect entirely from the perspective
of a quantum many-body system. We will in Sec. 5 encounter some examples of invertible
codimension-2 defects (twist strings) which are not fully topological in this field theoretic
sense. Unless otherwise stated, the codimension-k defects that we consider in this paper are
fully topological in the TQFT sense.

2.2 Defects, emergent higher symmetries, and logical gates

There is a correspondence between codimension-k topological defects and “higher symme-
tries”. An n-form symmetry is an example of a higher symmetry. It is an operator supported

4Mathematically the domain walls between codimension-2 defects form the 2-morphisms of a fusion 3-category.
The above statement can be rephrased as saying that there is no 2-morphism between the flux loops and the trivial
loop, in contrast to the twist strings studied in this work.

11

https://scipost.org
https://scipost.org/SciPostPhys.14.4.065


SciPost Phys. 14, 065 (2023)

on a codimension-n subspace, which commutes with the Hamiltonian. By viewing the ground
state space as the code space of a topological quantum error correcting code, higher-form
symmetry operators correspond to fault-tolerant logical operations on the quantum code [45].
Below we elaborate on the connection between topological defects and higher-form symme-
tries.

Given a codimension-k defect with support on a null bordant submanifold one can consider
nucleating it from the vacuum, sweeping the defect through a closed codimension-(k − 1)
submanifold W d−k+1 of the system,5 and then shrinking it back to zero, see e.g. Fig. 4(a).
This then gives an operator that maps the ground state subspace of the clean Hamiltonian H0
back to itself. Since the ground state subspace is left invariant, this operation can be thought
of as an emergent symmetry with support on W d−k+1.

If the codimension-k defect is invertible, the corresponding symmetry operator is invert-
ible, and therefore defines a group structure. In this case, the invertible codimension-k defect
defines a (k − 1)-form symmetry of the topological quantum field theory. Moreover, in the
invertible case this (k − 1)-form symmetry, or equivalently the logical operation on the code
space, can be implemented by a constant-depth local quantum circuit on the corresponding lat-
tice model [see Fig. 4(b)] (or a locality-preserving unitary which can also be defined in a contin-
uum system). Such locality-preserving unitary maps a local operator to a local operator in the
O(1) neighborhood of its support, and its connection to the fault-tolerant logical gate has been
previously studied in the context of (2+1)D TQFT [49]. Such logical gates are fault-tolerant
since errors can only propagate linearly with time according to a ‘light cone’ [50]. A more
restrictive class of such constant-depth local quantum circuits or locality-preserving unitaries,
which correspond to on-site symmetries, are the transversal logical gates [39,40,42,43,45,51],
which can be expressed as a product of local unitaries, i.e., ⊗ jU j , and hence correspond to
depth-1 circuits. Such logical gates are even more desirable since they do not spread errors
within each code block. Certain examples of higher-form symmetries discussed in this paper
belong to this class.

On the other hand, given a symmetry operator with support on a closed submanifold
W d−k+1, one can truncate it to an open submanifold W d−k+1

cut . The resulting state is then
locally in the ground state everywhere except for the boundary Σd−k = ∂W d−k+1

cut . In this way,
emergent symmetry operators with support on codimension-(k−1) manifolds in space define
codimension-k defects.

If we only focus on the invertible defects, the higher symmetry that they define forms
the structure of a higher group. If we instead consider non-invertible defects in a (d + 1)D
topological phase as well, then we expect to obtain the structure of a fusion d-category. The
codimension-k defects are expected to correspond to (k− 1)-morphisms of the d-category.

2.3 Dynamics and energetics

Let us consider a Hamiltonian H0 whose gapped ground state has no defects. Consider the
average energy Ek = 〈ψk|H0|ψk〉 for a state |ψk〉 that has a pure codimension-k defect. On
general grounds we expect that Ek grows with the volume of the defect, because |ψk〉 is the
ground state of a Hamiltonian that differs from H0 by a defect potential Vk which has support
on the defect. This means that for a defect with characteristic linear size L, the codimension-k
defect will generically have an energy cost∝ L3−k. From this perspective, the energetic cost
of all loop-like defects in (3+1)D topological phases is linear in the length of the loop, similar
to the conventional flux loops.

5Given a triangulation of the manifold, defect configurations can be viewed as cocycles. Pachner moves on
this triangulation are allowed, which means that defects can be re-connected in arbitrary ways (subject to some
self-consistency conditions).
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However, there is an important distinction among defects, which is that of stability. Flux
loops are topologically stable, in the sense that if a flux loop is created and then evolved
according to the Hamiltonian, conservation of flux requires that the loop cannot break apart
into small open line segments. Nevertheless, generically a flux loop can decay into distinct
loops, potentially carrying different fluxes, as long as total flux is conserved. Similarly, some
point-like particles may be fully stable, and others may be unstable and decay into more stable
point-like particles. Whether these decays occur and which excitations are stable depends on
local energetics that is not universal and depends on details of the underlying Hamiltonian.

The kinds of codimension-2 defects that we study may be even less stable than the flux
loops, since there is no flux conservation that forbids the loop from breaking up into distinct
smaller line segments that can propagate individually. Whether the loop indeed breaks up
or is stable depends again on local energetics and non-universal microscopic details of the
underlying Hamiltonian. It is therefore important to note that the notion of a non-trivial
codimension-k defect is somewhat distinct from the question of its dynamical stability, which
is an interesting question to study further in specific models.

3 Exactly solvable models for twist strings in (2+1)D toric codes

In this section, we provide lattice constructions for twist strings (invertible codimension-1
defects) in (2+1)D toric codes. Our constructions are closely related but not identical to lattice
models previously provided in the literature (see e.g. [5,8,14,39,42,52,53]). In particular, we
construct all twist strings for both Z2 toric code and Z2×Z2 toric code from the perspective of
gauging (1+1)D bosonic and fermionic SPT phases that are decorated along a codimension-1
submanifold [39,42].6

3.1 Twist strings in the Z2 ×Z2 toric code

3.1.1 Review of gauging 0-form symmetries

We first review the procedure of gauging 0-formZ2 symmetries in Ref. [42], which is analogous
to the Kramers-Wannier duality [54]. First, we start with a Hamiltonian respecting a global
Z2 symmetry

∏

v X v (the Hilbert space is formed by qubits at vertices). The terms in the
Hamiltonian are generated by X v and Zv Zv′ . Then, we reformulate the Z2 symmetric subspace
of the full Hilbert space and the symmetric operators in terms of new degrees of freedom,
summarized in Fig. 5. Before gauging the Z2 symmetry (left side of Fig. 5), the symmetric
subspace of the full Hilbert space consists of a tensor product of qubits placed at vertices and
a global Z2 symmetry constraint

∏

v X v = 1. After gauging (right side of Fig. 5), the dual
Hilbert space has qubits on the edges and local gauge constraints

∏

e⊂ f Ze = 1 in addition
to one-form symmetry constraints

∏

e⊂γ Ze = 1 for all closed loops γ ∈ Z1(M ,Z2) (where Z1
denotes closed 1-cycles). If we start with the paramagnetic fixed point of the transverse field
Ising model H = −

∑

v X v , the dual Hamiltonian realizes the Z2 toric code model after Z2
symmetry.7

6Note that gauging (1+1)D bosonic and fermionic SPT phases do not produce all defects for ZN toric codes. For
example, the e↔ m twist string in the Z3 toric code does not arise from gauging bosonic or fermionic SPT phases.
It would require Z3 parafermions; however, the bosonization of parafermions in (2+1)D hasn’t been developed
yet.

7We impose the gauge constraint
∏

e⊂ f Ze = 1 energetically, which realizes the Z-plaquette term in the gauged
Hamiltonian.
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Figure 5: Gauging Z2 symmetry [42]. Left: each dot represents a qubit on a vertex.
We consider the symmetric sector of the Hilbert space:

∏

v X v = 1. Symmetric op-
erators are generated by the single X v and the product of adjacent Zv . Right: The
Hilbert space contains qubits at all edges, with the gauge constraint

∏

e⊂ f Ze = 1 for
each face f . For non-simply connected manifolds, there are additional constraints
that the product of Ze along any cycle equals +1.

3.1.2 1d cluster state and the m1→ m1e2, m2→ m2e1 twist string

This example was first shown in Ref. [42], which utilizes a 3-colorable 2d triangulation. In-
stead of the triangular lattice, we use the square lattice for convenience and give a direct
generalization to the codimension-2 defect on the 3d cubic lattice in Sec. 4.1.

We begin with two copies of the paramagnetic fixed point of the 2d Ising model
H0 = −

∑

v X v . Then, we decorate a closed loop with the 1d cluster state. Namely, we modify
the product state by acting with a local unitary U creating the cluster state only along this
closed loop. This means that the state is the ground state of a modified Hamiltonian UH0U†,
which only differs from the original Hamiltonian near the closed loop. The stabilizer terms of
this modified Hamiltonian are shown on the left of Fig. 6 (the blue and red dots are referred
to as species 1 and 2, respectively). After gauging Z2 × Z2 symmetry, the terms in the dual
Hamiltonian are drawn in the right of Fig. 6 where the stabilizers are given by those of the
usual toric code away from the closed loop but differ along the loop (green line). This defect
in the toric code is what we refer to as the twist string. We note that the Z-plaquette terms
for red and blue qubits, which realizes the Z2 gauge constraints are unmodified throughout.
This twist string has a direct consequence on how anyons – which are codimension-2 defects –
move. The e-anyon generated by the red or blue string of Z operators can freely pass the twist
string as in the usual toric code. However, for m-anyons generated by a string of red or blue
X , as it passes through the twist string, it will violate the X -vertex term for the other color.
Therefore, passing an m-string through the twist string results in the accompaniment of an e-
string of the other color coming out from the intersection of the string and the twist string. The
explicit string operators of this process are shown in Fig. 7. To conclude, the anyons transform
(i.e. get permuted) as they travel through the twist string:

e1→ e1 ,

e2→ e2 ,

m1→ m1e2 ,

m2→ m2e1 .

(2)

Let us also present a complimentary perspective where we derive the above permutation
using quantum circuits. To demonstrate the circuit for the cluster state and its gauged version,
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Figure 6: Left: each blue or red dot represents a qubit. The cluster state is decorated
on the defect (green line), which makes the Hamiltonian having Pauli X coupled to
adjacent Pauli Z; otherwise, each dot gives Pauli X to the Hamiltonian. Right: after
gauging Z2 × Z2 symmetry, the singe Pauli X away from the defect becomes the X -
star term. On the twist string, the X -star term is dressed with an additional Z of a
different color due to the cluster state Hamiltonian.

we consider a small loop of the cluster state generated by a product C Z gates:

gauging

𝐶𝑍
𝐶𝑍

𝐶𝑍
𝐶𝑍

𝐶𝑍

1

2

3

4
5

6

1

2
3

4
5

6

𝐶𝑍
𝐶𝑍

𝐶𝑍

. (3)

To unpack the above equation, we first recall that the exact unitary used to create the cluster
state is given by U =

∏

C Z , consisting of a product of Controlled-Z gates around the loop.
In the computational basis |a1, a2〉 where a1, a2 = 0, 1, C Z = (−1)a1a2 . Therefore, around a
closed loop consisting of sites 1 to 6 as shown above, we have that the phase factor assigned

𝑋𝑋𝑋 𝑋 𝑋 𝑋
𝑍 𝑍 𝑍

𝑋𝑋𝑋 𝑋 𝑋 𝑋
𝑍𝑍𝑍

≈

𝑚! 𝑚!

𝑒"

𝑚" 𝑚"

𝑒!

defect

Figure 7: The string operators that commute with all terms except near endpoints.
When the flux m1 (m2) crosses the twist string, the charge e2 (e1) appears.

15

https://scipost.org
https://scipost.org/SciPostPhys.14.4.065


SciPost Phys. 14, 065 (2023)

to this closed loop is

a1a2 + a2a3 + a3a4 + a4a5 + a5a6 + a6a1 = (a1 + a3)(a2 + a4) + (a1 + a5)(a4 + a6) (mod 2) .

The latter expression is composed of brackets that are invariant under the Z2 ×Z2 symmetry,
and therefore allows us to directly gauge the unitary U . The sign assigned to the dual unitary
is therefore

(−1)a13a24+a15a46 = C Z13,24C Z15,46 .

We can now use this to create the cluster state along the vertical line in Fig. 6 by applying
the small C Z loops on all faces in the right half plane. After gauging Z2×Z2 symmetry, the orig-
inal m1/m2 (blue/red) excitations generated by X1/X2-string operators are now conjugated
by RHS of Eq. (3) on the half plane, which will induce a Z2/Z1 string. Hence, the intersection
of the m1/m2 string with the twist string must result in an extra e2/e1 string coming out of the
intersection.

We remark that in the Z2×Z2 toric code, the twist string corresponding to the cluster state
along with the e1 ↔ m1 and e2 ↔ m2 twist strings generate all possible automorphism of
anyons, which is proven in Appendix C. Concretely, the group of all possible automorphisms
of anyons in the Z2 × Z2 toric code is isomorphic to the real Clifford group on two qubits,
which is generated by the Hadamard gates H1, H2 and the controlled-Z gate C Z12 [39, 53].8

In the next subsection, we will now discuss the e↔ m twist string in the Z2 toric code, which
will complete the discussion of lattice constructions for invertible defects in layers of Z2 toric
codes.

3.2 Twist strings in the Z2 toric code

𝛾! 𝛾"#𝑆$ ≡ 𝑖×

𝛾!
= 1

𝛾"#
𝑋

𝑍

𝑍

𝑋
𝑋
𝑋𝑍
𝑋𝑍

𝑍
𝑍

𝛾𝛾#

𝑍
𝑋

𝑆$ ≡ 𝑖×

𝑒

𝑃% ≡ 𝑖×
𝑍

𝑍 𝑍

𝑣

𝑈$ ≡

𝑈$ ≡

𝑊% ≡

𝐺& ≡𝑒 𝑒

𝑒

𝑓𝑓

Figure 8: GaugingZ f
2 (=

∏

f (iγ
′
f γ f )) symmetry. This is the summary of 2d bosoniza-

tion on the square lattice. There are two Majorana fermions γ f , γ′f at each vertex f
on the left-hand side, and a qubit on each edge e on the right-hand side, described by
the Pauli matrices X e, Ye, Ze. The Majorana hopping operator Se = iγLγ

′
R (L/R is the

face left/right to e) and the on-site fermion parity operator Pf = iγ′f γ f defined in the

figure generate all Z f
2 symmetric operators. Se and Pf are mapped to Pauli operators

Ue and Wf shown in the figure. Note that the bosonic side is required to satisfy the
gauge constraint Gv on each face. The fermionic side requires even fermion parity:
Z f

2 = 1.

We give the lattice construction of the e↔ m twist string in the 2d toric code by gauging
fermion parity of the Kitaev chain decorated along a 1-cycle of a 2d trivial fermionic theory

8In fact, this correspondence is exact at the level of logical qubits in two copies of the surface code.
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(an atomic insulator). Gauging fermion parity symmetry on the lattice is described by 2d
bosonization [55, 56]. The isomorphism of local operators is summarized in Fig. 8, and is
reviewed in Appendix A.1. It is worth noting the similarities to gauging a bosonic Z2 symmetry
in Fig. 5.

𝛾!" 𝛾!

Kitaev chain
𝑒 ↔ 𝑚

twist string

bosonization

𝑍 𝑍

𝑍

𝑍
𝑍 𝑍

𝑍

𝑍

𝑍

𝑋

𝑍
𝑍𝑋𝑍

𝑋𝑍𝑋𝑋

Figure 9: Left: each dot represents a Majorana fermion. The Kitaev chain is decorated
on the green line, which makes the Majorana fermion paired with the other one on
its adjacent face; otherwise, Majorana fermions are paired within each face and form
an atomic insulator. Right: after bosonization, the pairing term on the Kitaev chain
becomes the hopping operator Ue on the twist string, while the pairing term in each
face not on the Kitaev chain becomes the Z fluxes. Note that the gauge constraint
Gv = 1 holds at all vertices.

Now, we set up the construction of the defect on a 2d square lattice. We place a complex
fermion on each face, which can be decomposed into two Majorana fermions γ f ,γ′f as shown
in Fig. 9. The stabilizers of the atomic insulators are given by Pf = iγ′f γ f , which pair up
the Majorana fermions within the square. However, along the specified 1-cycle (green line),
we decorate a Kitaev chain by instead pairing the Majorana fermion across the edges. This
is represented by the operator Se = iγL(e)γ

′
R(e), where γL(e) and γ′R(e) correspond to Majorana

fermions in faces left to and right to the edge e. We then perform 2d bosonization (gauging
fermion parity described in Fig. 8) on this system. The Pf term away from the green line is
mapped to the flux term Wf =

∏

e⊂ f Ze, and the Se term on the green line is mapped to the
hopping operator Ue = X eZe′ (e′ is southwest to e), as shown in Fig. 9. Note that bosonization
will require the gauge constraints Gv = 1 (defined in Fig. 8 or Eq. (133)) at all vertices. Next,
we are going the study the property of this defect line and show that it corresponds to the
e↔ m twist string.

Outside the defect, the gauge constraints and the flux terms project the ground state to be
the toric code ground state, i.e., the star term

∏

e⊃v X e obtained from the product of Gv and
Wf . Within each toric code region, we have standard e and m excitations, violating the star
term and the flux term, respectively. On the other hand, we can also consider string operators
across the defect, shown in Fig. 10. Note that the string operators only violate a finite number
of terms near its two endpoints, and commute with all terms in its middle. In particular, the
string operators are designed for commuting with

Ue = 𝑍

𝑋!
, (4)
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(𝑎) (𝑏)
𝑒 ↔ 𝑚
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Figure 10: The string operators that commute with all terms except near endpoints.
We can see that e and m excitations are exchanged when it crosses the twist string.

on the defect. An important property of these string operators is that the e excitation on one
side becomes the m excitation on the other side. Therefore, this defect is the e ↔ m twist
string that permutes the anyons in the toric code. The e↔ m twist string can be thought of
as the fermion line coming out from the intersection of the defect and the m line, shown in
Fig. 11.

𝑚 𝑒 = 𝑚𝜓 = 𝑚 𝑚

𝜓

Figure 11: We can think of this e ↔ m twist string as the ψ line coming out from
the intersection of m-line and the twist string.

= exp − !
"
𝛾#𝛾$%

↔ exp 𝑖 !
"
𝑋&𝑍'

𝑒'

𝑒&
𝑓# 𝑓$

1. 2.

𝑒&
𝑒'

= exp − !
"
𝛾#%𝛾$

↔ exp 𝑖 !
"
𝑌&𝑌'

𝑓$

𝑓#

3.

𝑒&
𝑒'

𝑓#

𝑓$
= exp − !

"
𝛾#𝛾$%

↔ exp 𝑖 !
"
𝑋&𝑍'

Figure 12: The operator pumping the Kitaev chain or the e ↔ m twist string. The
circuit has three steps, and each step is a product of swap operations of Majorana
fermions.

Similar to the previous Z2 × Z2 cluster state case, this defect can be generated by the
product of local operators (however, note that they do not give a transversal logical gate). The
operators consist of three steps, shown explicitly in Fig. 12. Consider applying the above three
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steps in a small region

1
1

2

23

3

, (5)

and observe that its boundary hosts the Kitaev chain (before bosonization):

⇒ ⇒⇒
1 2 3

. (6)

As shown explicitly in the figure, the action of the operator pumps the Kitaev chain to the
boundary of the region. After gauging, we therefore pump the e ↔ m twist string to the
boundary. The unitary used to perform the pumping is closely related to the Floquet unitary
discussed in Refs. [57–59].

4 Exactly solvable models for twist strings in (3+1)D toric codes

4.1 Twist string in the (3+1)D Z2 ×Z2 toric code

𝑋

𝑋

𝑋
𝑍

𝑍

𝑋

𝑋

𝑋

𝑍

𝑍

𝑋

𝑋

𝑋
𝑋

𝑋
𝑋 𝑋

𝑋

𝑋
𝑋

𝑋𝑋

𝑋𝑋

𝑋

𝑋

𝑋

𝑋

𝑋

𝑋
𝑋𝑋

𝑋𝑋

𝑋

𝑍

𝑋
𝑋𝑋

𝑋

𝑋
𝑋

𝑍

gauging

Figure 13: Left: each blue or red dot represents a qubit. The cluster state is decorated
on the green line, which makes the Hamiltonian have Pauli X coupled to adjacent
Pauli Z; otherwise, each dot gives Pauli X to the Hamiltonian. Right: after gauging
Z2 × Z2 symmetry, the singe Pauli X becomes the X -star term. On the green line,
the X -star term is dressed with an additional Z of a different color due to the cluster
state Hamiltonian.

In this section, we construct the twist string (invertible codimension-2 defect) in the 3d
Z2×Z2 toric code by gauging the 1d Z2×Z2 cluster state. Gauging global Z2 symmetry in the
3d cubic lattice is similar to Fig. 5, where the only differences are that the star term contains
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𝑋

𝑋 𝑋 𝑋 𝑋 𝑋 𝑋
𝑍 𝑍 𝑍 𝑍

𝑋 𝑋𝑋 𝑋 𝑋
𝑍 𝑍 𝑍 𝑍

≈

𝑚!

𝑒"

𝑚"

𝑒!

Figure 14: The membrane operators that commute with all terms except near bound-
aries. When the m1 (m2) membrane operator intersects with the twist string, the
string operator of charge e2 (e1) comes out from the intersection point.

Pauli X on edges in the third direction, and the zero-flux condition holds for all faces in three
directions.

Before gauging Z2×Z2 symmetry, we decorate the 1d cluster state in a cubic lattice, shown
as Fig. 13. At each vertex, there is a blue dot and a red dot, representing two qubits. Away
from the defect (green line), the Hamiltonian contains a single Pauli X on each blue or red
qubit. On the defect line, the Hamiltonian term on each qubit i becomes Zi−1X i Zi+1 where i−1
and i + 1 represent the adjacent qubits on the defect. This Hamiltonian has a global Z2 × Z2
symmetry, corresponding to the product of X i on all blue qubits or all red qubits respectively.
This Hamiltonian is obtained by conjugation of a unitary operator U ≡

∏

i∈defect C Zi,i+1 on the
trivial Hamiltonian H0 = −

∑

i X i with i summed over all qubits.
Next, we can gauge the Z2 ×Z2 symmetry of this Hamiltonian, and the defect becomes a

twist string in (3+1)D Z2×Z2 gauge theory. Away from the twist string, the Pauli X i becomes
the X -star term, shown in Fig. 13. Blue and red qubits are decoupled in this region as expected.
On the other hand, on the twist string, Zi−1X i Zi+1 becomes an X -star term dressed with an
additional Z of the other color, shown in Fig. 13, which is simply the 3d generalization of
Fig. 7. Given the lattice Hamiltonian, we can study its excitations. The special property of this
twist string is that when a m1-loop crosses the twist string, a charge e2 comes out. The explicit
membrane operator is provided in Fig. 14. The membrane operator only anti-commutes with
Hamiltonian terms near its boundary, and commutes with all terms in its interior, including
terms at the twist string. To achieve this, an e2-line must appear from the intersection of
the m1-membrane and the defect. Similarly, an e1-line comes from the intersection of the
m2-membrane and the defect. This is the 3d version of the 2d anyon permutation Eq. (2).

4.2 Twist string in the (3+1)D toric code with a fermionic charge

Similar to the 2d case, we decorate the 1d Kitaev chain along a 1-cycle in a trivial fermionic
system (atomic insulator), and gauge fermion parity symmetry of the whole system. Gauging
fermion parity symmetry on the cubic lattice is described by 3d bosonization [60, 61]. The
isomorphism of local operators is summarized in Fig. 15, and is reviewed in Appendix A.2.
Gauging a Kitaev chain on a codimension-2 defect is shown in Fig. 16.

Next, we want to construct a membrane operator which commutes with all terms in its
bulk and only violates specific terms near its boundary. If we only apply the operator for the
m-loop excitation, which is the product of Pauli X on edges perpendicular to the membrane,
it will anti-commute with a single term on the Kitaev chain. To fix this issue, we introduce
another string operator for the ψ particle, which also anti-commutes with the single term on
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𝑋 𝑋

𝑍

𝑍𝑋𝑍

𝑋𝑍
𝑋

𝑋
𝑋
𝑋

𝑍
𝑍

𝑋
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𝑋 𝑋

𝑋𝑍

= 1
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= 1

Figure 15: This is the summary of 3d bosonization on the cubic lattice. There are
two Majorana fermions γv , γ′v at each vertex v, and a qubit on each edge e, described
by the Pauli matrices X e, Ye, Ze. The mapping between the Majorana operators and
Pauli operators is shown above. The fermionic hopping operators iγiγ

′
j along the

edge e = 〈i j〉 are mapped to the Pauli hopping operators: Pauli Ze dressed with other
Pauli X matrices on edges crossing the “framing” of edge e. The on-site fermion parity
Pv = −iγvγ

′
v at the vertex v is mapped to the X -star term. On the fermionic side, we

focus on the even subspace, i.e.,
∏

v Pv = +1. On the other hand, the bosonic side is
restricted to the subspace satisfying the gauge constraints.

the Kitaev chain. Therefore, the membrane operator for a m-loop excitation together with a
ψ-line will commute with all terms except their boundaries. To sum up, whenever the m-loop
is linked with the twist string, a fermion line must come out from this linking.

𝛾!"

𝛾!

Kitaev chain

bosonization

𝑋
𝑋

𝑋𝑋
𝑋
𝑋

𝑋
𝑋

𝑋𝑋
𝑋
𝑋

𝑋
𝑋

𝑍

Figure 16: Left: each dot present a Majorana fermion. The Kitaev chain is decorated
on the defect (green line), which makes the Majorana fermion paired with the other
one on its adjacent vertex; otherwise, Majorana fermions are paired within each
vertex. Right: after bosonization, the pairing term on the Kitaev chain becomes the
Pauli hopping operator on the twist string, while the pairing term in each face not
on the Kitaev chain becomes the X star term. The gauge constraints in Fig. 15 hold
at all faces.
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𝑋

𝑋
𝑍

𝑋 𝑋𝑋 𝑋

𝑋

𝑋 𝑋 𝑋 𝑋
𝑍 𝑍

≈
𝑚

𝜓

Figure 17: The membrane operator which commutes will all terms in its bulk. This
operator can be thought of as theψ-line coming out from the intersection of the twist
string and the membrane operator of the m-loop excitation.

5 Layer construction for twist strings in general topological states:
from (2+1)D to (3+1)D

In this section we describe a general method, using the layer construction, to construct twist
strings in general (3+1)D topological phases. Our approach is inspired by Refs. [62–65], and
in our new setting we can deal with defects in the (3+1)D topological order. Not only does this
provide a simple way to understand twist strings in (3+1)D from simpler properties of defects
in (2+1)D, we will also understand how to construct twist strings in non-Abelian (3+1)D
topological phases, which have non-trivial interaction with non-Abelian flux loops.

Condense
boson 𝑏

New ground	state	of	the condensed	theoryOriginal ground state

++ 𝑏

𝑏

𝑏

𝑏

𝑏

𝑏

𝑏"
𝑏"𝑏"

𝑏"

𝑏"
𝑏"

+ ⋯

Figure 18: Condensation of the boson b. Given an anyon theory A, we can condense
a boson b ∈ A by proliferating the particles b in the space. The blue lines are short
string operators creating the boson b and its anti-particle b̄. In this manuscript, we
will condense the boson b that is abelian (quantum dimension 1) and has its inverse
b̄ (b× b̄ = 1).

5.1 Abelian theory

In this section, we describe the layer construction approach starting from 2d Abelian anyon
theories. We will demonstrate two main examples: the Z2 ×Z2 toric codes with two bosonic
charges, and the Z2 toric code with a fermionic charge. First, we illustrate how 2d toric codes
can be stacked into a 3d toric code with a bosonic charge or a fermionic charge, depending on
which anyons are condensed. Second, we insert a twist string in one layer of 2d toric codes,
which needs to be compatible with the condensed anyons. The precise criteria for allowed twist
strings are that the condensed anyons must be invariant when they cross the twist strings. We
will show that this procedure can recover the twist strings constructed in Sec. 4.
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5.1.1 Layer construction for the (3+1)D toric code

We start with the simplest example of constructing a 3d Z2 toric code via coupling layers of
2d Z2 toric codes stacked in the z-direction. To do this, we condense pairs of e charge in
the neighboring layers, i.e., the anyons in the form of e( j)e( j+1), where j are the layer labels
1≤ j ≤ L and we have chosen the periodic boundary condition e(L+1) = e(1). The condensation
of a boson b is described by Fig. 18, where the new ground state is proliferation of this boson.
Obviously, all such anyons e( j)e( j+1) can be condensed at the same time since the pair e( j)e( j+1)

is a boson and has trivial mutual braiding statistics with any other condensed anyons. After
condensing these anyons, the e charge in each layer j, denoted by e( j), becomes a deconfined
excitation, since it braids trivially with the condensed pair e( j)e( j+1). Note that a single charge
e( j) can freely tunnel to the next layer and identified as e( j+1) through the fusion with the
condensed pair e( j)e( j+1), i.e., e( j) × e( j)e( j+1) = e( j+1).

For the m-type excitations, a single m-anyon in layer j, denoted by m( j), must be confined
since it braids non-trivially with e( j)e( j+1) and e( j−1)e( j). The formation of the condensate
forces the m-anyon in each layer to be bound together to form a loop-like m-flux, which is a
deconfined excitation, as shown in Fig. 19. Such a m-flux string is expressed as

∏L
j=1 m( j),

i.e., the array of m-anyon in each layer in a straight vertical string (loop) along the z-direction
(with periodic boundary condition). Note that this m-flux loop has trivial mutual braiding
statistics with the condensed pairs of e-charges e( j)e( j+1) since they overlap in two consecutive
layers and the π braiding phases cancel with each other. The braiding statistics between the
two remaining deconfined excitations, i.e, e-charge and m-flux string, is given by the mutual
braiding phase between e and m anyons in the 2d case, i.e., Me,m-flux = −1.

Condense
𝑒(") − 𝑒 "$% pairs

𝑒(")

{1, 𝑒($), 𝑚($), 𝜓($)}

𝑒(")

𝑒("%$)𝑒("%$)

{1, 𝑒}

{1, 𝑒}

{1, 𝑒}

{1, 𝑒}

{1, 𝑒}

𝑚(%)

𝑚(")

𝑚(&'%)

𝑚("$%)

𝑚(&)

⋯

{1, 𝑒(&), 𝑚(&), 𝜓(&)}

{1, 𝑒 &'$ , 𝑚 &'$ ,
𝜓(&'$)}

⋯

𝑥

𝑧
𝑦

Figure 19: Condensation of the pair of e-charges e( j)e( j+1) in the L layers of 2d Z2
toric codes. The deconfined excitations after the condensation is given by a single
e-charge e( j), and the m-flux string given by an array of m-anyons in all layers.

The lattice Hamiltonian can be constructed directly from this procedure. We first prepare
layers of 2d toric codes with inter-layer ancilla qubits, shown as Fig. 20. The initial Hamilto-
nian is

H0 = −
∑

𝑋

𝑋𝑋

𝑋

−
∑

𝑍
𝑍

𝑍
𝑍

−
∑

inter-layer e

X e . (7)

Next, we condense adjacent e( j)e( j+1), which enforce Z operators in two layers are coupled
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together with the background field:

𝑍

𝑍

𝑍

𝑍

𝑍 𝑍𝑍

= 1,

= 1,

𝑍

(8)

which can be treated as the gauge constraints when gauging 1-form symmetry generated by
e( j)e( j+1). Since we impose the above condition, the initial Hamiltonian is no longer valid and
we should only keep terms that commute with Eq. 8. It is straightforward to write down the
remaining terms:

𝑋

𝑋𝑋

𝑋

𝑋𝑋 and

𝑍
𝑍

𝑍
𝑍

. (9)

If we impose the gauge constraints Eq. (8) energetically, the condensed Hamiltonian as ob-
tained as:

Hcondensed = −
∑

v 𝑋

𝑋𝑋

𝑋

𝑋𝑋
𝑣 −

∑

f

𝑍

𝑍

𝑍

𝑍 𝑓 −
∑

f

𝑍
𝑍

𝑍
𝑍

𝑓 −
∑

f

𝑍

𝑍
𝑍𝑍 𝑓 , (10)

which is exactly the 3d toric code (with a bosonic charge).

𝑍
𝑍

𝑍
𝑍

𝑋

𝑋𝑋

𝑋

𝑋

𝑋
𝑥

𝑧

𝑦

Figure 20: We prepare layers of 2d toric codes first. On the inter-layer edges, we put
ancilla qubits in X e = +1 states. These ancilla qubits will become the background
gauge field when we condense bosons (gauge the 1-form symmetry).

5.1.2 Layer construction for the (3+1)D toric code with a fermionic charge

Here we describe the procedure to obtain the (3+1)D Z2 toric code with a fermionic parti-
cle via the layer construction, starting from the layers of (2+1)D Z2 toric codes. First, we
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𝜓($) − 𝜓 $'" pairs

Figure 21: Condensation of the pair of ψ-charges ψ( j)ψ( j+1) in the L layers of Z2
toric codes. The deconfined excitations after the condensation is given by a single
ψ-charge ψ( j), and the m-flux string given by an array of m-anyons in all layers.

prepare L layers of (2+1)D Z2 toric codes, whose anyons are labelled by {1, e( j), m( j),ψ j} for
j = 1, 2, . . . , L. We then condense each pair of fermions in the adjacent layers ψ( j)ψ( j+1) for
1 ≤ j ≤ L, as described in Fig. 21. After we condense the ψ( j)ψ( j+1) pairs in all adjacent
layers, the single fermion ψ( j) in each layer becomes a deconfined particle. The ψ particles
in different layers are identified by the fusion of condensed anyons ψ( j)ψ( j+1). Therefore,
the fermion ψ becomes a particle excitation in the resulting (3+1)D topological order. Mean-
while, the anyon m( j) braids non-trivially withψ( j)ψ( j+1) andψ( j−1)ψ( j), so a single m particle
is confined. The deconfined excitation is an array of m anyons in L layers given by

∏L
j=1 m( j),

which describes a m-flux string excitation in the resulting (3+1)D topological order. After all,
we get a (3+1)D Z2 toric code with a fermionic particleψ and a m magnetic string excitation.

The lattice Hamiltonian can be constructed in a similar way as before. We prepare copies
of toric codes with an ancilla qubit on each inter-layer edge e into the X e = +1 state, as shown
in Fig. 20. The initial Hamiltonian is still Eq. (7). These ancillas will serve as the background
gauge field when we gauge the 1-form symmetry generated byψ( j)ψ( j+1). Next, we condense
ψ−ψ in the adjacent layers. There are different conventions to perform this condensation on
the lattice. We choose the following way:

𝑋 𝑍

𝑍

𝑍

𝑋 𝑋
𝑍

𝑍 𝑍𝑍

= 1,

= 1,

𝑍 𝑋

(11)

such that these ψ−ψ condensation terms in the inter-layers commute with each other. Since
we couple theψ−ψ hopping operator to the background field, we also need to modify the star
term and plaquette term to commute with Eq. (11). In other words, some Hamiltonian terms
in Eq. (7) will be dropped, and only the combinations of them that commute with Eq. (11)
will be kept during this condensation process:

𝑋

𝑋𝑋

𝑋

𝑋𝑋 and

𝑍
𝑍

𝑍
𝑍

𝑋
𝑋 . (12)
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𝑍
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𝑍

𝑍
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𝑍
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Figure 22: We prepare layers of 2d toric codes, and we put the e↔ m twist string
in one of them. On the inter-layer edges, ancilla qubits are in X e = +1 states.

Focusing on the ground state, we impose Eqs. (11) and (12) energetically as

Hcondensed = −
∑

v 𝑋

𝑋𝑋

𝑋

𝑋𝑋
𝑣 −

∑

f ∈yz
𝑋 𝑍

𝑍

𝑍

𝑍 𝑋 𝑓 −
∑

f ∈xz

𝑓

𝑍 𝑍

𝑍
𝑍

𝑋
𝑋 −

∑

f ∈x y

𝑋
𝑍

𝑍
𝑍𝑋𝑍 𝑓 . (13)

We can see that the last three terms are equivalent to the gauge constraints of the 3d bosoniza-
tion in Fig. 15 up to multiplying the first term. Therefore, the Hamiltonian Hcondensed has the
same ground state as the 3d toric code with a fermionic charge.

5.1.3 Inserting twist strings in the (3+1)D toric code with a fermionic charge

We have constructed 3d toric codes with bosonic and fermionic charges from layers of 2d toric
codes. The next step is to introduce twist strings in these systems.

First, we demonstrate the twist string (invertible codimension-2 defect) in the 3d toric
code with a fermionic charge. As shown in Fig. 22, we introduce an e ↔ m twist string in
only one layer of the 2d toric codes. To condense ψ−ψ pairs, we choose a slightly different
convention from Eq. (11):

𝑋 𝑍
𝑋𝑍

𝑍

𝑋

𝑋
𝑋𝑍
𝑍 𝑍𝑋𝑍

= 1,

= 1,

𝑋𝑍 𝑋

𝑋
𝑋 𝑋

𝑋

𝑋
𝑋

(14)

where we have multiplied the X -star term on the left layer of toric codes and dress appropriate
X on the inter-layer edges to make them commute. Away from the twist string, this condensa-
tion is equivalent to Eq. (11) by multiplying a 3d X -star term. The above convention is chosen
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to be compatible with the twist string in the 2d layer. We modified the terms on each layer by
multiplying the inter-layer X e:

𝑍
𝑍

𝑍
𝑍

𝑓 𝑓

𝑋𝑍
𝑍

𝑍
𝑋𝑍

𝑋
𝑋

𝑋

𝑋
and

𝑋

𝑋𝑋

𝑋
𝑋

𝑋𝑋

𝑋

𝑋𝑋 . (15)

On the twist string, the term becomes

𝑋
𝑍

𝑋
𝑋

𝑍
. (16)

Therefore, we recover the construction of the twist string in Fig. 17.

5.1.4 General layer construction with (2+1)D Abelian anyon theory

Now we describe a general recipe to construct a (3+1)D topological order from the layer
construction for (2+1)D Abelian anyon theory. The (2+1)D Abelian anyon theory on each
layer is described by a modular tensor category, whose set of anyons is denoted as A. The first
step is to identify a subset M ⊂A satisfying

1. M contains only bosons and fermions which mutually braid trivially with each other.

2. For any anyon a /∈M, there exist an anyon b ∈M such that a and b have non-trivial
mutual braiding, Ma,b ̸= 1.

From these two conditions, M forms a group under fusion since if a, b ∈M, a× b braids
trivially with elements in M, which implies a× b ∈M.

Next, we prepare L layers of (2+1)D anyon theories A, and, for each a ∈M, we condense
the pair a( j)a( j+1) in the adjacent j-th and ( j + 1)-th layers. After condensation, anyons in M
are deconfined in the (3+1)D theory and become the particle excitations. As such, we may
refer to the particles in M as electric charges. Other anyons b ∈ A not contained in M are
confined, though the array of b particles in the layers given by

∏L
j=1 b( j) becomes deconfined

and form loop-like flux excitations. As such, we refer to equivalence classes in A/M as fluxes.
After all, the resulting theory realizes a (3+1)D topological order where the particle excitations
have the group-like fusion rule M, while the loop excitations in the form of

∏L
j=1 b( j) have

the group-like fusion rule given by A/M.

5.1.5 Inserting twist strings for general layer construction with (2+1)D Abelian anyon
theory

Here we construct a twist string in the (3+1)D theory, which is obtained from the layer con-
struction with the (2+1)D Abelian anyon theory. As we have done in Sec. 5.1.3, we introduce
the twist string by inserting a codimension-1 defect D of the (2+1)D Abelian anyon theory in
the single layer of the layered system, and then performing the layer construction in the pres-
ence of the twist string. We want the inserted codimension-1 defect D in the (2+1)D theory to
behave as a codimension-2 defect of the resulting (3+1)D theory after the layer construction.

27

https://scipost.org
https://scipost.org/SciPostPhys.14.4.065


SciPost Phys. 14, 065 (2023)

Suppose that we are inserting the defect D at the k-th layer in the L layers of the Abelian
anyon theories. Obviously, an insertion of the defect D in the single layer defines an automor-
phism ρD that acts on L copies of the (2+1)D Abelian anyon theory before layer construction.
For the codimension-1 defect D to define the twist string after the layer construction, we re-
quire that ρD acts on the loop excitations formed by any b ∈A as

ρD :

 

L
∏

j=1

b( j)
!

→

 

L
∏

j=1

b( j)
!

× a(k) , for some a ∈M . (17)

so that it preserves the set of deconfined particles after the anyon condensation. It follows that
ρD acts on the anyons b ∈A of the k-th layer by attaching an anyon in M,

ρD : b→ b× a , for some a ∈M . (18)

We call the automorphism with this property a “flux-preserving automorphism”, since the label
of the fluxes after the layer construction is given by A/M, and the above action leaves the
elements of A/M invariant. The flux-preserving condition in Eq. (18) is equivalent to the
condition that ρD leaves the anyons in the set M invariant,

ρD : a→ a , for all a ∈M . (19)

To see that Eq. (18) implies Eq. (19), suppose that ρD acts on a ∈M as ρD : a → a′ with
some a′ ∈M. Since the mutual braiding is invariant under the action of the automorphism,
we have Ma,b = Ma′,b for any b ∈ A. This implies that a × a′ is a transparent particle in the
modular tensor category, which means a = a′, hence Eq. (19) follows. Conversely, to see that
Eq. (19) implies Eq. (18), suppose that ρD acts as ρD : b → c for b, c ∈ A. According to
the invariance of the mutual braiding, we have Ma,b = Ma,c for a ∈ M. This implies that
b × c ∈M, so Eq. (18) follows. Physically, Eq. (19) guarantees that the twist string after the
layer construction preserves the labels of particle excitations.

In summary, an insertion of the defect D in a single layer with the property Eq. (18), or
equivalently Eq. (19), realizes the codimension-2 twist string of the resulting (3+1)D theory
that gives the action on the flux loops illustrated in Fig. 1.

Here, let us describe the example of the twist string of (3+1)D Z2 toric code with a
fermionic particle constructed in Sec. 5.1.3. In that case, the (2+1)D Abelian theory is taken
as the 2d Z2 toric code A = {1, e, m,ψ}, and we take M = {1,ψ} so that the particle exci-
tation becomes a fermion after the layer construction. The twist string is then described via
the e ↔ m twist string, which obviously satisfies the flux-preserving condition, e ×ψ = m.
Accordingly, the fermionic particle ψ is left invariant under the action of the defect.

5.2 Non-Abelian theory

5.2.1 General layer construction with non-Abelian discrete G-gauge theory

Here we describe the layer construction to obtain a (3+1)D discrete G-gauge theory when G
is possibly non-Abelian, from the layer construction of (2+1)D discrete G-gauge theory. Our
analysis below mainly restricted to the case where the (3+1)D discrete gauge theory only has
bosonic point charges, although we comment on the generalization to the case of fermionic
charges as well. We also restrict to the case where the (3+1)D and (2+1)D discrete gauge
theories are ‘untwisted,’ meaning they have trivial H4(G,U(1)) and H3(G, U(1)) cocycles re-
spectively.

The underlying algebraic structure of the (2+1)D discrete G-gauge theory is associated
with the quantum double D(G). The anyons in the quantum double model D(G) can be ex-
pressed in the form of a = ([g],πg). Here, g ∈ G is the group element and [g] denotes the
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Table 1: Conjugacy classes of the dihedral group Dn for even n and their centralizers.

Conjugacy class Centralizer
[(0, 0)] = {(0, 0)} C(0,0) = Dn
[( n

2 , 0)] = {( n
2 , 0)} C( n

2 ,0) = Dn

[(r, 0)] = {(r, 0), (n− r, 0)} for r ̸= 0, n
2 C(r,0) = Zn = {(r, 0)}n−1

r=0

[(0,1)] = {(2r, 1)}
n
2
r=0 C(0,1) = D2 = {(

n j
2 , k)} j,k∈{0,1}

[(1, 1)] = {(2r + 1, 1)}
n
2
r=0 C(1,1) = D2 = {(

n j
2 + k, k)} j,k∈{0,1}

Table 2: The character table of D4, where q = exp{i2π/4}.

D4 [(0,0)] [(2, 0)] [(1, 0)] [(0,1)] [(1, 1)]
J0 1 1 1 1 1
J1 1 1 1 −1 −1
J2 1 1 −1 1 −1
J3 1 1 −1 −1 1
α 2 −2 0 0 0

conjugacy class of G that contains g, which corresponds to the magnetic flux carried by the
anyon. The electric charge πg ∈ Rep(Cg) corresponds to the irreducible representation of the
centralizer of g, which is denoted by Cg . We call ([g],1), which has a trivial representation 1,
a pure magnetic flux. On the other hand, we call ([1],π), which is in the trivial conjugacy
class [1], a pure electric charge. Here, π ≡ π1 is the irreducible representation of the entire
symmetry group G. Finally, we call ([g],πg) with nontrivial conjugacy class [g] and represen-
tation πg a dyon.

As a concrete example, we consider the quantum double D(D4) of the dihedral group D4
of order 8. The group element of a dihedral group Dn is labeled by (r, s) ∈ Zn⋊Z2

∼= Dn, with
the group multiplication law given by

(r1, s1) · (r2, s2) = (r1 + r2(1− 2s1), s1 + s2) , (20)

where the first entry is modulo n and the second entry is modulo 2. Since this will be our
main example in the following sections, here we explicitly list all the anyons. We present the
conjugacy classes of Dn with even n and their centralizers in Table 1. Restricting to n = 4
is straightforward. We will also need the irreducible representations of the centralizers. We
denote the irreducible representations of the centralizers by using the notation in Table 2
when it is isomorphic to D4, and denote the one-dimensional irreducible representations of
the centralizer C(1,0) = Z4 by βl = ql , where q = exp{i2π/4} and l = 0,1, 2,3. When the
centralizer is isomorphic to D2, we use the notation in Table 3. In total, there are 22 anyons.
The quantum dimension of the anyon is given by the product of the number of elements in
the conjugacy class and the dimension of the representation of the corresponding centralizer,
which is summarized in Table. 4.

We discuss the layer construction for a (3+1)D G-gauge theory, starting with layers of
(2+1)D G-gauge theory described by the (untwisted) quantum double D(G). The idea for the
layer construction is largely the same as the Abelian case. That is, we again think of condens-
ing a pair of pure electric charges in the form of a( j)a( j+1) in the neighboring j-th and ( j+1)-th
layer for each j, where a ≡ ([1],π) represents a pure charge and a ≡ ([1],π) represents the
anti-particle of a (where π represents complex conjugation of π). Due to this process, we ex-
pect that the electric charge in each layer gets identified, and represents a single electric charge
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Table 3: The character table of D2.

D2 [(0, 0)] [(1, 0)] [(0,1)] [(1,1)]
A0 1 1 1 1
A1 1 1 −1 −1
A2 1 −1 1 −1
A3 1 −1 −1 1

Table 4: Irreducible representations of D(D4) and their dimensions.

D(D4) ([(0,0)], Ji) ([(0,0)],α) ([(2,0)], Ji) ([(2,0)],α) ([(1,0)],βl) ([(0, 1)], Ai) ([(1, 1)], Ai)
d([(r,s)],π(r,s)) 1 2 1 2 2 2 2

of a resulting (3+1)D theory after condensation. Meanwhile, a single pure flux string ([g],1)( j)

in each layer gets confined due to non-trivial braiding statistics between the condensed anyon
pair a( j)a( j+1), since the condensed particles should not be detectable by any deconfined exci-
tation. The formation of the condensate hence forces the pure flux string in each layer to be
bound together into a flux string

∏L
j=1([g],1)

( j), such that the Aharonov-Bohm phase between

the pure flux ([g],1)( j) and the pure charge a( j) cancels with the Aharonov-Bohm between the
pure flux ([g],1)( j) and the pure anti-charge ā( j+1) in the neighboring layer. Therefore, there
is only trivial braiding statistics between the flux string and the pure charge-anticharge pair
a( j)ā( j+1). The flux string then becomes the deconfined magnetic excitation of the resulting
(3+1)D theory after condensation. After all, we expect to get a (3+1)D G-gauge theory with
electric particles and flux strings.

To phrase the above layer construction in a precise way, we need to employ an algebraic
description of anyon condensation valid for a non-Abelian topological phase in (2+1)D, given
by L copies of G-gauge theory in our case. In general, anyon condensation in a topological or-
der C corresponds to a gapped interface between C and the other topological order C′ obtained
after anyon condensation. This is equivalent to a gapped boundary of a topological order C⊠C′
after folding the picture along the interface. The gapped boundary of a (2+1)D topological
order C ⊠ C′ is algebraically formulated in terms of Lagrangian algebra anyon of C ⊠ C′. In
our case, we start with the L copies of the G-gauge theory in (2+1)D given by C = (D(G))L
(L-th power means stacking D(G)⊠ D(G)⊠ · · ·⊠ D(G) of L layers), and we expect to obtain a
(2+1)D G-gauge theory C′ = D(G) after proper anyon condensation. This (2+1)D theory C′
is physically regarded as a theory obtained by compactifying an effective (3+1)D theory for
the layered system obtained by anyon condensation, where the string-like object in the form
of
∏L

j=1([g],1)
( j) is treated as a magnetic particle in C′ after compactification.

Hence, the layer construction is described by the Lagrangian algebra anyon of the modular
category given by (D(G))L⊠D(G). Here we propose an explicit form of the Lagrangian algebra
anyon that corresponds to the layer construction sketched above. The Lagrangian algebra
anyon physically represents condensed anyons of the gapped boundary, which has the form of

L=
∑

a∈(D(G))L⊠D(G)

Z0aa , (21)

where a is the anyon condensed on the boundary, and Z0a is the non-negative integer.
We express the anyon of (D(G))L ⊠ D(G) in the form of [

∏L
j=1 a( j), b] for a( j) ∈ D(G)( j),

b ∈ D(G). We then propose that the Lagrangian algebra anyon of (D(G))L⊠D(G) for the layer
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construction is given by

L=
⊕

[g]∈Conj(G)

⊕

πg∈Rep(Cg )

�

 

L
∏

j=1

([g],1)( j)
!

× ([1],πg)
(1)

×





L−1
∏

j=1

⊕

π′g∈Rep(Cg )

�

([1],π′g)
( j) × ([1],π′g)

( j+1)
�



 , ([g],πg)

�

, (22)

where the object in the form of ([1],π′g) with π′g ∈ Rep(Cg) is an abuse of notation, since it
does not correspond to an anyon of D(G) by itself. This defines an anyon after fusing with a
magnetic flux ([g],πg), where we define the fusion as

([g],πg)× ([1],π′g) :=
⊕

εg

Nε([g],εg) , (23)

with εg ∈ Rep(Cg), where the decomposition into irreducible representation is given by
πg ⊗π′g =

⊕

εg
Nεεg . Let us explain the physical intuitions behind the form of the Lagrangian

algebra anyon in Eq. (22). First, it has the effect of identifying the array of magnetic fluxes
in D(G) in the form of

∏L
j=1([g],1)

( j) as the magnetic particle ([g],1) of D(G) in the con-

densed theory. Also, when an electric charge ([1],πg)(1) is attached to a magnetic flux in
a single (first) layer, it becomes identified with the dyon ([g],πg) of the condensed theory.
Finally, we are condensing the pair of electric particles in the neighboring layer by the term
∏L−1

j=1

⊕

π′g∈Rep(Cg )

�

([1],π′g)
( j) × ([1],π′g)

( j+1)
�

. In particular, when g = 1, this term has the

effect of identifying the pair of electric particles in the form of ([1],π′)( j) × ([1],π′)( j+1) for
π ∈ Rep(G) as a trivial anyon of the condensed theory. This means that we are condensing
these pairs of electric particles.

We can check the Lagrangian property is indeed satisfied for L in Eq. 22. That is, the
quantum dimension of the Lagrangian algebra anyon L defined as dim(L) :=

∑

a Z0ada must
be identical to the total quantum dimension of the modular tensor category C,

dim(L) =
√

√

∑

a∈C
d2

a . (24)

To see this, let us explicitly compute the quantum dimension of L. In the expression of
Eq. (22), each anyon in the big parenthesis [] contains L pairs of electric particles in the
form of {([1],πg), ([1],πg)}, and by summing over πg for each pair, each contributes as
∑

πg
dim(πg)2 = |Cg | to the quantum dimension. So, after summing over the labels of electric

particles, the contribution of the electric particles is evaluated as |Cg |L for L pairs. Hence, the
quantum dimension of L is rewritten as

dim(L) =
∑

[g]∈Conj(G)

dim









L
∏

j=1

([g],1)( j), ([g],1)







 · |Cg |L

=
∑

[g]∈Conj(G)

|[g]|L+1 · |Cg |L

=
∑

[g]∈Conj(G)

|G|L · |[g]|

= |G|L+1 .

(25)
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Meanwhile, dim(D(G)L ⊠ D(G)) = dim(D(G))L+1 = |G|L+1. We hence have the property
Eq. (24).

The Lagrangian algebra anyon must also satisfy that the each anyon in the summand of L
carries the trivial spin, and trivial F and R symbols,

(FLLL
L )LL = 1 , RLL

L = 1 , (26)

which means the F and R symbols are 1 for all possible fusion vertices that represent
Hom(L ⊗ L,L). An explicit proof of these properties for the anyon in Eq. (22) is left for
future work.

We remark that the way of performing layer construction for D(G)L to obtain D(G) is
not unique in general, and Eq. (22) is not the most general form of the Lagrangian algebra
anyon for possible layer construction. For instance, Eq. (22) does not capture the example
of condensing a pair of fermions from neighboring layers in the Z2 toric code described in
Sec. 5.1.2, since Eq. (22) corresponds to condensing a pair of bosonic particles. If we instead
consider discrete gauge theory based on a fermionic symmetry group G f , then a similar analysis
as above should go through. We leave a systematic analysis of this case for future work.

5.2.2 Twist strings in non-Abelian discrete G-gauge theory

Here, we generalize the construction of twist strings in the Abelian case discussed in Sec. 5.1.5
to the case of non-Abelian discrete G-gauge theory in the framework of layer construction.
That is, we construct a codimension-2 twist string in the (3+1)D G-gauge theory by inserting
a codimension-1 defect D of the (2+1)D G-gauge theory D(G) in a single layer, and perform
the layer construction in the presence of the single insertion of the defect. Here we introduce a
condition required for D, described in Eq. (27) or Eq. (28) below. The first condition Eq. (27) is
required for the twist string to be compatible with the condensation procedure that determines
the layer construction, The second condition Eq. (28) is strictly stronger than Eq. (27), and
further guarantees that the twist string is a topological defect in the (3+1)D G-gauge theory
after the layer construction. Let us explain these conditions by steps.

Analogously to the discussion in Sec. 5.1.5, we require the twist string to induce a map
between the set of deconfined excitations in the (3+1)D G-gauge theory after the layer con-
struction, and such a map must obviously preserve the labels of all flux strings (loops). There-
fore, the corresponding domain wall D in the (2+1)D G-gauge theory in the context of layer
construction must induce a flux-preserving automorphism ρD ∈ Aut(D(G)), i.e.,

ρD : ([g],πg)→ ([g],π′g) , for all anyons ([g],πg) ∈ D(G) . (27)

The above equation means that the automorphism associated with the domain wall D pre-
serves the conjugacy class [g], i.e., the magnetic flux, while in general could permute the
representation, i.e., the electric charge, from πg to π′g .

We expect that an insertion of the defect satisfying Eq. (27) defines a codimension-2 de-
fect of the (3+1)D theory after the layer construction, but it turns out that the resulting
codimension-2 defect is not necessarily “topological”; the action of the defect on the flux string
can depend on the detail of where the point-like irrep πg is attached along the extended flux
string. Also, the action can depend on where the defect acts on the flux string, since the defect
acts at the specific point on the extended flux string by crossing. If we want the twist string
to be topological, we want the action of the defect to be independent of the detail of the con-
figuration of the flux string and irreps attached to it. For this purpose, we require a further
condition that the action of ρD only depends on the flux label [g] of the anyon ([g],πg), i.e.,

ρD : ([g],πg)→ ([g],πg ×σ[g]) , for all anyons ([g],πg) ∈ D(G) , (28)
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where σ[g] ∈ Rep(Cg) only depends on the flux label of the anyon [g], and independent of the
irreps πg attached to it. This condition guarantees that the action of the twist string on the
flux string does not depend on which layer the point-like irrep πg is attached to the flux string.
For ρD to be an automorphism, we require dim(σ[g]) = 1 so that the quantum dimension of
the anyons are preserved under ρD. The irreps σ[g] can then be regarded as an element
σ[g] ∈H1(Cg , U(1)).

Summarizing, given an automorphism with the flux-preserving property Eq. (27) and the
corresponding domain wallD in the (2+1)D G-gauge theory, one can construct the correspond-
ing twist string in (3+1)D G-gauge theory through the layer construction, i.e., by condensing
all the pairs of pure electric charges and anti-charges a j ā j+1 with a ≡ ([1],π) as discussed in
Sec. 5.2.1, in the presence of the domain wall D inserted in a single layer. If we want the twist
string to be topological, we further require the condition Eq. (28).

For an Abelian G gauge theory (a special case of the description in Sec. 5.1.4), we note that
the flux-preserving condition Eq. (27) implies Eq. (28). This is because the flux-preserving
condition is equivalent to the property that the pure charges (1,π) are invariant under the
action of ρD, so the action of ρD on dyons (g,π) are automatically determined as Eq. (28)
once we define σ by the the action of ρD on the pure flux as ρD : (g, 1)→ (g,σg).

However, in a non-Abelian G gauge theory, Eq. (27) does not necessarily imply Eq. (28).
In Sec. 5.2.4, we indeed find an example of an automorphism that satisfies Eq. (27) while
violating Eq. (28), in the (2+1)D A6 gauge theory D(A6). This automorphism leads to a non-
topological codimension-2 defect of (3+1)D A6 gauge theory. Meanwhile, we can also find an
automorphism satisfying Eq. (28) in D(A6), and it leads to a topological twist string of (3+1)D
A6 gauge theory.

In non-Abelian G gauge theory, we remark that the automorphism in Eq. (27) in gen-
eral cannot be realized by fusing the pure electric charge in the form of ([1],π) to the dyon
([g],πg). For example, the A6 gauge theory D(A6) considered in Sec. 5.2.4 does not contain
any Abelian pure electric charge, reflecting that A6 is a perfect group and does not admit an
Abelian irreducible representation. The fusion of a pure electric charge in D(A6) hence cannot
give an automorphism.

Let us investigate the properties of the flux-preserving automorphism ρD satisfying
Eq. (27), and show some fundamental constraints that ρD needs to satisfy. For this purpose,
we study the modular S and T matrices, which are left invariant under the automorphism ρD.
The modular matrices are given by the following formulae [66]:

S([g],πg )([g ′],πg′ ) =
1

�

�Cg

�

�

�

�Cg ′
�

�

∑

h:hg ′h−1∈Cg

trπg
(hg ′−1h−1)trπg′

(hg−1h−1) , (29)

T([g],πg )([g],πg ) = θ([g],πg ) =
trπg
(g)

trπg
(1)

, (30)

where trπg
(·) represents the character of the representation πg .

One can show that the conjugacy class preserving condition in Eq. (27) for the automor-
phism ρD is equivalent to the condition that ρD preserves all the pure charges in the form of
([1],π),

ρD : ([1],π)→ ([1],π) , for all the irreps π of G . (31)

To see the equivalence, we firstly derive the property in Eq. (31) from Eq. (27). This can be
immediately shown by checking the invariance of the modular S matrix. Suppose that ρD
transforms the anyons as ρD : ([1],π) → ([1],π′) and ρD : ([g],1) → ([g],π′′g ), where
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dim(π′′g ) = 1 since the quantum dimension is preserved under ρD. We then must have
S([1],π),([g],1) = S([1],π′),([g],π′′g ). This condition can be expressed as

trπ(g
−1) = trπ′(g

−1) . (32)

Since this is valid for any g ∈ G, the irreps π,π′ must be equivalent, so we have Eq. (31).
Conversely, one can also show the flux-preserving property Eq. (27) from Eq. (31), by uti-
lizing the invariance of the modular S matrix. Suppose that ρD transforms the anyons
as ρD : ([1],π′′) → ([1],π′′) and ρD : ([g],πg) → ([g ′],π′g ′). We then have
S([1],π′′),([g],πg ) = S([1],π′′),([g],π′

g′ )
, which is expressed as

trπ′′(g−1)dim(πg)
�

�Cg

�

�

=
trπ′′(g ′

−1)dim(π′g ′)
�

�Cg ′
�

�

. (33)

Using the invariance of the quantum dimensions under ρD given by
|[g]|dim(πg) = |[g ′]|dim(π′g ′), one can simply rewrite the condition as

trπ′′(g
−1) = trπ′′(g

′−1) . (34)

Since this is valid for any irreps π′′ of G, the conjugacy class has to be preserved: [g] = [g ′],
hence Eq. (27).

Below we discuss several examples of flux-preserving automorphism.

5.2.3 Example: Twist string in D4 gauge theory

The first example is the quantum double D(D4). There exists a flux-preserving automorphism
which we summarize below:

([2, 0], J0)↔ ([2,0], J1) , ([0, 1], A0)↔ ([0,1], A2) , ([1, 1], A0)↔ ([1,1], A3) , (35)

([2, 0], J2)↔ ([2,0], J3) , ([0, 1], A1)↔ ([0,1], A3) , ([1, 1], A1)↔ ([1,1], A2) . (36)

In Appendix E, we check that the automorphism leaves the S and T matrices invariant. In
Sec. 6, we show that the twist string that realizes this automorphism can be obtained by gaug-
ing the non-trivial (1+ 1)D SPT state protected by the D4 symmetry.

5.2.4 Example: Twist strings in A6 gauge theory

Another example is given by the quantum double model D(A6). The corresponding group
G = A6 is the alternating group of order six, i.e., the group of even permutations of six objects:
{1,2, ..., 6}. We consider a particular group element composed of two elementary permu-
tations, i.e., α = (1,2)(3,4). The corresponding conjugacy class is the set of permutations
with form of a product of two elementary permutations, i.e., (i1, i2)(i3, i4). The centralizer
group of α is then Cα = {1,α,β1,β2,β3,β4,γ1,γ2}, with β1 = (1, 2)(5,6),β2 = (3, 4)(5,6),
β3 = (1,3)(2,4),β4 = (1,4)(2, 3),γ1 = (1, 3,2, 4)(5,6) and γ2 = (1,4, 2,3)(5, 6). The conju-
gacy classes of the centralizer subgroup Cα are {1}, {α}, {β1,β2}, {β3,β4}, and {γ1,γ2}. The
corresponding character table is listed in Table 5. There exist two types of flux-preserving
automorphisms ρ1,ρ2 ∈ Aut(D(A6)) along with the corresponding domain walls, which has
been studied in Ref. [66] in the (2+1)D theory. The nontrivial action of each automorphism
on anyons is given by:

ρ1 : ([α],π1)↔ ([α],π2) , (37)

ρ2 : ([α],π3)↔ ([α],π4) = ([α],π3 ×π2) , (38)
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and leaves other anyons invariant. Here, π1 denotes the trivial representationπ1 = 1. One can
check that both types of automorphism leave the modular S, T matrices invariant according
to Eq. (29) and Eq. (30) [66]. These two examples provide new twist strings in (3 + 1)D
non-Abelian gauge theory by using the layer construction.

Note that both of the automorphisms ρ1, ρ2 obviously violate the condition Eq. (28), since
their actions on the anyons explicitly depend on the label of the irrep πi attached to the flux.
Therefore, the twist strings constructed out of ρ1, ρ2 give examples of non-topological twist
strings. We call such defects geometric twist strings, since the permutation of charges depends
on the detailed geometry of the trajectory. For example, when considering the ρ2 twist string,
a flux string attached with an additional charge labeled as ([α],π3) only gets a permutation on
the attached charge, i.e., transformed to ([α],π4) when the worldline of the attached charge
intersects with the twist string, as illustrated in Fig. 23(a). On the other hand, if the worldline
of the charge is slightly perturbed away from intersecting with the twist string, the charge
label remains to be π3, as illustrated in Fig. 23(b). As one can see, the charge permutation
phenomenon is not topologically robust in this case. The lack of topologically robust intersec-
tion between the worldline of attached charge and the twist string can be understood via their
intersection dimension dint = 1 + 1 − 3 = −1 < 0.9 In contrast, the intersection dimension
between the worldsheet of a flux string and the twist string is dint = 2+ 1− 3 = 0, indicating
the robust intersection at a single point (0-dimensional).

Now we consider the more subtle case of twist string ρ1. If a pure flux string
([α],π1)≡ ([α],1) passes through twist string ρ1, it will gets attached by an additional charge
π2, i.e., the label is changed to ([α],π2). This phenomenon is topologically robust. However,
if the flux string is attached with a charge and labeled as ([α],π3), this attached charge π3
will remain there when the worldline of the charge intersects with the twist string and hence
no π2 charge is produced in this case. If the worldline is slightly perturbed away from inter-
secting with the twist string, a π2 charge will still be produced, and the total charge becomes
π3 ×π2 = π4 instead of π3. Therefore, the total charge after the transformation depends on
the detailed geometry of the trajectory, and the twist string ρ1 is also not fully topological.

Meanwhile, the composite automorphism given by ρ1 ◦ ρ2 gives rise to the following au-
tomorphism,

ρ1 ◦ρ2 : ([α],πi)→ ([α],πi ×π2) , (39)

where πi refers to any irreducible representation of Cα. This satisfies Eq. (28), so the corre-
sponding twist string becomes topological. In this case, independent of the charge attached to
the initial flux string, the total charge after the transformation always gets multiplied by π2.

Also, as mentioned in Sec. 5.2.1, the actions of ρ1, ρ2 and ρ1 ◦ρ2 cannot be understood
in terms of attaching a pure charge (1,π) to anyons. It follows that in this example, the twist
string does not attach a deconfined point charge to the flux string that crosses it; rather there is
an irreducible representation πi on the flux string that gets permuted upon crossing the twist
string.

5.2.5 Relation between twist strings from layer construction and gauging (1+1)D SPT
phases

Here we discuss a mathematical consequence of the topological twist strings constructed in
Sec. 5.2.2. Specifically, we show below that the automorphism ρD satisfying the property
Eq. (28) defines a modular invariant Z(g,h), which can be interpreted as a partition function
of a (1+1)D bosonic G-SPT phase on a torus. This provides a partial correspondence between

9The intersection dimension between an n-dimensional submanifold with another m-dimensional submanifold
in a k-dimensional manifold is a topological invariant given by the following formula: dint = n+m− k.
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Table 5: The character table of the centralizer subgroup Cα.

Cα 1 α β1,β2 β3,β4 γ1,γ2

π1 1 1 1 1 1
π2 1 1 −1 −1 1
π3 1 1 1 −1 −1
π4 1 1 −1 1 −1
π5 2 −2 0 0 0

(a)

(b)

Figure 23: Illustration of the properties of geometric twist string ρ2 (green line).
Consider the flux string with an attached charge labeled as ([α],π3), the permutation
this attached charge depends on the detailed geometric trajectory of the flux string
and the charge. (a) If the worldline of the attached charge π3 (blue) intersects with
the geometric twist string, the attached charge will be transformed into π4 (purple).
(b) If the worldline of the attached charge avoids the twist string, the attached charge
remains the same.

the topological twist strings constructed using the layer construction Sec. 5.2.2 and those con-
structed by gauging (1+1)D bosonic SPT phases.

We have seen in Sec. 5.2.2 that the topological twist string in (3+1)D G-gauge theory is
obtained from an automorphism ρD of the (2+1)D G-gauge theory satisfying the condition
Eq. (28). To make contact with the (1+1)D SPT phase, for a given automorphism ρD satisfying
Eq. (28) let us define

Z(g,h) := σ[g](h) , (40)

for a commuting pair g, h ∈ G satisfying [g, h] = 1. Hereσ[g] ∈H1(Cg ,U(1)) characterizes the
permutation action of ρD on anyons in Eq. (28). One can regard Z(g,h) as a function of the flat
G-gauge field on a torus T2 with holonomy (g, h) on fundamental cycles. Later, we conjecture
that the phase Z(g,h) is always understood as a partition function of a (1+1)D bosonic G-SPT
phase on a torus.

One can show that Z(g,h) defines a modular invariant on a torus. To show this, we uti-
lize the invariance of the modular data of D(G) under the action of ρD. Since the T matrix
Eq. (30) is invariant under the action of ρD on anyons, the spins of the anyons are preserved
under the action of ρD. This gives θ([g],1) = θ([g],σ[g]), so we have σ[g](g) = 1. We then get
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Z(g,gh)
Z(g,h)

= σ[g](g) = 1, so the T invariance follows

Z(g,gh) = Z(g,h) . (41)

Also, according to the invariance of the S matrix element Eq. (29) under the ac-
tion of ρD, we have S([g],1),([h],1) = S([g],σ[g]),([h],σ[h]). This equation is rewritten

as 1 = σ[g](h−1)σ[h](g−1), where we used Trσ[g](h
−1) = σ[g](h−1). which gives

Z(h−1,g)
Zg,h

=
σ[h−1](g)
σ[g](h)

= σ[h−1](g)σ[g−1](h) = 1. The S invariance then follows

Z(h−1,g) = Z(g,h) . (42)

Further, since σ[g] ∈H1(Cg , U(1)), we obviously have

Z(g,h)Z(g,k) = Z(g,hk) , for h, k ∈ Cg . (43)

Conversely, for a given torus modular invariant Z(g,h) for a commuting pair g, h ∈ G and
satisfying Z(g,h)Z(g,k) = Z(g,hk), one can define σ[g](h) := Z(g,h) and the permutation action of
ρD as ([g],πg)→ ([g],πg ×σ[g]) leaving S, T invariant. Therefore, there is one-to-one cor-
respondence between a torus modular invariant Z(g,h) satisfying Eq. (43), and a permutation
action of ρD on anyons leaving the full S, T matrices invariant and satisfying Eq. (28).

In the following section, we construct topological twist strings by gauging a G symmetry
after decorating a string with a (1+1)D SPT. The (1+1)D SPT in this case is characterized by an
elementω ∈H2(G, U(1)). We would like to prove an equivalence between the gauged (1+1)D
SPT construction and the layer construction discussed in Sec. 5.2.2. To do so, we need to show
that an automorphism ρD satisfying Eq. (28) defines the same twist string as specifying some
element of H2(G, U(1)), and vice versa. In Sec. 6, we will show how an element of H2(G,U(1))
indeed specifies an automorphism ρD satisfying Eq. (28). So we need to consider the opposite
direction, of how to go from ρD satisfying Eq. (28) to an element of H2(G, U(1)).

Above, we have shown that we can go from ρD to a torus modular invariant Zg,h ∈ U(1).
This takes us part of the way to specifying an element of H2(G,U(1)). However, we saw
that the torus modular invariant Zg,h only specifies the permutation action of ρD. To specify
the full automorphism of the modular category, we also need information about how ρD acts
on anyon fusion / splitting vertices [17]. It is unlikely that this information is contained in
Zg,h, since Zg,h only guarantees invariance of the modular S, T matrices, and not the “beyond
modular data” of the (2+1)D TQFT [67, 68]. It thus seems unlikely that Zg,h is sufficient to
fully define an element of H2(G,U(1)). Therefore, to extract an element of H2(G, U(1)) from
ρD, we presumably need to do more than to simply extract the torus modular invariant Zg,h,
and also study how the action of ρD on anyon fusion / splitting vertices generically defines an
element ω ∈H2(G, U(1)). We leave a detailed study of this for future work.

6 Twist strings via gauging (1+1)D bosonic SPT phases

Here we give a systematic construction of twist strings in discrete G-gauge theory from the
perspective of gauging lower dimensional SPT phases. Though the logic in this section is
applicable for discrete gauge theory in generic spacetime dimensions, we start with the case
of (2+1)D G-gauge theory as a warm-up.

We want to construct codimension-1 twist strings of a (2 + 1)D G-gauge theory. For
this purpose, we start with a trivial bosonic G-SPT phase in (2+1)D, and then decorate a
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(a) (b) (c)

Figure 24: The process of a magnetic flux passing through a codimension-1 invertible
twist string in a (2 + 1)D theory. The figure shows the (2+1)D spacetime. In this
figure, the magnetic flux m is a line operator (purple line) extended in the vertical
direction. Meanwhile, the codimension-1 twist string defect D is described as a 2D
surface in the spacetime. As a magnetic flux passes through the defect, the defect
will wrap around it as shown in (b). One can shrink the wrapping cylinder of the
defect so that the magnetic flux is dressed by a dimensionally-reduced twist defect as
shown in (c). Note that the whole process leaves the correlation function invariant,
due to bordism invariance of the partition function of the (1+1)D SPT phase that
corresponds to the defect D.

codimension-1 submanifold with a (1+ 1)D bosonic SPT phase with G symmetry. After gaug-
ing the G symmetry, it defines a codimension-1 invertible defect of a (2+1)D G-gauge theory,
with its fusion rule given by the stacking rule of the (1+1)D SPT phase. A general picture on
how the twist string acts on anyons can be understood by the following argument. As shown
in Fig. 24, when a magnetic excitation of the G-gauge theory passes through the defect, the
defect will wrap around the magnetic flux excitation. By shrinking the wrapping part of the de-
fect, we find that the magnetic flux is dressed with a (0+1)D object obtained by “dimensional
reduction” of the invertible defect.

6.1 Abelian G

Now we consider a twist string built by decorating a (1 + 1)D bosonic SPT state labeled by
ω ∈H2(G,U(1)) in the (2+1)D untwisted gauge theory. To illustrate the main idea in a simple
setup, let us assume that the gauge group is Abelian. The case that G is non-Abelian is studied
later. We think of this (2+ 1)D gauge theory as a result of gauging a trivial (2+1)D invertible
phase with G symmetry. The magnetic flux is labeled by g ∈ G, while the electric particle
is labeled by an irreducible G-representation in Rep(G) ∼= H1(G,U(1)). Before we gauge the
symmetry, we consider a background g magnetic flux and bring it through the defect. When a
g flux passes through the defect, by the wrapping argument, we find that the g flux is dressed
by a dimensional reduction of a (1+ 1)D bosonic SPT state with a g flux insertion. The result
of the dimensional reduction is a (0+1)D invertible phase whose ground state carries electric
charge πg ∈H1(G, U(1)) given by the slant product ig :

πg(h) = igω(h) =
ω(g, h)
ω(h, g)

. (44)

When we gauge the G symmetry, the magnetic flux becomes dynamical, and regarded as a line
operator that corresponds to the worldline of the magnetic particle. We therefore conclude
that a magnetic flux is attached to the Wilson line for the electric charge πg when passing
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through the defect,

ξg(γ)→ ξg(γ) ·ηπg
(γ) , (45)

where ξg(γ) and ηπg
(γ) are line operators supported on a closed curve γ, which correspond

to the magnetic particle (g, 1) and electric particle (1,πg) in the G-gauge theory in (2+1)D
respectively. That is, the twist string acts on the anyons of the (2+1)D discrete gauge theory
by permutation

(g, 1)→ (g,πg) . (46)

We see that the twist string implements a flux-preserving automorphism.
The action of the twist string in Eq. (46) can be directly generalized to discrete G-theory

in generic (d + 1) spacetime dimensions with d > 2. In that case, the magnetic surface ξg is
a codimension-2 operator supported on (d − 1)D submanifold M d−1 of the spacetime, while
the codimension-(d−1) twist string D is defined as a (1+1)D G-SPT action evaluated on a 2D
surface. The twist string then acts on the magnetic surface mg by attaching the Wilson line at
a closed loop γ embedded in M d−1. To see this, we prepare the twist string D on the cylinder
S1×γ, where S1 is linking with M d−1. By shrinking the S1 into a point, the twist string acts on
mg at the loop γ by attaching the Wilson line ηπg

(γ) on the magnetic surface. So, the action
of the twist string is expressed as

D(S1 × γ) · ξg(M
d−1) = ηπg

(γ) · ξg(M
d−1) , (47)

in generic spacetime dimensions. For the case of d > 2, note that the twist string cannot
permute the label of the surface operator supported on (d−1)-manifold, due to the difference
in dimensions between the magnetic surfaces and the electric Wilson lines. However, it can
still act on the magnetic surfaces by choosing a closed loop embedded in M d−1 and attaching
the Wilson line ηπg

on it. In the case of (3+1)D discrete gauge theory with d = 3, the action of
the defect D in Eq. (47) gives a general description for the action of the twist string in (3+1)D
constructed in Sec. 4 and Sec. 5 where the electric particle emits from the intersection between
the magnetic surface and the twist string in the (3+1)D spacetime, for example described in
Fig. 17. To clarify the relation between the attachment of the Wilson line Eq. (47) and the
intersection effect in e.g., Fig. 17, it is convenient to think about the intermediate process
of shrinking a cylinder of the the defect D for only a half-region of the cylinder. Then there
should be the intersection between the defect D and the magnetic surface, where the Wilson
line comes out of the intersection to attach the closed Wilson line after shrinking the cylinder
everywhere. This makes the connection between the two effects of the twist string on the
magnetic surface.

6.2 Example: twist string of Z2 ×Z2 gauge theory in (2+ 1)D and (3+ 1)D

Let us consider a simple example where G = Z2 × Z2. The (2+1)D Z2 × Z2 gauge theory
corresponds to two copies of the Z2 toric code studied in Sec. 4.1. We label the magnetic
particles as m1, m2 and the electric particles as e1, e2. The non-trivial (1 + 1)D Z2 × Z2 SPT
is the cluster state characterized by ω = 1

2 a ∪ a′ ∈ H2(G, U(1)) with a, a′ ∈ H1(G,Z2) the
gauge fields of first and second Z2 respectively. If we consider the action of the twist string
on the m1 magnetic particle, the attached Wilson line becomes π(1,0)[( j, k)] = k

2 mod 1 for
( j, k) ∈ Z2 × Z2. According to the action in Eq. (46), it means that the magnetic particle is
acted by the twist string as

m1→ m1e2 . (48)
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Similarly, the action on the magnetic particle m2 is given by

m2→ m2e1 . (49)

These actions on the magnetic particle correspond to the twist string realized in the (2+1)D
Z2 × Z2 toric code shown in Fig. 7. For (3+1)D Z2 × Z2 gauge theory, due to Eq. (47) the
action of the twist string D is expressed as

D(S1 × γ) · ξm1
(Σ) = ηe2

(γ) · ξm1
(Σ) , D(S1 × γ) · ξm2

(Σ) = ηe1
(γ) · ξm2

(Σ) , (50)

where Σ is a 2D surface that supports the magnetic surfaces ξm1
,ξm2

. This action corresponds
to Fig. 14 for the twist string in (3+1)D Z2 ×Z2 gauge theory.

6.3 Non-Abelian G

The construction of the twist string based on gauging (1+1)D SPTs can be generalized to non-
Abelian gauge groups. For a non-Abelian (untwisted) G-gauge theory in (d + 1)D, we again
consider a codimension-(d − 1) defect given by decorating a 2-submanifold with a (1+1)D
bosonic G-SPT phase. In this case, the defect again has the effect of attaching the electric Wil-
son line to the magnetic surface operator labeled by a conjugacy class [g] ⊂ G that contains
group element g ∈ G, where now the electric charge is labeled by the elements in the central-
izer of g. By repeating the discussion in the previous subsection, one can see that the action
of the twist string on the magnetic excitations are expressed in the same fashion. That is, in
(2+1)D G-gauge theory, the twist string D acts by permutation of the anyons in the quantum
double D(G)

ρD : ([g],1)→ ([g],σ[g]) , (51)

where σ[g] := igω ∈ H1(Cg , U(1)) is the slant product of the (1+1)D SPT action
ω ∈ H2(G, U(1)), which defines a 1d representation of the centralizer Cg of g ∈ G. The
slant product for generic non-Abelian group will be reviewed in Appendix B. Here we empha-
size that σ[g] ∈ H1(Cg , U(1)) is a representation of the centralizer group Cg rather than the
full gauge group G, and σ[g] itself does not correspond to the pure charge of the G-gauge
theory. The action of the twist string D on dyons of D(G) is also described in the same fashion,

ρD : ([g],πg)→ ([g],πg ×σ[g]) , (52)

where πg ∈ Rep(Cg).
Note that the action in Eq. (51), (52) only depend on the flux label [g] and are independent

of the irrep label. Therefore, this satisfies both conditions Eq. (27) and (28) discussed in
Sec. 5.2.2.

The permutation of anyons in Eq. (52) only gives the partial data to characterize the au-
tomorphism ρD. In order to fully characterize the automorphism induced by the twist string
D, we also need to determine how ρD acts on anyon fusion and splitting vertices [17]. Here
we determine the complete data for characterizing the automorphism ρD, and explicitly check
that the twist string D indeed defines a 0-form global symmetry of the (2+1)D G-gauge theory
D(G) associated with the automorphism ρD.

In general, for given anyons a, b, c ∈ D(G), the automorphism acts on the fusion/splitting
space V ab

c as

ρD : V c
ab→ V

Dc
DaD b . (53)
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We choose a basis |a, b; c,µ〉 for V c
ab, and the action of ρD on the basis states are expressed as

ρD|a, b; c,µ〉=
∑

ν

[UD(
Da, Db; Dc)]µν

�

�
Da, Db; Dc,ν

�

, (54)

where Da := ρD(a). The N c
ab × N c

ab matrix UD generally determines the action on the fu-
sion/splitting space. In our case where the defect D is given by the (1+1)D SPT action
ω ∈H2(G,U(1)), UD is given by

UD(([g],πg), ([h],πh); ([gh],πgh)) =ω(g, h) . (55)

Note that the U symbol only depends on the flux labels of anyons, not on the irreps attached
to them. The expression Eq. (55) can be derived by considering the SPT defect acting on the
fusion vertex of the anyons carrying [g] and [h] fluxes, where it acts by encircling the fusion
vertex by a junction of thin cylinders of the SPT phase, see Fig. 25 (a). One can then see that
the SPT action on the junction of cylinders weights as ω(g, h), since the junction of G-defects
are induced on the SPT phase at the junction. This phase ω(g, h) is regarded as the vertex
gauge transformation UD acting on the fusion vertex.

To fully specify the automorphism, there is a further data written as η([g],πg )(D,D′) for the
pair of twist strings D,D′ [17]. This η symbol characterizes the symmetry fractionalization
of the anyon ([g],πg) under the action of the twist string. That is, η([g],πg )(D,D′) denotes
a phase given by crossing the Wilson line of the anyon ([g],πg) through the codimension-2
junction between D and D′. We can see that η([g],πg )(D,D′) = 1 for any pair of twist strings
D,D′; during the whole process the SPT action does not produce a phase because it does not
involve the junction of G-gauge fields introduced on the SPT surface, see Fig. 25 (b).

One can check that the permutation action of ρD in Eq. (52), UD in Eq. (55) together with
η([g],πg ) = 1 give the consistent data that completely characterizes the automorphism ρD, in
the sense that they satisfies all the consistency conditions for the automorphism. For example,
the consistency condition between U and η symbols are generally expressed as

UD(a, b; c)UD′(
D−1

a,D
−1

b;D
−1

c) = UD×D′(a, b; c)
ηc(D,D′)

ηa(D,D′)ηb(D,D′) , (56)

for a, b, c ∈ D(G). This is satisfied with η = 1 because UD(([g],πg), ([h],πh); ([gh],πgh)) is
given by the SPT action ω(g, h), and the equation UDUD′ = UD×D′ simply follows from the
stacking rule of the SPT phase where the action for the defect D ×D′ is given by the product
of each SPT action D,D′.

In principle, it is possible that a nontrivial SPT phase ω ∈ H2(G, U(1)) leads to a trivial
permutation of the anyons where σ[g] is trivial for all g ∈ G. Since σ[g](h) is the same as
the torus partition function Z(g,h) of the SPT phase with holonomy (g, h), the above situation
happens when a nontrivial element of H2(G, U(1)) cannot be detected on a torus, though we
are not aware of such an example. Even if one can find such an ω ∈ H2(G,U(1)) that leads
to the trivial permutation of the anyons, the U symbol for the automorphism ρD =ω(g, h) is
still nontrivial, and it is possible that it still gives a nontrivial class of the automorphism.

The automorphismsρ1,ρ2 in the A6 gauge theory from Sec. 5.2.4 violate Eq. (28), so do not
fit into this approach of gauging (1+1)D SPT phases. Meanwhile, the composite automorphism
given by ρ1 ◦ ρ2 satisfies both conditions Eq. (27) and (28), and we conjecture that ρ1 ◦ ρ2
corresponds to the twist string given by the nontrivial (1+1)D A6 SPT phase generating the Z2
classification, where the full classification is given by H2(A6, U(1)) = Z2 ×Z3.

In generic (d + 1)D G-gauge theory with d > 2, the action of the twist string D is again
described as

D(S1 × γ) · ξ[g](M d−1) = ηπg
(γ) · ξ[g](M d−1) . (57)
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(a)

(b)

Figure 25: The U and η symbols for the automorphism ρD associated with the
(1+1)D G-SPT phase. (a): the symmetry action on the fusion vertex UD is read
by crossing the defect D through the junction of anyons. In the right figure after
crossing, the junction of the g, h ∈ G defects into gh is introduced on the SPT phase
encircling the junction of the anyons. The Boltzmann weight of the SPT phase emits
a phase ω(g, h) locally at this junction, which is regarded as the symmetry action on
the vertex gauge transformation UD. (b): η([g],πg )(D,D′) describes the symmetry
fractionalization of the anyon ([g],πg) under the action of the defects D,D′, which
can be read by crossing the anyon ([g],πg) through the junction of D and D′. Note
that the whole process does not introduce the junction of gauge fields on the surface
of SPT phase, so the SPT action does not produce any phase. We then conclude that
η([g],πg )(D,D′) = 1.

6.4 Example: twist string in Dn gauge theory

Let us study a simple example given by the dihedral group Dn (of order 2n) where n is even
and group laws are described in Eq. (20). We consider the twist string that corresponds to the
non-trivial (1+1)D SPT given by the second cohomology group H2(Dn, U(1)) = Z2. Here we
write down the explicit form of the 2-cocycle that represents the nontrivial cohomology class.
To do this, we note that the flat Dn gauge field on a 2-simplex 〈012〉 is realized by a pair of
Zn-valued 1-cochain r and Z2-valued 1-cochain s that satisfies

r01 + r12(1− 2s01) = r02 , mod n ,

s01 + s12 = s02 , mod 2 ,
(58)

due to the flatness condition (r01, s01) ·(r12, s12) = (r02, s02) on a 2-simplex. The above flatness
conditions are neatly expressed by using cup product of cochains as

δr − 2ŝ ∪ r = 0 , mod n ,

δs = 0 , mod 2 ,
(59)

where ŝ denotes the lift of s ∈ Z1(M2,Z2) to Zn, with M2 a closed oriented 2-manifold. We
then consider a Zn-valued 2-cochain ŝ ∪ r ∈ Z2(M2,Zn). One can see that this cochain is
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closed, since

δ(ŝ ∪ r) = δŝ ∪ r − ŝ ∪δr

= δŝ ∪ r − ŝ ∪ (2ŝ ∪ r)

= (δŝ− 2ŝ ∪ ŝ)∪ r

= 0 ,

(60)

where the equations are taken mod n. Hence, one can define a (1+1)D SPT action as

exp

�

2πi
n

∫

ŝ ∪ r

�

. (61)

One can see that the above action generates the nontrivial SPT phase, since the partition
function on T2 with the flat Dn gauge field with holonomies for two fundamental 1-cycles
{( n

2 , 0), (0,1)} becomes −1.
To explicitly write down the action of the twist string defect on magnetic excitations, we

summarize the conjugacy classes of Dn that label the magnetic strings, and their centralizers
in Table 1.

Let us consider a (2+1)D Dn gauge theory D(Dn), and we study a codimension-1 twist
string defined as decoration of the SPT action in Eq. (61). Suppose that a magnetic flux [(r, s)]
is acted on by the twist string, as shown in Fig. 24. The magnetic flux is then dressed by the
Wilson line for the electric charge π(r,s) ∈ Rep(C(r,s)), which is given by the slant product i(r,s)
taken for the SPT action in Eq. (61). The slant product i(r,s) is computed by the torus partition
function on T2 with holonomy on the compactifying cycle (r, s), so the attached electric charge
is evaluated as

π(r,s)[(r
′, s′)] = exp

�

2πi
n
(sr ′ − s′r)

�

, (r ′, s′) ∈ C(r,s) , (62)

which defines an 1D irreducible representation of the centralizer C(r,s). According to this
formula for the attached electric charge, one can see that only the magnetic fluxes labeled
by the conjugacy classes [( n

2 , 0)], [(0, 1)], [(1, 1)] have an electric charge attached to them.
For the magnetic particles labeled by [( n

2 , 0)], the attached electric charge is labeled by
π( n

2 ,0)(r ′, s′) = (−1)s
′
,

�h�n
2

, 0
�i

,1
�

→
�h�n

2
,0
�i

,π( n
2 ,0)

�

. (63)

For the non-Abelian magnetic string labeled by [(0, 1)], the attached Wilson line is given by
π(0,1)[(r ′, s′)] = e

2πi
n r ′ , where we note that r ′ ∈ nZ/2 since (r ′, s′) ∈ C(0,1)

∼= D2. So the
attached electric charge is given by the irreducible representation of D2,

([(0, 1)],1)→ ([(0,1)],π(0,1)) . (64)

For the non-Abelian magnetic string labeled by [(1, 1)], we attach the Wilson line
π(1,1)(r ′, s′) = e

2πi
n (r

′−s′), where r ′ − s′ = 0 mod n/2 so that (r ′, s′) ∈ C(1,1)
∼= D2. So we

have
([(1, 1)],1)→ ([(1,1)],π(1,1)) . (65)

Eq. (63), (64) and (65) completes all the nontrivial action of the twist string defect on magnetic
strings, and realizes the automorphism described in Eq. (36) for D(D4) in the case of n= 4.

For the Dn gauge theory in generic (d + 1) dimensions with d > 2, the nontrivial action of
the twist string on the magnetic surfaces is given by Eq. (57) with [g] = [( n

2 , 0)], [(0, 1)], [1, 1].
For d = 3, the action corresponds to the twist string constructed via layer construction in
Sec. 5.2.2.
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7 Twist strings via gauging (1+1)D fermionic topological phases

In this section, we study twist strings in (3+1)D topological orders that arise from gauging
Z f

2 fermion parity symmetry of a (1+1)D fermionic invertible topological phase. That is,
we start with a trivial fermionic invertible phase in (3+1)D, and then decorate a
codimension-2 submanifold with a (1+1)D fermionic invertible phase with Z f

2 symmetry. We

then gauge the Z f
2 symmetry. This process defines an invertible codimension-2 defect (twist

string) of a Z2 gauge theory in (3+1)D with a fermionic point charge. We also study the more
general situation where we gauge a fermionic symmetry group G f = Gb ×Z

f
2 .

The action of the twist string on the excitations of (3+1)D Z f
2 gauge theory is derived

in a similar fashion to the bosonic case given in Sec. 6. The twist string again acts on the
magnetic string excitation by attaching the fermionic electric charge when the twist string
crosses the magnetic string. The electric charge attached to the magnetic string is read off
from the electric charge carried by the Z f

2 twisted sector of the (1+1)D fermionic invertible
phase that corresponds to the twist string, since the magnetic string is regarded as a flux of
the gauged Z f

2 symmetry.
In the rest of the section, we derive the action of the defect on the magnetic excitation by

studying the electric charge of the Z f
2 -twisted sector in the fermionic topological phase. When

we refer to the anti-periodic (resp. periodic) boundary conditions with respect to Z f
2 symmetry,

it is realized by the NS (resp. R) spin structure around the cycle. In math terminology, these
are the bounding and non-bounding spin structures, respectively. Throughout this section, we
hence call the Z f

2 -untwisted (resp. Z f
2 -twisted) sector the NS (resp. R) sector.

7.1 Warm-up: e↔ m twist string of (2+1)D Z2 toric code

Before discussing the (3+1)D Z2 gauge theory, we start with a (2+1)D gauge theory to il-
lustrate the idea with a simple example. We consider a trivial fermionic invertible phase in
(2+1)D with Z f

2 symmetry, and then decorate a codimension-1 submanifold with the (1+1)D
Kitaev chain. If we regard the decorated Kitaev chain as a symmetry defect of Z2 0-form sym-
metry, this phase is regarded as a nontrivial fermionic SPT phase with Z2 ×Z

f
2 symmetry that

generates the Z8 classification [69,70].
We then obtain a (2+1)D bosonic Z2 gauge theory by gauging Z f

2 fermion parity symmetry
of the theory. The Kitaev chain decoration of the original fermionic theory then defines an
invertible codimension-1 defect of the Z2 gauge theory. We are interested in how this defect
acts on anyons of the Z2 gauge theory.

Heuristically, one can apply the wrapping argument in Sec. 6. Before we gauge the sym-
metry, we consider a background π-flux and bring it through the defect. The π-flux is dressed
by the dimensional reduction of the Kitaev chain with a π-flux insertion. This Kitaev chain will
have a periodic boundary condition and it is known that the ground state has an odd fermion
parity [71]. Since the π-flux becomes the magnetic particle after we gauge the Z f

2 symmetry,
we expect that the twist string acts on the magnetic particle as attaching a ψ fermion. We
provide a more detailed discussion at the level of the TQFT Hilbert space below.

In a fermionic QFT, gauging Z f
2 symmetry is performed by summing over all possible spin

structures of the spacetime manifold, since the background gauge field of Z f
2 symmetry is

expressed as the spin structure of the spacetime [69, 72, 73]. After gauging Z f
2 , the resulting

bosonic Z2 gauge theory in (2+1)D has a dual Z2 1-form symmetry generated by an Wilson
line of a fermionic particle ψ. Conversely, starting with this bosonic Z2 gauge theory, one
can gauge the dual Z2 1-form symmetry, by coupling the theory with spin structure. We then
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obtain the original fermionic phase with Z f
2 symmetry. Physically, this process corresponds to

performing anyon condensation of a fermionic particle ψ of Z2 gauge theory combined with
a local fermion of a trivial fermionic gapped theory. Hence, condensing ψ of the Z2 gauge
theory realizes the inverse process of gauging Z f

2 symmetry.
Since the original (2+1)D fermionic invertible phase can be obtained by condensation of a

fermionic particleψ of the Z2 gauge theory, one can express the states of the original fermionic
theory in terms of the states of the Z2 gauge theory [74]. In particular, when the Hilbert space
is defined on a torus T2, the state of the bosonic Z2 gauge theory is labeled by the anyons of the
Z2 gauge theory, |1〉 , |e〉 , |m〉 , |ψ〉. These states correspond to path integral of the bosonic Z2
gauge theory on a solid torus D2×S1, with an insertion of the anyon lines along the longitude
of the solid torus. The state of the trivial fermionic invertible phase is expressed as a proper
superposition of these states. We read the action of the defect on anyons by translating the
effect of the Kitaev chain in the fermionic Hilbert space into a language of the bosonic states
labeled by the anyons of the Z2 gauge theory.

To do this, let us consider a fermionic state on T2 with the spin structure along the meridian
of T2 given by R spin structure. Inserting aψWilson line along the meridian on the state must
act as a phase −1. So, the state on T2 with R spin structure along the meridian is described by
insertion of m or e Wilson line along the longitude, so that the (−1) sign under insertion of ψ
is realized as the mutual braiding between ψ and e or m. The fermionic invertible phase with
the given spin structure is expressed as

�

�

�T2
R,NS

¶

= |e〉+ |m〉 ,
�

�

�T2
R,R

¶

= |e〉 − |m〉 ,
(66)

where T2
µ,λ denotes T2 with spin structure µ along the meridian, and λ along the longitude. A

state |a〉 denotes a state on T2 given by inserting an Wilson line a along the longitude of a solid
torus. The rationale for the form of the state |e〉 ± |m〉 is that the ψ line along the longitude
must also act as ±1 phase, depending on spin structure along the longitude. Indeed, one
can see that |e〉 ± |m〉 becomes an eigenvector under the action of fusing a ψ line along the
longitude.

So far, we did not consider a state with an insertion of the Kitaev chain. Let us now consider
a fermionic state with the codimension-1 defect on D2×{0} in the solid torus, which amounts
to putting a Kitaev chain along the meridian of T2 with R spin structure, see Fig. 26. Since a
Kitaev chain put on a circle with R spin structure carries odd fermion parity, the state on T2

with the codimension-1 defect must also carry odd fermion parity.
A state with odd fermion parity is expressed by a state of the bosonicZ2 gauge theory with a

singleψWilson lines extended along the time direction. So, in order to realize a state with odd
fermion parity, aψ line must stem out of the e or m Wilson line along the longitude intersecting
with the codimension-1 defect. This is possible only when the codimension-1 defect acts as an
automorphism that permutes e and m, where aψ line can stem out of the intersection between
the codimension-1 defect and the Wilson line. This implies that the defect of the bosonic Z2
theory must exchange e and m. This fact was known in [69] in the context of fermionic SPT
phase, where they found that the bosonic dual theory of the Z2×Z

f
2 fermionic SPT phase that

generates the Z8 classification realizes the e↔ m exchange Z2 symmetry of the gauge theory.

7.2 Twist string of (2+1)D G f gauge theory

Here we generalize the above discussion to the (2+1)D G f gauge theory. That is, we start

with the (2+1)D trivial fermionic invertible phase with G f symmetry that contains Z f
2 fermion
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holonomy

R  spin structureKitaev
chain

or     line

symmetry defect

Figure 26: A state of the fermionic SPT phase on a torus is described by a path
integral of the bosonic shadow theory on the solid torus D2 × S1. When we have R
spin structure along the meridian and the Z2 holonomy along the longitude, the state
must carry odd fermion parity, so a ψ line must be running along the time direction.
This constrains the action of Z2 symmetry defect on anyons in the bosonic shadow
theory.

parity symmetry, and then obtain a (2+1)D bosonic gauge theory with gauge group G f by
gauging the whole symmetry including fermion parity. For simplicity, we restrict ourselves to
the case where G f is expressed in the form of G f = Gb × Z

f
2 , i.e., direct product of a bosonic

discrete group Gb and fermion parity. We study the action of the codimension-1 twist string
given by the decoration of (1+1)D fermionic invertible phase with G f = Gb ×Z

f
2 symmetry.

The (2+1)D G f gauge theory is obviously described by D(Gb)⊠ D(Z2), where D(Z2) is re-

garded as the Z2 gauge theory obtained by gauging Z f
2 symmetry. We hence take the electric

particle in the Z2 gauge theory D(Z2) as a fermionψ, and e, m particles are regarded as carry-
ing the magneticπ-flux with respect to Z f

2 symmetry. So, we write the anyons of D(Gb)⊠D(Z2)
naturally in the form of

([g],πg) · (m j ,ψk) , g ∈ Gb, j, k ∈ {0,1} . (67)

Analogously to what we have done in previous subsections, one can read the action of the
twist string on each Gb × Z2 flux sector, by studying the Gb × Z

f
2 charge of the (1+1)D SPT

phase carried by the ([g], j) ∈ Gb ×Z
f
2 twisted sector.

The (1+1)D fermionic SPT phase with Gb ×Z2 symmetry is labeled by [33,75]

(n0, n1,ν2) ∈ Z2 ×H1(Gb,Z2)×H2(Gb,U(1)) , (68)

where n0 ∈ Z2 represents the Kitaev chain, and n1 ∈ H1(Gb,Z2) represents the Gu-Wen SPT
phase, and H2(Gb,U(1)) represents the bosonic SPT phase. As discussed in Sec. 7.1, the Kitaev
chain leads to the twist string with the action

([g],πg) · (m j ,ψk)→ ([g],πg) · (m j ,ψk+n0 j) , (69)

that is, it attaches the fermionψ to the magnetic π-flux e, m, reflecting that the fermion parity
of the Kitaev chain is odd in the R sector. Also, following the argument of Sec. 6, the bosonic
SPT phase ν2 leads to the action

([g],πg) · (m j ,ψk)→ ([g],πg × igν2) · (m j ,ψk) , (70)

where ig denotes the slant product that defines igν2 ∈H1(Cg , U(1)).
The remaining task is to evaluate the action of the Gu-Wen SPT phase labeled by

n1 ∈ H1(Gb,Z2). To do this, we utilize the path integral of the Gu-Wen phase given by the
Gu-Wen Grassmann integral [76]. For our purpose, we express the path integral on a torus T2
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equipped with the spin structure (s, s′) on each fundamental cycle (s, s′ ∈ {NS,R}), and the Gb
flat background gauge field with the holonomy (g, h) on each fundamental cycle. Then, the
torus partition function is expressed in the form of [75,76]

ZGW(T
2
(s,s′),(g,h)) = z(s,s′)(n1(g), n1(h)) , (71)

which is essentially the partition function of the fermionic SPT phase with Z2 ×Z
f
2 symmetry,

coupled to the Z2 background gauge field on T2 with holonomy (n1(g), n1(h)). zs,s′ can be
expressed in terms of the Gu-Wen Grassmann integral [76].

For convenience, let us label the spin structure by the Z2 number s ∈ Z2 as s = 0 for NS
spin structure, and s = 1 for R. Then, the partition function z(s,s′) can be computed as10

ZGW(T
2
(s,s′),(g,h)) = z(s,s′)(n1(g), n1(h)) = (−1)n1(g)·s′+(s+n1(g))·n1(h) . (74)

One can then read off the charge carried by (g, s) ∈ Gb ×Z
f
2 twisted Hilbert space as [77]

{(−1)(s+n1(g))n1 , n1(g)} ∈H1(Gb,U(1))×Z f
2 . (75)

where we regard (−1)(s+n1(g))n1 as an element of H1(G,U(1)) by a map h→ (−1)(s+n1(g))n1(h)

for h ∈ Gb. Hence, the Gu-Wen phase leads to the action

([g],πg) · (m j ,ψk)→ ([g],πg × (−1)( j+n1(g))n1) · (m j ,ψk+n1(g)) . (76)

Summarizing, the (1+1)D fermionic SPT phase labeled by (n0, n1,ν2) defines the twist string
with the action

([g],πg) · (m j ,ψk)→ ([g],πg × (−1)( j+n1(g))n1 × igν2) · (m j ,ψk+n0 j+n1(g)) . (77)

7.3 Twist string of (3+1)D Z2 gauge theory with a fermionic particle

Next, we describe a codimension-2 defect of a bosonic Z2 gauge theory with a fermionic parti-
cle in (3+1)D, by generalizing the case of (2+1)D in the previous subsection. We again regard
a (3+1)D bosonic Z2 gauge theory as a bosonic dual theory of a (3+1)D trivial fermionic
invertible phase obtained by gauging Z f

2 fermion parity symmetry.
We again consider a codimension-2 defect of a trivial fermionic invertible phase in (3+1)D

by decorating a codimension-2 submanifold with the Kitaev chain. We then gauge the Z f
2

symmetry of the whole system, and we are interested in how this codimension-2 defect is
realized in the bosonic Z2 gauge theory with a fermionic particle.

To see this, we again note that the state of the fermionic invertible phase can be expressed
by a superposition of the states of bosonic dual Z2 gauge theory, since the fermionic invertible
phase can be obtained by condensation of a fermionic particle ψ for the Z2 gauge theory that

10Here we use a couple of fundamental properties of the Grassmann integral. For the Grassmann integral zη(a)
with η the spin structure and a ∈ Z1(M2,Z2) the Z2 gauge field, we firstly have the quadratic property that

zη(a+ b) = zη(a)zη(b)(−1)
∫

M2 a∪b , (72)

from which one can write zη(n1(g), n1(h)) = zη(n1(g), 0)zη(0, n1(h))(−1)n1(g)n1(h). Also, the Grassmann integral
has the property that it “measures” the spin structure, i.e., we have

zη(a) =

¨

1 , the spin structure is NS around Ca ,

−1 , the spin structure is R around Ca ,
(73)

where Ca is a single, non-self-intersecting closed curve Poincaré dual to a ∈ Z1(M2,Z2). This shows
zη(n1(g), 0) = (−1)n1(g)s′ , zη(0, n1(h)) = (−1)sn1(h), and we get Eq. (74).
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corresponds to gauging Z2 2-form symmetry dual to Z f
2 symmetry. Let us consider a Hilbert

space of the fermionic invertible phase on a torus T3 = S1
x × S1

y × S1
z , with R spin structure

along the x direction. We express this state in terms of path integral of the bosonic Z2 gauge
theory on D2 × S1

y × S1
z , where D2 is bounded by S1

x .
Since we have R spin structure along the x direction, an insertion of aψWilson line along

x direction must act as a phase−1. These states are realized by inserting an m surface operator
along S1

y × S1
z of D2 × S1

y × S1
z , where (−1) sign by inserting the ψ Wilson line is understood

as mutual braiding between m and ψ. In the absence of the codimension-2 symmetry defect
for the Kitaev chain, the state with each spin structure along y, z direction is given by

�

�

�T3
R,NS,NS

¶

=
�

�myz

�

+
�

�myz ×ψy

�

+
�

�myz ×ψz

�

+
�

�myz ×ψy ×ψz

�

,
�

�

�T3
R,NS,R

¶

=
�

�myz

�

+
�

�myz ×ψy

�

−
�

�myz ×ψz

�

−
�

�myz ×ψy ×ψz

�

,
�

�

�T3
R,R,NS

¶

=
�

�myz

�

−
�

�myz ×ψy

�

+
�

�myz ×ψz

�

−
�

�myz ×ψy ×ψz

�

,
�

�

�T3
R,R,R

¶

=
�

�myz

�

−
�

�myz ×ψy

�

−
�

�myz ×ψz

�

+
�

�myz ×ψy ×ψz

�

,

(78)

where myz denotes a m surface inserted along S1
y×S1

z , andψy denotes aψ line inserted along
y direction.

Then, let us consider an insertion of the codimension-2 defect on D2 × {0} × {0}. On the
spatial torus T3, this amounts to putting a Kitaev chain running along x direction. Since we
have R spin structure in x direction, the state with the codimension-2 symmetry defect must
carry odd fermion parity. So, based on a similar logic to the case in (2+1)D, a ψ Wilson
line must be running along the time direction in order to realize a state with odd fermion
parity. This is possible only when the intersection between the m surface along S1

y×S1
z and the

codimension-2 defect along D2 can emit the ψ Wilson line. This explains why the insertion
of a Kitaev chain is realized as a codimension-2 twist string with the property described in
Fig. 17.

8 Twist strings as condensation defects

In this section, we provide another perspective of the codimension-2 defect studied in this
paper, in terms of a condensation defect introduced in [36]. In general, a condensation de-
fect in codimension-p is defined as a defect obtained by summing over insertions of defects
with codimension higher than p, supported on the codimension-p manifold. For example, for
a bosonic topological order in (2+1)D, all the codimension-1 topological defect can be re-
alized as a condensation defect. This is because a generic codimension-1 defect of (2+1)D
bosonic topological order given by a modular tensor category C is interpreted as a gapped
boundary of C ⊠ C by folding the theory along the defect, and then the gapped boundary is
realized by condensation of the Lagrangian algebra anyon on the boundary. This means that
the codimension-1 defect is generally realized as a condensation defect given by insertions of
the Lagrangian algebra anyon of the folded theory C ⊠ C.

Here, we show that the codimension-2 twist strings of Z2 gauge theory and Z2×Z2 gauge
theory in (3+1)D can also be realized as a condensation defect, given by summing over inser-
tions of Wilson line operators on the codimension-2 surface. This expression of twist strings
as condensation defects is useful, since it allows us to easily compute the action of the twist
strings on the magnetic string in terms of well-understood mutual braiding between the Wilson
line and the magnetic string. In Sec. 9.3, we utilize the expression of twist defects as conden-
sation defects to derive the 3-group structure of global symmetries of the (3+1)D topological
order.

48

https://scipost.org
https://scipost.org/SciPostPhys.14.4.065


SciPost Phys. 14, 065 (2023)

8.1 Twist string of two copies of standard Z2 toric code in (3+1)D

As we have seen in Sec. 4.1, the (3+1)D Z2 × Z2 gauge theory for two copies of toric codes
has a codimension-2 twist string defect with the action on magnetic strings shown in Fig. 14.
Here we describe this codimension-2 defect of (3+1)D Z2 × Z2 gauge theory in terms of the
condensation defect. The action for the (3+1)D Z2 ×Z2 gauge theory is given by

π

∫

M4

ae1 ∪δbm1 + ae2 ∪δbm2 , (79)

with the Z2 gauge fields ae1 , ae2 ∈ C1(M4,Z2), bm1 , bm2 ∈ C2(M4,Z2). We recall that the
codimension-2 twist string is defined as a decoration of the (1+1)D Z2×Z2 SPT action ae1∪ae2

on it, which is expressed as

D(M2) = (−1)
∫

M2 ae1∪ae2 . (80)

This defect can be expressed as a condensation defect, i.e., sum over Wilson lines restricted to
a 2-manifold M2. To see this, we rewrite the above expression as

D(M2) =
1

p

|H1(M2,Z2 ×Z2)|

∑

Γ ,Γ ′∈H1(M2,Z2)

(−1)
∫

M2 ae1∪Γ (−1)
∫

M2 ae2∪Γ ′(−1)
∫

M2 Γ∪Γ ′ . (81)

This expression is regarded as gauging the Z2 symmetries generated by the Wilson lines
(−1)

∫

ae1 , (−1)
∫

ae2 on the codimension-2 surface M2, coupled with the additional discrete
torsion term (−1)

∫

Γ∪Γ ′ . If we do not include the discrete torsion (−1)
∫

Γ∪Γ ′ , the above defect
instead realizes a pair of the non-invertible Cheshire strings for each Z2 toric code, which is
discussed in Appendix D. By writing the Poincaré dual of Γ , Γ ′ as γ,γ′, the defect is expressed
as a condensation defect given by

D(M2) =
1

p

|H1(M2,Z2 ×Z2)|

∑

γ,γ′∈H1(M2,Z2)

ηe1
(γ)ηe2

(γ′)(−1)♯int(γ,γ′) , (82)

where ηe1
(γ) = exp

�

πi
∫

γ
ae1

�

,ηe2
(γ′) = exp

�

πi
∫

γ
ae2

�

denote Wilson lines along the curves

γ,γ′ respectively, and ♯int(γ,γ′) denotes the intersection number between γ and γ′. One can
derive the action of the condensation defect D(M2) on the magnetic surface m1 by considering
a cylinder of the defect D(M2) enclosing the magnetic string m1 on a spatial 3-manifold, see
Fig. 27. The condensation defect on a cylinder is expressed as

D = 1
4

∑

j,k,l,m∈Z2

ηe1
(γx)

jηe1
(γy)

kηe2
(γx)

lηe2
(γy)

m(−1) jm+kl , (83)

where x , y denote the direction in the meridian and longitude respectively. It acts on the m1
magnetic string as

D ·m1(γy) =
1
4

∑

j,k,l,m

ηe1
(γy)

kηe2
(γy)

m(−1) jm+kl+ j ·m1(γy)

=
∑

k,m

δ(m+ 1)δ(k)ηe1
(γy)

kηe2
(γy)

m ·m1(γy)

= ηe2
(γy) ·m1(γy) ,

(84)

where we use ηe1
(γx) j acts on the magnetic string m1 as a phase (−1) j by unlinking and

shrinking. Hence, it turns out that the cylinder acts on a magnetic string by attaching an Wilson
line ηe2

parallel to m1. This realizes the action of the twist string D(M2) on m1 explained in
Sec. 6.2. Using the same logic, the defect D acts on m2 as

D ·m2(γy) = ηe1
(γy) ·m2(γy) . (85)
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Figure 27: The condensation defect acts on m1 by enclosing the magnetic string by
a cylinder in a 3D spatial slice.

8.2 Twist string of (3+1)D Z2 gauge theory with a fermionic particle

Next, we describe a codimension-2 twist string defect of (3+1)D Z2 gauge theory with a
fermionic particle in terms of the condensation defect. The action of the Z2 gauge theory
is given by [33,73]

π

∫

M4

a ∪δb+ b ∪ b+ b ∪1 δb , (86)

with a ∈ C1(M4,Z2), b ∈ C2(M4,Z2). The Wilson line operator is defined as

ηψ(γ) = exp

�

iπ

∫

γ

a

�

. (87)

This Wilson line generates a Z2 2-form symmetry. If we couple the theory with the background
gauge field of the 2-form symmetry A3 ∈ Z3(M4,Z2), the theory has a ’t Hooft anomaly char-
acterized by the (4+1)D response action

(−1)
∫

Sq2(A3) , (88)

which represents the framing anomaly of the Wilson line with fermionic statistics. For later
convenience, we couple the Z2 gauge theory to an additional bosonic counterterm with Z2
2-form symmetry. The partition function of the counterterm is denoted as σ(A3), which takes
its value in {±1}. This theory is called the Gu-Wen Grassmann integral [76], and its phase
shifts under background gauge transformations according to the (4+1)D response action

(−1)
∫

Sq2(A3)+w2∪A3 . (89)

Since the cocycle Sq2(A3) + w2 ∪ A3 is known to be exact on a closed oriented manifold due
to the Wu relation [78], the counterterm σ(A3) is regarded as a realization of a trivial gapped
theory on the boundary of a trivial (4+1)D SPT phase. After adding this the counterterm
σ(A3), the ’t Hooft anomaly of the Z2 2-form symmetry of the Wilson line ηψ(γ) is given by

(−1)
∫

w2∪A3 . (90)

As we have seen in Sec. 7.3, the (3+1)D Z2 gauge theory with a fermionic particle has a
codimension-2 defect D with the property that the intersection between D and the magnetic
string emits a fermionic particle. Suppose that the codimension-2 closed oriented surface
M2 has the vanishing second Stiefel-Whitney class, i.e., w2(T M4) = 0 when restricted to M2.
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Then, we argue that the codimension-2 defect is expressed in terms of the condensation defect
as

D(M2) =
1

p

|H1(M2,Z2)|

∑

γ∈H1(M2,Z2)

ηψ(γ) . (91)

This operator is understood as gauging the Z2 symmetry generated by ηψ(γ) restricted to a
codimension-2 defect M2. Since we assume w2 = 0 on M2, the ’t Hooft anomaly in Eq. (90)
is absent, so one can gauge the Z2 symmetry generated by the Wilson line restricted to M2.

When a loop γ is restricted to M2, the insertion of the Wilson line along the loops in M2

has a property that11

ηψ(γ)ηψ(γ
′) = ηψ(γ+ γ

′)(−1)♯int(γ,γ′) . (93)

As discussed in [36], one can check that a 2D condensation defect Eq. (91) for the Wilson line
with the property Eq. (93) gives an invertible defect with Z2 fusion rule. Analogously to what
we have done in the previous subsection, we derive the action of D on the magnetic string m
by enclosing a magnetic string by a cylinder. The defect D on a cylinder is expressed as

D = 1
2

∑

j,k∈Z2

ηψ(γx)
jηψ(γy)

k(−1) jk , (94)

where we used Eq. (93). The action on the magnetic string in y direction is then given by

D ·m(γy) =
1
2

∑

j,k∈Z2

ηψ(γy)
k(−1) jk+ j ·m(γy)

=
∑

k

δ(k+ 1)ηψ(γy)
k ·m(γy) = ηψ(γy) ·m(γy) ,

(95)

so it acts by attaching the fermionic Wilson line to the magnetic string. It realizes the action
of the twist string on the magnetic string studied in Sec. 4.2.

9 3-group symmetry involving twist strings

In this section, we argue that the codimension-2 defect of (3+1)D topological order discussed
in this paper constitutes a 3-group structure of a global symmetry, together with 1-form and 2-
form symmetry generated by Wilson lines and surfaces. We first describe the 3-group structure
for each example of the codimension-2 defect studied in Sec. 8, and also for the case of (3+1)D
discrete G-gauge theory discussed in Sec. 6. In Sec. 9.4, we also consider the Z2 0-form
symmetry of the Z3

2 toric code in (3+1)D, and discuss the 3-group symmetry structure formed
by 0, 1, and 2-form symmetries.

11This relation comes from the quadratic property of the bosonic counterterm σ given by [76]

σ(A3)σ(A
′
3) = σ(A3 + A′3) · (−1)

∫

A3∪2A′3 . (92)

Since A3 is the background gauge field of the 2-form symmetry generated by the Wilson line, A3, A′3 are regarded
as the Poincaré dual of the inserted Wilson lines γ,γ′ respectively. When γ,γ′ are supported on M2 and the normal
bundle N M2 of M2 is trivial,

∫

A3 ∪2 A′3 is the mod 2 intersection number between γ and γ′ evaluated on M2. This
is understood from the geometric interpretation of higher cup product ∪2 developed in Ref. [79], which says that
A3 ∪2 A′3 is regarded as the intersection between γ and the 3D object obtained by “thickening” γ′ along the two
directions determined by a framing of N M2. This is the same as the intersection between γ and γ′ on M2, so we
have (−1)

∫

A3∪2A′3 = (−1)♯int(γ,γ′).
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Let us first give a general overview for the equations of a flat background gauge field for
a 3-group, formed by K0 0-form, K1 1-form, and K2 2-form symmetry. The 3-group has a
hierarchical structure, where one first defines a 2-group Γ0,1 as a nontrivial “extension” of K0
by K1, and then the 3-group is defined as a further extension of Γ0,1 by K2. Accordingly, the
structure of the background gauge field is best explained in steps. First, let us consider the
2-group formed by K0 and K1. In general, the 0-form symmetry can act on the generators of
K1 symmetry by a permutation of the generators. This means that the 0-form symmetry K0
induces an automorphism of the 1-form symmetry,

ρ : K0→ Aut(K1) . (96)

Let us denote the background gauge fields for K0, K1 symmetries as
B1 ∈ Z1(M4, K0), B2 ∈ C2(M4, K1) respectively. The flat background gauge field of the 2-group
Γ0,1 is then described by the equation

δρB2 = γ
∗
0Θ3 , (97)

where γ0 : M4 → BK0 is the background gauge field for the 0-form symmetry K0, and
Θ3 ∈ H3(BK0, K1) is called the Postnikov class or an “H3 obstruction” that characterizes the
nontrivial extension of K0 by K1. Summarizing, the 2-group Γ0,1 is defined by a collection of
data (K0, K1,ρ,Θ3), and its background field satisfies the equation Eq. (97).

Let us further consider the 3-group, which is obtained by a further extension of the 2-
group structure Γ0,1 by the 2-form symmetry K2. Again, the 0-form symmetry K0 induces an
automorphism of the 2-form symmetry,

σ : K0→ Aut(K2) . (98)

Then let us denote the background gauge field of the K2 2-form symmetry as B3 ∈ C3(M4, K2).
The equation for the 3-group is then given by

δσB3 = γ
∗
0,1Θ4 , (99)

where γ0,1 denotes the background gauge field of the 2-group symmetry γ0,1 : M4 → BΓ0,1,
and the Postnikov class Θ4 ∈ H4(BΓ0,1, K2) specifies the H4 obstruction that characterizes the
nontrivial mixture of the 2-form symmetry with 0-form and 1-form symmetries. The 3-group
is then defined by a collection of data (Γ0,1, K2,σ,Θ4). Summarizing, the background gauge
fields B1, B2, B3 satisfying Eq. (97), (99) amount to specifying a flat background gauge field
for the 3-group, which is characterized by a map γ0,1,2 : M4→ BΓ0,1,2 with BΓ0,1,2 a classifying
space for the 3-group Γ0,1,2. We refer the reader to Appendix L of [80] for a description of the
simplicial construction of classifying spaces of 2- and 3-groups aimed at physicists.

When one ignores the 0-form symmetry and the background gauge field of the 0-form
symmetry B1 is turned off, Eq. (99) reduces to a simpler equation

δB3 = g∗1Θ4 , (100)

where g1 : M4 → B2K1 is the background gauge field for the K1 1-form symmetry, and Θ4 is
regarded as an element Θ4 ∈ H4(B2K1, K2).

Below, we explicitly describe the 3-group structure for several examples of (3+1)D dis-
crete gauge theories considered in the paper, by deriving the above equations for 3-groups
Eq. (97), (99).
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9.1 Twist string of Z2 ×Z2 toric code in (3+1)D

For the defect of Z2 × Z2 toric code in (3+1)D, the twist string D has an effect of emitting
a Wilson line operator ηe1

,ηe2
from the intersection between D and magnetic Wilson surface

operators ξm1
, ξm2

, as shown in Fig. 14. Let us denote background gauge fields of Z2 2-form
symmetries generated by ηe1

,ηe2
as Ae1

3 , Ae2
3 ∈ C3(M4,Z2) respectively, and also those of Z2

1-form symmetries generated by ξm1
,ξm2

as Bm1
2 , Bm2

2 ∈ Z2(M4,Z2) respectively. By writing
the background gauge field of Z2 1-form symmetry generated by D as C2 ∈ Z2(M4,Z2), the
background gauge fields satisfy the relations

δAe1
3 = Bm2

2 ∪ C2 , δAe2
3 = Bm1

2 ∪ C2 , (101)

where each equation means that the generator of the 2-form symmetry is sourced from the
intersection between D and ξmi

. These equations correspond to Eq. (100), and imply that the
1-form K1 = Z2 ×Z2 and 2-form K2 = Z2 ×Z2 symmetry forms a nontrivial 3-group.

The non-trivial structure of the 3-group can actually be described in the language of quan-
tum information in terms of the non-trivial commutation relations of the logical gates. Recall
that the 2-form symmetry generated by ηe, and the 1-form symmetry generated by ξm around
non-trivial cycles correspond to the logical Z and X operators of the toric code, respectively. In
addition, the 1-form symmetry generated by the twist string D corresponds to a logical C Z (in
this particular case, the logical operators are moreover transversal). If the logical gates corre-
sponds to a trivial 3-group symmetry, then we would have had that the group commutator of
any pair of logical operators is a phase. Nevertheless, in this example, there exists a non-trivial
relation. For concreteness, define the toric code on a 3-torus and consider the logical operators
X

m1

x y , Z
e2

x and C Z xz , where the subscript denotes the specific 2-cycles on which these logicals
are defined. Visually, (see also Fig. 14)

C Z xz = 𝐶𝑍
𝐶𝑍

𝐶𝑍
𝐶𝑍

, X
m1

x y =
𝑋 𝑋 , (102)

and

Z
e2

x =
𝑍 𝑍

. (103)

Then we find that the group commutator of C Z xz and X
m1

x y gives

[C Z xz , X
m1

x y] := C Z xzX
m1

x y C Z xz
−1
(X

m1

x y)
−1
= Z

e2

x . (104)

This is precisely the description of Eq. (101). A logical Z
e1 which is a closed string of e1 is

present along the intersection of C Z and X
m2 . The non-trivial relation of logical operators

supported on cycles of different dimensions corresponds to the interplay between symmetries
of different forms, emphasizing the higher group structure of the symmetries.
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9.2 Twist string of (3+1)D discrete G-gauge theory

Here we describe the 3-group structure of the global symmetry of the (3+1)D discrete G-gauge
theory, involving the invertible magnetic flux strings and the twist strings of the G-gauge theory.

The invertible flux string is labeled by Z(G), which is the center of the gauge group G.
Also, as discussed in Sec. 6, the twist string is given by a decoration of a (1+1)D bosonic G-
SPT action on the codimension-2 defect. It generates a 1-form symmetry with the symmetry
group H2(G, U(1)), where the multiplication is given by the stacking rule of the (1+1)D SPT
phase. Let us write the background gauge fields of these 1-form symmetries as

B2 ∈ Z2(M4, Z(G)) , C2 ∈ Z2(M4,H2(G, U(1))) , (105)

where B2 corresponds to the flux strings, and C2 is for the twist strings respectively. Anal-
ogously to the previous subsection, these 1-form symmetry again forms a non-trivial 3-
group together with the 2-form symmetry generated by the invertible electric Wilson lines,
due to the effect that the electric particle is emitted from the intersection between the
twist string and the flux string. To describe the intersection effect, we define the cou-
pling 〈〉 : Z(G)×H2(G,U(1))→H1(G, U(1)) as

〈g,ω〉 := igω , for g ∈ Z(G), ω ∈H2(G,U(1)) , (106)

which tells the label of the electric particle sourced from the intersection between the invertible
flux string g ∈ Z(G) and twist string ω ∈H2(G,U(1)).

The 2-form symmetry generated by the electric Wilson line forms a group H1(G,U(1))
that corresponds to the Abelian representation of G carried by the Wilson line. By writing its
background gauge field as A3 ∈ C3(M4,H1(G, U(1))), the 3-group equation is expressed as

δA3 = 〈B2,∪C2〉 , (107)

where 〈B2,∪C2〉 evaluates the coupling 〈B2(01,12), C2(23, 34)〉 on each 4-simplex 〈01234〉.
The above equation specifies the H4 Postnikov class for the 3-group structure that corresponds
to K1 = Z(G)×H2(G,U(1)), K2 =H1(G,U(1)) in Eq. (100).

9.3 Twist string of (3+1)D Z2 gauge theory with a fermionic particle

Next, we describe a 3-group structure for a codimension-2 twist string defect of (3+1)D Z2
gauge theory with a fermionic particle.

Let us denote the background gauge field of the Z2 2-form symmetry generated by the
Wilson line ηψ(γ) as Aψ3 ∈ Z3(M4,Z2), and that of the Z2 1-form symmetry generated by the

twist string as C2 ∈ Z2(M4,Z2). The 2-form symmetry then has a ’t Hooft anomaly (−1)
∫

w2∪Aψ3 ,
as discussed in Sec. 8.2. If we insert a codimension-2 defect D in the spacetime by turning on
the background gauge field C2, it turns out the symmetry has a 3-group structure

δAψ3 = w2 ∪ C2 , (108)

where w2 is the second Stiefel-Whitney class of the spacetime manifold M4. To see this, we
enclose the codimension-2 Poincaré dual W2 of w2 by a cylinder of the codimension-2 defect
D, analogously to what we did in Fig. 27 to study the action of D on magnetic Wilson surfaces.
Then, the cylinder of D acts on W2 extended along y direction as

D ·W2 =
1
2

∑

j,k∈Z2

ηψ(γy)
k(−1) jk+ j ·W2(γy)

=
∑

k

δ(k+ 1)ηψ(γy)
k ·W2(γy) = ηψ(γy) ·W2(γy) ,

(109)
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where we used ηψ(γx) acts by (−1) sign on W2 due to the ’t Hooft anomaly (−1)w2∪A3 that
manifests itself as the mutual braiding between ηψ(γx) and W2. So, D acts by attaching the
fermionic Wilson line to the Poincaré dual of w2. It means that when there is an intersection
between the defect D and w2 it emits a fermionic line operator, so it results in a 3-group shown
in Eq. (108). If we further turn on the background gauge field Bm

2 of Z2 1-form symmetry
generated by ξm the equation for 3-group becomes

δAψ3 = (B
m
2 +w2)∪ C2 , (110)

due to the intersection effect between the twist string D and the magnetic string ξm.12

9.4 3-group structure of codimension-1,2, and 3 defects of Z3
2 toric code

Finally, we describe the structure of symmetry groups of (3+1)D (Z2)3 gauge theory given by
three copies of Z2 toric codes in (3+1)D. The action is given by

π

∫

ae1 ∪δbm1 + ae2 ∪δbm2 + ae3 ∪δbm3 , (111)

with ae1 , ae2 , ae3 ∈ C1(M4,Z2), bm3 ∈ C2(M4,Z2). We first enumerate the global symmetries
of the theory we want to consider. First, the theory has the (Z2)3 2-form symmetry generated
by Wilson line operators

ηe1
(γ) = exp

�

πi

∫

γ

ae1

�

, ηe2
(γ) = exp

�

πi

∫

γ

ae2

�

, ηe3
(γ) = exp

�

πi

∫

γ

ae3

�

, (112)

we write the corresponding background gauge fields as Aei
3 ∈ C3(M4,Z2) for i = 1, 2,3.

Also, the theory has the (Z2)3 1-form symmetry generated by magnetic surface operators

ξm1
(Σ) = exp

�

πi

∫

Σ

bm1

�

, ξm2
(Σ) = exp

�

πi

∫

Σ

bm2

�

, ξm3
(Σ) = exp

�

πi

∫

Σ

bm3

�

, (113)

we write the corresponding background gauge fields as Bmi
2 ∈ C2(M4,Z2) for i = 1, 2,3.

In addition, there is also the (Z2)3 1-form symmetry generated by the codimension-2 twist
strings

De1e2
(Σ) = exp

�

πi

∫

Σ

ae1 ∪ ae2

�

, De2e3
(Σ) = exp

�

πi

∫

Σ

ae2 ∪ ae3

�

,

De3e1
(Σ) = exp

�

πi

∫

Σ

ae3 ∪ ae1

�

, (114)

we write these background gauge fields as C
ei e j

2 ∈ C2(M4,Z2).
Finally, we consider an interesting Z2 0-form symmetry given by decorating the codimen-

sion-1 submanifold with the bosonic (Z2)3 SPT phase in (2+1)D,

De1e2e3
(M3) = exp

�

πi

∫

M3

ae1 ∪ ae2 ∪ ae3

�

, (115)

12The 3-group structure in Eq. (110) is reminiscent of the Gu-Wen equation known in the context of the classi-
fication of (3+1)D fermionic SPT phase [33, 81]. The fermionic SPT phase with 0-form symmetry G is generally
constructed by decoration of lower-dimensional fermionic invertible phases on the junction of G symmetry defects,
and the Gu-Wen equation gives the consistency condition for the decoration. The 3-group equation Eq. (110) corre-
sponds to the consistency between the decoration of the Kitaev chain on the Poincaré dual of B2, and the decoration
of a complex fermion (i.e., (0+1)D fermionic invertible phase) on the Poincaré dual of A3. From this perspective,
our discussion is regarded as a derivation of the Gu-Wen consistency equation based on continuum field theory.

55

https://scipost.org
https://scipost.org/SciPostPhys.14.4.065


SciPost Phys. 14, 065 (2023)

whose background gauge field is written as C1 ∈ Z1(M4,Z2).
This codimension-1 defect De1e2e3

was studied in [39], and has an interesting action on the
generators of 1-form symmetries. When the generators of 1-form symmetry crosses through
De1e2e3

, the generators get permuted as

ξm1
→ ξm1

×De2e3
, ξm2

→ ξm2
×De3e1

, ξm3
→ ξm3

×De1e2
, (116)

while leaving ηei
and Dei e j

invariant. Note that the action realizes the permutation of back-
ground gauge fields as

C e1e2
2 → C e1e2

2 + Bm3
2 , C e2e3

2 → C e2e3
2 + Bm1

2 , C e3e1
2 → C e3e1

2 + Bm2
2 , (117)

while leaving Aei
3 and Bmi

2 invariant. This permutation means that the Z2 0-form symmetry
realizes an automorphism of the (Z2)3 × (Z2)3 1-form symmetry, which gives a group homo-
morphism ρ : Z2 → Aut((Z2)3 × (Z2)3). Due to the permutation of background gauge fields,
the gauge fields of 1-form symmetry satisfy the twisted cocycle conditions

δρBmi
2 = 0 , δρC

ei e j

2 = 0 , (118)

which corresponds to the 2-group in Eq. (97) with the trivial H3 obstruction class Θ3 = 0. The
above equations are rewritten as

δBmi
2 = 0 ,

δC e1e2
2 = Bm3

2 ∪ C1 ,

δC e2e3
2 = Bm1

2 ∪ C1 ,

δC e3e1
2 = Bm2

2 ∪ C1 .

(119)

Now we describe the 3-group structure of the global symmetry described above. First, when
the background gauge field C1 for the 0-form symmetry is turned off, the 3-group structure is
a straightforward generalization of the case of Z2 × Z2 gauge theory obtained in Eq. (101).
That is, the background gauge fields Aei

3 of 2-form symmetry is not closed due to the crossing
of twist strings with the magnetic strings, and these effects are written in the case of C1 = 0 as

δAe1
3 = Bm2

2 ∪ C e1e2
2 + Bm3

2 ∪ C e3e1
2 ,

δAe2
3 = Bm3

2 ∪ C e2e3
2 + Bm1

2 ∪ C e1e2
2 ,

δAe3
3 = Bm1

2 ∪ C e3e1
2 + Bm2

2 ∪ C e2e3
2 .

(120)

When we turn on the gauge field C1, the RHS of Eq. (120) is no longer closed due to the
twisted cocycle condition in Eq. (119), hence the RHS must be modified so that the expression
is closed. For the case C1 is nonzero, the 3-group equations Eq. (120) are generalized as

δAe1
3 = Bm2

2 ∪ C e1e2
2 + Bm3

2 ∪ C e3e1
2 + (Bm2

2 ∪1 Bm3
2 )∪ C1 ,

δAe2
3 = Bm3

2 ∪ C e2e3
2 + Bm1

2 ∪ C e1e2
2 + (Bm3

2 ∪1 Bm1
2 )∪ C1 ,

δAe3
3 = Bm1

2 ∪ C e3e1
2 + Bm2

2 ∪ C e2e3
2 + (Bm1

2 ∪1 Bm2
2 )∪ C1 .

(121)

These three equations (121) correspond to the H4 obstruction Eq. (99), and together with
Eq. (118) characterize the 3-group structure of the global symmetry.

According to the geometrical interpretation of higher cup products reviewed in Appendix F,
the last term (Bm1

2 ∪1 Bm2
2 ) ∪ C1 in Eq. (121) can be interpreted in the following way. If m1

and m2 strings are crossing at a point in 3d space and are moved across the codimension-1
defect together, an e3 charge will appear at the crossing point (in addition to De2e3

and De1e3
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Figure 28: The process 1 corresponds to Eqs. (116) and (121). This process
can be decomposed into processes 2, 3, and 4. We move the m1 and m2 flux
strings across the codimension-1 defect separately as the m1De2e3

and m2De1e3

strings. In the process 4, we re-arrange the m2 flux string and the De2e3
, and an

e3 charge appears. In terms of logical operators, the process 3 can be written as:
X

m2

xz X
m1

x y · CC Z = CC Z · C Z
e1e3

xz X
m2

xz · C Z
e2e3

x y X
m1

x y , which implies Eq. (122).

from m1 and m2 themselves). To see why a single e3 charge would appear, we can regularize
the process, as shown in Fig. 28. We first move an m1 string across the codimension-1 defect
and it becomes an m1De2e3

string. Secondly, we move an m2 string across the codimension-1
defect, which gives an m2De1e3

string. Next, we rearrange the ordering of m1, De2e3
, m2, and

De1e3
and separate the flux string part m1, m2 and the twist string part De2e3

, De1e3
. This

rearrangement requires moving one of the m strings through a D string, which produces an
e3 charge.

In terms of logical operators for the theory defined on a spatial 3-torus, sweeping the defect
De1e2e3

corresponds to a logical CC Z of the three toric codes. Sweeping an m1 string across

the x y-plane corresponds to the logical operator X
m1

x y , while sweeping m2 along the xz-plane

corresponds to X
m2

xz . These planes intersect on a line along the x-direction. The emergence
of the e3 charge in the above discussion then corresponds to the following group commutator
(see Fig. 28):

[CC Z , X
m1

x y X
m2

xz ] := CC Z(X
m1

x y X
m2

xz )CC Z
−1
(X

m1

x y X
m2

xz )
−1
= C Z

e2e3

x y C Z
e1e3

xz Z
e3

x . (122)

On the right hand side, the first two contributions correspond to Eq. (119) while the third term
corresponds to the cup-1 contribution of Eq. (121).

57

https://scipost.org
https://scipost.org/SciPostPhys.14.4.065


SciPost Phys. 14, 065 (2023)

Figure 29: Layer construction of the codimension-3 point defects in (3+1)D topolog-
ical order. The open twist string D from the (2+1)D topological order is embedded
in the jth layer and becomes an open twist string in the (2+1)D topological order
after condensing pair of pure charge and anti-charge in the neighboring layer. The
endpoints of the open twist string, i.e., ∂D form the codimension-3 point defects in
(3+1)D.

10 Codimension-3 defects at boundaries of twist strings: non-
Abelian point defects

In contrast to the flux strings, twist strings D can exist on finite segments. The endpoints ∂D
define non-Abelian codimension-3 defects that give rise to topological degeneracies, which
hence encode protected logical qubits. Moreover, the endpoints host “zero-modes”, in the
sense that non-trivial electric point charges can be created or annihilated by local operators
at these endpoints. This implies a non-conservation of electric charges in the vicinity of these
point defects.

In the following, we present the general layer construction of such codimension-3 defects
as well as the lattice models for the (3+1)D Z2×Z2 toric code and the (3+1)D toric code with
a fermionic charge in the presence of these codimension-3 defects.

In the case of the (3+1)D Z2 toric code with fermionic charge, the endpoints of the twist
strings localize unpaired Majorana zero modes (MZMs), which gives an interesting example
of unpaired MZMs existing at isolated points in 3-dimensional space. This is reminiscent of
discussions of non-Abelian statistics in 3 spatial dimensions in Refs. [82–84]. We note that
Ref. [85] has also discussed some properties of codimension-3 defects in the context of the 3d
Levin-Wen fermion model [86], focusing mainly on the logical operators and encoding. Here
we provide an explicit construction of an exactly solvable lattice model in the presence of these
codimension-3 defects, which was not provided previously.

10.1 General layer construction

We first discuss the general procedure of obtaining the codimension-3 defects from layer con-
struction. We start with twist defects in the (2+1)D topological order, which are the pair of
point defects located on the boundary of the twist string (domain wall) D, i.e., ∂D. Similar
to the discussion in Sec. 5, we can place the twist defects along with the twist string in the jth

layer, as illustrated in Fig. 29. We can hence obtain the codimension-3 point defects ∂D at the
boundaries of the twist string in (3+1)D topological order via the layer construction.
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10.2 Point defects in (3+1)D Z2 ×Z2 toric code

gauging

Figure 30: Left: On the background of the 2d paramagnetic Ising model, a 1d clus-
ter state is decorated on an open string (green line) terminated at two point defects
(green crosses). The single-body paramagnetic Ising term Xν is removed on the blue
or red site coinciding with the green crosses. Right: After gauging the Z2 ×Z2 sym-
metry, the vertex X -stabilizer on the green line (between the endpoints) is dressed
with an additional Z of a different color. The 4-body vertex X -stabilizers centered on
the blue or red vertices coinciding with the green crosses are removed.

gauging

Figure 31: Left: On the background of the 3d paramagnetic Ising model, a 1d clus-
ter state is decorated on an open string (green line) terminated at two point defects
(green crosses). The single-body paramagnetic Ising term Xν is removed on the blue
or red site coinciding with the green crosses. Right: After gauging the Z2 ×Z2 sym-
metry, the vertex X -stabilizer on the green line (between the endpoints) is dressed
with an additional Z of a different color. The 6-body vertex X -stabilizers centered on
the blue or red vertices coinciding with the green crosses are removed.
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(a) (b) (c)

...

Figure 32: (a,b) The anti-commuting pair of logical operators associated with each
of the two logical qubits on a 3-sphere with a pair of open twist strings (4 point
defects). In (a), the logical-X operator X 1 = ξm1

is a Wilson sheet operator (blue)
of flux string m1 supported on a 2-sphere enclosing a twist string. The logical-Z
operator Z1 = ξm2

ηe1
is a product of Wilson sheet operator ξm2

(red) of flux string m2
supported on a 2-sphere encircling two point defects belonging to the two different
twist strings and a worldline operator ηe1

(blue) of the charge e1 connecting the two
twist strings. The configuration of the logical operators in (b) is the same as those
in (a) up to a permutation of the copy label, i.e., 1↔ 2. (c) Placing n open twist
strings (n pairs of point defects) on a 3-sphere leads to the ground-state degeneracy
4n−1 encoding 2(n− 1) logical qubits.

We start with the construction of such point defects in the (2+1)D Z2 × Z2 toric code, i.e.,
two copies of toric codes. Such point defects are also called twist defects. As shown in Fig. 30
(Left), we start with two copies of the 2d paramagnetic Ising models H0 = −

∑

v X v decorated
with the 1d Z2 × Z2 cluster state on an open string terminated at two point defects (green
crosses). In particular, we remove the single-body paramagnetic Ising term Xν at the two
point defects (i.e., for ν ∈ ∂D), where the red (copy 1) or blue (copy 2) sites coincide with the
blue crosses. When gauging the Z2×Z2 symmetry, we obtain an open twist string, as illustrated
in Fig. 30 (Right). Note that only between the two point defects ∂D (green crosses), there
exist 5-body vertex stabilizers on the twist string coupling both copies of toric codes (dressed
with Z operator with a different color). Moreover, two 4-body vertex X -stabilizers centered on
the two point defects, where the green crosses coincide with the blue or red sites, are removed
to ensure commutativity between neighboring vertex stabilizers.

When considering periodic boundary conditions in both directions on both copies, which
corresponds to placing both copies on a torus, this removal of stabilizer constraints leads to
an increase of topological degeneracy by a factor of four, thus encoding two additional logical
qubits. When considering a sphere topology S2 for both copies of the toric codes, there is
an additional redundancy of the vertex stabilizers,

∏

ν Aν = 1, before introducing the twist
string. The reduction of one stabilizer constraint per layer due to the introduction of the twist
string hence does not increase the degree of freedom in the ground-state subspace, which
hence does not contribute to the degeneracy. When introducing two open twist strings and
hence two pairs of point defects on the sphere, one obtains a 4-fold degeneracy which encodes
two logical qubits. More generally, when placing n open twist strings and hence n pairs of
point defects on a sphere, the ground-state degeneracy becomes GSD = 4n−1, which encodes
2(n− 1) logical qubits.

We now start constructing the point defects ∂D in the (3+1)D Z2 × Z2 toric code, i.e.,
two copies of 3D toric codes. Similar to the (2+1)D case, we start with two copies of the 3D
paramagnetic Ising models and then place the 1d Z2 ×Z2 cluster state on an open string ter-
minated at two point defects (green crosses), as illustrated in Fig. 31 (Left). We also remove
the single-body Ising term Xν at the two point defects where the red or blue sites coincide
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with the green crosses. After gauging the Z2 × Z2 symmetry, we obtain the open twist string
in the (3+1)D Z2×Z2 toric code, as shown in Fig. 31 (Right). Note that only between the two
point defects ∂D (green crosses), there exist 7-body stabilizers on the twist string coupling
both copies of toric codes (dressed with Z operator with a different color). Moreover, two
6-body vertex X -stabilizers centered on the two point defects, where blue or red sites coincide
with the green crosses, are removed to ensure commutativity. When considering placing both
copies on a 3-torus T3, this removal of stabilizer constraints lead to the increase of topological
degeneracy by a factor of four. When placing both copies on a 3-sphere S3, the introduction of
the open twist string does not increase the ground-state degeneracy due to the additional con-
straint of the vertex stabilizer in each copy before introducing the twist string, i.e.,

∏

ν Aν = 1,
in analogy to the (2+1)D case. More generally, when placing n open twist strings and hence
n pairs of point defects on a 3-sphere as illustrated in Fig. 32(c), the ground-state degeneracy
becomes GSD= 4n−1, which encodes 2(n− 1) logical qubits, i.e., same as the (2+1)D case.

We now discuss the Wilson operator algebra which gives rise to the topological degener-
acy in (3+1)D, with the background topology chosen as the 3-sphere S3. The pair of logical
operators corresponding to the two logical operators on a 3-sphere with a pair of open twist
strings are shown in Fig. 32(a,b) respectively. For the first logical qubit, the logical-X operator
is X 1 = ξm1

, where ξm1
is a Wilson sheet operator of the flux m1 supported on a 2-sphere

S2. On the lattice model, ξm1
corresponds to a product of Pauli-X operators supported on

such a 2-sphere. The logical-Z operator is Z1 = ξm2
ηe1

, i.e., a product of the spherical Wilson
sheet operator ξm2

of flux m2 (a product of Pauli-X) and a Wilson line operator ηe1
of charge

e1 trapped between two open twist string. This Wilson line operator is emitted due to the
crossing of flux m2 through the twist string, and corresponds to a string of Pauli-Z operators.
The second logical qubit has the same operator configuration up to an exchange of the copy
label, 1 ↔ 2. The four-fold topological degeneracy comes from the two anti-commutation
relations X i Z i = −Z iX i for i = 1, 2, where the minus sign is due to the intersection between
the Wilson sheet ξmi

trapped around one twist string and the Wilson line ηei
and hence the

anti-commutation relation ξmi
ηei
= −ηei

ξmi
.

We note that on the 3-sphere, there can be logical-X operators encircling the right twist
string, denoted by X

′
1,2, and logical-Z operators encircling the lower two point defects, denoted

by Z
′
1,2. However, these operators are equivalent to the logical operators discussed above,

i.e., X
′
1,2 = X 1,2 and Z

′
1,2 = Z1,2. This is because when considering a spherical Wilson sheet

operator on the ith copy of toric code encircling both twist strings (i.e., the four point defects),
it must equal to logical identity 1 since it can be shrunk into a single point on the 3-sphere.
Therefore, one has X

′
iX i = 1 and Z

′
i Z i = 1. Now consider general situation of placing n

open twist string (n pairs of point defects) on the 3-sphere, we will have n− 1 pairs of anti-
commuting logical operators corresponding to n− 1 logical qubits. This is because, although
each open twist string can trap one logical-X operators and hence lead to n of such logical
operators, only n− 1 of them are independent due to the constraint that the product of them
corresponds to the Wilson sheet operator encircling all twist strings and hence equaling the
logical identity.
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10.3 Point defects in (3+1)D toric code with a fermionic particle: unpaired
Majorana zero modes in (3+1)D

Z

Z

Z

Z

X
Z

Z

Z

Z

Z

Z
X

X

X

X
X

Z
Z

Z

Z

bosonization

Figure 33: Left: The Kitaev chain is decorated on the open green line terminated at
the two endpoints corresponding to the point defects (green crosses), which makes
the Majorana fermion paired with the other one on its adjacent face; otherwise, Ma-
jorana fermions are paired within each face and form an atomic insulator. Two un-
paired Majorana fermion mode γ1 and γ2 are left on the two point defects respec-
tively. Right: after bosonization, the pairing term on the Kitaev chain becomes the
hopping operator Ue on the open twist string, while the pairing term in each face not
on the open twist becomes the 4-body plaquette Z-stabilizers. Moreover, the 4-body
plaquette Z-stabilizers are removed from the two plaquettes where the point defects
(green crosses) are located.

We first consider such point defects in (2+1)D toric code, which are sometimes referred to
as e-m twist defects. A construction of such open twist string and point defects (crosses) is
shown in Fig. 33. There are Majorana hopping operators located on the twist string between
the two point defects on the boundaries. Above and below the point defects, fermion parity
operators live in the plaquettes. For the two plaquettes containing the point defects, no fermion
parity term exists, and hence one gets an unpaired Majorana zero mode located on each point
defect, denoted by γ1 and γ2 respectively. After bosonization (right panel of Fig. 33), we see
that all the plaquettes above and below the point defects are just the 4-body Z-stabilizers Wf ,
while there are no such 4-body Z-stabilizers located on the plaquettes containing the two point
defects on the boundary of the twist string. On the other hand, Majorana hopping operators
are still transformed to Ue operators as shown in Fig. 33. When considering periodic boundary
conditions in both directions, corresponding to the torus topology (T2), the introduction of
the twist defects reduces the stabilizer constraint by one, which leads to a 2-fold ground-state
degeneracy or equivalently an additional logical qubit. When considering a sphere topology
S2, there is an additional redundancy of the plaquette Z-stabilizers, i.e.,

∏

f Wf = 1, before
introducing the twist string. The reduction of one stabilizer constraint hence does not increase
the degree of freedom in the ground-state subspace, which hence does not contribute to the
degeneracy. When introducing two open twist strings and hence two pairs of point defects
on the sphere, one obtains a 2-fold degeneracy which encodes a single logical qubit. More
generally, when putting n open twist strings and hence n pairs of point defects in a sphere, the
ground-state degeneracy becomes GSD= 2n−1, which encodes n− 1 logical qubits.

We remark that similar constructions have appeared in the context of dislocation defects in
the Wen-plaquette model [5,8,14,52]. Here, the construction from gauging the Kitaev chain
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Figure 34: Left: The Kitaev chain is decorated on the open green line terminated at
the two endpoints corresponding to the point defects (green crosses), which makes
the Majorana fermion paired with the other one on its adjacent vertex; otherwise,
Majorana fermions are paired within each vertex. Two unpaired Majorana fermion
mode γ1 and γ2 are left on the two point defects respectively. Right: after bosoniza-
tion, the pairing term on the Kitaev chain becomes the hopping operator Ue on the
open twist string, while the pairing term on each vertex not on the twist string be-
comes the 6-body vertex X -stabilizers. Moreover, the 6-body vertex X -stabilizers are
removed from the two vertices where the point defects (green crosses) are located.

gives a natural way to realize such a defect, and is moreover readily generalizable to (3+1)D,
as we now show.

We now investigate the case of the codimension-3 point defects in the (3+1)D toric code
with a fermionic charge. A construction of a codimension-2 open twist string and the corre-
sponding point defects (crosses) on the boundaries is shown in Fig. 34. Similar to the (2+1)D
case, there are Majorana hopping operators located on the twist string between the two point
defects on the boundaries. Above and below the point defects, fermion parity operators live on
the vertices. For the two vertices containing the point defects, no fermion parity term exists,
and hence one gets an unpaired Majorana mode located on each point defect, denoted by γ1
and γ2 respectively. After bosonization (right panel of Fig. 33), we see that all the vertices
above and below the points defects are just the 6-body X -stabilizers Aν, while there are no
such 6-body X -stabilizers located on the vertices containing the two point defects. On the
other hand, Majorana hopping operators are still transformed to the 3-body Pauli operators as
shown in Fig. 34. When considering periodic condition in all directions, i.e., a 3-torus topology
(T3), the introduction of the twist defects reduce the number of stabilizer constraints by one,
which leads to a 2-fold ground-state degeneracy or equivalently an additional logical qubit.
When considering a 3-sphere topology (S3), there is an additional redundancy of the vertex X -
stabilizers, i.e.,

∏

ν Aν = 1, before introducing the twist string. The reduction of one stabilizer
constraint hence does not contribute to the ground-state degeneracy. When placing n open
twist strings and hence n pairs of point defects on a 3-sphere, the ground-state degeneracy
becomes GSD= 2n−1, which encodes n− 1 logical qubits.

We now discuss the Wilson operator algebra which gives rise to the topological degener-
acy in (3+1)D, with the background topology chosen as the 3-sphere S3. The pair of logical
operators on a 3-sphere with a pair of open twist strings are shown in Fig. 35. The logical-
X operator is X 1 = ξm, where ξm is a spherical Wilson sheet operator of the flux m. The
logical-Z operator is Z = ξ′mηψ, i.e., a product of the spherical Wilson sheet operator ξ′m and
a Wilson line operator ηψ of the fermion charge ψ trapped between two open twist string.
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Figure 35: The anti-commuting pair of logical operators on a 3-sphere with a pair
of open twist strings (4 point defects). The logical-X operator X = ξm is a Wilson
sheet operator (red) of flux string m supported on a 2-sphere enclosing an open twist
string. The logical-Z operator Z1 = ξ′mηψ is a product of Wilson sheet operator ξm
(red) of flux string m supported on a 2-sphere encircling two point defects belonging
to the two different twist strings and a worldline operator ηψ (blue) of the fermion
charge ψ. The pair of open twist strings (four point defects or Majorana modes)
encode a single logical qubit.

This Wilson line operator is emitted due to the crossing of flux m through the twist string.
The two-fold topological degeneracy comes from the anti-commutation relation X Z = −Z X ,
where the minus sign is due to the intersection between the Wilson membrane ξm trapped
around one twist string and the Wilson line of fermion ηψ and hence the anti-commutation
relation ξmηψ = −ηψξm.

Finally, we comment on the circuit complexity for creating open twist strings and mov-
ing their endpoints. While a closed twist string along a loop γ = ∂D can always be created
by a constant-depth local quantum circuit applied to a region D corresponding to the higher-
symmetry operator as explained in Fig. 4, any open twist string in (2+1)D and (3+1)D (in-
cluding those in the Z2 ×Z2 and Z2 gauge theories discussed above) with the two endpoints
separated by distance l can only be created by a local quantum circuit of depth O(l). In other
words, it takes O(l) time to move one point defect away from the other by distance l. Such a
local quantum circuit is essentially composed of local Pachner moves, which re-triangulate or
more generally re-cellulate the lattice [87,88]. We can also see that if one restricts the quan-
tum circuit to act only on the support of a closed twist string, one needs a local quantum circuit
with depth O(l) to create a closed twist string with length l, which can be done by creating a
pair of point defects connected by a short twist string with O(1) length, moving them around
γ, and reannihilating them.

11 Discussion

A major focus of this paper has been to understand through various constructions a certain
class of invertible codimension-2 defects in (3+1)D topological phases, which we refer to as
twist strings. Twist strings have the generic property that when they cross a flux string, a
non-trivial electric charge is sourced, and this implies a non-trivial H4 class for the 3-group
symmetry of the theory.

We have shown how twist strings can be understood through a layer construction of
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(2+1)D topological phases, where they simply descend from the known anyon permuting
codimension-1 defects in (2+1)D. We have also seen how twist strings in a (3+1)D discrete
G gauge theory can be constructed by decorating a codimension-2 submanifold with a G SPT
or invertible topological phase, and then gauging G. We have provided an example of certain
geometric, not-fully topological twist strings in a (3+1)D non-Abelian gauge theory based on
the group A6 by utilizing the layer construction, which cannot be constructed from gauging
a (1+1)D SPT. Meanwhile, we conjecture that the topological twist string in A6 gauge the-
ory is constructed from gauging (1+1)D SPT. We conjecture that the layer construction and
gauged (1+1)D invertible state constructions for topological twist strings are equivalent, and
we provided evidence for this in Sec. 5.2.5 and 6.3.

We note that the gauging perspective is not fully general in (2+1)D: not all anyon-per-
muting codimension-1 domain walls in (2+1)D arise by gauging lower dimensional bosonic
or fermionic invertible phases. A simple example is the e↔ m twist string in Z3 toric code.
Nevertheless, for describing topological twist strings in (3+1)D, it is possible that the gauging
perspective is complete. Additionally, it is an open question whether the Gu-Wen fermionic SPT
phases with G f = Gb × Z

f
2 symmetry discussed in Sec. 7.2 can generate a distinct invertible

codimension-1 defect of (2+1)D Gb × Z2 gauge theory from those obtained by bosonic SPT
phases and Kitaev chains. In the case of G = Z2×Z2 symmetry, the cluster state and the Kitaev
chains have already exhausted all automorphisms of Z2×Z2 gauge theory, so the Gu-Wen SPT
(characterized by non-trivial n1) does not give rise to a distinct automorphism.

Further, it is also natural to ask whether all invertible pure codimension-2 topological de-
fects correspond to either flux strings, twist strings, or some composite of the two. Assum-
ing this is indeed the case, we can conjecture a complete characterization of invertible pure
codimension-2 topological defects in (3+1)D discrete G gauge theories. Assuming the case of
untwisted G gauge theory (i.e. trivial Dijkgraaf-Witten cocycle in H4(BG,U(1))), and with only
bosonic point charges, we conjecture that invertible pure codimension-2 topological defects
are fully characterized by (g,ω2). Here g ∈ Z(G), where Z(G) is the center of G, labels the
Abelian flux and ω2 labels the (1+1)D SPT decoration. That is, K1 = Z(G)×H2(G, U(1)) in
general. In the case where we allow the G gauge theory to have fermionic charges, we expect
that ω2 should be replaced by the data of a (1+1)D fermionic invertible phase, as discussed
in Sec. 7.

Finally, we note that analogs of the codimension-2 twist string can also be found in contin-
uous gauge theory, e.g., (3+1)D PSU(N) gauge theory, where it is identified as the magnetic
ZN 1-form symmetry of PSU(N) gauge theory. That is, PSU(N) gauge theory is obtained by
gauging a center ZN 1-form symmetry of the SU(N) gauge theory [89], and then the PSU(N)
gauge theory has the dual symmetry of the center 1-form symmetry, generated by the Wilson
surface of the dynamical ZN 2-form gauge field of the center symmetry. This dual ZN 1-form
symmetry is called a magnetic 1-form symmetry. The 2-form gauge field for the Wilson surface
is identified as the second Stiefel-Whitney class w2 ∈ H2(BPSU(N),ZN ) of the PSU(N) gauge
field, and one can also regard w2 as a response action of a (1+1)D bosonic SPT phase with
PSU(N) symmetry. Therefore, the magnetic 1-form symmetry can also be understood as anal-
ogous to the twist string, obtained by a decoration of (1+1)D SPT phase on the codimension-2
defect. It would be interesting to see if the above perspective allows us to explicitly construct
a symmetry defect of the magnetic 1-form symmetry in the lattice PSU(N) gauge theory [90],
e.g., by decorating the defect with a (1+1)D spin chain.

We now have a more complete understanding of invertible codimension-3 and codimen-
sion-2 topological defects, their interplay with each other, and how this defines a 3-group. The
next step is to develop a comprehensive understanding of invertible codimension-1 defects and
their interplay with invertible codimension-2, 3 defects, in order to develop a comprehensive
understanding of the full categorical 3-group symmetry of (3+1)D topological phases. Even-
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Figure 36: For each face, there are two Majorana fermions γ f , γ′f . For each edge,
there is a qubit, corresponding to the Pauli matrices X e, Ye, Ze.

tually we hope to understand more systematically the full fusion 3-category of both invertible
and non-invertible defects and higher symmetries in generic (3+1)D topological phases of
matter.
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A Gauging fermion parity on lattices

A.1 2d bosonization

We begin by reviewing 2d bosonization on a square lattice following [55]. The elements of
vertices, edges, and faces are denoted v, e, f . On each face f of the lattice we place a sin-
gle pair of fermionic creation-annihilation operators c f , c†

f , or equivalently a pair of Majo-
rana fermions γ f ,γ′f . The even fermionic algebra consists of local observables with a trivial
fermionic parity (i.e. those local observables which commute with the total fermion parity

(−1)F ≡
∏

f (−1)c
†
f c f ). The even algebra is generated by

Pf = −iγ f γ
′
f , (123)

and
Se = iγL(e)γ

′
R(e) , (124)
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where L(e) and R(e) are faces to the left and right of e, with respect to some orientation of
e. Note that the even fermionic algebra (which is the same as the algebra of local observables
containing an even number of Majorana operators) is generated by Pf and Se. That is, any
such local observable can be written as a linear combination of products of operators Pf and
Se. In particular, this applies to any fermion bilinear involving two Majorana fermions on any
two faces, and to interaction terms in an arbitrary finite-range Hamiltonian.

The bosonic dual of this system involves Z2-valued spins on the edges of the square lattice.
For every edge e we define a unitary operator Ue which squares to 1. Labeling the faces and
vertices as in Fig. 36, we define:

U56 = X56Z25 ,

U58 = X58Z45 ,
(125)

where X , Z are Pauli matrices acting on a spin at each edge:

X e =

�

0 1
1 0

�

, Ze =

�

1 0
0 −1

�

. (126)

Operators Ue for other edges are defined by using translation symmetry. Pictorially, the oper-
ator Ue is drawn as

Ue = X e

Z

or

X e

Z , (127)

corresponding to the vertical or horizontal edge e. It has been shown in Ref. [55] that Ue and
Se satisfy the same commutation relations. We also identify fermionic parity Pf at each face
with the “flux operator” Wf ≡

∏

e⊂ f Ze:

Wf =
Z

f ZZ

Z

. (128)

The bosonization map is

Pf = −iγ f γ
′
f ←→Wf ,

Se = iγL(e)γ
′
R(e)←→ Ue ,

(129)

or pictorially

i ×

γL(e)

γ′R(e)

e oo //
X e

Z , (130)

i × eγL(e) γ′R(e)
oo // X e

Z

, (131)

−iγ f γ
′
f

oo //
Z

f ZZ

Z

. (132)
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The condition PaPcS58S56S25S45 = 1 on fermionic operators gives gauge constraints (stabilizer)
Gv =Wfc

∏

e⊃v5
X e = 1 for bosonic operators, or generally for each vertex

Gv =

Z

f Z

X v

x y

X Z

X

= 1 . (133)

A.2 3d bosonization

In the section, we review 3d bosonization in Ref. [60] (with a slightly different convention),
which is a direct generalization of the 2d bosonization. This 3d bosonization originated from
the Levin-Wen rotor model [91]. On the cubic lattice, we have two Majorana fermions at each
vertex γv ,γ′v and one qubit at each edge X e, Ye, Ze. The bosonization map can be summarized
in Fig. 15, which will be explained in detail.

𝑥

𝑧
𝑦 1

2
34

5
6

7
8

Figure 37: For edges in the cubic lattice, the “framing” is defined by green, red, and
blue edges, which is a small shift of the edges [91]. Given an edge e, the hopping
operator Ue is defined as Ze times X e′ for those e′ which intersect the framing of e
when projected to the plane (i.e. Ue1

= Z1X3X4, Ue2
= Z2X7X8, and Ue3

= Z3X5X6 ).

The on-site fermion parity operator on a vertex v is Pv = −iγvγ
′
v . It is a “Z2 operator”

(i.e. it squares to 1). All operators Pv commute with each other. The even fermionic algebra is
generated by the on-site fermion parity Pv and the Majorana hopping operator Se = iγiγ

′
j along

the edge e = 〈i j〉.13 To illustrate the definition of these operators, in Fig. 37, fermions live on
vertices and the orientation of each edge are taken to be along +x , +y , and +z directions.
The Majorana hopping operator is defined by Se = iγL(e)γ

′
R(e) where L(e) and R(e) are starting

and ending points of the edge e in the cubic lattice. Se and Se′ anti-commute only when edges
e and e′ both start from the same point or both end at the same point.

The dual bosonic system has qubits living on the edges of the cubic lattice. To define
hopping operators Ue, we need to choose framing for each edge, i.e. a small shift of each edge
along some orthogonal direction. We also assume that when projected on some generic plane
(such as the plane of the page), a shifted edge intersects all edges transversally. For example,
in Fig. 37 such a framing is indicated by red, green and blue lines (for edges along x , y and
z directions, respectively), and the shift of the edge 1 intersects edges 3 and 4.14 Now, we
define Ue as a product of Ze with all X e′ such that e′ intersects the framing of e when projected

13The direction of e = 〈i j〉 is assigned to be along +x , +y , and +z directions (See Figs. 15 and 37).
14There are many choices of framing, and accordingly many versions of the bosonization map. By construction,

they are related by automorphisms of the algebra of observables.
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to the plane of the page. For example, the hopping operator for the edge 1 is U1 = Z1X3X4.
Notice that U1, U3, and U4 anti-commute with each other and U3, U5, and U6 anti-commute
with each other, while U2 and U3 commute, and U1 and U8 commute. One can check that S f
and U f have the same commutation relations. Therefore, the bosonization map in 3D can be
defined as follows:

1. For any vertex v, define the star term Av ≡
∏

e⊃v X e. We identify the fermionic states
|Pv = 1〉 and |Pv = −1〉 with bosonic states for which Av = 1 and Av = −1, respectively.
Thus

Pv = −iγvγ
′
v ←→ Av . (134)

2. The fermionic hopping operator Se is identified with Ue defined above:

Se = iγL( f )γ
′
R( f )←→ Ue . (135)

As in the 2d bosonization, the bosonic operators satisfy some constraints. In Fig. 38, we calcu-
late the product of Se around the a plaquette along with Pv at vertices b and d on the lattice:

− Se1
Se2

Se3
Se4

PbPd

=− (iγdγ
′
c)(iγbγ

′
c)(iγaγ

′
b)(iγaγ

′
d)(−iγbγ

′
b)(−iγdγ

′
d) = 1 .

(136)

Its bosonic dual defined by Eqs. (134) and (135) is the product of the corresponding operators
U f and Av , which needs to be imposed as a gauge constraint:

1=− Ue1
Ue2

Ue3
Ue4

AbAd

=− (Z1X2X6)(Z2X12X13)(Z3X11X14)(Z4X3X5)(X2X3X11X12X13X14)(X1X4X7X8X9X10)

=Z1Z2Z3Z4X1X4X5X6X7X8X9X10 .
(137)

The operators X ’s are the edges crossed by the dashed square in Fig. 38. The framing for
gauge constraints is opposite to the framing used to define hopping operators. We have a
gauge constraint for each face of the lattice. The gauge constraints in other two directions are
shown in Fig. 15. These constraints commute and thus define a Z2 2-form gauge theory with
an unusual Gauss law.

1

3

5
67

8
9

10

11

12

13

14

𝑥

𝑧
𝑦

4 2

𝑎 𝑏

𝑐𝑑

Figure 38: The framing of the hopping term defined previously is indicated by the
brown square, while the gauge constraint involves the X operators in the opposite
framing (purple dashed square).
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B Slant product for non-Abelian groups

Here we describe the slant product ig for group cohomologyω ∈H2(G,U(1))with non-Abelian
group G. The slant product (corresponding to the element g ∈ G) of the 2-cocycle ω acting
on a group element h ∈ G is defined by [92]

igω(h) :=
ω(g, h)

ω(h, h−1 gh)
∈H1(G,U(1)) . (138)

In this paper, we focus on the case that h ∈ Cg , i.e., the element h is in the centralizer of the
element g. In this case, the slant product igω corresponds to the torus partition function of the
(1+1)D SPT phase ω ∈H2(G,U(1)), in the presence of holonomy g ∈ G in one cycle of T2:

ZSPT(T
2
(g,h)) = igω(h) =

ω(g, h)
ω(h, g)

, (139)

where T2
(g,h) denotes a torus T2 with the holonomy (g, h) on each fundamental cycle, and we

have used the condition h ∈ Cg to assure that the holonomy (g, h) defines a flat background
gauge field on T2.

We would like to show that

igω(h) = ikgk−1ω(khk−1) , for k ∈ G and h ∈ Cg . (140)

The above equation implies that the charge attached to the flux after moving past a twist string
only depends on the conjugacy class [g].15

To show this, let us first check that the cohomology class [ω] is invariant under the conju-
gation action. That is,

ω(g, h) =ω(kgk−1, khk−1) ·δξk(g, h) , for some ξk ∈ C1(G,U(1)) . (141)

This can be checked by considering a prism interpolating a pair of 2-simplices with the holon-

omy (g, h) and (kgk−1, khk−1) respectively, see Fig. 39. Let us define ξk(g) := ω(g,k−1)
ω(k−1,kgk−1) ,

which is regarded as a Boltzmann weight of the SPT phase on one rectangular face of the
prism. Since one can regard the prism as a specific triangulation of a sphere S2, we have16

ZSPT(S
2) =

ω(kgk−1, khk−1)
ω(g, h)

ξk(g)ξk(h)
ξk(gh)

= 1 , (142)

which implies Eq. (141). Applying this to the definition of the slant product, we find

igω(h) = ikgk−1ω(khk−1) for k ∈ G , (143)

which gives the desired result.

C Linear algebraic description of automorphisms

Here we describe automorphisms of (2+1)D Z2×Z2 gauge theory based on the K-matrix rep-
resentation of the gauge theory. This gives a linear algebraic formulation of the automorphism

15For every h ∈ Cg , the centralizer of g, there exists an element khk−1 ∈ Ckgk−1 , the centralizer of kgk−1.
Therefore, Cg is isomorphic to Ckgk−1 . Eq. (140) indicates that two irreps igω and ikgk−1ω of Cg and Ckgk−1 are
identical, corresponding to the same charge on the flux [g].

16Eq. (142) can also be derived from the cocycle condition of ω.
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Figure 39: The prism interpolating between two gauge equivalent 2-simplices.

which is useful for classifying them. We use this classification to show that all automorphisms
of (2+1)D Z2 ×Z2 gauge theory can be implemented by twist strings arising from decorating
Z2 ×Z2 SPTs and Kitaev chains.

The K-matrix of the (2+1)D Z2 gauge theory without Dijkgraaf-Witten twist is given by

K =







0 0 2 0
0 0 0 2
2 0 0 0
0 2 0 0






. (144)

Each Z2-valued vector corresponds to an anyon generated by

e1 =







1
0
0
0






, e2 =







0
1
0
0






, m1 =







0
0
1
0






, m2 =







0
0
0
1






. (145)

For vectors a, b that correspond to anyons, the mutual braiding and twist is expressed as

Ma,b = e2πiaT K−1 b , (146)

θa = eπiaT K−1a . (147)

Then, an automorphism is formulated as a linear transformation of integral vectors a that
correspond to anyons, a→ Aa. A is a 4×4 Z2-valued matrix that preserves mutual braiding and
topological twist. We are going to show that the automorphism of these anyons are generated
by the following three matrices

H1 =







0 0 1 0
0 1 0 0
1 0 0 0
0 0 0 1






, H2 =







1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0






, C Z =







1 0 0 1
0 1 1 0
0 0 1 0
0 0 0 1






. (148)
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First, we define some useful matrices

C Z T ≡ H1 ·H2 · C Z ·H2 ·H1 =







1 0 0 0
0 1 0 0
0 1 1 0
1 0 0 1






, (149)

SWAP≡ C Z ·H1 ·H2 · C Z ·H1 ·H2 · C Z ·H1 ·H2 =







0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0






, (150)

Col12 ≡ H2 · C Z ·H2 =







1 1 0 0
0 1 0 0
0 0 1 0
0 0 1 1






, (151)

Row12 ≡ H2 ·H1 ·H2 · C Z ·H2 ·H1 ·H2 =







1 0 0 0
1 1 0 0
0 0 1 1
0 0 0 1






. (152)

All matrices above are order two.
Given an automorphism A, the first column must contain at least one 1. We can apply H1,

H2, and SWAP gates to make its first entry 1:

A∼







1 ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗






, (153)

where ∼ represents that the matrices are equal up to multiplying H1, H2, and C Z on its left
and right sides. Next, we apply C Z , C Z T , Col12 and Row12 on its left or right side to get

A∼







1 0 ∗ 0
0 ∗ ∗ ∗
∗ ∗ ∗ ∗
0 ∗ ∗ ∗






. (154)

Since Ae1 is a boson, the ∗ in the first column must be 0. By the braiding property of Ae1 with
Ae2, Am1, and Am2, the third row is 0 0 1 0:

A∼







1 0 ∗ 0
0 ∗ ∗ ∗
0 0 1 0
0 ∗ ∗ ∗






. (155)

The entries A22 and A24 contains at least one 1 (otherwise the second and third rows do not
have the full rank), so we can apply H2 to make A22 = 1. Since Ae2 is a boson, A42 must be 0:

A∼







1 0 ∗ 0
0 1 ∗ ∗
0 0 1 0
0 0 ∗ ∗






. (156)
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Next, by the braiding property of Ae2 with Am1 and Am2, the last row is 0 0 0 1:

A∼







1 0 ∗ 0
0 1 ∗ ∗
0 0 1 0
0 0 0 1






. (157)

Am1 being a boson implies A13 = 0. Similarly, Am2 being a boson gives A24 = 0:

A∼







1 0 0 0
0 1 ∗ 0
0 0 1 0
0 0 0 1






. (158)

By the braiding property of Am2, A23 is 0 and we show that A is the identity matrix by multi-
plying H1, H2, and C Z on its left and right sides.

D Cheshire string in (3+1)D Z2 toric code

Here we describe Cheshire string in the (3+1)D Z2 toric code with a bosonic electric parti-
cle. The Cheshire string is a non-invertible codimension-2 defect of the (3+1)D toric code,
which is distinct from m magnetic surface operator. Roughly speaking, the Cheshire string is
obtained by condensing e particle on a region restricted to the codimension-2 surface. Here,
we construct the Cheshire string in the (3+1)D Z2 toric code by gauging the (3+1)D bosonic
trivial invertible phase with Z2 0-form symmetry, with a decoration of the Z2 spontaneously-
symmetry-broken (SSB) Ising theory on the (1+1)D defect. We show that the Z2 SSB phase
becomes the non-invertible Cheshire string in (3+1)D Z2 gauge theory after gauging the Z2
symmetry. We provide an exactly solvable model of the (3+1)D toric code with the Cheshire
string in Sec. D.1, and then give the field theoretical description of the Cheshire string in
Sec. D.2 in terms of the condensation defect. We note that the Cheshire string in the lattice
model of the Z2 toric code is also described in Refs. [46,93].

D.1 Exactly solvable model for the Cheshire string in (3+1)D Z2 toric code

Starting from a 3d cubic lattice with a qubit at each vertex, we prepare a trivial Hamiltonian

H0 = −
∑

v

X v , (159)

which has a global Z2 symmetry
∏

v X v . As shown in the left of Fig. 40, we decorate a 1d defect
line by replacing X v with Zv Zv+1, where v and v + 1 are adjacent vertices on the defect line.
This new Hamiltonian still respects the Z2 symmetry, but this 1d defect line hosts symmetry-
broken ground states.

Next, we gauge the Z2 symmetry, and the resulting Hamiltonian is shown in the right of
Fig. 40. The X v term becomes an X -star term, while the Zv Zv+1 term on the defect becomes Ze
on the edge e = 〈v, v+1〉. This is exactly the original model of the Cheshire string constructed
in Ref. [46]. The e-line (Z string) can end on the defect without violating any term in the
Hamiltonian. We are going to provide the field-theoretical understanding of this defect in the
next section.
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gauging

𝑋
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𝑋

𝑍

𝑍

Figure 40: The Cheshire string is obtained by gauging the (3+1)D trivial invertible
phase with Z2 symmetry, with a decoration of the Z2 symmetry-broken Ising theory
on the 1d defect line (green line).

D.2 Cheshire string as a condensation defect

Here we derive the expression of the Cheshire string in terms of the condensation defect of the
(3+1)D Z2 gauge theory, and then explain its relation to (1+1)D Z2 symmetry-broken Ising
theory. The Z2 toric code in (3+1)D is given by the action

S[a, b] = π

∫

M4

a ∪δb , (160)

with a ∈ C1(M4,Z2), b ∈ C2(M4,Z2). The Cheshire string is realized as condensing the e
particle on the codimenison-2 defect, which is realized by gauging the symmetry generated
by the e Wilson line restricted to the codimension-2 surface. To describe this gauging process,
we consider a region in the form of D2×M2 in a spacetime 4-manifold M4, which is regarded
as a vicinity of the codimension-2 submanifold M2 with a small disc D2. We gauge the Z2
2-form symmetry generated by the line operator exp

�

πi
∫

a
�

restricted to this region. This is
performed by adding a term

π

∫

D2×M2

a ∪ B3 , (161)

to the action, where a dynamical 3-form gauge field B3 satisfies the Dirichlet boundary condi-
tion B3 = 0 on ∂ (D2 × M2). Because of the boundary condition, B3 is valued in
[B3] ∈ H3(D2×M2;∂ (D2×M2),Z2). Gauging B3 amounts to condensing e particle at D2×M2.
By shrinking D2 to a point, we effectively obtain a codimension-2 defect supported on M2.

One can express Cheshire string as a sum of Wilson line operators exp
�

πi
∫

a
�

supported
on M2, i.e., a condensation defect supported on M2. That is, an insertion of a Cheshire string
on M2 is performed by gauging the 2-form symmetry of the toric code on a region X = D2×M2

as

|H1(X ;∂ X ,Z2)|
|H2(X ;∂ X ,Z2)||H0(X ;∂ X ,Z2)|

∑

B3∈H3(X ;∂ X ,Z2)

exp (iS[a, b])exp

�

πi

∫

X
a ∪ B3

�

, (162)

where we follow a standard normalization of Z[2]2 gauge theory provided in Ref. [94].17 This
is interpreted as summing the Wilson line exp

�

πi
∫

a
�

supported on the Poincaré dual of B3.

17In the original Z2 toric code, the partition function is obtained from exp(iS[a, b]) by summing over
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When M2 is oriented, one can use Lefschetz duality to obtain
Hk(X ;∂ X ,Z2) = H4−k(X ,Z2) = H4−k(M2,Z2), which is a generalized version of Poincaré
duality. Then, the above process is equivalent to inserting an operator given by the sum

Dch =
1

|H2(M2,Z2)|

∑

γ∈H1(M2,Z2)

exp

�

πi

∫

γ

a

�

, (163)

where γ ∈ H1(D2 × M2,Z2) = H1(M2,Z2) is the Lefschetz dual of B3. For example, if we
consider M2 = T2 = S1

x × S1
y , the Cheshire charge becomes

Dch =
1
2

 

1+ exp

�

πi

∫

Cx

a

�

+ exp

 

πi

∫

Cy

a

!

+ exp

 

πi

∫

Cx+Cy

a

!!

. (164)

By using the expression Eq. (163), one can see the fusion rule as

Dch ×Dch =
|H1(M2,Z2)|
|H2(M2,Z2)|

Dch

=
|H1(M2,Z2)|

|H2(M2,Z2)||H0(M2,Z2)|
(Dch +Dch) = 2−χ(M

2) · (Dch +Dch) ,
(165)

so the fusion rule is given by Dch×Dch = 2−χ(M
2) ·(Dch+Dch), where we used M2 is connected,

and χ(M2) is the Euler number of M2. By redefining the defect by D′ch := 2χ(M
2)Dch, the fusion

rule becomes D′ch ×D′ch =D′ch +D′ch, which is consistent with the fusion rule in Ref. [93].18

As we have seen in Sec. D.2, the (3+1)D Z2 gauge theory with a Cheshire string Dch can be
constructed by starting with an invertible phase in (3+1)D with Z2 symmetry, then decorating
the codimension-2 submanifold of the (3+1)D spacetime with a (1+1)D Z2 SSB phase, and
gauging its global Z2 symmetry. The decorated (1+1)D phase in the (3+1)D invertible theory
results in a defect Dch in the Z2 gauge theory after gauging. The partition function of the
decorated (1+1)D Z2 SSB phase is given by

ZSSB(M
2, a) = 2−χ(M

2) · 2δ(a) , (166)

where δ(a) gives 1 if [a] ∈ H1(M2,Z2) is trivial, otherwise zero. Note that 2δ(a) is regarded
as a partition function of a Z2 broken Ising theory. The delta function δ(a) arises because
the Z2 symmetry defect in the SSB phase gives a symmetry domain wall that costs energy, so
nontrivial gauge field a is projected out from the spectrum. The factor 2 denotes the super-
selection sector, and 2−χ(M

2) is a normalization by Euler term. Inserting a theory ZSSB on a
codimension-2 surface M2 in a trivial (3+1)D Z2 SPT phase and then gauging Z2 symmetry
is equivalent to inserting the Cheshire string Dch in M2. This is because an insertion of Dch is
regarded as turning off a on M2, and it is rewritten as

|H1(M2,Z2)|
|H2(M2,Z2)|

δ(a) =
|H1(M2,Z2)|

|H2(M2,Z2)||H0(M2,Z2)|
2δ(a) = ZSSB(M

2, a) . (167)

E Modular S and T matrices for D(D4)

In this section, we present the modular S and T matrices for the quantum double D(D4).

a ∈ C1(M4,Z2) and b ∈ C2(M4,Z2) with a proper normalization factor. After we insert the Cheshire string,
the original summand exp(iS[a, b]) is replaced by Eq. (162).

18In general, a topological defect can be redefined by adding Euler term λχ(M
2) for real positive number λ, since

the Euler term is regarded as a partition function of a trivial invertible TQFT [95].
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S =
1
8















































































1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2
1 1 1 1 1 1 1 1 2 −2 −2 −2 −2 2 2 2 −2 −2 2 2 −2 −2
1 1 1 1 1 1 1 1 −2 2 −2 −2 2 −2 2 −2 2 −2 2 −2 2 −2
1 1 1 1 1 1 1 1 −2 −2 2 2 −2 −2 2 −2 −2 2 2 −2 −2 2
1 1 1 1 1 1 1 1 2 2 2 2 2 2 −2 −2 −2 −2 −2 −2 −2 −2
1 1 1 1 1 1 1 1 2 −2 −2 −2 −2 2 −2 −2 2 2 −2 −2 2 2
1 1 1 1 1 1 1 1 −2 2 −2 −2 2 −2 −2 2 −2 2 −2 2 −2 2
1 1 1 1 1 1 1 1 −2 −2 2 2 −2 −2 −2 2 2 −2 −2 2 2 −2
2 2 −2 −2 2 2 −2 −2 4 0 0 0 0 −4 0 0 0 0 0 0 0 0
2 −2 2 −2 2 −2 2 −2 0 4 0 0 −4 0 0 0 0 0 0 0 0 0
2 −2 −2 2 2 −2 −2 2 0 0 4 −4 0 0 0 0 0 0 0 0 0 0
2 −2 −2 2 2 −2 −2 2 0 0 −4 4 0 0 0 0 0 0 0 0 0 0
2 −2 2 −2 2 −2 2 −2 0 −4 0 0 4 0 0 0 0 0 0 0 0 0
2 2 −2 −2 2 2 −2 −2 −4 0 0 0 0 4 0 0 0 0 0 0 0 0
2 2 2 2 −2 −2 −2 −2 0 0 0 0 0 0 4 0 0 0 −4 0 0 0
2 2 −2 −2 −2 −2 2 2 0 0 0 0 0 0 0 4 0 0 0 −4 0 0
2 −2 2 −2 −2 2 −2 2 0 0 0 0 0 0 0 0 4 0 0 0 −4 0
2 −2 −2 2 −2 2 2 −2 0 0 0 0 0 0 0 0 0 −4 0 0 0 4
2 2 2 2 −2 −2 −2 −2 0 0 0 0 0 0 −4 0 0 0 4 0 0 0
2 2 −2 −2 −2 −2 2 2 0 0 0 0 0 0 0 −4 0 0 0 4 0 0
2 −2 2 −2 −2 2 −2 2 0 0 0 0 0 0 0 0 −4 0 0 0 4 0
2 −2 −2 2 −2 2 2 −2 0 0 0 0 0 0 0 0 0 4 0 0 0 −4














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
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
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
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
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











, (168)

T = diag
�

1 1 1 1 1 1 1 1 1 1 1 −1 −1 −1 1 1 1 i −1 −1 −1 −i
�

.
(169)

We use the following basis for the modular matrices:

([(0, 0), J0]) , ([(0,0), J3]) , ([(2,0), J0]) , ([(2,0), J3]) , ([(0,0), J2]) , ([(0, 0), J1]) , (170)

([(2,0), J2]) , ([(2,0), J1]) , ([(0,0),α]) , ([(1, 1), A0]) , ([(1,1), A3]) , ([(1, 1), A1]) ,

([(1,1), A2]) , ([(2, 0),α]) , ([(0,1), A0]) , ([(0,1), A2]) , ([(1, 0),β0]) , ([(1,0),β1]) ,

([(0,1), A1]) , ([(0, 1), A3]) , ([(1,0),β2]) , ([(1, 0),β3]) .

One can explicitly check that the flux-preserving automorphism Eq. (36) leaves the above S
and T matrices invariant. We have checked this by a computer.

F Geometrical interpretation of higher cup products

0 1

2

β1

α1

x1

x2

(α1 ∪ β1)(012) = α1(01)β1(12)

0 1

2 3

Figure 41: The cup product of α1 and β1 is determined by the intersections (la-
beled by stars) of their dual edges. More precisely, the right star corresponds to
α1(〈01〉)β1(〈13〉) and the left star gives α1(〈02〉)β1(〈23〉) in the definition of the cup
product Eq. (171).

In this section, we review geometrical properties of higher cup products in Refs. [79,96]. The
(higher) cup products are defined for both arbitrary triangulations and hypercubic lattices. For
simplicity, we will demonstrate the geometrical properties on square and cubic lattices.
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First consider 2d square lattices M2 with two closed 1-cochains α1,β1 ∈ C1(M2,Z2), i.e.,
δα1 = δβ1 = 0.19 We draw the dual edges for α1 and β1 separately in Fig. 41. Note that the
dual edges of α1 and β1 are differed by a small shift. The edges with +1 values of α1 and β1
correspond to two closed loops in the dual lattice. The cup product is defined by

α1 ∪ β1(□0123) = α1(〈01〉)β1(〈13〉) +α1(〈02〉)β1(〈23〉) , (171)

which counts the number (mod 2) of intersections of α1 loop and β1 loop in a square, shown
in Fig. 41.

3

0

1

2

+α2(013)β2(123)
(α2 ∪1 β2)(0123) = α2(023)β2(012)

α2

β2

+α2( 4567)β2( 1357) + α2( 4567)β2( 0145)

+α2( 2367)β2( 0123) + α2( 2367)β2( 0246)

(α2 ∪ β2)( 0···7) = α2( 1357)β2( 0145) + α2( 0246)β2( 0123)

x1
x2

x3

1

0 1

2 3

6 7

54

Figure 42: The cup-1 product of α2 and β2 is determined by the intersections (labeled
by stars) of their dual edges, after the projection from a certain angle. There are six
intersections of the dual edges, which gives the six terms in the definition of the cup-
1 product Eq. (172).

Next, the 3d cubic lattice M3 with two closed 2-cochains α2,β2 ∈ C2(M3,Z2) (δα2 = δβ2 = 0)
can be analyzed in a similar way. We draw the dual edges of α2 and β2 with a small shift in
Fig. 42. The +1 values of α2 and β2 form two closed loops of dual edges. The definition of
the cup-1 product is

α2 ∪1 β2(cube) = α2(□1357)β2(□0145) +α2(□0246)β2(□0123)

+α2(□2367)β2(□0123) +α2(□2367)β2(□0246)

+α2(□4567)β2(□1357) +α2(□4567)β2(□0145) ,
(172)

which counts the number (mod 2) of intersections of α2 loop and β2 loop according to the con-
vention in Fig. 42. Note that the intersections depend on the direction of projection. Although
we only demonstrate the cubic lattice, the same picture holds for arbitrary triangulations [79].

Finally, we analyze the physical meaning of the (Bm1
2 ∪1 Bm2

2 ) ∪ C1 term in Eq. (121). We
decompose it as

(Bm1
2 ∪1 Bm2

2 )∪ C1(〈01234〉) = (Bm1
2 ∪1 Bm2

2 )(〈0123〉)C1(〈34〉) . (173)

If we treat 〈34〉 as the temporal direction and consider (Bm1
2 ∪1Bm2

2 )(0123) as the intersection of
the m1 and m2 strings in the spatial manifold (a time slice), the whole term can be interpreted
as the intersection of the m1 and m2 strings crossing the codimension-1 defect (where C1 = 1).
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