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We show how to define a quantized many-body charge polarization P for (2 4+ 1)D topological phases
of matter, even in the presence of nonzero Chern number and magnetic field. For invertible topological

states, Pis a Zy X 25, Z3, Z,, or Z, topological invariant in the presence of (M = 2, 3, 4, or 6)-fold
rotational symmetry, lattice (magnetic) translational symmetry, and charge conservation.  manifests in the
bulk of the system as (i) a fractional quantized contribution of % b mod 1 to the charge bound to lattice
disclinations and dislocations with Burgers vector Z (ii) a linear momentum for magnetic flux, and (iii) an
oscillatory system size dependent contribution to the effective 1D polarization on a cylinder. We study Pin
lattice models of spinless free fermions in a magnetic field. We derive predictions from topological field
theory, which we match to numerical calculations for the effects (i)—(iii), demonstrating that these can be
used to extract & from microscopic models in an intrinsically many-body way. We show how, given a high
symmetry point o, there is a topological invariant, the discrete shift &,, such that P specifies the
dependence of &, on 0. We derive colored Hofstadter butterflies, corresponding to the quantized value of

5’, which further refine the colored butterflies from the Chern number and discrete shift.
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I. INTRODUCTION

In the presence of symmetry, gapped quantum phases of
matter can acquire symmetry-protected topological invar-
iants. The paradigmatic example is the quantized Hall
conductance, which is specified by the Chern number, and
is defined only for systems with a U(1) charge conservation
symmetry. Since the discovery of topological insulators and
superconductors [1-3], there has been spectacular progress
in our understanding of symmetry-protected topological
invariants both for single-particle free fermion models
[4-6] and for interacting many-body systems [7-16].
Despite these advances, a complete understanding of
topological invariants arising from crystalline symmetries
is still lacking.

Recently, Refs. [17,18] applied ideas from topological
quantum field theory (TQFT) and the algebraic theory of

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI.

2160-3308/23/13(3)/031005(42)

031005-1

Subject Areas: Condensed Matter Physics,
Quantum Physics,
Strongly Correlated Materials

symmetry defects [13], which can be used to characterize
gapped quantum many-body systems, to develop a sys-
tematic classification of topological invariants for systems
with U(1) charge conservation, discrete (magnetic) trans-
lational symmetry, and rotational symmetry in two spatial
dimensions. In particular, Refs. [17,18] showed how
TQFT predicts the existence of a quantized many-body
polarization in the presence of twofold, threefold, four-
fold, or sixfold rotational symmetry. For invertible topo-
logical phases, which do not host anyon excitations, the
polarization acquires a Z, X Z,, Zs, Z,, or Z, classifica-
tion, respectively.

Remarkably, the TQFT prediction of a quantized charge
polarization applies also in the presence of a nonzero Chern
number and a nontrivial magnetic field. This appears to be
in tension with several statements made previously in the
literature about whether the polarization is well defined in
the presence of a nonzero Chern number [19,20].

The TQFT not only predicts the presence of the
invariant, but also its bulk physical manifestation. This
is in terms of a fractional quantized contribution of the
charge bound to lattice defects and a dual response, the
momentum of the ground state in the presence of addi-
tionally inserted magnetic flux.
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A menagerie of butterflies in the spinless square lattice Hofstadter model. « and f represent a plaquette center and vertex,

respectively. For any C, symmetric origin o, &, has a Z, classification, while 9, has a Z, classification. We empirically find that
{$ 5 Sas ﬁﬂ, @a} follow Egs. (41), (42), (52), and (53), respectively. Note that &', has period 8z in ¢, ﬁﬂ has period 47 in ¢, while &

and ﬁﬁ have period 27 in ¢. See Secs. IV and V for discussions.

In contrast, the modern theory of polarization in insula-
tors is based on the Berry-Zak phase of single-particle wave
functions in momentum space [21-24]. This Berry phase
theory of polarization assumes the phase of the single-
particle states is globally well defined throughout the
Brillouin zone, which applies only in the case of zero
Chern number. For the case of nonzero Chern number,
while there has been work showing how one may define a
notion of polarization in the single-particle context by
fixing an origin in the Brillouin zone [24], its quantization
from crystalline symmetries, the effects of nonzero mag-
netic field, and its implication for bulk response properties
have not been studied.

In many-body systems with interactions, the single-
particle Berry phase formulation breaks down. It can be
replaced with a Berry phase theory based on twisted
boundary conditions or with an expectation of Resta’s
exponentiated polarization operator [25]. However, these
apply only to the effective 1D polarization, meaning the
system is viewed as an effective one-dimensional system;
such a 1D polarization is no longer an intensive quantity in
a higher-dimensional system.

In this paper we show how one can indeed define a
quantized charge polarization in an intrinsically many-body
fashion and in the presence of both nonzero Chern number
and nonzero magnetic field. This is not an effective 1D

polarization obtained by viewing the system as a 1D
system—rather, this is an intrinsic bulk 2D polarization,
which has nontrivial bulk responses mentioned above.
More specifically, we show that upon fixing a choice
of high symmetry point (HSP) o in the unit cell, one can

define two invariants, &, and @0. S, 1s a discrete analog of
the Wen-Zee shift [26-31], which is an invariant associated
to U(1) charge conservation and SO(2) plane rotational
symmetry. We refer to &, as the “discrete shift” because it
is a Z,, invariant, while the Wen-Zee shift is a Z invariant.

P, denotes the quantized charge polarization.

We show, through extensive numerical studies, how
these invariants can be extracted from bulk response
properties of microscopic models in multiple different
ways. We show how the predictions of the TQFT, including
the bulk response properties and the dependence of &,

and @0 on o, can be precisely matched to calculations on
microscopic models.

As an application, we show how one can extract the
quantized charge polarization for the Hofstadter model [32]
of spinless free fermions in a nonzero magnetic field on a
lattice. This provides yet another way to color Hofstadter’s
butterfly (see Fig. 1), extending the recent coloring in
Ref. [33] based on the discrete shift, and the earlier coloring
with the Chern (TKNN) number [34,35].
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We note that the dependence of the polarization on
a choice of origin o is a well-known property of all
definitions of the polarization in electronic systems; it is
usually dealt with by considering instead changes in the
polarization as an external parameter is tuned, or by using
the overall charge neutrality of the system (for example, by
taking into account the background positive ions), which
removes the origin dependence [21]. While at first glance it
seems unusual that an invariant of a phase of matter could
have a dependence on a choice of origin, we explain it
further in subsequent sections.

A. Relation to prior work

Our work is closely related to several works over the past
decade that also study polarization and its physical con-
sequences but all in the context of Chern number C = 0.
Responses associated to the discrete shift have also been
explored in microscopic models in recent works [33,36,37]
and in the context of topological field theory [17,18,38],
although the origin dependence of the discrete shift has not
been discussed in prior work.

References [19,39] discuss a quantized charge polariza-
tion in free fermion crystalline insulators with different
point group symmetries, assuming zero Chern number.

Reference [20] showed how, ignoring rotational sym-
metry, polarization is a “nonquantized” topological response
and can be defined for zero Chern number systems in an
intrinsically many-body fashion in terms of the momentum
of the ground state in the presence of magnetic flux.
Reference [40] earlier studied the momentum of magnetic
flux and mentioned its quantization by rotational sym-
metries. We note that the definition of the magnetic trans-
lation operator in a magnetic field, which is used to compute
the momentum, has a number of ambiguities that were not
fully considered in these previous works.

References [19,20] both asserted that the polarization is
not well defined in the presence of nonzero Chern number,
which disagrees with our results in the case where we have
both translational and rotational symmetry.

Reference [37] defines the polarization for systems with
C = 0 and zero magnetic field via Wannier representation
theory, and characterizes it in terms of a fractional charge
bound to lattice defects with nontrivial Burgers vector.
Reference [41] also finds that lattice dislocations can have
fractionally quantized charges in a rotationally symmetric
system; here it appears that C =0 is being implicitly
assumed. We emphasize that our definition of fractional
charge of the lattice defects differs from the definition
presented in Refs. [37.,41].

B. Organization of paper

The rest of the paper is organized as follows. In Sec. II
we summarize our main results. In Sec. III we review some
basic properties of lattice defects. In Secs. IV and V we

present detailed results for &, and ﬁo, respectively, on the
square lattice, highlighting the various subtleties that arise
in matching the field theory to numerics. Section VI does
the same for M = 2, 3, 6. In Sec. VII we discuss the origin

dependence of &, @0 from a field theory perspective. We
then conclude and discuss future directions.

II. OVERVIEW OF MAIN RESULTS

We consider a gapped phase of matter with the symmetry
group

G=U(1)x, (72 x Z,], (1)

where Z? denotes magnetic lattice translations and Z,, for
M =2, 3, 4, 6 denotes point group rotations [42]. The
symbol x, implies that the magnetic translation operators,
generated by T, Ty, obey the algebra 75T T, Ty = ™,
where NV is the total fermion number. The tilde indicates
that the definition of the operator involves a U(1) gauge
transformation.

The charge conservation and translation symmetries
allow us to define a charge per unit cell v. Each unit cell
can be divided into M subcells with equal flux ¢g,,. The
total flux per unit cell is then ¢p = M ¢, Note that for our
purposes, depending on the microscopic model we may
need to specify the flux within even smaller subregions of
the unit cell. Therefore we assume that the 2D system is
embedded in a continuum, and that the magnetic field B is
specified at each continuum point. This allows us to specify
¢, P, exactly as real numbers, even though the symmetry
only requires us to define ¢ mod 2z. We comment further
on this in Sec. IV.

Let C be the Chern number of the system. We then define
the integer:

¢

k=v-C o (2)
Kk is a Z topological invariant for the system if ¢ is known
exactly (and not just modulo 27). Fixing C and ¢, if the
charge per unit cell increases by an integer [, then
k — k + [. For further intuition about x and a heuristic

derivation of Eq. (2), see Appendix A 1d.
For a given high symmetry point o of the lattice unit cell,
we will see that one can define a set of topological

invariants {&,,%,}. The transformation of {&,.%,}
under a change of o is fully determined if o is preserved
by a Z,, rotation symmetry group. Therefore, it is sufficient
to specify {S,, 97’0} for a single such o.

A subtle point is that the definition of the invariants
requires a choice of operators that represent the symmetry
group elements. In this work, we take C’M,o to be a
“magnetic” rotation operator about o (a spatial rotation
combined with a gauge transformation), such that
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(Cyo)™ =1. If we change this choice by Cy, —
Cr1.oe@/MiN for some real number y, then the invariant
&, also transforms, &, = &, + yC. Nevertheless, we will
see that there are canonical choices for Cy, that can
be made.

We caution that the vector @0 we refer to throughout the
text is different from the standard charge polarization vector

150, which for zero Chern number satisfies j = atﬁo, where
j is the induced current. We show in Appendix B that

(g)o,x’ ‘@o,y) = (Po,yv _Po,x) = ﬁo X Z. (3)

-
However, since &, appears most naturally in our theory,

we work in terms of &, throughout and refer to it as
the polarization, recognizing this as a slight abuse of
terminology.

A. Warm-up: C, symmetric lattice

We first illustrate our main results for the square lattice.
A representative unit cell with high symmetry points & (unit
cell center), f (unit cell vertices), y; (edge centers) is shown
in Fig. 2. The points y4, y, are not translation equivalent but
are related by rotations about a. a, f#,y refer to maximal
Wyckoff position (MWPs), which are collections of points
related by lattice symmetries; the precise definition of a
MWP is given in Appendix A. a and f have an order 4 site
symmetry group generated by the magnetic rotation oper-
ators Cyq, 6'4,,, (which also include a gauge transforma-
tion), with (i‘ia = Cﬁ‘ﬁ = 1. The point y has an order 2 site
symmetry group generated by the operator C‘z,y, with
C%.y = 1. We can pick any of these points as our origin o.

First we define the invariants &, @O for each possible
HSP o and list their properties; thereafter, we explain how
to use them to characterize the topological phase of the
given system.

Suppose o = a or p. Then, &, is defined mod 4 and
can take one of four possible values for a fixed Chern
number C. Next, suppose o0 = y, which is a C, symmetric

v Bo
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| . - ® iy e :y @
®) é_'x @) 70} ..... L_,x ® g/_w ® g_‘x on
o ‘e® : @
e © e o 5} ® © é ®
02 C4 CS CG

FIG. 2. Maximal Wyckoff positions for C,, C;, C4, and Cg
symmetries (colored circles). x marks the unit cell center, which
we denote as a. The high symmetry points f; and y; each belong
to a single maximal Wyckoff position (f or y), but are all
inequivalent under lattice translations. The dotted lines show a
possible division of the unit cell into M subcells.

point. Then &, is only defined mod 2. In all cases, we have
the constraint [33]

C
S8, mod 1 = 3 mod 1. (4)
We next turn to @0. For 0 = a, p,
P, €4(0,0) 11 (5)
0 ) ) 2 L) 2 )
up to integer vectors. We write

Po=22(1,1) (6)

oSl

in this case; 2, is an integer defined mod 2. For o = 7,
there are four possible choices:

sefoo (10 02) 0} 0

up to integer vectors.
Sos P, for a C; symmetric point, together with «,
determines &, 2, for all other o’. For example,

{Sp. Pp.k} ={Sa +2P, -k, P+ .k} (8)

If we only know &, 9’7, k, we can determine 9750, and 5’/3
fully, but can only determine §, and &4 mod 2 and not
mod 4. The relevant formulas are given in Table I. Thus, to

fully specify &, @0 for each high symmetry point in the
unit cell, we need to determine them for some o with the
largest possible site symmetry group.

In Fig. 1, we show colored Hofstadter butterflies for two
different origins a, f# extracted for the square lattice Hofstadter
model of spinless fermions. We find that {&s, . P, P, }
follow the empirical equations Egs. (41), (42), (52), and (53),
respectively. In this figure, # corresponds to a site and a to a
plaquette center, where there is no site.

To distinguish two phases of matter based on &, ﬁo
(assuming C, « and all other invariants are equal), we first
fix a common origin o (which must be a C4 symmetric

point) and find &, .@0 for the two systems. If their values
are not equal, the two systems cannot be adiabatically
connected to each other in a symmetry-preserving manner.
It is important to note that comparing the crystalline
topological invariants of two phases is only meaningful
after fixing a common origin.

B. Basic properties and classification for {é’o,ﬁo}

We now generalize the above discussion to the case with
M =2,3,4,6[43]. In Table II we define the 2 x 2 matrices
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TABLEI Transformation of &, and @0 under 0 = 0+ (v,,vy),
which shifts the origin from one Cj; symmetric point to another

C); symmetric point. Note that &', and 9’0 are only defined up to
equivalences as described in the main text. For M = 4 we have

taken the unique nontrivial choice ¥ = (1,1).

M Sot7 Py

2 6’0—45-@0+4K(v§+v§+vw},) é’o—l—( VK, V,K)
4 S 2P, -« P+ (- %,2)
3 So = 30,P, = 3k(v2 + v} + v,v,) P+ (—v,k, v,K)
6 S, 0

U(2z/M), corresponding to elementary 2z/M rotations
around an origin o with M-fold rotational symmetry. These
describe the action of the rotation operator Cy, , on space.
As above, we fix (Cy )Y = +1.

Then for any given o which is fixed under an order-M
rotation, {&,, @0} have a Z,; x K, classification, where
Ky={2,x2,,75,7,,7,} for M =2, 3, 4, 6. A deri-
vation is given in Appendix A. More specifically, &, is an
integer or half-integer defined modulo M, and it satisfies
Eq. (4). 5’0 is a two-component vector with the following
quantization condition and equivalence relation:

[1-UQr/M)P, € 72,
Py~ P+ AN, AeZ2 (9)

For fourfold and sixfold point groups, it is possible for
the HSP o to only be invariant under a smaller M’-fold
rotation. For example, we can have M’ = 2 when M = 4, or
M’ = 2,3 when M = 6. In these cases, the possible values

of {S,, P,} have a Zy x K,y classification. The relations
defining them are as above, with M replaced by M.

It will be convenient to parametrize &, in the following
way:

%(ﬁ ﬁov) M =

- @ 1 s M/:4

@0: 02( ) (10)
Por(1,2) M =3
0 M =

TABLE II. Elementary rotation matrices U(2z/M), for the
coordinate basis shown in Fig. 2.

M 2 3 4 6

T EA)E GG

Here M’ is the maximal integer such that o is a fixed
point under rotations of order M’. P, can take any integer
value according to the K,y classification. For example,
when M’ = 2, there are four inequivalent choices for Z,:
2,€{(0,0),(1/2,0),(0,1/2),(1/2,1/2)}. When M’ =
there are three inequivalent choices: 2, € {(0,0), (1/3,
2/3),(2/3,1/3)}. This is derived in Appendix A 3 a.
Next we discuss the origin dependence of &, ;. If
we shift 0 - o' =0+ (v,,v,), then we can determine
{Sy. Py} from {S,, P} and k, as specified in Table 1.
Note that (v,, vy) can be fractions of a lattice unit. For
{Sy» @0,} to be fully specified in terms of {S,, 550}, the
minimal rotation angle which preserves o' must be a
multiple of the minimal rotation angle which preserves o.
In other words, the site symmetry group of o’ is isomorphic
to a subgroup of the site symmetry group of o. For example,
if o and o' have site symmetry groups Z, and Z,,

respectively, then {S, ﬁo«} can be determined using
the M = 2 entry of Table I.
Thus, in order to obtain a complete specification for each

high symmetry point, we need to know {&,, @0} for at
least one o which is invariant under an M-fold rotation.

Otherwise we will not be able to fully recover {S§, ﬁo,}

for each o’. Note, in particular, that the dependence of é’o
on o is completely determined by k, and the dependence

of &, on o is completely determined by 530 and «.
Nevertheless, differences

AS = S,(4)
AP = P ()

- (5)0(12)7
_@0(/12) (11)

are independent of o. Here A is some tuning parameter in
the Hamiltonian, H[4], which keeps the invariant « fixed
and preserves the crystalline symmetry. This can be done,
for example, by fixing {v, ¢, }. The reason we need to fix
K is discussed in Sec. VII A.

Note that if we have a solid-state system of electrons
with some background positive charge due to ions, then the

total polarization of the system will be @’wt = @0 + é’ion‘o.
If we assume that the ions have a charge of x per unit cell,

then the origin dependence cancels and ﬁtot becomes
origin independent. In realistic systems, the excess charge
per unit cell v — x will be neutralized by a metallic gate,
which we would ignore to compute the total polarization.

As another example, if we take M = 3, we have three
maximal Wyckoff positions invariant under threefold rota-
tion symmetry: a, 3, and y, with f = a+ (1/3,1/3) and
y =a+ (—1/3,2/3) (see Fig. 2). Then,

{5/},@/},1(‘} ={8, = Py —x, Py — K.k},
{8, Pk} ={Sut+ Po—k. Py + .k} (12)
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TABLE IIL

General equations for charge response (including dislocation and disclination charge), angular momentum, and linear

momentum. The last column explains the different special points that arise in each calculation.

od

Charge response

Angular momentum

Linear momentum

1D polarization

QW:C 2;/-0+ng0+‘§)0'5()+1/(1(+"- *) mod 1

I,(m) = CT”'Z + Som+ K(C,L) mod M
piy(m) =—=P, m+ K, mod 1

~Porx =L, +L,P,, + K modl

o is origin of loop used to measure

irreg,0,Q.,b
¢ Burgers vector b,

0 is rotation center

o is determined by the “gauge origin”
o through Eq. (61)

O is origin used in Resta’s formula,
Eq. (26); o, O must satisfy Eq. (75).

C. Extracting {6’0,5’0} from microscopic models

For a given microscopic model, we can extract {S,, %, }
in several distinct ways, as summarized in Table III. To set
up the calculations, we first need to fix a rotation operator
C‘M/,o»« , where the high symmetry point 0* is invariant under
27/ M’ rotations and M’ < M. In our examples we always
choose this operator so that (Cyy o) = +1. We also
define translation operators T, Ty corresponding to the
elementary lattice vectors x, y, which obey the magnetic
translation algebra.

Our numerical procedure is guided by a topological
response theory derived using TQFT ideas [14,17,18].
This gives a Lagrangian density in terms of background
gauge fields:

c s P .
L="ANdA+22ANdo+ 22 ANT + AN Ay
iy 4 2 2 2

l’ps ‘@x s Vg
+ S oAndo+ 22 AT +=20 A Agy + .
4z 2 2r
(13)

Here, A is a background U(1) gauge field, and is defined so
that f dA represents the full magnetic field (and not just its
deviation from some background value), @ is a background
Z,; “rotation” gauge field, which is treated as a real field

with quantized holonomies. Ayy and T are the area element
and torsion 2-form, respectively, which are constructed
using translation gauge fields. The notation is described
more fully in Appendix F.

Importantly, the coefficients of these terms are all
quantized in specific patterns and defined modulo certain
equivalence relations, which can be systematically derived
for bosonic systems using group cohomology [17]. We are
only concerned with the first four terms, which have the
coefficients C, é’o,ﬁo,K. In this paper, we carry out a
derivation of the quantization conditions on ._‘7730 in the case
of fermionic systems using a general theory of invertible
fermionic phases developed in Ref. [14] (see Appendix F of
this paper). We show that the quantization conditions on
ﬁo in invertible fermionic systems (i.e., without fraction-
alized excitations) are the same as for invertible bosonic

systems, in contrast to the Chern number and discrete
shift [33].

1 { 50,@0} from fractional charge of lattice
disclinations and dislocations

Given the magnetic rotation operator C, .- about a high
symmetry point o* and translation operators 7T, Ty, and the
Hamiltonian for the clean system with the full crystalline
symmetry H .., one can define a Hamiltonian in the
presence of a lattice disclination or dislocation H yf... This
is done through a cut-and-glue procedure described in
Appendix C. H g is uniquely defined up to local
operators at the core of the defect. In our numerics we
take Hay to be a free fermion Hofstadter model, usually
with nearest-neighbor hopping terms, but our methods
conceptually apply more generally, as we discuss in
Secs. IV and VI. In Appendix H, we demonstrate that
the dislocation charge calculation generalizes naturally to
Hamiltonians with next-nearest-neighbor hopping.

A lattice disclination has a nonzero disclination angle €

(Frank angle —Q), and Z;O is the Burgers vector. Here, the
subscript o means that the Burgers vector is measured by
the holonomy of a loop encircling the defect, which starts at
the point o. Note that o and 0* need not be equal in general.
As we explain in Sec. III, for a disclination with Q # 0, the

value of I;O as defined above depends on o. However, for a

lattice dislocation, which has Q = 0, the value of 1;0 1s
independent of o.

We can compute the fractional charge in the ground state,
Ow mod 1, in a large region W surrounding a lattice
disclination or dislocation. We require that the boundaries
of the region W align with the boundaries of the unit cell ©.
The linear size of W must be much larger than the
correlation length. We first define the charge in a region W:

Ow = ZWt(i)Qi,

iew

(14)

where the weight wt(i) = 1if i is in the interior of W, while
if i lies on the boundary oW, 2zwt(i) is the angle subtended
by oW in the interior of W at i. Q; is the charge on site i in
the ground state of H g.q- An example is shown in Fig. 6.
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Using Eq. (13) along with Eq. (2), we then find

) Q - -
QW:C2—Z+6’O%+(@O-bO+KnW.O mod 1 (15)

oD Q > >
Yo 4 § =+ Py -by+vny, mod 1. (16)

=C
2 2

@y, is the total flux through the region W. ny,, is the
number of unit cells in W, and may be fractional. @y, has
two contributions, @y, = ¢ny , + 6@y ,. Here, ¢ny , is
the reference background flux within W. o6®y, , is the
excess magnetic flux in the region W relative to this
reference. The precise microscopic definitions of 6@y,
and ny , are quite subtle and nontrivial and explained in
detail in Secs. IV-VL

Importantly, 6@y, and ny, in general depend on the
position of o relative to the chosen unit cell ©.

Nevertheless, the final results for &, and ﬁo are indepen-
dent of ®. This is explained using the trimming method
developed in Appendix D.

Naively it may seem that the coefficients in Eq. (15)
should also depend on o*. One reason for our notation is
that Eq. (15) comes from a TQFT which is only sensitive
to 0. But even in microscopic calculations, we find that

neither &, nor 530 actually depends on o*. This is easily

seen for 5’0, which can be defined using pure dislocations,
for which Q = 0 and o* does not appear. To show that &', is
independent of o*, we give a theoretical argument when
C = 0, in Appendix B 3. We also have extensive numerical
evidence for this when C # 0.

The above discussion implies that we can consider any

defect Hamiltonian, and extract &, and 5’0 (which only
depend on o) by suitably defining 6@y, , and ny , along
with the appropriate Burgers vector. To simplify the
disclination charge calculation of &, we often choose
0 = o*, but this is not a requirement of the theory.

2. 8, from angular momentum

Alternatively, we can examine the action of rotations
and translations on the ground state in order to extract an
angular momentum or linear momentum. These dual
responses are a valuable consistency check on the value
of &, obtained from the above charge response.
Importantly, to compare the values of discrete shift from
the disclination charge and angular momentum calcula-
tions, we need to set o = o* in both cases.

Let |¥(m)) be the ground state of the clean translation-
ally invariant system on a torus in the presence of m flux
quanta, m being an integer. Then,

Cur o) = 27/ |W), (17)

where recall that M’ is the largest integer such that o is
invariant under 27/ M’ rotations centered at 0. We find that
the angular momentum /, obeys the formula

2
I(m) = Som + C% +K(C.L) mod M', (18)

where K(C, L) is a constant independent of m, depending
on the system size L and the Chern number C. The
numerical data of [, are shown in Fig. 18. For |¥) to be
an eigenstate of C M’ .o» appropriate global holonomies of the
background gauge field and certain commensurate system
sizes must be chosen, as discussed in Ref. [33]. We note
that one can also recover &, by locally inserting flux and
performing partial rotations [33].

3. @0 Jrom linear momentum

The topological field theory, Eq. (13), predicts that the
polarization 5’0 also specifies the linear momentum of
U(1) flux [17]. We have found empirically that 5’0 can be
extracted by studying expectation values of an approximate
translation operator, as we briefly summarize below. See
Sec. V for additional details.

Suppose we wish to measure £, , on the square lattice.
We consider a state on a clean torus with m = (¢/2x)L,L,
total flux quanta, where L,, L, are the number of unit cells
in the x and y directions. While the infinite plane possesses
an infinite magnetic translation symmetry along the two
directions, on the torus with magnetic flux it is not possible
to fully preserve translation symmetry along y unless
m/L, = (¢/2x)L, is an integer. For general m, on the
torus we can insert the flux using a Landau-like gauge that
is almost translation symmetric along y, except for a small
strip which forms a cycle along y.

We then define an approximate translation operator:

Ty = Tyel 20716 (19)

The expectation value of Ty defines the linear momentum
P,y in the y direction:

(P(m)|Ty ¥ (m)) = e7r+2pis, (20)

In our numerics we define A using Eq. (59). In particular,
we find empirically that there exist special choices of A
for which p, , determines the quantized polarization &, ,
throughout the Hofstadter butterfly, as follows.

We find that for the Hofstadter model, for appropriately
chosen /A, the amplitude ¢~7(™) in general oscillates as a
function of m and it vanishes for certain special values
of m. Whenever the amplitude is nonzero, the linear
momentum is found to obey the following relation:

Piy(m) =-P, ;m+ K, mod 1, (21)
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where K is piecewise constant in m (it can jump at the
values of m where the amplitude vanishes). The numerical
data of p,, are shown in Fig. 18.

The origin o is determined as follows. We first define a
point O, referred to as the “gauge origin” for the vector
potential, which has the property that the holonomy of the
vector potential is trivial along the x and y cycles of the
torus that meet at 0 [see Eq. (56)]. Then the origin o used to
obtain @0 is expressed in terms of 0; see Eq. (61).

In defining Ty we in principle have the freedom to
combine it with an arbitrary global U(1) rotation:

Ty — Tye?, (22)
which corresponds to a shift 4; - 4; + y for each j. Once o
is fixed, then y is fixed to be an integer multiple of ¢ by
fixing the flux through a dislocation created using Ty, as
explained in Sec. V and Appendix C. Thus we only need to
consider the case where

2rm

= = — s 23
% ¢/UX LxLy U)C ( )
for some integer v,. Under such a shift in Ty,
Piy = Pay + mu,v
Cm
= pg,y + muv, TL} + k. (24)

If we consider only the term linear in m, this implies that
‘@o_y g ‘@0'}’ - KU.X - @0,}’ l’l’lOd 1. (25)

Note that one could consider the case where v, is
fractional but quantized, and this would effectively corre-
spond to a shift of the HSP o by (v,,0) to a different HSP,
as we explain in Sec. V.

Analogous equations hold for &, ,, if we instead
start with a Landau-like gauge along x. Furthermore,
our procedure straightforwardly generalizes to rotational
symmetries of order M = 2, 3, 4, 6; we discuss this in
Sec. VID.

We have also measured .@O by studying the expectation
values of a partial translation operator 7|5, which is Ty
restricted to some suitably chosen region D. This method
also allows us to extract a quantized ﬁ’o consistent with
dislocation charge, for a suitable choice of 0 and of the

region D, when M is even. We discuss this further in
Secs. Vand VID.

4. 530 Jrom dimensional reduction and 1D polarization

One can also define a 1D polarization along the I
direction by treating the system as an effectively 1D system

along 7. Let us first consider / = % Then we can calculate
the 1D polarization using Resta’s formula [25]:

1 i(2n j 7
Po. = 5-arg(le! ™1 20w, (26)

The above expression depends on a choice of origin O,
for j,, which we make explicit, i.e., j, € {-O,,1-0,,
2-0,,....,L,—1-0,}. Empirically, we find that

Ck
_P(jyx = Td’L\ =+ Lygjo.y + K/ mod 1, (27)
T

where k := (L,/2) — 6, + O,. Knowing the value of k is
not crucial in extracting &, ,.. This result agrees with a field
theory prediction which we derive in Sec. V D.

Similar to the linear momentum calculation, we extract a

value of j’o that is consistent with other approaches only
when o, O satisfy a certain relation; see Eq. (75). This
calculation is independent of the specific details of the
gauge, as long as @, is linear in ¢. The full discussion is
contained in Sec. V D.

III. BASIC PROPERTIES OF LATTICE DEFECTS

Before discussing the numerical calculations in detail,
we review some useful background material on lattice
defects and their properties. A more extensive background
review is found in Appendix A. The quantum mechanical
details of constructing a defect Hamiltonian H .., through
a cut-and-glue procedure are described in detail for dis-
location defects in Appendix C.

We illustrate the procedure for constructing a dislocation
defect in Fig. 3. First we make a cut on an infinite clean
lattice and define the left (L) and right (R) sides of the cut.
We replace all bonds that cross the cut so that a point L;,
originally connected to some point R;, is now connected to
R
Burgers vector, which we define below.

We illustrate the construction of a disclination defect in
Fig. 4. We draw two rays [, [, which meet at the point 0%,
such that /, is obtained from /; by rotating about o* through
the angle Q > 0. Now we delete all points within the wedge
enclosed by /; and /,, except those that lie exactly on /;. We
then reconnect the bonds so that a link #; j (where i; lies on
[;) is replaced by a link i,j, where j is obtained from j
upon rotating by  about o*.

The disclination angle Q can be directly measured
from the defect lattice alone. It is the angle by which a
unit vector is rotated upon being parallel transported around
the defect. “Pure” dislocation defects are those with zero
disclination angle. They are characterized by a dislocation

.. Here b" is an integer vector related to the dislocation

Burgers vector 1; which is defined as follows. Starting
from a point o, consider a sequence of lattice translations
which encircles the defect (and no other defects) in
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(a) (b)

(©) (d

FIG. 3. Dislocation construction on a square lattice. (a) Drawing
a cut in the y direction. (b) Conjugate hoppings. (c) Doing local
moves. (d) Reorganizing.

counterclockwise fashion, and ends at o. For a dislocation,
the sum of these translations will not equal zero, but instead

some integer vector, which we define as b. The above
dislocation construction gives two dislocations at the two

ends of the cut, with b =4b". For a pure dislocation,
the shape of the loop and the choice of o do not affect the

value of b.

The Burgers vector of a disclination with € # 0 can be
measured similarly; note that o* and o need not be related.
Importantly, the Burgers vector when Q # 0 sensitively

(a) (b)

(©)

FIG. 4. Cut-and-glue procedure of constructing a disclination.
(a) Original lattice on an open plane. (b) Cutting. (c) Gluing; this
creates new plaquettes ¢;. (d) Reorganizing.

(b)

. 0"
o
L

b e [(0,-1)] be[(—1,0)]

FIG. 5. (a) A pure disclination with Q = (27/3) created using
C; - via a cut-and-glue construction. The disclination core o* is
marked as x. We can define a “frame,” i.e., an x, y basis at every
point on the defect lattice (they are plotted at the four plaquette
centers near the disclination). The frame rotates by —27z/3 upon
crossing the green dotted branch cut which passes through o*
and o. We calculate I_;O =¥, + U, + U3 + Uy for different o.
(b) o at a plaquette center. {v,, U,, V3, U4} = {(-1,1), (—=1,0),
(0,-1),(1,=1)}. (c) o at one of the sites. {U, vy, U3, U4} =
{(-=2/3,1/3),(-1/3,-1/3),(1/3,-2/3),(2/3,-1/3)}.(d) o at
the other site. {vy,%,, 03,04} = {(=1/3,2/3),(=2/3,1/3),
(=1/3,-1/3),(1/3,-2/3)}.

depends on the choice of 0, assuming o* is fixed. If we shift
0 — 0+ v, then

boss = by + [1 = U(Q)]7. (28)

This is derived in Appendix A. As an illustration, Fig. 5
shows the same Q = (27/3) disclination but with different
Burgers vectors depending on the choice of o. Since

-

choosing ¥ = A to be an integer vector should give us
an equivalent characterization of the defect, we have the
equivalence:

by ~ b, + [1 — U(Q)]A. (29)

Thus, if 7 is fractional, Eo+17 will not be equivalent to 1;0.
If Q= (2zk/M') where k, M' are coprime, the distinct
classes of Burgers vectors form a group K,, as defined
in Sec. IL.

Note that our construction ensures the following relation:

-

by = (0,0), (30)
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which can be verified by constructing the various classes of
disclinations for M = 2, 3, 4, 6. Setting o = o* thus ensures
that the defect has trivial Burgers vector. This is a convenient
choice to make in the following sections. Note that we

sometimes also use the notation b, € [(0,0)] to indicate that

-

b, is in the same equivalence class of (0, 0).

IV. CALCULATION OF &, ON THE
SQUARE LATTICE

This section and the next are devoted to numerically
checking the predictions of the field theory for the square
lattice. This section reviews and generalizes the main
results from Ref. [33]. Analogous calculations for
M =2, 3, 6 are discussed in Sec. VL.

We fix our origin at a HSP o which has fourfold
rotational symmetry. There are two choices, @ and f, as
shown in Fig. 2. a denotes the center of the unit cell, while
f denotes a corner. For calculations on the simplest square
lattice, we pick the unit cell shown in Fig. 6(c), where a
corresponds to a plaquette center and f corresponds to a
site. Note that the formulas for o = y are contained in the
discussion for C, symmetric systems given in Sec. VL.

For either choice of o, we have two topological invariants,
S, and @O =19%,(1,1). &, is defined mod 4 and satisfies
8o = (C/2) mod 1. P, is an integer defined mod 2.

We extract &, in two physically different ways, through
the disclination charge and the angular momentum of flux.
The exact choice of unit cell does not affect the final result;
we show this in Appendix D.

A. Symmetry operators

First we define the magnetic rotation operator 6'4,0*
which is used to create a disclination centered at o* = a, f:

64’0* = 64,0* ei Zj Ajc;cj . (3 1 )

We require that a system with a pure disclination at o*
constructed using 6’4’0* has flux ¢ in each regular unit cell.
This condition forces Ci,/; = +1 [33]. When o* =, all
unit cells are regular, and then this condition in fact
completely fixes 4;; this is an example where there is a
unique canonical choice for the rotation operator 6’4‘0*
(once the Hamiltonian is fixed). For consistency in the
definitions of our operators, we demand that C}, = +1
as well. '

We also define translation operators T, and Ty which
obey the magnetic translation algebra:

Ty = 25, (32)

The gauge transformations used to define the translation
operators are discussed in Sec. V.

B. Construction of clean Hamiltonian H .,

In our numerical work we consider the Hofstadter model,
which has a spinless free fermion Hamiltonian of the form

Hclea.n = —ZZ‘UCTCJ + H.C., (33)
(ij)

where the nearest-neighbor hopping terms 7;; = re'4n
depend on a background vector potential Age,,, Which
assigns flux ¢ per unit cell. The parameters in H,, are
discussed in detail in Appendix A.

Although we mainly consider nearest-neighbor hopping
in our numerics, our theoretical predictions as well as
our numerical scheme apply much more generally. For

FIG. 6. Pure disclinations with two different 0. (a) o =  and (b) o = a. The disclination core o* is marked as x. The weightings wt(i)
within a representative choice of W are marked near each site. When o = a, there is an irregular unit cell at the disclination core. (c) The

unit cell choice; black solid lines represent hoppings.
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example, we can consider arbitrary next-neighbor hop-
pings. To illustrate this, in Appendix H we give evidence
showing that invariants extracted numerically in the square
lattice Hofstadter model remain well defined upon adding
next-neighbor hopping terms. Below we also argue that our
procedure works if He,, has N-body interaction terms
for N > 2.

An important point is that we require the magnetic field
B to be defined everywhere within the unit cell. This means
that the total magnetic flux within any subregion of the unit
cell is specified as a real number. This requirement goes
beyond what is directly specified by the crystalline sym-
metry (which only demands flux ¢ mod 2z per unit cell).
But it is a physically natural requirement, since the most
general lattice models with the given symmetry have some
small amount of further neighbor hopping, between differ-
ent points within a single unit cell. In fact, specifying a
nearest-neighbor Hamiltonian with just ¢ mod 27 is ill
defined in a sense, because it does not specify how to
consistently perturb the model with further neighbor hop-
ping terms. Such a specification requires a choice of ¢ as a
real number, not just modulo 2.

C. &, from disclination charge
1. Construction of defect Hamiltonian H g.gq.

Start with a clean lattice Hamiltonian H ., which
depends on a background U(1) vector potential A,
through the variables eicen, Suppose we create a
lattice disclination (a detailed construction can be found
in Ref. [33]), and arrive at a defect Hamiltonian
H gegeei[€ 0] through a cut-and-glue procedure. Here
Agetect 18 the vector potential on the defect lattice. Note that
irregular unit cells may exist at the center of each defect.
For example, there could be a triangular unit cell at the
center of an Q = (z/2) disclination [see Fig. 6(b)], or a
triangular unit cell at the center of a square lattice
dislocation (see Fig. 7). Irregular unit cells can have
different shapes depending on the value of M.

Away from the defect, the flux in any region is fully
determined by A .., and we can ensure that the system has
flux ¢ per unit cell. However, the flux in the immediate
vicinity of the defect depends on A, as well as on the
definition of the symmetry operator which creates the
defect. In particular, if we require a specific value of flux
in the unit cells immediately adjacent to the defect, there
will be a constraint on the definition of the symmetry
operators we use.

2. Charge prediction from field theory

Having fixed H gefoe, W€ compute the charge Qyw in a
region W containing the defect. We always require that the
boundary of W coincides with the boundary of a unit cell.
This ensures that the only irregular unit cells in W are near
the center of the defect. Qy is defined by the formula

FIG. 7. Region W for a square lattice dislocation with
b= (1,0). The weightings wt(i) are labeled on each relevant
MWP. Dashed lines represent unit cell boundaries, and colored
circles represent the MWPs: a (red), # (blue), and y (green).

Qw = ZWt(i)Qi' (34)

iew

The weights wt(i) are defined in Sec. II; this definition
ensures that Qy + Qw = Qwuw When two regions W, W’
overlap only on their boundaries, as required by the
response theory. Note that the value of Qy depends on
the definition of the unit cell.

This method of measuring Qy applies to any local
gapped Hamiltonian, even if it has interaction terms. As
long as the system has a correlation length much smaller
than the linear size of W, the ambiguity in H j.g.; near the
defect core will not affect the value of Qy for sufficiently
large W.

The next issue is how to assign this charge to the
different terms in the response theory, which predicts that
for large enough W,

oDy,

Q - -
o -Fé}iz-%gzyl%—+vnwpln0d1. (35)

Qw=C

Here Q and l_;o are the disclination angle and Burgers vector
of the defect, respectively. We fix Eo = (0,0) throughout
this section, so the term with @0 does not contribute (this is
equivalent to saying that o = o*).

The parts of this equation which require special care are
0@y, and ny , [44]. We discuss how to define these below.

3. Definition of 6®y , and ny

oDy , is, intuitively, the excess flux in the region W. To
define the excess flux, we must compute the flux in W, and
compare it to some background reference flux. There are
two possibilities. If o = f, then all unit cells in W are
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regular [see Fig. 6(a)], and ny, s = 0 mod 1. Here 6@y , =0
if all unit cells have flux ¢. On the other hand, if o = a,
then there is an irregular unit cell at the disclination core
[see Fig. 6(b)].

In general, we can arrange to have at most one irregular
unit cell in the core of the defect, with some flux @i,
which is determined by our choice of rotation operators. Its
area is denoted 7njyeq o, Which can be fractional. Note that

Ny.o = Nirrego MOd 1. (36)

Then, if we choose our symmetry operators so that the
flux through each regular unit cell in H g 1S ¢, We have

5<I)W,o = ¢irreg - nirreg.o¢- (37)

Thus the value of 0@y, , depends on the value we assign
to nirreg,o.

4. Computation of Ripreg o

If o = f, there are no irregular unit cells, as discussed
above, so we simply define nj., s = 0 mod 1.If 0 = a, we
find g o :% mod 1. A heuristic argument is that the
cut-and-glue procedure for a z/2 disclination removes 1/4
of a unit cell at the disclination center; i.e., the irregular
unit cell at the disclination core consists of three subcells.
Each subcell contributes 1/4 of a full unit cell; therefore,
Nirreg.a = % mod 1. (A consistency check on this result is to
demand that the value of &, corresponding to some
physical point o be the same whether we choose the unit
cell to satisfy 0 = @ or 0 = f. If njyee s = 0 mod 1, we find
it necessary to have njpey o = % mod 1.)

We note that the previous step involves another subtlety.
Even if we know 7, ., there can be a further ambiguity in
0Dy o If njpreq o 18 an integer, then Eq. (37) is perfectly well
defined modulo 27z. However, if 1y, , = a/b is a fraction
with a, b coprime, 6@y, is not invariant under the
transformation ¢ — ¢ + 2z. To keep 6@y, invariant, we
need to pick a lift of ¢ from [0, 27) to [0, 2zb). But this is
why we insist on specifying the actual magnetic field
everywhere in the unit cell. This fixes ¢ as a real number,
not just mod 2z, and so fractions of ¢ can be defined
unambiguously.

5. Computing S,

For a z/2 disclination with b, = (0,0), Eq. (35) predicts
that

So

od
i Qw —vny,—C 2::’0 mod 1. (38)

This determines &,/4 mod 1 in terms of well-defined
quantities. Note that our procedure to define iy, and

0@y, is independent of the details of the Hamiltonian, in
particular if there are further neighbor hopping terms and
interaction terms. Therefore we expect that &, can be
robustly extracted for any H.,, with a symmetric, gapped
ground state.

D. Angular momentum of flux

We can also compute &, from the angular momentum
eigenvalues of 6’4,0* after inserting additional flux, if we
set 0 = 0*. On the torus, there are two positions on the
torus that are left invariant under a C, - rotation, o* and
o* + (L/2,L/2).1f L is odd, then the two positions are not
the same point in the unit cell. This is deemed unnatural
since we only want a single origin. Thus, we consider an
even length system on a torus, insert m total flux quanta
uniformly, and define

Cyo|®(m)) = €20 (m)). (39)

The field theory predicts that there will be a contribution to
[, which equals &m. Indeed, we numerically find that

Cm?
lo(m) :T—Fmé’o—i-K(C,L) mod 4. (40)
The numerical data are shown in Fig. 18. Additional
technical details in these calculations, in particular a
discussion of partial rotations, can be found in Ref. [33].

E. Application to Hofstadter model

Reference [33] obtained &, for the Hofstadter model,
taking o = f§ to be at a site. Here we also study the case
where o = a is at a plaquette center. The values of &,
obtained using both disclination charge and angular
momentum are consistent. In the limit of small ¢ and v,
our procedure also agrees with known results for con-

tinuum Landau levels, i.e., §, = %2 mod 4 for either o =
or o = a. The Hofstadter butterflies for &, are plotted
in Fig. 1.

We find that they obey the following empirical formulas
(recall that g is chosen to be a site). For C > 0,

C? Co C+gq
Sy() = ——(C+1)|Z2] 12 “ ) mod 4
p() =7~ (C+ )L”th > { % Jmo ,
[J/Zd<d¢42n

(41)

where the third term of Eq. (41) we sum over all p/q in the
Farey sequence of order C that satisfy (p/q) < (¢/2x) and
g odd. The value of &4 for C < 0 can be obtained from
the transformation §j(u, ) = 1 — Sy(—p. ¢p) which flips
the sign of C. & =1 for the fully filled state with
v=1,C=0.
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Similarly, we can set o = a, which is the plaquette
center. For C > 0,

Cc? Co C+gq

=—+C|=|+2 ) || mod4. (42

(S)a(¢) 2 + C \;ZHJ + pla<¢/2z \‘ Zq J Od ( )
odd ¢

The value of &, for C < 0 lobes can be obtained from the
transformation &, (u, ) = 2C — S,(—p, @), which flips
the sign of C. &, =0 when C = 0.

One can verify that &4 has period 2z in ¢, but &, has
period 87 in ¢. The physical reason is that the defect lattice
with o = a has a triangular plaquette at the disclination
core. Under ¢p — ¢ + 27, the background flux through this
triangular plaquette transforms as 3¢p/4 — 3¢ /4 + (37 /4).
Therefore Hgepo; 1S invariant under ¢ — ¢ + 8z up to
gauge transformations.

V. CALCULATION OF %, ON THE
SQUARE LATTICE

We next discuss three different ways to calculate ﬁ’o for
0 = a, f directly on the square lattice, using dislocation
charge, linear momentum, and a 1D polarization response.
(The case o = y is handled in Sec. VI.) In fact, we show that
@a, ﬁ’ﬂ can also be computed if we know &', 85 alone: see
the results in Table I, in particular Eq. (8). These results are
derived in Sec. VII and Appendix G. So in principle we can
also measure the polarization indirectly from the disclina-
tion charge and angular momentum responses. All the
calculations yield the same numerical values of @a(/})’ and
are consistent with field theory predictions.

In this section we will not require the rotation operator
574,0*, but still use the translation operators satisfying
Eq. (32). Note that in Secs. V and VI and the related
Appendixes C and E we use A to denote the entire vector
potential on a lattice without dislocation or disclination
defects, so A has the same meaning as Age,, from the
previous section. The vector potential in a system with
lattice defects is denoted as A gefeci-

A. @0 from dislocation charge

First we consider the charge bound to a single dislocation
(for an explicit construction of such a dislocation defect,
see Appendix C). We follow the procedure outlined in
Sec. IV C; similar arguments can be applied in this case.

For a defect with zero disclination angle and dislocation
Burgers vector b= (0, £1) or (£1,0), there is a triangular
plaquette at the dislocation, and all other plaquettes within a
large radius are ensured to be regular through our con-
struction. Suppose the triangular plaquette has flux ¢y, . If
the translation operator used to construct the dislocation is

S A DY Ay
Ty—Tye A

we find that when b = (0, 1),

¢irreg = Ajo,joer - lj(p (43)

where j, is a specific point in the irregular unit cell at the
dislocation (see Appendix C 2 for a proof). Thus, the value
Of iy 18 set by the combined choice of A, 4, and jj. In
particular, we show in Appendix C 2 that for v, € Z, the
following transformations all take @iy = Pirreg + Py
(1) taking jo — jo + (v,, 0) keeping A, A fixed; (2) taking
Aj — Aj — ¢, for each j, keeping A and j, fixed. (Here we
can even take v, € R.) In this section it turns out that fixing
a precise value of ¢y, is not essential, but the above
discussion is also useful in Sec. V C.

The field theory predicts that the total charge in a region
W surrounding the dislocation is

oD P
W.o + -2 + (k + nirreg,o)l/ mod 1, (44)

Ow=C—, 2

where we write ny , = k + Ry, , fOr some integer k. Here
Nireg o 18 the effective number of unit cells we assign to the
irregular unit cell at the dislocation. We use the subscript o
In Ny, o because the value assigned to it will turn out to be
different for different high symmetry points o.

Recall from the general discussion in Sec. IV C that if all
regular unit cells have flux ¢,

5q)W,0 = ¢irreg - ¢nirreg,o’

where ¢njqe,, is the background flux assigned to the
dislocation plaquette.

Next we determine 7, - First we consider o = f§ (see
Fig. 7). The choice of njy, 4 should satisfy a few sanity
checks. First, it should lead to an integer-valued ﬁ/j.
Numerically, only 7., s =0 or 1/2 give integer values
of ﬁﬁ; this can also be seen directly from Eq. (44) by
looking at the limit of zero Chern number and v € Z.

Second, the system with the same Hamiltonian but
with all orbitals filled has zero Chern number. It can be
adiabatically connected to one in which the points in the a,
p, v maximal Wyckoff positions have integer charge N,
Ny, N, respectively. In this situation, the polarization can
also be defined using the dipole moment within each
subcell, and it is possible to show, independent of any
dislocation charge calculation, that

Py =Ng+ N, mod 2, (45)
Py =N, + N, mod 2. (46)

See Appendix B for the details. Now we show that Eq. (44)
only agrees with this result if we set nj, 3 = %
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To derive this explicitly, consider Fig. 7. We choose W
so that oW overlaps with S sites. Using our weighting
procedure, we get

Qw = TN, +7.5N; + 155N, (47)

while from the field theory, if we set o = f3,

P
“f mod 1, (48)

QW = K(7 + nirreg,ﬂ) + D)

where x = N, + Ny + 2N,. Using Eq. (46) in the above
equations, and simplifying, we obtain 7ye, 3= 1/2mod 1.
The above calculation was done in a limit with Chern
number zero. We now assume that 7y, 4 = 1/2 even when
C # 0. This is reasonable because in the actual model under
study, changing the Chern number should not change
Nireg p- After this step, we get the following prediction:

P 1 5D
Ow="L+(k+=)v+Cc—"L mod 1, (49)
2 2 2

where W encloses only one dislocation, with one triangular
plaquette. Note that

¢
6(DW.[)’ = ¢irreg - 5
is completely well defined mod 2z since ¢ is specified as
a real number (see Sec. IV C4). This allows us to find
Ps mod 2 unambiguously.

Now let us discuss &,. Again consider Fig. 7. Let us use
the exact same W (i.e., the same unit cell choice), so

Qw = TN, +7.5N; + 15.5N,. (50)

However, if we choose o= a, the field theory now
predicts that

Qw = k(7 + Nirreg o) + % mod 1. (51)
In the Chern number O limit, demanding consistency with
Eq. (45) implies that njye, , = 0 mod 1.
We have thus found that n;;., , depends on whether o lies
at the corner or the center of a unit cell. The values of e, o
are tabulated in Table IV. When we consider other values of
M in Sec. VI, we again find that nj,, , must be fixed for
each o by requiring consistency with analytical results in
the limit of full filling.

B. Application to Hofstadter model

We apply Eq. (49) to the usual square lattice Hofstadter
model, choosing a at a plaquette center and f at a site as

TABLEIV. n, - forall possible high symmetry points o, for
2.0,

M = 2,3,4, 6. Points belonging to the same MWP that rotate into

each other are given the same {3, y} symbol but are distinguished

by their coordinates, measured with respect to @. M’ is the site

symmetry group at o.

Mitreg.0.b
M 0 M Mitreg.0.b=(1.0) Mitreg.0.5=(0,1)
2 a 2 0 0
25 0 : :
2 y 2 1 0
2 5 2 0 1
4 a 4 0 0
s ] !
4 72 2 : 0
4 71 2 0 %
3 a 3 0 0
3 s 3 % %
I : :
6 a 6 0 0
S 1 %
6 2 3 g 3
6 7 2 0 1
6 72 2 1 0
6 3 2 > >

before. The Hofstadter butterfly for ﬁﬂ is plotted in Fig. 1.
ﬁﬁ follows the empirical formula:

Ps(¢) = Ck mod 2. (52)

Note that ﬁﬂ has period 47 in ¢ and not 2z, because its
definition involves the quantity ¢/2. [Also, if p - ¢ + 2x
for fixed v, Eq. (52) changes by C mod 2 so a shift of 47 is
needed to leave it invariant.] We use Eq. (52), along with an
eigenvalue database [34], to generate the Hofstadter butter-
fly for 4 in Fig. 1. We have only plotted it for 0 < ¢ < 2.
The values for 27z < ¢ < 4z can be obtained either using
Eq. (52) or by reflecting the butterfly about ¢p = 2x.

Similarly, with a at a plaquette center, and njyeg , = 0,
we find that

Py = (C+ 1)k mod 2. (53)

P, has period 27z in ¢, and is also plotted in Fig. 1.
Shifting ¢ — ¢ + 2z for fixed v changes Eq. (53) by
C(C+ 1) mod 2, but as C(C + 1) is even, this change is
trivial.
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Finally, note that there is a general relation between 2,
and @/3 which goes beyond just the Hofstadter model:

Py — Py =k mod 2. (54)

Equation (54) can be proven from field theory; we do this
in Sec. VIL

C. #, from linear momentum

On a closed manifold, the field theory term (5’0 /2x) -
A AT can be rewritten as (5’0/277) ‘R AF, plus some
additional terms, where F' is the total magnetic flux, and
R = (X.Y) is the translation gauge field mentioned below
Eq. (13). Consider the linear momentum in, say, the y
direction associated to a state with total flux 2zm = ¢L,L,.
The linear momentum of the inserted flux, which is the
charge under the translation gauge field, is predicted to
receive a contribution,

L _ Poy
8Y, 2=

1 —
/F =Py ym = Ee@om mod 1, (55)

from this term. The mod 1 normalization is due to the
convention chosen to define Y. We now verify this
prediction from numerical calculations on the Hofstadter
model for o = a, f by studying the system on a torus.

On a torus with magnetic flux 2zm = ¢L,L,, a trans-
lation by y cannot be an exact symmetry of the Hamiltonian
in general, even after applying a gauge transformation. This
is because, for a fixed x, the holonomy 39 A.dx along a
noncontractible cycle of the torus changes by 2zm/L,
under 7. If (m/L,) € Z, Ty is an exact symmetry because
the change in f A.dx can be undone by a large gauge
transformation. For other values of m, Ty needs to be
accompanied by an operator F,,, ; which adiabatically
inserts flux 2zm/L, through the cyclé running along x, to
make it an exact symmetry. In our work we do not use the
exact translation operator because it is difficult to numeri-
cally implement F 5,1, -

If the value of |m| mod L, is of order 1, the inserted flux
from Fyp)1, 18 O(1/L,), which vanishes in the thermo-
dynamic limit; therefore, Ty~T,F,,,,, is a good
approximation [20]. For general values of M, we find that
the expectation value of Ty oscillates between 0 and 1 in
amplitude as a function of m (indicating the closeness of the
approximation).

Apart from the flux in each unit cell, the vector potential
has another gauge-invariant quantity called the gauge origin
0, which we define below. The operator Ty also requires us
to fix a gauge transformation {4;}. The main result of this
section is that for a fixed system size and a fixed choice of

o, we find only one choice of 0 and A for which ?/?DO is

quantized throughout the Hofstadter model. And remark-

ably, this value of 9, agrees with results from the
dislocation charge calculation.

We find that we can similarly measure 5’0 using the
expectation value of a partial translation operator Ty| D
(again not an exact symmetry), which is Ty restricted to an
appropriate region D. Further details of the linear momen-
tum calculations are found in Appendix E.

1. Definition of vector potential

We assume, as in the charge calculation, that the
holonomies of the vector potential A can be specified
along any loop in the continuum in which the lattice is
embedded. We define a gauge-invariant point, the gauge
origin 6 = (0,, 0,), such that the holonomy of A is zero on
the x and y cycles of the torus that intersect 0. Note that 6
need not correspond to a lattice site in general. Vector
potentials with different values of 0 are not gauge equiv-
alent, and are distinguished in the treatment below.

To measure @o,y in our numerics, we insert a total of m
flux quanta on the torus using a Landau-like gauge along y.
One form of this gauge, shown in Fig. 8, is

A =" T 5.
JJt+x L

27(x—0,)m
L.L,

Jj<€{0,....,L . —1},

A

)

B+ =

jy€{0,....L,—1}.
(56)

J=UxJy)s

P i f
<<
! S S
<
A 1 1t L
-
bt 3
4 3 3 s
0,0) i ﬁ B Oy
Oz
o, + &
L,
FIG. 8. Gauge choices defined in Eq. (56) on an L, x L,

torus. Each blue arrow represents a vector potential A;; =
(2z/L.Ly). Each red arrow represents a vector potential
A;; = (27/Ly). 6, and o, mark the distance between (0,0)
and the cycle with trivial holonomy in the x and y directions,
respectively. The blue region is the partial translation region D
which is centered around 6, + (L,/2).
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Here, m = (¢/2n)L,L, is the total number of flux quanta
through the torus. o can be determined from 0, as we
explain in the subsequent section.

To measure &, ,, we define a similar gauge, but instead
along x.

2. Approximate translation operator

Next we define the operator
7 40 cle;
Ty = Tye 20456, (57)

A; is a function of m. If Ty were an exact symmetry, there

would be a set {4;} satisfying
Airsjis =Aij—Ai+ 4 (58)

everywhere on the torus. But as mentioned above, it is not
possible to have exact symmetry when m/L, & Z. Thus we
can at best ensure that this relation holds everywhere except
for a small strip that we require to be centered at a fixed x.
Then the freedom in choosing 4 is completely fixed up to
(1) an overall shift 1; — 4; + y for each j, (ii) the geometry
of the strip, including the position of its center and its
thickness, and (iii) the choice of 4 for points that lie within
the strip (if any). We discuss these further below.
In our numerics we use the gauge

>

iy —(zm/Ly)cte; . _
yelzf (wm/Ly)cc; j. <o,

~
I
>

v yeizj(ﬂm/Ly)c;cj o> (59)

=]}

X

>

Qi

y Jx = Oy
Here j, is the x coordinate of the site j. For this Ty, Eq. (58)
is violated only on the horizontal links that touch the
line j, = 0,.

To measure £, ,, we need to express o in terms of gauge-
invariant properties of A or A. If we fix A, 4 as above, we can
define o as follows. First, we find the flux ¢, in a
dislocation plaquette created using Ty. Recall from
Sec. VA that ¢, depends on A and A as well as the
position of the dislocation, which is fixed by a point jj;
and if we shift j, by an integer vector, ¢y, can change
by multiples of ¢. For the above choices of A and A, we
thus define o so as to satisfy the following relation,
with jo . € Z:

¢irreg = ¢nirreg,o mod ¢v (60)

where 70 , Was computed in Sec. VA. In the language of
that section, our choice of o ensures that the excess flux
0Dy , in the dislocation plaquette constructed using Ty is
zero (mod ¢). Note that for an arbitrary choice of o,

there may be no solution corresponding to any high
symmetry point o. But in Appendix C we prove that for
our choice of A, 4, Eq. (60) can be solved and implies

_ L, 1
ox:0X+7x+§ mod 1. (61)

Having fixed 1;, we define the linear momentum p;, ,, as
the expectation value of Ty in the ground state |¥) with m
total flux quanta:

(P|Ty|W) = o720, (62)

e~7 is the amplitude of the expectation value. Empirically,
we find that

Piy = —Po,ym~+ K, mod 1. (63)

The term linear in m is predicted by the response theory; K,
is piecewise constant in 7 in our numerics, and can change
only when the amplitude vanishes. The numerical details
are shown in Fig. 18.

Using the above choice of 1 in the Hofstadter model, we
find that the amplitude e oscillates with m whenever
C # 0, and for a discrete set of m values it vanishes [45].
For other values of m, the magnitude is nonvanishing
and the linear momentum is well defined. As a result,
for a fixed L,, we can obtain the expected value of &, ,
throughout the Hofstadter butterfly except for a finite set of
¢ values where &, , is not determined. But for these ¢
values, we can pick some other L, and then extract &£ .
The values of &, are quantized and agree with results
from the dislocation charge measurement.

Now we discuss alternative choices of A. First there is the
freedom in shifting 1; — 4; + y for each j. As stated in
Sec. VA, taking y = ¢v, = (2zmv,/LL,) changes the
flux ¢hie, assigned to an irregular unit cell at a dislocation
by —¢v, (where v, € R). If we continue to define o using
Eq. (60), then when v, is an arbitrary real number there is
no solution for o. But if v, is quantized to O or (1/2) mod 1,
we see that o must change (in fact, we show in Appendix C
that o, - o, — v,). Hence, only discrete sets of global U(1)
transformations are allowed, and the effect of such trans-
formations is simply to change the value of o.

There is additional freedom in choosing the strip that
violates translation symmetry. The location of the center of
the strip can in principle be shifted by § € R if we define 4;
as in Eq. (E2) (see Appendix E). In the Hofstadter model,
we find empirically that in order to get any quantized result
for &, ,, throughout the butterfly, § must be fixed so that the
center of the strip coincides with 0,, as in Eq. (59), i.e.,
0 = 0. Remarkably, the quantized @0 extracted from the
above linear momentum calculation agrees fully with the
result from dislocation charge calculations.
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When C = 0 in this model, taking ¢ # 0 is equivalent to
taking 4; — A; + y for some y [46]. In this case any choice
of & will give a quantized result &y ,, but for a high
symmetry point o’ that depends on §. In Appendix E we
discuss an alternative way to understand the choice of &
using gauge-invariant quantities.

Empirically, we find that the thickness of the strip does
not matter, as long as 4; varies linearly in j, within the strip
(otherwise we do not obtain quantized results throughout
the butterfly for %, ,). We can pick the parameters {L,, 0, }
arbitrarily, and this does not affect the result for % ,. In the
limit of zero strip thickness, Eq. (59) is the only choice of 4
that we have found that gives quantized results throughout
the butterfly.

3. Partial translations

We can also use a partial translation operator Ty| D=

5 iy dcle; .
Tylpe' 2_e0*i%° 10 extract the same linear momentum. To

get quantized results for 550, we empirically find that D
needs to be mirror symmetric about some cycle £ along

. ' A
which the holonomy elzfef 7 s real valued.

Here we define the linear momentum of a state with m
flux quanta as

([T | ) = ero e, (64)
Numerically, we obtain &, through the equation
Piy = —Poym + K, mod 2. (65)

Here K, is some constant which only depends on the Chern
number and the system size.

We find that there are only two choices of the parameters
{D.6,2} which give a quantized &, throughout the
butterfly. In one case, (1) D is centered at the cycle
with x = 0, (trivial holonomy), (2) 0 is arbitrary, and
3) Ty|D = Ty p» 1.e., ;=0 for j € D. However, empiri-
cally these choices give &%,, =0 everywhere in the
butterfly, which does not agree with the results obtained
from other methods.

In the second case, we choose (1) D centered at the cycle
with x =0, — (L,/2) [holonomy (—1)"], for each m,
(2) 6 =0+ (L,/2)+ (3.1), and (3) Ty|, is defined as

3 Tylpe' 2

Ty|D =

(mm/Ly) cf cj jx <5 (66)
y|DeiZj(ﬂm/Ly)C;Cj .jx > (_)X'
This choice of 4,0, D is the only one we have found that
gives a quantized but nontrivial result for & , throughout
the butterfly. Furthermore, remarkably this agrees with the
other methods used in this section (dislocation charge,

linear momentum from full translations, and the 1D
polarization discussed below). We motivate this choice
further in Appendix E.

D. 5’0 from 1D polarization

It is natural to ask what the invariant ﬁ’o as defined above
has to do with other traditional many-body definitions of
the polarization. In this section we provide one concrete
answer: we consider a torus and compute the 1D polari-
zation along x as defined by Resta [22], treating L, as a
parameter. We show that in addition to the usual term
proportional to C, there is a term L,&, , which fixes the
dependence of the 1D polarization on the dimensionally
reduced coordinate.

Consider the 1D polarization in the x direction,
denoted P,. It is defined by the following action:

EID = —Px/dxthx, (67)

where £, = d,A, — 0,4, is the x component of the electric
field. In this section we assume that A denotes the entire
vector potential and not just its deviation from some
background. The sign in Eq. (67) is chosen so that the
1D current j satisfies j = (6Lp/6A;) = 0,P,.

We now use the (2+ 1)D field theory to make a
prediction for P, if the original 2D system is dimensionally
reduced to an effective 1D system in the x direction. We set
the rotation gauge field w to zero for this calculation.
First consider the term with C:

< / dxdydiA A dA
¥
C
- / Cdxdydi(A,B— AE, + A,E,). (68)
- ,

Here E,, E,, B are the full electric and magnetic fields,
respectively. Note that the Chern-Simons term is usually
written in terms of the deviation of the vector potential from
some background, but we have instead used the full vector
potential. This rewriting is motivated by the topological
field theory, derived in Appendix F, and will be justified by
the empirical results we show below.

If Ay # 0 and E, is independent of y, then we can rewrite
this term as

= / dxdtb{ )dy]E +- (69)

This step involves an integration by parts, which contrib-
utes a factor of 2. Since the system on the torus is not
exactly translationally symmetric, the holonomy ®,(x) =
$A,(x)dy has an x dependence. In order to extract a
spatlally averaged polarization, which is what we calculate
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microscopically using Resta’s formula below, we assume
E. is a constant. Then the above term becomes

%q:w / dxdiE, + - - (70)
Here, @, ,, := (1/L,) [ dxdyA, is the average of the global
holonomies in the y direction. Thus the Chern number
contributes to the 1D polarization. The value of @,
depends on the range of integration for x. If we assume
0, <x <L, + O, forsome O, and ®(x) is continuous in
this range, we can show that

L, _
(I)y,av = ¢Ly (7 -0, + Ox) mod 27. (71)

Now note that there is also a contribution from the field
theory term Y A dA:

Poy
—= [ dxdydtY N dA
2z

Poy
=% | dxdydi(Y,B - Y.E, +Y,E,)

T
—gbo’yde/dth—l—
~ o yry X x

=P, L, / dxdtE, + - (72)

Note that due to a normalization convention, ¢dyY, =
2zLy. The remaining terms in the field theory do not
contribute. Thus we naively expect that the 1D polarization
should be equal to

C L
—Pox = 2—¢Ly (7)‘ -0, + Ox) + L, P,y + K" mod 1,
b3

(73)

where we assume K is a constant that is independent of L,
and L,. We use the subscript O in Py, to specify the
dependence of this quantity on O,. As we now discuss, to
match Eq. (73) to a numerical calculation, we demand that
O, be the origin of coordinates in that calculation.

Numerically we compute the quantity Py , using Resta’s
formula:

1 i(2x iche;
Po. = 5-arg(¥]e' M 20w, (4)

where j, is defined with respect to the origin O =
(0,,0y), ie., j,€{-0,,1-0,,2-0,,....L,—1-0,}.
Here O refers to the point on the torus where the coordinate
is chosen to be (0, 0).

Rt

v LT} 1 VA

172 172
of2m @/2m

FIG. 9. Butterflies showing the constant in ¢ contribution
L,P,, + K’ of the 1D polarization Py, for different O, and
L,. Fixing L, = 20, the result depends only on the parity of L.
For a fixed O, £, is the difference between the ¢ = 0 intercept
for L, = 13 and L, = 12. O and o satisfy the relation Eq. (75).
For O, = % only half of the period 0 < ¢ < 27 is plotted.

Empirically, we find that Py, , exactly obeys Eq. (73).
Let us take a square lattice with L, = 20, L, = 12, 13, and
O, = 0,% as an example. The constant in ¢ contribution
L,%,, + K' for the two different L, is plotted in Fig. 9.
Empirically we find that the difference of the two gives the
desired answer £, when

L, 1
ox:(’)x-l-?x-l-i mod 1. (75)
The presence of the (L, /2) + 1 term may seem mysterious,
but we show why it should be present in the C =0
case below.

Consider Py, for a square lattice with one orbital per
site and at full filling v = 1. We analytically calculate
Po.l,—1 using Resta’s formula:

Poxl—1 = Jx mod 1

WX Iv= - Lx

L —-1- L
—x (Ly—1-20,) =2 mod 1
2 L,

L 1
=L [=_-—_
y(z 2

The coefficient of L, equals =%, . In this special case
P,y just equals o, mod 1 (zero at a site, and 1/2 at a

plaquette center). By equating these two expressions for
P, ., we get Eq. (75). We expect that when C # 0, Eq. (75)

Ox> mod 1. (76)

0,y?
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will continue to hold, and we have verified this expectation
numerically.

The relationship between O and o is reminiscent of the
linear momentum calculation in which one has to shift
the gauge origin 6 by (L, /2, L,/2) + (.1) relative to o in
order to obtain @O. We have numerically checked that
Eq. (73) gives consistent answers for different gauge
choices and for different system sizes.

VI. CALCULATIONS FOR GENERAL M

We now generalize our charge response, linear momen-
tum, and 1D polarization calculations. We discuss M = 2,
3,4, 6 together, and assume that o can be at any HSP within
the unit cell. We keep the choice of unit cell ® arbitrary.
We focus on the details that differ from those outlined
previously when M = 4.

Recall that M’ is the order of the rotation symmetry
which preserves o, while M is the largest possible value of
M’ considering all possible HSPs o. For the computations
below we need the M’-fold rotation operator C,y - defined

so that (Cpp o )M = 1.

A. &, from pure disclination charge

We can use the operator Cyy . to create a pure
disclination at the high symmetry point o* and calculate
its charge response. As previously discussed, the origin o
used to measure the Burgers vector of the disclination need
not be equal to o*. And by pure disclination, we mean that

-

b, ~(0,0). In this case the field theory predicts that

5(I)W.0 4 QWC?O

Ow=C 2 27

+ U(k 4 Rigeg 0.0) mod 1, (77)
where k is an integer. Note that the field theory is only
sensitive to o and not 0*; it cares only about the measured
value of the Burgers vector and not about how the defect
was created microscopically.

The computation of 6@y, , and then &, is done according
to the procedure discussed in Sec. IV C. As we discussed
there, a crucial detail is the area of the irregular unit cell
at the center of the disclination, which we here call njyeq o -
We include a subscript Q because, in general, this
number also depends on the disclination angle Q.
Mirreg 0,00 18 defined as

if o is at the center
of the unit cell (78)

0 otherwise.

(1-3)

nirreg,o,Q =

This can be intuitively understood as follows. If the origin
1s at the center of the unit cell, the disclination construction
process would remove a fraction /27 of the central unit

cell (i.e., MQ/2x subcells). If o is not at the center of the
unit cell, then it must be at the boundary of the unit cell. In
this case, there is no irregular unit cell; thus ny;e, 00 = 0.
Note that when M = 2, 3, 4, we can always choose o to be
on the boundary of the unit cell, so that there are no
irregular unit cells. On the other hand, this definition of
Nimeg 0.0 15 Needed especially for 27/6 disclinations when
M = 6, because the only Cq symmetric points are at the
unit cell centers, so in any 2z/6 disclination there will
necessarily be an irregular unit cell.

1. Comments on definition of Ni;eq o

In the discussion above we emphasize that nje, .0
depends on the relative position between o and the unit
cell ®, and not the absolute position of either. We can pick a
different unit cell ® which changes Qy and ny , simulta-
neously, leaving &, invariant. We discuss this in detail in
Appendix D.

An important general point is that our definitions of

Nirreg 0.0 (and a similar quantity Mireg0b defined in the

next section) are only sensitive to the value of M and not
to the actual fine structure of the microscopic lattice.
Conceptually, we can imagine tiling the plane with unit
cells (square for M = 4, hexagonal for M = 3, 6, and so
on), and the only constraint is that the centers and corners
of these unit cells need to be at appropriate high symmetry
points of the microscopic lattice. In particular, the tiling
does not have to match the structure of hopping or
interaction terms in the microscopic Hamiltonian. Then,
we note that the number of unit cells in any region W is a
property of the tiling alone. Similarly, we can apply a cut-
and-glue procedure on the infinite plane tiling to get a tiling
for a surface with a dislocation or disclination defect. Then

the quantities 7jyeq o0 and Miregop A€ properties of this

defect tiling alone. As such, these are independent of
microscopic details of the Hamiltonian such as the dis-
tribution of sites and the hoppings between them. The fact
that our prescription depends on the tiling rather than
on microscopic details such as hopping and interaction
terms makes it readily generalizable beyond the nearest-
neighbor Hofstadter models that we have mainly studied in
this work.

B. @(, from dislocation charge

We next calculate @O from the charge response of a
dislocation (assume € = 0). If a defect has a nontrivial

Burgers vector b, it will generally also have an irregular
unit cell. This irregular unit cell is triangular if M =2, 4
and quadrilateral if M = 3, 6. In this case, we find that the
area which should be assigned to the irregular unit cell

depends on b, so we use the notation n. =,
irreg,0,b

The results are shown in Table IV. They are derived by
matching the dislocation charge result with known values
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FIG. 10. &, and @0 in the honeycomb Hofstadter model. The site symmetry group is Z,;, with M’ = 6, 3, 2 for the MWPs {a, 5,7},

respectively. 8y, 8y, Py Py, . Py, P

73X

are all calculated from the charge response [Eq. (82)] of suitable lattice defects (here we have

not shown &, and 5’0 for all possible o but only some representative ones). The numerical calculations are done on an open disk with a
radius R = 20. The defects are located at the center of the disk. The noisy features appear since the butterfly is numerically calculated on
a finite size system rather than analytically derived with an empirical formula as in Fig. 1. In the first three main Landu levels, &,
quantize to {% + 0.0002, 2 4 0.004, % + 0.04}; other invariants in the first three main Landau levels have similar standard deviations.

of ﬁo in the C = 0 limit (see Appendix B) from the same
real space picture discussed in the previous section, when

M = 4. The origin dependence of ireg o0y €N also be

understood from field theory. In Sec. VII we argue that the
following general formula holds:

=n

—v.by + v,b,, (79)

nin’eg,oJrE,l_; irreg,0.b

where (b,,b,) is the dislocation Burgers vector, and
(vy. vy) is a fractionally quantized vector that shifts o to

another HSP. Additionally, if b= (0,0), then Miregols = 0;
and if b — —b, then n. - — —n__ - mod 1. This
irreg,0,b irreg,0,b

condition means that a dislocation-antidislocation pair
has a total unit cell number which is an integer.

With this information, we can write down the charge
response for a dislocation:

5D .
Ow=C 2W*° + Py b+ u(k+ny, ;) mod 1. (80)

b ,0.b

This is the main equation that we use for calculations
involving &, for M =2, 3, 4, 6. As an example,

we numerically calculate 9750 in a Hofstadter model on
the honeycomb lattice with different choices of o, whose
site symmetry groups are Z,, Z, and Z4. The raw data for
P, are shown in Fig. 10. Again, we note that the exact

choice of unit cell does not affect our calculation of 550
and &,. We show this in Appendix D.

Note that in order to find @0, it is enough to compute
dislocation charge with b = (1,0),(0,1); this is why
Table IV explicitly contains these values of b.
Nevertheless, our procedure to compute dislocation charge
applies for general choices of b. The main observation is
that n.

irreg,o,
under the equivalence

; only depends on the equivalence class of b

-

b~b+[1-UQr/M)A, (81)

where A is an integer vector and 2z/M’ is the minimal

rotation that preserves o. For example, n. > 1s invariant
irreg,0,b

if b is rotated by the angle 2z/M’. Since any b is in the
same equivalence class as either (1, 0) or (0, 1), Table IV is

sufficient for computations with general b.
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Combining Egs. (77) and (80), the complete charge
response of disclination and dislocation defects with

arbitrary o, Qy, and ZO is

5(I)W,o + QWSO

Ow=C 2 2w

+Py-b+uv(k+ ”‘rreg,o,g,ﬁ)’ (82)

1

where the effective irregular unit cell number now depends

on both Q and b. For all the examples that we study,
we observe the relation

Mitreg.0.0.5 — Mirreg.0.2.(0.0) + Miireg 005 mod 1. (83)

Here Mirreg,0.2.(0.0)* Mirreg 005 A€ the quantities we previ-

ously referred to as Rjyeg o.0: 71 respectively. This

irreg,0,b”
relation matches our expectation from the field theory, in
which we can imagine separating a defect with parameters
(l_;, Q) into two defects with parameters [(0,0), Q], (5, 0)
without changing the effective number of unit cells mod 1.

C. &, from angular momentum

We denote as [, the angular momentum with o as the
rotation center. The many-body ground state on a clean
torus with m total flux quanta is |¥). [, is defined by

Cuol¥) = €M), (84)
Exactly as for M = 4, we find that

C 2
I, = Tm + Som+K(C,L) mod M. (85)

The above equation works for any M = 2, 3, 4, 6. In this
work we have also numerically calculated [, in the
honeycomb lattice, choosing 0 = a. We extract the same
&', from the disclination charge response (see Fig. 10). This
verifies the prediction that &, can be measured using an
angular momentum dual response.

One can also perform a partial rotation to extract &,,.
The details (specialized to M = 4) are in Ref. [33].

D. &, from linear momentum

The procedure to calculate a linear momentum
(Pjx- P2y) and, hence, @O on the square lattice generalizes
straightforwardly to the case where M = 2, 3, 6. For M
even we can define Ty precisely as for M = 4. But for

M = 3, we find that a slight modification is required in the
definition of A:

?\yei Zj —(ﬂm/Ly)c;cl-

j\vyeizj(izm/L),)c;cj

jx < (_))C
j. >0, (86)
Tye! L@@ 5 ) < <5+ 1.

This can be seen as a generalization of Eq. (59) which
smooths out the gauge transformation around the gauge
origin 0. The relevant equations for M = 3 are identical to
the ones for M = 2, 4:

(WIT, ) = o7 ti2ems, (87)
Piy = —Poym+ K, mod 1. (88)

We have numerically checked that on the honeycomb

lattice we extract the same ﬁ’o as with the other methods
(see Fig. 10), assuming Eq. (61). Since &, is quantized
mod 3, the minus sign is crucial in this case, unlike in the
case M =2, 4, 6.

On the other hand, the partial translation calculation does
not generalize to the case where o is a C;3 symmetric HSP.
This is because we appear to need the region D for partial
translations to be mirror symmetric along the cycle with
holonomy e, But this is not possible for C3 symmetric
points. It is not clear whether a mirror symmetric region D
is essential for our calculation to work, or whether an
alternative method might work in this case; we leave this
question for future study.

E. @o from 1D polarization

Finally, we can dimensionally reduce our 2D space
along y, and compute a 1D polarization P, in the x
direction. For M =4 we obtain an empirical formula,
Eq. (73), which matches the field theory prediction. We
rewrite it here:

Co L, _
—Pox = EL}* (7 -0, + Ox> + L, P, + K mod 1,

(89)
where 0 is the gauge origin, and O is the origin in Resta’s
formula, Eq. (26).

This equation turns out to also work for M = 2, 3, 6. As
an example, in the honeycomb lattice, the position of the

sites are
1 1
i:(ix———(’)x,i ——(’))),

3 Y3
. o1 .1
J = \Jx +§_0x’1y+§_oy i (90)

i and j are at the ff; and f, MWPs of the Cq unit cell,
respectively (see Fig. 2 for the unit cell convention), and
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i, jx €{0,1,....,L, =1}, iy,jy €4{0.1,...,L, = 1}.
Similar to the linear momentum calculation, in order
to get a result for 5’0 which is consistent with the known
C = 0 result, we need to choose O, = o, + % + % mod 1.

VII. ORIGIN DEPENDENCE OF &0,@0

In this section we sketch how to derive the formulas

in Table I that express CS)O+§,@0+;} in terms of é’o,@o,
and k. 7 is a quantized vector (perhaps fractional) such
that 0,0 + ¥ are both symmetric under M-fold rotations.
These relationships were commented on previously in
Secs. IV-VI. We leave the technical computations to
Appendix G. Background details and definitions regarding
the response theory which we use in this section are found
in Appendix F.

Let A be the full vector potential for the system (meaning
that dA = F measures the total magnetic field). The full
Lagrangian which involves A is

C
L= ANdAT Ly, (91)

1 - -
ﬁA,O 1= 2—A/\ (csjoda)'f'g)o'T'i‘KAXY)‘ (92)
T

Here dA is the total U(1) flux. The total U(1) charge
and flux in any region should physically be invariant under
a shift of origin, and therefore the contribution from the
term with C to any response property remains invariant
upon shifting the origin. Hence we only consider the
transformation of the remaining terms as given by L.
Crucially, in L,, the coefficient of the term with
(1/27)A A Ayy is k instead of v, because the difference,
given by (C¢/4n*)A A Ay, is now contained in the
term (C/4m)A A dA.

To understand the transformation of £, ,, it will be most
convenient to use the discrete simplicial formulation of the
response theory, as developed in Ref. [17]; in that case,
the above wedge product should be interpreted as a cup
product, but we stick to wedge product notation below.
First note that a space group operation which performs a
rotation about o and then a translation takes the form
g = (r,h), where re Z* h € Zy. The same group
element with respect to the shifted origin o’ = o + ¥ takes
the form

Since the crystalline gauge fields encode some configura-
tion of group elements on a manifold, a shift of origin by a
fractional lattice vector ¥ can be viewed as a “fractional”
gauge transformation of the crystalline gauge fields. In
particular, because this is not a true gauge transformation,

the crystalline gauge fluxes also get redefined, leading to a
transformation of the response coefficients.

In the simplicial formulation, if the gauge field is flat,
the crystalline gauge fluxes are defined by the terms

dw, Ayy,[1 = U(2x/M)]"'dR. (Note that in the discrete
case we can equivalently write T as dR; we do this for the
rest of the section [47].) Under a shift of origin, these fluxes
transform into new quantities da',[1 — U(2z/M)]~'dR
Aly. In Appendix G we show that

do' = dw, (93)
dR = dR + Zydo, (94)
Ayy = Axy + pydw + fiy - dR, (95)

where 7y, py.jiy depend on 7. This transforms the
Lagrangian as follows:

1 N -
Lag =5 AN (Syde) + Py dR +KAy).  (96)

Assuming a fixed choice of unit cell, the total charge
measured in any given region W should be the same for
either choice of origin. Thus,

/ (Sodw + P, - dR + kAxy)
w
a /w (Sydaw + Py -dR +KAy).  (97)

We now use Eqgs. (93)-(95), and compare coefficients. This
gives us

k=K, (98)
@0 = @0’—7 =Py + Ky, (99)

o =Sy—3 =3y + ﬁo’ Ty + K P (100)
These equations finally give the results in Table I: the
calculation reduces to showing Eqs. (93)—(95), and finding
P B Ty in terms of . We perform these calculations
in Appendix G; to obtain values for py_,, which are
consistent with results for Chern number 0, we need to
make an assumption on the functional form of Ayy, which
we explain there. The results are contained in Eq. (G13)
(Tu), Eq. (G27) (py), and in Sec. GO 3 (iiy).
Note that Eq. (G13) implies

dR' = dR + M[l — UQ2z/M)]dw. (101)
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This is in fact equivalent to Eq. (28), which reads

borz = by + [1 = U(Q)]3. (102)

The equivalence can be shown as follows. First let us
identify dR' = 2xb, .7, dR = 2nb,, dw = Q = (2zk/M).
Then Eq. (101) becomes

boys = bo + k[1 — U(2z/M)]3. (103)

To prove the equivalence, we need to show that the two
expressions for b, are in the same equivalence class:

[1—UQ2rk/M)|7=k[1=UQ2x/M)|5+[1-UQ2x/M)]A,
(104)

for some A € Z2. But this follows from the fact that
[1 —U(27z/M)|v is always an integer vector.

As a check on Table I, we can see that the values of &,
and @0 for zero Chern number given in Appendix B follow
the equations in the table. To check Table I when C # 0,
we consider an example with Cg rotational symmetry in
Appendix G 4.

In this derivation we make the crucial assumption
that F is invariant under a shift of origin. Note that F =
dSA + (¢p/2m)Axy, where SA is the deviation of the U(1)
gauge field from its background value. F can indeed be
made invariant under the transformation of Eq. (99),
if we take

SA —>6A—2£(pMa) + iy - R). (105)
/1
Note that d6A only changes around a defect, where dw

and dR can be nonzero. The transformations of doA, Ayy
indicate that our conventions for “background flux” and
“excess flux” in each plaquette (measured by ¢Ayy and
doA, respectively) change by equal and opposite amounts.
But the total flux in each plaquette is invariant.

A. Transformation of @0

Although p,,, 7, depend sensitively on M, our calcu-
lations show that

/zM = (va _vx)’

irrespective of the choice of M. This implies that

P -

Pors = Po + K(_Uy’ vx)’ (106)

for M €2, 3, 4, 6.

The fact that ﬁo transforms proportionally to x has an
important consequence. If we consider two Hamiltonians
(1) and (2), which can, for example, be the end points of
some path in parameter space, we may naively imagine

differences of the form @((,2) - 5’(()1) to be completely

independent of o. But for @0 as defined in this work, this
is true only if x, = ky. Indeed, Eq. (106) implies that

G g — PP PV 1 (3 — k1) (=vy,0,). (107)

Thus, in order to measure an origin-independent quantity

through differences of 5’0, we must ensure that the initial
and final values of x are equal.

B. Formula for n. i
irreg,o+v,

An interesting corollary of these results is that they allow

us to determine the correct assignments of 7. > for a
irreg,0,b

fixed b, as we vary o. On an infinite plane lattice with
only dislocations, we can set @ =0, and so Eq. (95)
becomes

Ay = Axy + fiy - dR. (108)
With i), as above, we integrate over a region W surround-
ing the dislocation, and reduce mod 1 to obtain

=n (109)

—v.by +vyb, mod 1.

nirreg,oJr'f',l_; irreg,o.[;

Once n. > is known for a single origin o, the values of
irreg,0,b

N 0. can be determined using Eq. (109), as we have
2.0+1.b

listed in Table IV. This nontrivial transformation rule is
confirmed by our numerical results and the analytical

results at C = 0.

VIII. DISCUSSION

In this paper we describe several complementary many-
body approaches to measure the quantized charge polari-

zation @0 and the discrete shift &, in gapped topological
phases, including those with a nonzero Chern number and

magnetic field. We extract 530 by studying the fractional
charge bound to dislocations, the linear momentum bound
to flux, and from an effective 1D polarization response. We
obtain explicit numerical results for the spinless Hofstadter
model with C), rotational symmetry, for M = 2, 3, 4, 6,
by matching our microscopic calculations to field theory
predictions. We also obtain a theoretical understanding of

the origin dependence of P}’o and the discrete shift &,.
Together with the Chern number C and x = v — C¢p/2x,
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the quadruple {C,S,, @O,K} completely specifies the
quantized charge response in systems with charge con-
servation, magnetic translation, and point group rotation
symmetry.

An important issue we wish to emphasize is how to
understand é’o,@o as invariants describing a topological
phase. In the case of an origin-independent invariant such
as C or k, knowing that the invariant differs between two
systems is enough to distinguish them as topological
phases. However, in order to distinguish two systems based

on their respective values of &', or &, it is essential to first
fix a common origin o for both systems, and then compare
the various numbers. This is because two systems are in the
same phase only if they can be adiabatically connected
to each other without closing the gap or breaking the
symmetry, and while keeping their common origin o fixed.
Without fixing this common origin, we cannot meaning-
fully define the notion of adiabatic equivalence between
two systems. R
In this paper we have focused on the quantization of &
due to nontrivial point group symmetry, M > 1. In the case
where we do not have point group symmetry, our methods
allow us to define an intrinsically two-dimensional many-

body polarization j’o for any real-space origin o, even
when C # 0. It is an interesting question to understand the
relationship between our definition of polarization for
C # 0 and the one based on free fermion band theory
proposed by Coh and Vanderbilt [24].

Since &, and (0/?5O are topological invariants that depend
on crystalline symmetry, their values cease to be quantized
if we break the crystalline symmetry by adding disorder. In
particular, if we introduce on-site or bond disorder which
breaks the rotational symmetry, &, is no longer quantized.
If the disorder breaks either the translational or the rota-

-

tional symmetry, 9, is no longer quantized. Nevertheless,

the disorder averages of &, %, remain quantized to their
respective clean values, although their standard deviations
increase with an increase in disorder strength. This was
shown numerically for & in Ref. [33] and is expected to

hold for ﬁo as well.

Next we comment on some unresolved issues in this
work. In both the linear momentum and 1D polarization
calculations, we need to pick a distinguished point and
relate it to o. For the linear momentum calculation, 0 is the
gauge origin, and in the 1D polarization calculation, O
determines the coordinates for each site in Resta’s formula,

Eq. (26). In both calculations, we extract 530 correctly
only if o satisfies a certain relation with 6 or O. In the
linear momentum calculation, we also find that if

Ty = Tyeizfi-"cj “, for a fixed o there is only one choice
of 4 that gives a quantized &, , throughout the Hofstadter
butterfly. These observations are completely empirical; we
leave a full explanation for future work.

For our linear momentum calculations we use an
approximate translation operator and thus have to work
with its expectation values rather than exact eigenvalues. It
would be useful to compute the linear momentum exactly
by incorporating a flux insertion operator that makes the
translation symmetry exact.

Additionally, under a shift of origin, the field theory does

not fix a unique transformation rule for &, @0 when
M = 2, 4; instead it gives a few different possibilities as we
explain in detail in Appendix G. To fix the transformation
consistent with numerics and physical expectations, we
need to make some additional choices in the field theory
that are allowed but do not have an obvious physical
interpretation.

We close by pointing out some related open questions.
Previously, Ref. [24] proposed a way to define the charge
polarization as a single-particle Berry phase in momentum
space when C # 0, by picking a suitable origin for the
Brillouin zone. It would be useful to understand whether
this choice can be related to the ones we make in defining

P, using the dislocation charge and the linear momentum.

We have not commented on how the invariants &, @0
manifest at corners and edges of the system. The relation
between disclination charge and fractional corner charge
when C = 0 has been discussed in several places; see, e.g.,
Ref. [49]. References [20,24] specifically discussed an
edge charge interpretation of the polarization, Ref. [24] did
so in the context of Chern insulators, and Ref. [20] did so
from the perspective of a boundary Luttinger theorem when
C = 0. It would be interesting to understand the corner and
edge charges in the context of our results, which apply for
general C and in the presence of a magnetic field.

Another interesting direction is to study the charge
polarization in fractional Chern insulators. In fact,
Refs. [17,18] use field theory to predict that this can indeed
be defined systematically and that its quantized fractional
values are sensitive to M as well as to the anyon content of
the theory. In such topologically ordered phases, the charge
polarization can encode a novel, nontrivial form of sym-
metry fractionalization which was called the “discrete
torsion vector” in Refs. [17,18].
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APPENDIX A: REVIEW

This appendix has three parts. First, we introduce
some standard definitions of quantities on a clean lattice.
Next, we introduce dislocation and disclination defects,
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and define the disclination angle and dislocation Burgers
vector. After that, we discuss the basic properties of &', and

@o from the perspective of disclination and dislocation
charge, respectively.

1. Definitions and background
a. Maximal Wyckoff positions

The definitions in this section are taken from Ref. [50].
Fix an origin 0. Suppose we are given a set of points in the
infinite plane which form a lattice with spatial symmetry
group Ggpaee- On this lattice (assumed to be without any
defects), we define a Hamiltonian H,, with translation
operators Ty, Ty corresponding to translations by the
elementary lattice vectors, and additional point group
symmetry operators, defined with respect to o. The full
symmetry group G of H.,, can contain operations in
Gpace @s well as internal symmetry operations.

For any point p in the plane, the site symmetry group G,
is the subgroup of operations in Gy, that leaves p
invariant. Two points p, p’ are said to have site symmetry
groups that are conjugate to each otherif G, = gGPg‘1 for
some g € Gyyee- The Wyckoff position containing p is the
set of all points whose site symmetry groups are conjugate
to G,. For example, every point p’ obtained from p by a
lattice translation or rotation is in the same Wyckoff
position as p. Furthermore, every point with a trivial site
symmetry group belongs to a single Wyckoff position.

p is in a maximal Wyckoff position (MWP) if G, is not a
proper subgroup of G, for any other site p’. In Fig. 2, we
show the MWPs for the wallpaper groups p2, p3, p4, p6.
Note that when Gy, = p4, the high symmetry point y;
has site symmetry group G, = Z, but is still in a MWP,
even though there are other points with site symmetry
group Z,4. This is because there is no point with site
symmetry group Z, that contains G,. We always choose o
to belong to a MWP.

It is important to distinguish a MWP, which is a
collection of points, from a single high symmetry point
of a unit cell. Our notation for HSPs is f;, y;, where 3, y
denotes the MWP and i runs over the corresponding HSPs
which are inequivalent under lattice translations.

b. Unit cells and subcells

A unit cell ® for the given lattice corresponds to a
division of lattice points into elementary repeating units.
Starting with a clean lattice on the infinite plane, pick a
HSP « for which the site symmetry group contains the full
point group. (This choice may not be unique.) Then define
a and its lattice translates as the centers of each unit cell.
This is the convention used in Fig. 2. Now consider any
other point ¢g. If ¢ is equidistant from n > 1 unit cell
centers, ¢ is assigned to be on the common boundary of n
unit cells centered around a. If ¢ is closest to one particular

B v
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FIG. 11.
subcells.

Two representative ways of dividing a C, unit cell into

a point, we say that ¢ lies in the interior of the unit cell.
By convention, the corners of the unit cell are labeled as
(or p;, if there are multiple HSPs in the same MWP);
any other points on the unit cell boundary are denoted
7,0, ... as required.

Note that this definition does not fully determine the
shape of the unit cell; we only require the subcells to rotate
into each other, and there is still a lot of freedom in drawing
the exact boundaries.

Now let us specialize to the case where H,, has an
M-fold rotational symmetry. We can subdivide an M-fold
rotationally symmetric unit cell into M subcells. Figure 2
illustrates such a division. We only require that subcells
rotate into each other under rotations about a. We have no
constraint on the shape of the subcells: in Fig. 11 we show
two equally valid shapes. Therefore, although the vertices
of each subcell are fixed by our definition of the unit cell;
the boundaries are otherwise arbitrary.

c. Parameters in Hcan

In our numerics, we consider Hofstadter models, i.e.,
free fermion Hamiltonians of the form

Hclean = _Ztl'jcjcj + H.C., (Al)
i

where i, j are site indices and the hopping terms ¢;; =
te~*enii depend on a background vector potential A .y
We mainly take 7;; =1 if i, j are nearest neighbors,
and ¢;; = 0 otherwise. However, in Appendix H we also
consider the Hofstadter model with next-neighbor hopping
terms, as an illustration.

For any loop ¢, the enclosed flux
arg([ Lijyes tij) = 2_(ijyer Acteanij mod 2,
sum is taken counterclockwise. We assume that H .,
has the symmetry G, = U(1)/ X, Gypuee, Where U(1)/
denotes the group U(1) whose order 2 element is the
fermion parity operation. This means that the total flux in
each unit cell equals ¢ mod 2z.

If Heqn 18 defined on a torus with side lengths L, L,
instead of the infinite plane, the Z? translation symmetry is
broken down to Z; X Z;, if there is no flux; if there is

equals
where the
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flux, the symmetry is still broken down to a subgroup but
the details are more complicated.

As we explain in the main text, we demand that the
magnetic field is specified everywhere within a unit cell.
This requirement goes beyond the specification of H ..,
and of the symmetry data. We also note (see in particular
Appendix H) that our numerical methods are expected to
generalize to arbitrary gapped systems with next-neighbor
hopping and interaction terms.

d. Definition of v and

A lattice system with U(1) charge conservation sym-
metry has a filling per unit cell given by N.7uc./Nogw-
where N, is the number of electrons, Ny, is the number of
orbitals, and 7, . is the number of orbitals per unit cell. On
a clean torus, this reduces to v := (N,/N, ), where N, . is
the total number of unit cells. If the system has a unique,
gapped ground state and has Chern number C, v and C
are related by Eq. (2), which also defines the integer «.
Equation (2) can be derived, for example, using the
following argument [18,51].

The quantity > is by definition the Aharonov-Bohm
phase corresponding to the adiabatic transport of a 2z flux
around a unit cell, which has flux ¢. Now the braiding
phase of a flux ¢; around another flux ¢, can alternatively
be expressed in terms of the Hall conductance o; it equals
eh1#:20n = ¢i192(C/27) Taking a 2z flux around a unit cell
corresponds to setting ¢ = 2z, ¢ = ¢. Thus the same
Aharonov-Bohm phase can be expressed in two ways:

ei2m — oigC (AZ)
=>1/:C£ mod 1 (A3)
2
_~?
=v=Cz—+k, (A4)

2r

where ke Z. If C=0, v =«.

In the limit of small flux per unit cell, 0 < C¢p/27x < 1,k
has a simple interpretation. When x = 0, a state with Chern
number C corresponds to a system of C filled Landau
levels. Therefore, k is simply the deviation of the total
filling from the Landau level limit. In a system with
¢ =2xzp/q, where p, g are coprime, the filling on a torus
takes the form v = r/q for some integer r. Then Eq. (2) can
be written as a Diophantine equation r = gx + pC for the
integers C, k. In the Hofstadter model it can further be
shown that |C| < ¢/2. This Diophantine equation is often
used in the study of the Hofstadter model.

Finally, suppose we place the system on a closed
manifold with lattice defects. This could, for example,
be the surface of a cube, which has eight corners, each
being a disclination with disclination angle z/2. In this
case, the actual filling per unit cell differs from v. In fact,

the difference is proportional to the discrete shift, as
discussed in Ref. [33].

2. Origin dependence of 50

Here we prove Eq. (28) in the main text. We define a Z>

translation gauge field R and a Z,, rotation gauge field o
(see Appendix F for a detailed definition). The holonomy
of (K’ , @) around a defect equals some space group element
which we denote as (b,, Q), with b, € 72, MQ/2r € Z,,.
b, and Q encode the dislocation Burgers vector and the
disclination angle of each defect. We assume that the
starting point of the loop is an integer vector away from
0. Now suppose we choose a different starting point for the
loop o' = o + ¥, where ¥ may be fractional. We wish to

relate I;O/ to l;o.

The group element which describes the same defect but
with respect to the new origin o is obtained from (b,, Q) by
conjugating with the translation (7,0):

(3.0)(by, Q)(=5.0) = [by + T — U(Q)3.Q].  (A5)
Here U(Q) is the rotation matrix with angle Q. The above
result follows from the multiplication law for the space

group. This group element must give the holonomy of R.w
with respect to a loop starting at o’. Thus we find that

by = b, +7 - U(Q)7, (A6)

as claimed.

3. Properties of é’o,@o

The results below were first obtained in Refs. [17,33],
and are compiled here for completeness. Suppose the
rotation point group of the system is Z,;, and consider
an origin o whose site symmetry group is Z,,. The

topological response theory which defines &, ﬁo is
reviewed in Appendix F. Although the quantization con-
ditions are derived using group cohomology arguments that
are mathematically involved, the following intuition is
enough to understand them. If a lattice defect has discli-

nation angle Q and Burgers vector IZO, the total charge at
the defect is a sum of various independent contributions
from the field theory, Eq. (13). In particular, the term
(8,/27)A A dw assigns this defect a fractional charge
8, (Q/2x), while the term (ﬁo/2n) ‘A AT assigns the
defect a fractional charge @0 . l;(,.

First, we argue that &, is either an integer or a half-
integer, and it is defined modulo M’. Note that the term
(8o/2m)A A dw assigns U(1) charge &,/M to a defect
with disclination angle 27/ M and zero Burgers vector. On a
closed spatial manifold of genus g, the total charge assigned
by this term equals (§,/27) [ dw = 28,(1 — g). This must
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be an integer, for each g, irrespective of the other terms in
the response theory. Therefore, 28, must be an integer.

Now, the charge at any defect can be changed by an
integer through local operators which add a fermion at the
defect. Therefore, the topological terms (§,/27)A A dw
and (&, + M'/2x)A A dw, which assign charge §,/M’
and (8,/M’')+ 1 to an elementary 2z/M’ disclination,
are topologically equivalent (in fact, we can show that
their difference does not contribute to the partition
function on a closed manifold). This leads to the relation
So=S,+ M.

The arguments given in Ref. [33] further show that if
the generator of rotations at o satisfies C’M;.O = +1, there
is a relation

So :g mod 1.

(A7)
Thus, & is an integer or a half-integer according as C is
even or odd. In particular, once we fix o and the Chern
number, &, can only take one of M’ distinct values.

Next, we explain the quantization of ﬁo, which turns
out to be very sensitive to M’. Consider a lattice defect
with parameters (Z;O,Q). The response theory predicts
that the fractional charge at such a defect receives a
contribution

ﬁo . Z;O mod 1

from the term with @0. Let us shift the origin by a lattice

vector A. This takes ZO - l;O +A-U (Q)K The charge at
the defect with respect to the new origin is

Py - [bo + A — U(Q)A] mod 1.

For the theory to be consistent under a shift of origin, the
above quantities must agree mod 1; i.e.,

-

Py - [A=U(Q)A] =0 mod 1. (A8)
We can now take the minimal allowed disclination angle
Q = (2z/M'), and obtain the desired quantization:
- - 27\ -
Fo- |A=U(>2)K| =0 mod 1. (A9)
M

The distinct choices of ﬁ’o compatible with this
condition form a group which we denote K,,. Using
the rotation matrices given in Table II, we show below
that @0 is a nontrivial topological invariant only when

M’ =2, 3, 4. The general parametrization for ﬁ’o is given
in Eq. (10).

a. Deriving the quantization of é’o

The matrix representation of U(2z/M’) for different M’
(chosen to be consistent with the coordinate axis definitions
in Fig. 2) is given in Table II.

When M’ =2, Eq. (A9) gives

2Py Ny + 2Py Ay =0 mod 1, (A10)
for any A,, A,. Therefore, we set &, , = (P,./2), Poy =
(Poy/2), where P, ., P, , are integers.

When M’ = 3, Eq. (A9) gives after simplification:

Poy =Poy =—2P, mad 1, (A11)
implying that we can set P, = (%,/3)(1,2) for some
integer P, with P, ~ P + 3.
When M’ = 4, Eq. (A9) gives after simplification:
Pox = Poy = —P,, mod 1, (A12)
implying that we can set 9 = (%,/2)(1,1) for some
integer &, with P, ~ P, + 2.
When M’ = 6, Eq. (A9) gives after simplification:
Pox = Poy=0mod 1, (A13)
implying that 550 must be an integer vector and is therefore
trivial.

APPENDIX B: CALCULATION OF 5’0
AND &, WHEN C=0

1. &,

Here we show how to calculate j’o in the limit of
zero Chern number, where the system can be adiabatically
connected to an insulator in which the charge density is a sum
of ¢ functions at the maximal Wyckoff positions i = a, 3,7, 5.
The charge at these points is always an integer, of the form N;.

In this limit, the polarization ﬁ’o is related to the dipole

moment 130 =) ico Q;7; mod 77, where © is the unit cell,
and 7; is a representative position vector for the point j.

Next we relate 130 to the desired quantity 5’0: we
show that
(‘@o,x’ goﬁy) = (Po,y’ _Po,x) mod Z2. (Bl)
This is true irrespective of any rotational symmetries. The
argument is as follows (it is adapted from statements in
Ref. [20], although our result differs from theirs by a sign).
We consider a clean lattice in which the vector potential
satisfies A, =0, and the translation gauge fields have
components satisfying the “natural” choice:
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[implying that f;_f(XX Y,) =7, —7;]. We set =0 for

convenience and assume that

-

C P >
L=—ANdA+—=—"-ANdR+ VA A Ayxy,
4z 2r

neglecting all other terms. With the above assumptions,
L can be expanded as follows:

C e9‘7)0 X g)o. y
L= E(—AxatAy +A,0,A,) —2—ﬂ'0,Ay +2—”“6,Ax. (B2)
Therefore the expression for the current j is
(oL oL
~ \0A, 54,
1 C
=—0,(-Py,, Pox) + —(—E,.E,), (B3)
27 ’ 2z ’

where E,, E, are the electric field components. But
when C =0, we can also write (after picking a suitable
normalization)

(B4)

Comparing the equations for j then gives Eq. (3). The
above argument holds on the infinite plane or the torus,
with and without rotational symmetry.

Below we consider M = 2, 3, 4 separately; for M = 6,

Py~ (0,0). We first determine P, as a dipole moment, and

then find the corresponding éﬁo.

M =2: Using Fig. 2 as reference, we find that,

modulo 1,

> 1

P, E(Nﬁ—FNy,Nﬂ—FN(;)

- 1

Py= E(N“ + N5, N, +N,),

> 1

P, E(N +N5,Nﬂ+N5)

> 1

P E(N/;—FN Na—i—Ny). (B5)
This implies that, modulo 1,

- 1

P, 5(N,;+N5,N/;+N)

- 1

s — E(Na—'—N N{1+N5)’

- 1

P, = E(N/ﬁ-Nﬁ,N + Ns),

- 1

Ps = 5(N +N,.Ns+N,). (B6)

M = 3: Figure 2 shows that, modulo 1,

> 1

P, = g(N,;JFZNy,NﬂJery),

> 1

Py E(N + 2N, N, +2N,),

> 1

P, = §(N + 2Ny, N, +2Nﬂ) (B7)

This implies that, modulo 1,

> 1

P, = §(Nﬁ+2N 2Nﬁ+N},),

- 1

Pp §(N +2N,, 2N, + Ng),

- 1

P, = §(N + 2Ny, 2N, +Nﬁ) (B8)

Z2(1,2) mod 1, the value of
P, can be read off from the x component of the above
equations.

M = 4: Figure 2 shows that, modulo 1,

Since by convention &, =

- N;+ N
P, :L(l,l),
2
- N,+ N
In this case, P 9’ mod 1, andg’ Np+N, mod 2.

The polarization at the points ¥, y2 with C, symmetry
can be obtained from the above M = 2 results by taking
Y2 =Y,71 :5, and N}' :Né.

2. 8,

The calculation of &, in a system with M-fold rotational
symmetry proceeds by constructing a disclination with
disclination angle 2z/M at o and measuring the fractional
charge Qy in a region W around the disclination. When
C = 0 we can consider the fully filled limit in which the
charge at any point in the MWPs i = a, f3, 7, d is equal to
N;. Then, by working out the different cases, we find that

S8y =N, mod M, (B10)

foro=a, p,y, 06

3. Argument that §, is independent of o*

Here we use a square lattice calculation with C = 0 as an
example to argue that &, does not depend on the origin o*
used to construct the disclination, but only on the point o
used to measure the dislocation Burgers vector. Say we
want to prove that &y is independent of the origin. We
consider o* = f# and 0" = a separately and construct two
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(b)

bs € 1(0,0)]

©
B
6 © ©
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O....l—»wc.@
(0
e © o

FIG. 12. Pure disclinations with two different choices of 0*. (a) 0* = 3, (b) 0* = a. Dashed lines represent unit cell boundary. (c) The

M = 4 unit cell.

different Q = (r/2) disclinations using Cy o+ (see Fig. 12).
We fix o = f in both cases and extract &4 from the charge
response. We have numerically checked that 8 in for these
two choices of o* are the same (see Fig. 1). Now we
analytically show that &, is independent of 0* when C = 0.

We pick the region W shown in Fig. 12. We first consider
Fig. 12(a) where o* = . In the C = 0 limit, the charge
response is

Sp
QW=T+12U mod 1. (B11)

A direct counting of Wannier orbitals gives
1
Ow = 12N, + (12+Z>Nﬂ+24N7' (B12)

Since v = N, + Ny + 2N, we obtain S5 = ;Np.

Now we switch to o = a [see Fig. 12(b)]. The Burgers
vector is nontrivial and there is an irregular unit cell in the
defect core contributing MiregBo = %1/. Taking C = 0, the
impure disclination charge is

_S

P 1
s
— = 1. Bl
Ow 4+ 5 +<6+2>1/m0d (B13)
A direct counting of Wannier orbitals gives
3 3
Ow =7TN, + 6+4_L Ny + 12+§ N,. (B14)

We now use the C = 0 result @,; = N, + N, which was
obtained above. Combined with the above equations,

we again obtain 8 = %N - This completes our verification
that &4 is independent of o*. We can apply similar
arguments to verify that &, is independent of o* for each
oand each M =2, 3, 4, 6.

APPENDIX C: MICROSCOPIC CONSTRUCTION
OF A DISLOCATION HAMILTONIAN

In this appendix, we demonstrate a systematic method
to construct a dislocation Hamiltonian H j.s.. in terms of
the Hamiltonian H.,, on a clean rotationally symmetric
lattice with M = 2, 3, 4, 6. The procedure is similar in
spirit to the construction of disclination defects given
in Ref. [33].

Since the dislocation is a defect of the translation
symmetry, the construction necessarily involves the mag-

netic translation operator 7 = elzf 4T which is a
translation followed by a gauge transformation which
ensures that 7' is a symmetry of H_,,. For concreteness,
we write a general form of the Landau gauge on the square
and honeycomb lattices below [this is analogous to the
previously defined gauge on the torus, Eq. (56)]. For the
square lattice,

Aj,j+§ = (Jx - (_)x)(p’
J=0Uwhy). Jx€Z  jy€Z (C1)
This vector potential is defined on an infinite plane. In this
appendix, we use A = A .., to denote the entire vector
potential on the clean lattice. 6 = (8,,0,) is called the
gauge origin. On the honeycomb lattice, consider Fig. 13.
Assume that the boundaries of the unit cell align with the
hoppings. Then define
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FIG. 13. Landau gauge on a honeycomb lattice with differ-
ent gauge origin 0. Each blue arrow represents a hopping

phase A;; = (¢/4).

Ai.i+(—1/3.2/3) = Aj,j+(1/3,1/3) = (x—0y)

I
i= <ix—§,iy—§>, i€z i ez,

’

SERSH

. N . _
]—<]x+§,]y+§>, x€Z, j,€Z. (C2)

i and j are site indices at MWP f and MWP y of the C5 unit
cell, respectively (refer to Fig. 2 for the unit cell
convention).

Using the aforementioned gauge choices, we now explain
how to construct the dislocation Hamiltonian H 4. for
each M, starting with H,,. In our numerics we use this

procedure to construct dislocations with b = (+1,0),
(0,£1); all other dislocation Burgers vectors lie in the

same equivalence class as one of these choices of b.

1. C,, C,4 dislocation

Let us consider a dislocation on the simplest square
lattice as an example. The construction below generalizes
naturally to C, lattice dislocations since both of them have
quadrilateral unit cells. Given an origin o and the desired

dislocation Burgers vector l;, the procedure for constructing
H gefoee 18 summarized in three steps: (1) draw a cut parallel

to b, (2) define conjugate hopping terms, (3) perform
local moves.

The first step is to draw a linear cut in the direction
of b [b=(0,1) in Fig. 14]. This cut starts and
ends on two plaquette centers. The cut intersects a
set of links in the lattice corresponding to hopping

(a) (b)

(©)

FIG. 14. Dislocation construction procedure on a square lattice.
(a) Drawing a cut in the ¥ direction. (b) Conjugate hoppings.
(c) Doing local moves. (d) Reorganizing.

terms in Hge,,- We only consider two-fermion hopping
terms below.

Consider a particular term which intersects the cut, and is
of the form czj che_'AL.fRf in H ey Lj and R; are sites on
the left and right of the cut, respectively. We conjugate only
the operator ¢ R, with the translation operator Ty:

—iAL g, T —iAL R T A st
e LjR; CLjCR/' - e LjRj CLf<TyCR,-TY)
—iAp g, o —idg,
=e e e e, (C3)
Starting  with  Hge,, We delete the  original
. —iAL g .
hoppings e "% CL,Cr; and add the new hoppings
—i(AL g Aig) i .
e TR CL,CR;, 1O obtain H g In the example

shown in Fig. 14, this procedure creates a dislocation with
b= (0, 1) on the —y side of the cut and an antidislocation
with b = (0,—1) on 4y side of the cut.

We want to consistently ensure that the irregular unit
cells in this construction are all triangular, and not
pentagonal or in some other irregular shape. Therefore,
in the third step, we make one local change of the hopping
terms such that both the dislocation and antidislocation
have a triangular plaquette [see Fig. 14(c)]. This fully
determines H jofeq-

2. Properties of ¢;,., on square lattice

Here we derive several statements that were made in
Sec. V regarding the flux ¢;., in a dislocation plaquette on
a square lattice.
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a. Proof of Eq. (43)
Consider Fig. 14. We refer to the point j in this figure as

jo in the main text. For a b = (0, 1) Burgers vector, the
flux in the irregular dislocation plaquette can be written
in terms of the vector potential Ag.sc ON the defect lattice
as follows:

¢irreg = Adefect.ij + Adefect,jk + Adefect,ki' <C4)

From Eq. (C3), we see that the new hopping created in the
defect lattice tc]cje*Awraic can be calculated in terms of

the vector potential on the clean lattice; i.e.,
Agefectik = Aij + 4.
Moreover, Agefect,ij = Aij and Agegeer jx = A jx- Therefore,

¢irreg :Ajk _/1j- (CS)

In the main text we explicitly write j = jj, k = jo + 3.

b. Change in ;...

Next we prove the claims in Sec. VA about how ¢,
changes when either 4 or j, is changed.
(1) Suppose we change j, — jo+ (v,,0), v, €Z,
keeping A, 4 fixed. Then the change in @y, is

APireg = Ajyr(0,0).jo+ (1,004 ~ Ajo+(0,.0)

- (A./'o,joJrf’ - '1./'0)‘ (C6)
Now we use Eq. (58). On the infinite plane, Eq. (58)
holds exactly, while on the torus, where it is not
exact everywhere, we ensure that the dislocation is
constructed within a region where this equality does
hold. Then we get

Ajo = Ajot(0,0) = Ao jot(0,0) = Ajot9jo+(0,.0)45-

(C7)
Therefore,
Airreg = Aot (0,0 o+ (0,045 = Ajo.jo+s
+ Ajpjot(0:0) = Ajgssor w0+ (C8)
= +pv,. (C9)

The last equality is because the sum over A measures
the flux in a rectangle of side lengths », and 1 in the
x and y directions, respectively.

(2) Suppose we change 1; — 4; +y for each j, and
x = ¢v,. jo and A are fixed. Then from Eq. (C5),
ACbirreg = —¢u,.

c¢. Proof of Eq. (61)

With ; as defined in Eq. (59), we calculate ¢y, given
that the dislocation is created at x = jj, on the torus:

(jO,x _6x)¢+%l'x jO.x < 6)(
¢ir1'eg = (jO,x - 6x)¢ - %Lx jO,x > 6x
0 jO,x = 6x‘

(C10)

Since the sites have integer x and y coordinates, we use
Eq. (60), along with the following relation, which can be
read off from Table IV:

1
Rirrego = — <0X + 5) mod 1.

This relation is defined mod 1 because an integer change of
Nirreg o dO€s not change o mod 7>,

From these two conditions we find that o, =0, — % —
(L,/2) mod 1 whenever jj, # 0,. This is the same as our

numerical observation using Eq. (61).

(Cl11)

3. (3, C¢ dislocation

We can use a similar method to construct a C3 or Cg
dislocation in the honeycomb lattice. Figure 15 shows the

full procedure for constructing a b = (0, £1) dislocation
and antidislocation pair.

FIG. 15. Dislocation construction procedure on a honeycomb
lattice. (a) Draw a cut in the y direction. (b) Conjugate a set of
hopping terms. (c) Perform local moves. (d) Reorganize.

031005-31



ZHANG, MANJUNATH, NAMBIAR, and BARKESHLI

PHYS. REV. X 13, 031005 (2023)

With some fixed gauge origin 6 = (6,, 0, ), we construct
H gefoee from H gy, following the same three steps as above.
For consistency we choose the irregular unit cell to be
quadrilateral (rather than, say, an octagon). As above,
using 6@y, =0, we demand that Ty should create a
dislocation with @jree = Pnjpe,. Using 4; defined in
Eq. (86), we again recover the relation between o, and
0, to be 0, =0, — (L,/2) =1 mod 1.

APPENDIX D: INDEPENDENCE OF { 6’0,930}
UNDER SHIFT OF UNIT CELL

In this appendix, we describe the trimming method

which serves as a tool to prove that 530 and &, do not
depend on the choice of unit cell . It is worth noting that
the linear momentum calculation and the 1D polarization
calculation are completely independent of ®. Only the
charge response calculation depends on ®. We provide

two examples to illustrate the method, for &, and @0,
respectively.

1. S,

Consider a pure disclination on the square lattice with the
C,4 symmetric origin o at a site, as shown in Fig. 16(a). We
consider the two choices of unit cell ®;, ®, shown in
Figs. 16(c) and 16(d). We also define two regions W;, W,
whose boundaries are aligned with those of ©®;, ©,,
respectively.

Following Eq. (77), the charge response for W can be
written as

S 3 Cod
QWI :To-f— (kl +—>IJ+TWI mod 1, (Dl)
T

4

FIG. 16. Trimming method for a pure disclination on the square
lattice. We consider two regions. (a) W; and (b) W,. Wy, W,
correspond to choices of the unit cell shown in (c) and (d),
respectively. The origin o is defined to be at a site. Black solid
lines represent hoppings. Here W, is trimmed into W, by
excluding subcells at the boundary.

where k; is the integer part of ny, . Since o is at the center

of the unit cell, we have ng e = 1— (Q/27) =3 as

defined in Eq. (78). The charge response for W, can be
written as

Owr = =+ kv +

O
¢ C52 "2 mod 1. (D2)

The extra flux 6@y is only inserted near the defect,
and W; and W, only differ at their boundary. Therefore,
5CDW1 - 5(I)W2

In order to prove that &, extracted in the two equations
above is the same, we need to show that Qw; — Qw, =
(k3 + %)1/. Since we can arbitrarily add a full unit cell on the
boundary of W, or W, k5 can vary freely without changing
&, but the fractional part in parentheses needs to be %.

In order to compare Qy; and Qy,, we trim W, into W,.
This only requires cutting out subcells on the boundary,
which is assumed to be far away from the defect. Thus, on
the boundary we expect the charge in each unit cell to be v,
and the charge in each subcell to be 41‘1”‘ With this
information, we can explicitly calculate Qy; — Qw».

For example, in Figs. 16(a) and 16(b), Qw; — Ow, =
(6+ %)y, which satisfies the aforementioned condition. The
above process is repeated for disclinations with M = 2, 3,
4, 6 lattice with arbitrary o and Q. In all cases, the value of
Ow, — Qw, obtained from the trimming method is con-
sistent with a fixed value for &,. This allows us to check
that the extracted &, does not depend on ©.

2. P,

We use a similar procedure to prove that 5’0 does
not depend on the choice of ®. Consider the honeycomb
lattice dislocation shown in Fig. 15(d) with Burgers vector

b= (0,—1). Let us consider o to be at a plaquette center.
Two choices of ® are shown in Figs. 17(c) and 17(d).

The charge response with unit cell as in Fig. 17(c) can be
written as

3 . (D3)

> - 2 Cod

Ow1 =P, -b+ <k1 +—>1/+ 5 "L mod 1.
Again, k; is the integer part of the number of unit cells
enclosed by W,. Since the position of the origin relative to
the center of the unit cell is (%, —1), the fractional value of
Nireg can be read off from Table IV. Similarly, the charge
response with ®, as in Fig. 17(d) can be written as

= - Cod
Owr =P, - b+ k2y+TW2 mod 1. (D4)

V4

Similar to the previous example, 6®@y,; = 6Py,, and we

need to show that Qw; — Qy» = (k3 + 3.
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FIG. 17. Trimming method for a dislocation. (a) Honeycomb
dislocation with region W, covering the b = (0, —1) dislocation.
The boundary of W is aligned with unit cell boundary of (c),
shown as red dashed line. (b) The region W, after trimming. Now
the boundary of W, is aligned with the hopping, which is also the
unit cell boundary of (d), shown as black solid line.

In the example shown in Figs. 17(a) and 17(b),
each subcell contributes %1/. We have Qy — Qo = 13—41/ =
(4 +3)v, giving the expected answer.

This procedure can be extended to M = 2, 3, 4, 6 lattices

with arbitrary o and b. With this we can verify that 5’0 does
not depend on ©.

APPENDIX E: FURTHER DETAILS IN LINEAR
MOMENTUM CALCULATION

In this appendix, we first state some numerical observa-
tions on how the quantization of the linear momentum
changes upon starting with the operator Ty as in Eq. (59) but
then changing the location of the strip that violates trans-
lation symmetry. Then we discuss some technical details
regarding the partial translation method. The numerical
results of linear momentum can be seen in Fig. 18.

We note that in the main text, the origin o for the charge
polarization is defined in terms of the gauge origin 0. This
is, however, not the only way to define o. For a given A, 4,
where 4 is associated to the operator T y» there is a point &
which satisfies

/16 - A()’()er — O (El)
0 does not change under gauge transformations, which take
Ajj = A+ fij—fiand A; = 4; = f; + fjy5. This trans-
formation of 4, is obtained by solving Eq. (58) after gauge
transforming A. Therefore 0 is a gauge-invariant point, and
we can in principle define o in terms of © by constraining
the flux at a dislocation defect. This involves arguments

n D OSE |||U|HH@HA\HW I MH\(]MW ,
N oy ] PP
) M d i i1 élﬂJ

»
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FIG. 18. Bare numerical result of (top) angular momentum [,
which follows Eq. (40); both calculated on an L, X L, =
12 x 12 torus. Bottom: linear momentum p,, which follows
Eq. (21), calculated on the L, x L, =19 x 11 and L, X L, =
20 x 11 torus, respectively. All panels are plotted in the
0 < ¢ < 2r range.

similar to the ones in Appendix C. However, we do not use
0 in the present work.

1. Freedom in changing location of strip

Consider the choice of 4 in Eq. (59). Apart from global
U(1) transformations, we can consider other choices of 4;
which serve equally well as approximate symmetries. For
example, we can consider

s iy =(am/Ly)cle; . o
Fyel 2 G 5 4

R B S N =
fwy jx = (_)x + 5’

for some real number 6 # 0. The vector potential is again
almost symmetric with respect to T%; the strip where T is
locally not the symmetry of the Hamiltonian is, however,
shifted from 0 by the amount ¢ in the x direction. However,
the expectation value of T’y does not yield the desired
invariant &, . We have numerically checked that for any
0 # 0, the resulting values of &, , are not even quantized
throughout each gapped phase of the Hofstadter model
when C # 0. And when C = 0, choosing 6 # 0 continues

031005-33



ZHANG, MANJUNATH, NAMBIAR, and BARKESHLI

PHYS. REV. X 13, 031005 (2023)

to give a quantized result, but certain choices of 6 will give
Por(1/2,0),y instead of &£, .

These observations can be understood as follows.
Suppose we calculate &, using Ty for a given choice
of strip, and then change the strip position by 6% as in
Eq. (E2). In general, if 6 #0, 1; changes by k;zm/L,
for each j that was crossed by the strip as it was shifted.

; = £1if j lies exactly on the initial or the final position
of the strip, and k; = +2 if j lies in between the initial and
final positions of the strip. Let S be the set of points crossed
by the strip. Then,

Ty o Tye' Lusestbmm/Lis (E3)
When C = 0, we verify numerically that the state |¥) is an
almost exact eigenstate of 71;, with expectation value
(the statement being exact for the Hofstadter model). Thus
we obtain:

Ty - Tyemrnszes(kj/L’v). (E4)
Since the number of points j corresponding to a fixed k; is
always a multiple of L,, the extra factor is of the form

(=1)¥™ where kK" = 0 or 1, and is fixed by the actual values
of k j and . If ¥ =0, ‘@w is invariant. But if
K'=1,Pyy = Poy+1/2.

Note that this reasoning breaks down when C # 0:
|¥(m)) is not an eigenstate of ) ..s7;, and &P, hence
can be expected to depend sensitively on the strip position.
As mentioned in the main text, empirically we have found
that the strip needs to be aligned with the gauge origin 0 in
order to obtain consistent results for & ,.

2. Partial translation

In the partial translation calculation we define the
operator Ty| p and find that we need to pick a particular
choice of D, so that D is a cylinder defined mirror
symmetrically about the cycle x =06, — (L,/2) [with

-

holonomy (—1)"]. This set of choices recovers &, that
is consistent with the dislocation charge calculation. There
is another natural choice of parameters: we can choose D to
be defined around x = 6,, and choose Ty| D= Ty| p- We

numerically find that this choice gives &, = 0 everywhere
in the butterfly. We do not have a complete explanation for
why the first set of choices is required. However, we find a
resemblance between this result and the calculation of
angular momentum through partial rotations discussed
previously in Ref. [33].

In that calculation we need to choose a disk D centered
around a special point o,, which is one of the two
vertices invariant under the chosen rotation operator at
a vertex v, C’M.. The holonomy of A around either cycle

T =015 =0, z=0,—% =05,

FIG. 19. The U(1) phase of a randomly chosen low-energy
single-particle eigenstate on a 64 x 64 torus. The gauge origin is
at 6 = (51 +%,0). The parameters are (left) m =5, C =1,
(right) m = 15, C = 1. The variation in phase along y is lowest
around x = 0,.

which crosses 0, is ¢ in a system with m flux quanta.
But if we choose a disk centered around the other fixed
point 0y, with respect to which A has trivial holonomy,
the resulting value of the discrete shift varies irregularly
within the same Hofstadter lobe and is not meaningful.
Thus if we consider partial spatial symmetries, the

calculation of both &, and @0 involves the part of the
system with e holonomy rather than the part of
the system with trivial holonomy.

We can provide some more heuristic numerical evidence
explaining this choice. We consider a system at fixed C and
plot the phase of a randomly chosen low-energy single-
particle eigenstate for different choices of m (see Fig. 19).
We empirically find that the phase variation in the y
direction nearly vanishes around the cycle x = 0,. Note
that our choice of D excludes the region around x = 0,.
The phase of (‘¥|T,|p|¥) is nearly unaffected by this
choice of D. However, choosing D to exclude the region
around x=0,— (L,/2) will significantly change
(¥|Ty|p|¥). The above discussion suggests that the region
around x = 6, — (L,/2) is in a sense more important than

the region around x = 0, in order to extract &.

APPENDIX F: DERIVATION OF TOPOLOGICAL
RESPONSE THEORY

Here we discuss the construction of the topological
response theory for invertible fermionic phases with the
symmetry group G, = U(1)/ x, [Z* x Z,]. This con-
struction was first developed for bosonic topological phases
in Ref. [17], and a partial extension to invertible fermionic
phases focusing on &, was discussed in Ref. [33]. In this
appendix, after reviewing the definition of crystalline gauge
fields, we present two computations that are new: a
derivation of the complete response theory using results

from Ref. [14], and a derivation of the quantization of 5’0
from field theory.
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1. Review of crystalline gauge fields

Consider a 3-manifold M>. We define real-valued
differential 1-form gauge fields 5A,X, Y,(uEQl(/\/P,IR).
0A denotes the part of the vector potential in excess of
the uniform background, and we identify 5A ~ 0A + 27.
(Note that the quantity A is taken to mean the entire vector

potential.) R = (X, Y) represents the Z* translation com-
ponent. w is a Z,, rotation gauge field. The full gauge field
is denoted as B = (5A,1$, ). Tt is non-Abelian and
composes according to the group law of Gy.

The flux of B has three components (F, T. dw). F =
doA + ¢pAyy is the density of magnetic flux. It consists of a
background contribution ¢Ayy proportional to the area
element Ayy, and an excess contribution which is measured
by d6A. We can equivalently write F' = dA, where A is the
full vector potential.

Axy depends on (X,Y), and its precise form also
depends on the value of M, but whenw = 0,Ayy = X U Y.

T is the torsion; the quantity (1/27) I T measures the
total dislocation Burgers vector within a 2D region D?.
When we use orthogonal coordinates, for example when

M = 4, we can write T :=dR +iocyw A ﬁ, where ic, =
( _01 (1)) . The general definition of T depends on how we
fix our coordinate basis. We note, however, that in the
original simplicial formulation of the response theory,
we can simply define T = dR for any value of M, because
the second term can be removed by a suitable gauge
transformation [17].

dw is the disclination density; the quantity
(1/2x) [p» dw measures the total disclination angle within
D?.In order to correctly encode the curvature and torsion of
M3, we set R, w equal to the SO(2) components of the
coframe fields and the spin connection on M?>.

There is a very important issue that was not commented
upon in Refs. [17,33]. Since the dislocation Burgers vector
can in general be origin dependent, the translation gauge
fields must themselves be origin dependent. This means
that quantities in the action constructed out of the crystal-
line gauge fields may all in principle carry an origin
dependence. We return to this point in Appendix G.

We impose the condition that B is a G, gauge field
through quantization conditions on the total flux of B thro-
ugh closed and open 2D submanifolds of M?3. If D> ¢ M?
is a closed 2D submanifold, then the gauge field on D?
must be flat; i.e.,

()—27r[1— (2”>]215 (F-%), (FI)

—27:21115 (X-% (F2)

¥) =21y nis?(F-%)), (F3)
J

within D?, where 71 € 7% and m;, n; € Z. This physically

corresponds to saying that the only sources of flux in D? are
points at the positions X;, which each carry an integer
number of flux quanta. Note that the factor [1 — U(2z/M))

appears in the condition for T, because a Burgers vector of
the form [1 — U(2z/M)|7, ¥ € Z?, is in the trivial class (see
Appendix A) and therefore corresponds to a trivial quantum
of flux.

On open manifolds, we can have nonflat gauge field
configurations, which can assign fractions of a flux
quantum. The following conditions ensure that the net
flux of the crystalline gauge fields in a region, although
fractional, always corresponds to an element of Gpyce:

T(¥) =22y 1,52 (F - %)) (F4)
N 2 - o
(%) =17 Zn A=) (F5)

Even when we allow nonflat gauge field configurations
on an open manifold, the integral through any closed 2D
submanifold D? must still be appropriately quantized:

1 - - 2r\ |-
ey =30 10 )

1
Y . do = nyy, (Fo)
where myy, ny € Z and Zot € Z2. Physically, n, is the
Euler characteristic of D?.

2. Response theory
a. General derivation

The general construction of a response theory for
invertible fermionic topological phases with symmetry
group G, =U(1)! x4 [Z* x Z,,] was outlined in Ref. [33].
In that work, specific quantization conditions on the
discrete shift were derived by ignoring translations. Here
we recall the main steps in the derivation, but also consider
translations, with a view to obtaining the quantization
of ﬁo.

First, note that the quantity [@,] € H*(G,, Z,) specifies
Gy as a group extension of G, by ZJZC. To express w, in
terms of the gauge fields, we define
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B = = (2F + kdw) = nB*w;. (F7)

| =

where B* refers to the pullback via B [meaning B* @, (x) =
@, [B(x)] for x € M?3] [52]. As mentioned in Ref. [33], if
the chosen 2z rotation operator acts as the identity, we
should set kK = 1 in the above definition; if it acts as the
fermion parity (—1)F, we should set k = 0. Accordingly,
here we use k = 1.

Note that the choice of k in the definition of @, and hence

B;l) specifies the angular momentum mod 1 of the fermion.
In general, , specifies the fractional G, quantum numbers
of the fermion [14].

(1)

Next, we define the quantity B,’ = zB*n,, where
n, € Z*(G,,7Z,) is a general 2-cocycle, which is also
one piece of the data in the classification of Ref. [14].
In our case, n, specifies the fermion parity change in the
ground state after introducing a G, flux quantum. It turns
out that the most general possible parametrization of B(zl) is
as follows:

1 -
Bl =5 {2k F +kydo+ [1=U2n /M)~ kp- T+ kaAy ).
(F8)

where kg, k, .k, € Z and I?T € 72 For M =3, 6, we

require IET = (0,0). This parametrization of n, can be
found, for example, in Appendix D of Ref. [17]. We also
use the fact that n, ~ n, + @, (this is proven in Ref. [14]
and is an equivalence due to relabeling fermion parity
defects in the invertible phase). We use this equivalence to
set kp = 0.

The three remaining terms have the following interpre-
tation: (1) k,, is the fermion parity change upon inserting a
set of disclinations with Q = 2z; (2) I:T A specifies the
fermion parity change in a region upon introducing dis-
locations with total Burgers vector [1 — U(2z/M)]A; (3) k4
specifies the fermion parity per unit cell.

Then, the main result (obtained using the general theory
developed in Ref. [14]) is that the Lagrangian density £
which gives the topological response theory for an invert-
ible fermionic phase with symmetry G, and chiral central
charge c_ must satisfy

211 -
5B A (BY + BY) + = BY A BY| mod 2z.

Al =—
|2 8

(F9)

Its meaning is the following. The 2-cocycles n,, @,
(alternatively, the quantities Bgn, Bgz)) together specify
the G, quantum numbers of the fermions and the fermion
parity defects in the system. But in order to ensure that the

G, quantum numbers of all symmetry defects are well

defined in (2 + 1)D, we need an extra condition given by
Eq. (F9). Note that if the rhs of this equation corresponds to
a nontrivial class in the group H*[G,, U(1)], there is no
solution for L, and the system can only live on the boundary
of a (3 + 1)D symmetry-protected topological (SPT) phase
whose effective action is defined by the quantity d.L.

For free fermion phases, we can set C = c_; in gen-
eral, C = ¢_ mod 8.

The response theory finally obtained from this condition,

by substituting Bél), B(ZZ) and integrating, takes the form

c S
L= AndA+2°
apt Nty

T T

P .
ANdo+ 22 ANT+ AN Ay
2w 2w

4 P -
4 2 2w

(F10)

where the dots refer to additional terms that can be nonzero
even if A, w are both zero. We note that because dL only
involves F, L is written entirely in terms of A, even though
one might expect that it should be written in terms of 5A.
The coefficients in this equation can all be expressed in

terms of k,, kr, k4, as we now show for 2.

b. Quantization of ﬁ’o using response theory

The quantization of &, and its dependence on c_ was
discussed in Ref. [33]. Below we only discuss the quan-
tization of 9’0. In the next section we discuss the origin
dependence of &, and 5’0.

Note that the derivative of the term with @0 in Eq. (F10)
can be written as (@0/271) CdANT = (@0/277) -F A
T + ---. When kr = 0, such a term can only come from
the Bgl) A 3(22) term in Eq. (F9). Indeed, by comparing the
two equations we must have

-

Py a1 -

(F11)
The above equation implies that

Py = [1 = UQn/M)]" (ky + 2k spr) mod Z2.  (F12)
The term with IET,SPT € Z? arises as a constant of integra-
tion. It does not contribute to d£, and can physically be
thought of as the polarization in a bosonic SPT phase which
is stacked onto the original fermionic phase. We now use

the conditions IZT,I_('T,SPT € Z?, along with the fact that

integer choices of 5’0 do not contribute to the partition
function. With this we obtain the quantization result
claimed in the main text. In particular, the classification
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of &, for invertible bosonic and fermionic systems is the
same, in contrast to the results for the Hall conductance
and &,.

There is no dependence of @’0 on c_ because in
Eq. (F9) the terms proportional to c_ only depend on

F and dw, and not on 7. The nontrivial values of @0 are
entirely due to ZT when M =2, 4, and entirely due to
ET,SPT when M = 3.

Finally, we note that the first four terms in Eq. (F10) can

be rewritten in a perhaps more familiar form, using the
relations v = k + (C¢p/2x) and F = dSA + pAxy:

-

C S P, -
L=—b6ANdOA+—0 AN dSA+=2-R A dSA
A 2 2w

+id§A AAgy+-ee. (F13)

The advantage of this representation is that it makes the
physical invariant v explicit, and is also closer in spirit to
the Chern-Simons response theory of the continuum
quantum Hall effect, which only includes §A. However,
it is a weaker form of the field theory, because it leaves out
several terms that were explicit in Eq. (F10). For the
derivations in the main text, we write the field theory in
terms of A and not 0A. Remarkably, our empirical findings
are easier to explain using Eq. (F10) than with the above
Lagrangian.

APPENDIX G: COMPUTATIONS FOR SEC. VII

Here we use the simplicial formulation of the topologlcal
response theory [17] to derive the quantities py, iy, Tur
defined in Egs. (93)—(95).

1. Fractional gauge transformations

The definition of each group element g; = (r;, h;) €
Gpace implicitly depends on the choice of origin o. For
example, h = (0,1 mod M) is the element in Gy
corresponding to a rotation by angle 2z/M (about o).
Now suppose o' = o0 + ¥, as before. The group element g/
which implements the same transformation but with respect
to the new origin o’ can be expressed as follows:

gi = (7,0)g(-7,0), (G1)

which corresponds to translating from o’ to o, applying g,
and translating back. Now we use the group multiplication

law in Ggpaces

(rl’ hl)(rZ’ hZ) =

to find that

[ry + UQ2zhy /M)ry, hy + hy], (G2)

gl = [r;, — U(2ah;/M)¥ + B, h)]. (G3)

2. Change in &,

First we study the transformation of dw. A cocycle
representative for dw can be explicitly written on a
2-simplex with the group elements g;, g, (g,8,)"

(i) + (o] = [Py + o]y
i .

dw(g,, g,) = (G4)

where [a],, == @ mod M. Since dw does not depend on the
translation group variables, it is unaffected by the trans-
formation in Eq. (G3). Therefore, we have

do' = dw. (G5)

Next we study the quantity dR. An explicit cocycle
representative is

dﬁ(gl’gZ) =1+ 1= [r + UQRah /M)r,]

=[1-UQ2zh/M)]r, (Go)
This implies that
dR'(g,.g,)
= dR(g}. g)
= [1 = UQ2zh,/M)]{ry + [1 = U(2zh,/ M)}  (GT7)
= dR +[1 — U(2zh/M)][1 — U(2zh,/M)]5.  (G8)

The second term only depends on ki, h,, just like dw. In
fact, it is coboundary equivalent to a multiple of dw. This
can be seen by computing a cohomology invariant we
denote I, which for a general cocycle [, € Z*(Gypuce: Z)
is defined as

lalfal = Y f2bih)mod M. (G9)
=0

where we recall h = (0, 1). We can show that /o (dw) = 1
using Eq. (G4), and also that Io(dR) = Io(Axy) = 0.
Thus, /g is an invariant corresponding to the Z,, subgroup
of H*(Gspace: Z)-

Up to coboundaries, we have by assumption,

dR = dR + 7ydow; (G10)
therefore, for any integer vector i,
Io(ii - dR') = I (ii - dR) + Io(ii - yydw)
= Ig(ii-dR) + 1 -7y mod M. (Gl11)
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But we can compute

Io(ii - dR')

S

= I(ii-dR)+ -y [1—UQRxj/M)|[1-UQx/M)|¥

T.
(=}

= Io(dR) 4 ii - M[1 — U(2z/M)]% mod M. (G12)
By comparing Eqgs. (G11) and (G12), and using the fact that
i can be arbitrary, we see that
Ty = M[1 = UQ2z/M)]0v. (G13)
The components of 7,, are ambiguous up to multiples
of M, since Iq is a Z,; invariant. This only means that
Sy 1is determined up to multiples of M, as we
already know.
Finally, we study the transformation of the area element
Ayy. We know that Ayy should be quadratic in the trans-

lation gauge fields if it corresponds to an area element.
Consider the ansatz,

Axy(g1.8) = r{QMU<2ﬂh1/M)r27 (G14)

where Qj, is a 2 x 2 matrix. The 2-cocycle condition for
Ayy 1s

Axy(g1.82) +Axy(g182. 83)

= Axy(82.83) + Axy(81.8283)- (G15)

Upon substituting in the ansatz for Ayy, we find that

I [UQ2r/M)T QU (2z/M) — Qylr, = 0. (G16)
This implies that
UQ2z/M)"QuU(2n/M) = Qu. (G17)

Thus the particular form we chose for Ayy ensures that Oy,
is a constant matrix with no dependence on group variables.
We also demand that

Axy(X,y) = Axy(y. x) =1,

which is a normalization condition. Solving these two
conditions, we get the following possibilities for Q,:

_ (9w ] z G18

QZ - ( 0 ny>7 Qxxv ny € Z, ( )
_1(e 1

Q4—2<_1 2Qo>’ Q €z (G19)

-1 1
= . G20
o=y ) (G20)
Note that for M =2, 4, Q,, is not uniquely fixed by

Eq. (G17). This is important in what follows. Upon shifting
the origin, we obtain

Ay = {r; = [U(hy) = 15} Qy U(hy){r) = [U(hy) = 1]37}.
(G21)

We now write
Alyy = Axy + pydw + iy - dR,

for some py,Hy, up to coboundaries. Evaluating the
invariant /o, we find that

Io(Aly) = py = —M{[U2x/M) = 1]} Q4 U(22/ M)3.
(G22)

After expanding out this expression for each M using
Table II, we find that

pr = 4(v,vy + 120, + v30,,) mod 2, (G23)
p3 = =3(vi+ v + v,v,) mod 3, (G24)
ps = =2(v: +v3)(1+20Q) mod 4, (G25)
pe = 0 mod 6. (G26)

Note that the transformation rule depends on the choice of
Qux» Qyy for M =2 and on Q, for M = 4. We find that
numerical results are matched only if we set Q,, = Q,, =1
and Qy = 0. Upon doing so, we obtain

pr = 4(v,v, + v: + v}) mod 2,
p3 = =3(v2 + v2 + v,v,) mod 3,
ps = —2(v2 + v?) mod 4,

pe = 0 mod 6. (G27)
Knowing 7, p), allows us to conclude that
Sy = 8o+ MP, - [ —UQRn/M)|T+ py.  (G28)

which gives the complete expression for the transformation
of &,. Thus the field theory does not uniquely fix the
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transformation rules for M = 2, 4; we needed to make some
additional choices guided by numerics.

3. Change in @0
Finally, we find i,,, which fixes the transformation

of @0. The calculation is given below. We discuss the
different values of M separately. We assume

Ayy = Axy + pydw + iy - dR. (G29)
M =?2: The invariants which characterize the coho-
mology class of ji, - dR are T x> Ly, which are defined as

Zx[f2] = fo(xh,xh) + f,(h,h) mod 2, (G30)

Zy[fa] = f2(yh,yh) + f5(h,h) mod 2. (G31)
Here x =[(1,0),0], y=1[(0,1),0], h =[(0,0),1]. We
can check that I'y(dw) = Iy(dw) = 0 mod 2. We can also
show that

Tyl - dR) = 25 . mod 2, (G32)

Zylfi, - dR) = 2u,,, mod 2. (G33)
Therefore,

Ixy)(Axy — Axy) = 242 x(y)- (G34)

But when M =2, [I — U(h)]|v = 2h,v for any ¥ (where
h; is just an integer mod 2). Using this in Eq. (G21),
we obtain

Ay (g1, 82) = (11 +20)" 0y (1, + 20y 7).
Then, by direct calculation we get

IX[A/XY —Axy} = (1 + 21]x, 2U},)Q2(1 + 21)x, 27)y)T
— (20,,20y) 05 (20, 2v)" — O,
(G35)

= 2v, mod 2, (G36)

TylAxy — Axy] = (20, 1 4 20,) 05 (2v,, 1 + 2Uy)T
- (20,.20,)0,(20,.2v,)" — Q,,
(G37)

= 2v, mod 2. (G38)

This means that 2ji, = 2(v,, v,) mod Z?. Putting this back

into the transformation rule for @0, we get the following
result (mod 1):

2Py 1= 2Py A KT y[Algy —Axy) =2Po  + 20y, (G39)

290/,}, = 2‘@0,)‘ +KIY[A3(Y_AXY] :2950‘y—|—21<1)x. (G40)
Note that this result is independent of the choice for
O.x, O,, made above, as these quantities cancel out of
the final expression.

M =4: We can directly see the result by setting
Po=(Po/2)(1,1) and v, = v, = (vp/2) mod 1 in the
above calculation for M = 2. The result is

Py = Py + kvy mod 2. (G41)

The results for M =2, 4 are in fact all equivalent to
Eq. (100).
M = 3: We wish to prove Eq. (106). If we parametrize
v =7(1,1) and Py = (P,/3)(1,2), this requires us to
show that
Py =P, + 2kvy mod 3. (G42)

The invariant giving the cohomology class of ji; - dRisT X»
defined as

Ix(f2] = f2(xh,xh) 4 f5[(xh)?, xh]

— f2(h,h) = f5(h% h) mod 3. (G43)
By direct calculation, we can show that
Tyliis - dR] = 3z, = P, mod 3. (G44)

Again  we use Ay(g,8)={r—[1-U(h)o]}" x
Q3U(hy){r,—[1-=U(hy)v]}. We use the same procedure
discussed for M = 2. After some (tedious) algebra, we
indeed obtain Eq. (G42), or equivalently Eq. (106).

4. Example: Verifying the transformation rules for &,

In this section, we use the honeycomb lattice as an
example to verify that the field theory formulas obtained
above agree with numerical results.

Consider the honeycomb lattice with a disclination
whose disclination angle is Q = (z/3), as shown in
Fig. 5(a). We define the unit cell ® so that the plaquette
center is the center of the unit cell (i.e., the point a). Let us
consider three choices of o, shown in Figs. 5(d), which

lead to different values of 1;0 and 7jpeg, as summarized in
Table IV. (1) Setting o = @, we get a pure disclination with

50 €((0,0)] and njyeq o o =3 [Fig. 5(b)]. (2) Setting 0 = f,
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we get an impure disclination with l;(, € [(0,—1)] and
n 1 [Fig. 5(c)]. (3) Setting o = f5,, we obtain a

irreg,o,g =
different impure disclination with b, € [(=1,0)] and
Miregof = 3 [Fig. S()].

Without loss of generality we can assume the flux
through the quadrilateral plaquette to be %45. Since W is
defined to align with the boundary of the unit cell, W is the
same for all three choices above. This means that Qy is also
the same, but is described by three different equations:

Ow =52+ (k+2/3),

S - C
QW:TIJI+(k+1/3)1/+g’/3] -(0,—1)-1—6—5,

S > C
Qu =L+ (k+1/3)u+ Gy, (-1,0) 4 2

(G45)
where k is the integer part of ny,. We then equate the three
expressions and cancel out the ¢ dependence to derive a
relation between &', and &'5. Equating the first two gives us

Sq+2k =85 + K+ Ppis313(1,2) - (0,—1) mod 3,

nga = csjﬂl + ﬁﬁ(l/S.l/S) — x mod 3, (G46)
where we use k = v — (C¢p/2x). On the other hand, setting
0=p, o+ (—1.,—1) =a, the field theory [Eq. (G28)]
predicts

Sa =Sy, + 3§Dﬁ(1/3.1/3) -(1,0) =k mod 3,

(Sa = (*Sjﬁ] +§/3(1/3.1/3) — K mOd 3, (G47)

which is exactly the same equation. Equation (G46) can
also be confirmed numerically (the numerical raw data
are given in Fig. 10). This verifies the field theory
prediction Eq. (G28).

We remark that we can use the same honeycomb lattice
Hamiltonian H ., to construct defects with different
disclination angles. We can then apply similar procedures
to verify the M =2, 3, 6 transformation rules for &, ;

and ﬁ’o "
APPENDIX H: GENERALIZATION TO MODELS
WITH NEXT-NEAREST-NEIGHBOR HOPPING

In the main text, we argue that our method of extracting
&, and P, works for an arbitrarily complicated unit cell

FIG. 20. Left: b = (0,1) dislocation of a square lattice with
next-nearest-neighbor hopping (red links). The C, symmetry
requires all four colored triangles with different orientations
having same flux ¢/2. Right: the choice of unit cell. There are no
sites at the MWP a and y, and there is only one site at . The next-
nearest-neighbor hoppings cross each other.

with further neighbor hopping and interaction terms, as
long as itis Cy; symmetric. In order to apply our dislocation

or disclination charge calculation to measure &,, %, in
these generalized Hamiltonians, we need to construct a
defect Hamiltonian H .., measure the charge Qy in a
region W, and then specify the quantities jgeg o, 6Py o-
We argue that our numerical procedure allows us to
specify these quantities as long as H .,, is local and has
a gapped, symmetry-preserving ground state, irrespective
of its other properties.

We now provide numerical evidence that our procedure

gives the expected quantized ﬁo when we add next-
neighbor hopping (numerically it is much harder to verify
this for interaction terms, and we do not pursue this here).
Consider a Hofstadter model with the unit cell shown in
Fig. 20. The Hamiltonian with this unit cell has next-
neighbor hopping. We set the nearest-neighbor hopping
amplitude equal to #=1, and tune the next-neighbor
(diagonal) hopping amplitude ¢ between O and 1. There
is a flux ¢ through each unit cell. Since we require the unit
cell to be C, symmetric, we also require that there is a
flux ¢/2 through each triangle in the unit cell, as shown
in Fig. 20.

We extract the Z, invariant 2, from a dislocation charge
computation. The respective butterflies as a function of 7
are shown in Fig. 21. We see that the invariant is indeed
quantized and well defined mod 2 throughout the main
Hofstadter lobes. In the ¢/ = 0 limit, the butterfly reduces to
the one for &, in Fig. 1.
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FIG.21. 9, as afunction of the next-neighbor hopping amplitude #; the nearest-neighbor hopping amplitude is # = 1. The calculation
isdoneona L, x L, = 41 x 41 open disk, with a b = (0, 1) dislocation placed at the center. The defects are located at the center of the
disk. The noisy features appear since the butterfly is numerically calculated on a finite size system rather than analytically derived from

an empirical formula as in Fig. 1.
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