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Abstract

The Context-dependent Mutation Analysis Package and Visualization Software (CDMAP/CDVIS) is an automated, modular toolkit used 
for the analysis and visualization of context-dependent mutation patterns (site-specific variation in mutation rate from neighboring- 
nucleotide effects). The CDMAP computes context-dependent mutation rates using a Variant Call File (VCF), Genbank file, and reference 
genome and can generate high-resolution figures to analyze variation in mutation rate across spatiotemporal scales. This algorithm has 
been benchmarked against mutation accumulation data but can also be used to calculate context-dependent mutation rates for poly
morphism or closely related species as long as the input requirements are met. Output from CDMAP can be integrated into CDVIS, an 
interactive database for visualizing mutation patterns across multiple taxa simultaneously.

Keywords: context-dependent mutations, software package, R software, interactive visualization tool, mutation accumulation 

Received: August 10, 2022. Accepted: October 17, 2022
© The Author(s) 2022. Published by Oxford University Press on behalf of the Genetics Society of America. 
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which 
permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

Introduction
Mutations are a primary source of genetic variation and under
standing how, where, and when mutations arise is critical to elu
cidating the evolutionary process. Studying the rate and spectrum 
of spontaneous mutations can provide insight into how genomes 
evolve and adapt to changing environments. Spontaneous muta
tions are known to vary in size, scope, and type, with base substi
tutions and insertion–deletion mutations ranging from a single 
nucleotide to several thousand kilobases, and in some cases, en
tire chromosomes (Baer et al. 2007; Gordo et al. 2011; Heilbron 
et al. 2014; Lee et al. 2012; Sung et al. 2015; Sung et al. 2016; Keith 
et al. 2016; Wei et al. 2018).

Mutation accumulation (MA) studies, where organisms are bot
tlenecked to accumulate all but the most deleterious mutations 

(Dillon et al. 2015; Long et al. 2015, 2018; Lynch et al. 2016; Senra 

et al. 2018; Sun et al. 2017), have provided a wealth of information 

regarding how organisms mutate. However, these data have also 

shown that mutation rate varies depending on the genomic pos

ition (Foster et al. 2013, Dillon et al. 2017), replication strand 

(Sung et al. 2015), mutation type (Long et al. 2014), and genomic 

context (Long et al. 2014; Schroeder et al. 2016; Harris and 

Pritchard 2017). Local sequence context has been shown to influ

ence site-specific mutation rates by up to 75-fold within the same 

sequence context (Dillon et al. 2015; Sung et al. 2015) and upwards 

of 403-fold within different contexts (Schroeder et al. 2016). Local 

sequence context has also been shown to have a large impact on 

site-specific mutation rates in bacteria, plants, and humans 

(Morton et al. 2006; Harris and Nielsen 2014; Harris 2015).

Although evidence of context-specific mutation patterns has 
been observed across taxonomical life, our understanding of these 
patterns remains limited due to the ad hoc methods employed in 
various studies that are designed specifically for a single organism 
(Lee et al. 2016; Long et al. 2014; Dillon et al. 2018). Furthermore, 
these studies do not orient the mutations with respect to any gen
omic landmark (e.g. origin of replication) so it is nearly impossible 
to examine and contrast large-scale patterns driving spatio
temporal variation in mutation rate across multiple taxa.

To this extent, we have developed CDMAP, an analysis and visu
alization package to measure the genome-wide rate and spectra of 
context-dependent mutations. CDMAP is a novel software package 
that can be used to categorize mutations and their local sequence 
context into a per-replichore or per-chromosome basis, generate es
timates of context-dependent mutation rates, provide a graphical 
representation and statistical correlation of these rates to compare 
across multiple taxa, and the output data can be integrated into 
an interactive graphical database via CDVIS. CDMAP and CDVIS pro
vide a new toolset written in the R programming language providing 
uniform treatment for categorizing context-dependent mutation 
patterns and providing a comparative platform that has not been 
previously established. Being able to dissect mutational patterns 
via visualization tools can illuminate our understanding of the me
chanisms driving replication fidelity and genome evolution.

Methods
The functionality of CDMAP and CDVIS are broken into three separ
ate components of analysis (Fig. 1). The first is the CDMAP Single 
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Organism Analysis pipeline (SOA). The SOA pipeline provides the 
backbone analysis that catalogs nucleotide motifs across the gen
ome, calculates context-dependent mutation rates, and provides 
output csv files and organism-specific visualization output via 
Lattice (Sarkar 2008). The second component, CDMAP 
Multi-Organism Analysis Pipeline (CDMAP-MOA), generates statis
tical correlations between different SOA analyses outlining poten
tial relationships in contextual mutation patterns. The final 
component, CDVIS interfaces with CDMAP output to provide an ac
cessible database of spatiotemporal variation in mutation patterns 
across analyzed genomes.

Dependencies and required input files
To identify context-dependent mutation patterns, we use the R 
programming language, which is a robust library of bioinformat
ics, statistical, and data visualization packages. Several R de
pendencies are required for data preprocessing and 
postprocessing: 

• SeqInR (OriLoc): R packages used to parse FASTA sequences 
and identify the origin of replication for strand-specific ana
lyses (Charif and Lobry 2007)

• Pracma: Numerical and statistical algorithms (Borchers 
2021)

• Genbankr: Genbank file parsing (Becker and Lawrence 2019)
• Lattice: Lightweight data visualization package (Sarkar 2008)

Necessary input data for CDMAP includes a modified Variant 
Call File (VCF), the reference FASTA file, and an annotated 

Genbank file (GBK) file. A VCF is a space or tab-delimited file that 
can be generated by variant calling pipelines e.g. (SAMTOOLS/ 
GATK) (Li et al. 2009; Van der Auwera and O’Connor, 2020), con
taining the nucleotide position, the reference nucleotide, and 
the mutant nucleotide. The reference FASTA file is the genome 
sequence of the organism that corresponds to the nucleotide po
sitions found in the VCF file. The annotated GBK contains infor
mation about the location of genes in the reference FASTA. The 
reference FASTA, VCF, and GBK files used in the development 
of this package can be downloaded from the National Center 
for Biotechnology Information (NCBI) and the Sequence Read 
Archive at NCBI.

Replication origin determination and replichore 
partitioning
Context-specific mutation patterns have been shown to be asym
metrical with respect to the origin of replication (ORI) and replica
tion terminus (TERM), such that the upstream 5′ and downstream 
3′ base from the mutant site can influence site-specific mutation 
rate (Lee et al. 2012; Sung et al. 2015). CDMAP orients each muta
tion to a user-defined ORI location or an ORI defined by the 
OriLoc dependency (Frank and Lobry 2000), an R package used 
to determine the minimum and maximum cumulative composite 
skew at synonymous sites (GC skew) that is widely used to identify 
the ORI in bacterial organisms. CDMAP orients all variants with 
respect to the ORI for downstream analysis. After successful 
orientation and partitioning of the sequence data and mutations 
with respect to their ORI and TERM, genome-wide triplet counts 

Fig. 1. CDMAP/CDVIS diagram workflow. Visual outlining the major steps taken during the analysis of the CDMAP-SOA pipeline for generation of 
context-dependent mutation rates, genome-wide triplet and codon usage counts on a per-chromosome or per-replichore basis.
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(GWTCs) for the chromosome and each replichore are tabulated 
for subsequent calculations.

Nucleotide and mutation frequency 
determination and rate analysis for mutation 
accumulation
To calculate the context-dependent mutation rate for MA ex
periments, genome-wide and replichore-wide triplet counts 
are counted (GWTC/RWTC). CDMAP then parses the VCF to 
determine the upstream and downstream nucleotide asso
ciated with each variant and computes the mutation fre
quency and the context-dependent mutation rate at all 64 
possible triplets:

Ubs =
Mtriplet

(GWTCtriplet)(G)(N)
Rbs =

Mtriplet

(RWTCtriplet)(G)(N) 

The context-dependent mutation rate for a triplet in the chromo
some (Ubs) is then determined by the total number of mutations ob
served at the center nucleotide of that triplet (Mtriplet) divided by the 
triplet count for the genome (GWTCtriplet) the number of lineages (N) 
and the estimated number of generations elapsed (G). 
Replichore-specific rates are similarly calculated using mutations 
observed in a replichore (Rbs) divided by the triplet count for that re
plichore (RWTCtriplet), G, and N. In addition to a triplet frame, CDMAP 
accounts for and tracks data regarding upstream and downstream 
neighboring nucleotides in a 5-mer reference frame, i.e. NXNN 
downstream and NNXN nucleotide upstream contexts, where X is 
the mutable nucleotides, and N represents further upstream and 
downstream nucleotides from X. The following analysis in this pa
per focuses on context-dependent mutation rates at triplets, but we 
have added the functionality for additional neighboring sites based 
on findings that upstream and downstream sites exceeding the im
mediate local nucleotides have an effect on the site-specific 

mutation rate in plants (Morton 2022) and humans (Aggarwala 
and Voight 2016; Zhu et al. 2017; Simon and Huttley 2020).

Multi-organism analysis
CDMAP was developed to allow for flexibility in the number of or
ganisms analyzed. During the run process for a single organism, 
CDMAP dynamically creates a repository of the output which 
can be used for downstream comparison against additional 
CDMAP runs. Once selected genomes have been analyzed, the 
user can perform a multi-organism analysis to compare the 
context-dependent mutation patterns generated using the SOA 
pipeline. This comparison can occur on a chromosome-wide, 
strand-specific, or replichore-specific basis. CDMAP performs a 
one-to-many Pearson’s correlation sequentially with each organ
ism and automatically orients the coefficients according to GC 
content for display as heat maps in the lattice.

CDMAP-SOA visualization
Complex patterns within large-scale data sets are often easier to 
identify using visualization tools. Relevant information about 
triplet frequency, variant distribution, and genome-wide and 
replichore-specific mutation rates are passed through Lattice, 
and correlation between input files can be automatically format
ted (Fig. 2) (Sarkar 2008). Throughout the process, CDMAP collects 
and outputs both CSV format spreadsheets and heatmaps in dy
namically generated output directories that are categorized for 
easy navigation and downstream analyses.

In the example shown in Fig. 2, CDMAP has generated the 
context-dependent mutation rates for all 64 nucleotide triplets 
from a mismatch repair deficient line of B. subtilis (Sung et al. 
2015). In Fig. 2, site-specific rates are shown for the left and right 
replichores, with each context-oriented so that both strands are 
synthesized identically (mutations and contexts are taken with 
respect to their reverse complement for the right replichore). 

Fig. 2. CDMAP-SOA output of Bacillus subtilis mismatch repair deficient MA lines. Context-dependent mutation rates shown for left replichore and right 
replichore. Each row repesents a mutation at a triplet N1[X->N2]N3 with X -> N2 repesenting the reference nucleotide (shown on the X-axis) and 
mutation to any other nucleotide surrounded by two nucleotides N1 and N3. Contexts in the right replichore are handled as reverse complement to 
match was done in Sung et al., 2015.
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The standard reference sequence is displayed from 5′ -> 3′, and 
this would then make the right replichore the lagging strand tem
plate and the left replichore the leading-strand template.

As DNA is double-stranded, the complementary strand of the 
reference sequence would then be synthesized in the reverse 
direction. To allow for context analyses in any orientation, 
CDMAP generates context data for both the reference 
strand and the complementary strand. This feature allows for 
the contrast of strand-specific errors that arise on either the 
leading or lagging strand. When we apply our algorithm to gener
ate context-dependent mutation rates in Bacillus subtilis MA lines, 
we are able to recapitulate similar results to ad hoc methods used 
previously (Sung et al. 2015), whereby the contexts in the 
right replichore are handled in the reverse complement (Fig. 2). 
We note that while most of the rates remain consistent regardless 
of how the replichores are handled, there are slight differences in 
the number of mutations in each replichore when using a more 
precise ORI and TER generated from OriLoc (Supplementary 
Table 2).

CDMAP-MOA visualization
In Fig. 3a, we show an example of multiple organisms bench
marked via CDMAP-SOA (Supplementary Table 1). In this visual
ization, rows are ranked from AT-rich (top) to GC-rich (bottom) 
and columns are oriented GC-rich (left) to AT-rich (right). The 

one-to-one comparison of context-dependent mutation rates be
tween organisms are color-coordinated relative to Pearson’s coef
ficient, as indicated by the heat map legend (Fig. 3a).

Web visualization using CDVIS
Data generated through the CDMAP pipeline can be integrated 
into our front-facing web server, the Context-dependent 
Visualization Software (CDVIS). CDVIS contains CDMAP output 
from existing MA experiments that can be used as a comparative 
framework against future data sets. CDVIS takes the output from 
the CDMAP pipeline and organizes them into JSON objects that are 
then dynamically loaded into a circular format using CIRCOS 
(Krzywinski et al., 2009) (Fig. 3b).

The user can select numerous datasets from available pre- 
loaded MA experiments to visualize the spatiotemporal variation 
of mutation rate in MA organisms (www.wsunglab.com:3000). 
Each circular track represents a single organism, and tick marks 
within the tracks indicate the location and density of mutations 
at that location. The genome is divided into selectable bins (size 
25/50/75) and the density/type/and rate of mutations of the se
lected organism(s) are displayed in a side panel. For easy compari
son, CDMAP/CDVIS displays the first bin starting at the origin of 
replication. Finally, the visualization tools allow for the summa
tion of conditional mutation rates (mutation rates normalized to 
genome-wide nucleotide content—Fig. 3b) and cumulative 

Fig. 3. CDMAP/CDVIS Webtool. A) CDMAP One-to-Many Correlation Heatmap for the primary chromosome of 17 bacterial mutation accumulation data 
sets (Pearson’s correlation coefficient sorted by coding region GC content—Supplementary Table 1). B) CDVIS online CIRCOS (Krzywinski et al. 2009) 
visualization of B. subtilis, E. coli, and M. florum. Mutations for each organism are oriented into 25 bins with the origin of replication located at bin 1 and the 
terminus located in bin 13/14. Intensity of tick marks show the number of mutations for that species, and intensity of boxes indicate increasing density of 
mutations across selected organisms. Visualization tools can display cumulative mutation data across multiple organisms for each selected bin (www. 
wsunglab.com:3000). C) Sixty-four codon triplet stacked graph indicating the context-dependent mutation rate of B. subtilis, E. coli, and M. florum and can 
be displayed as a rate, raw counts, or conditional rate per triplet in CDVIS.
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context-dependent mutation rates for different triplets (Fig. 3c). 
At this time, additions to the available visualized organisms can 
be made through email requests to the authors.

Results and discussion
CDMAP was quantitatively benchmarked against 17 MA data sets in 
prokaryotic organisms (Kibota and Lynch 1996; Sung et al. 2012, 
2015; Long et al. 2014; Dillon et al. 2015; Gilchrist et al. 2015; Lynch 
et al. 2016; Kucukyildirim et al. 2016), which harbor a variety of dif
ferent genomic architectural features (Supplementary Table 1). 
The majority of MA studies contain organisms with a singular, cir
cular chromosome such as Escherichia coli, while others may have 
multiple genomic elements such as chromids and plasmids 
(Supplementary Table 1), or may be deficient in repair enzymes 
such as mismatch repair. We processed 17 organisms 
(Supplementary Table 1) containing a total of 12493 mutations. 
There are no other software toolkits that are readily available for 
comparison, but we were able to recover identical context- 
dependent mutation rates from prior studies generated using ad 
hoc methods (Lee et al 2012; Sung et al. 2015). All data were uploaded 
to the CDVIS visualization tool at www.wsunglab.com:3000.

It is important to note that CDMAP operates on a one-to-one ba
sis, i.e. the SOA pipeline only analyzes one set of mutational var
iants from a VCF relative to a reference FASTA and GBK file at a 
time. If a user wishes to compare multiple substrain variants 
against a single reference, then multiple runs of CDMAP will 
need to be conducted to account for each substrain analyzed. 
Although this program has been benchmarked using MA lines, 
CDMAP can be also used to compare two closely related strains, 
with one strain designated as the reference and one strain desig
nated as the derived strain, as long as the input requirements 
are met. This feature could be used to contrast context-dependent 
mutation processes between two closely related species or natural 
isolates from a population.

CDMAP was designed to be a lightweight analysis package cap
able of running on a standard laptop or desktop. Each of the 17 
data sets were analyzed on an iMac with a 2.9 Ghz quad core intel 
i5 processor, 16GB 1600Mhz DDR3 ram, and running MAC OSX 
Catalina. On the benchmarked machine, CDMAP utilized ∼1GB 
(6.25% memory, 7 threads) and roughly 60% CPU utilization dur
ing its most computationally intensive processes. The average 
runtime of a given organism came in around 90 min for an 
average-size bacterial genome (∼5Mb).

Practical example
The following commands can be used as a practical example of 
how CDMAP can be used to generate and analyze context- 
dependent mutation patterns in genomic data. In this short tutor
ial, we will walk through basic commands used to generate 
context-dependent mutation patterns from a Bacillus subtilis MA 
dataset (Sung et al. 2015). This example data for B. subtilis and 
other organisms used for benchmarking are included with 
CDMAP package found on the Github repository found at 
(https://github.com/DLP-Informatics/CDMAP).

CDMAP by default should install all of the necessary R packages 
when running CDMAP_SingleOrganismAnalysis.R for the first 
time; however, if you wish to install these prior to your first run, 
the following packages are necessary to run CDMAP (note: your 
machine may require administrative privileges to install these 
packages): 

• SeqInR
• BiocManager

• Pracma
• Beepr
• Lattice
• Tidyverse
• vcfR
• stringr
• genbankr (contained in BiocManager)

To begin running CDMAP, first install R (https://www.r-project. 
org/), then navigate to the directory in which you unpacked the 
CDMAP package and execute the following command in terminal: 

>Rscript CDMAP_SingleOrganismAnalysis.R

The user will be prompted for the name of the output folder de
signated by the end user, whether the user is using a VCF or modi
fied base call file, and the full path location of the reference 
sequence, genbank file, and the VCF or modified base call file.

>Bacillus_subtilis_WT
>basecall
>/Users/Username/Desktop/CDMAP/Test_Datasets/bacillus/ 
Bacillus_3610.fasta

>/Users/Username/Desktop/CDMAP/Test_Datasets/bacillus/ 
NC000964.gbk

>/Users/Username/Desktop/CDMAP/Test_Datasets/bacillus/ 
Bacillus_WT.csv

CDMAP will then prompt the user for how many generations have 
elapsed and how many lineages were in the experiment. For analyz
ing data that is not from a MA experiment, generations can be esti
mated using a molecular clock method. By default, mutation rates 
will be scaled to 1 × 10−8 for ease of visualization in the lattice, but 
scaling can be changed by the user (0 for default, 1 for scaling to 
the average mean of rates, or 2 for custom parameters). Finally, 
the user will be prompted for manual input (yes/no) of the ORI 
and TER or it will be determined automatically using OriLoc. If the 
user uses OriLoc to determine the ORI, it will also use OriLoc to de
termine the optimal TER position, otherwise, the user must manual
ly specify the replication ORI and TER position for CDMAP. For 
example, the B. subtilis wild-type MA experiment underwent 5077 
generations across 50 lines, and when we are prompted, we input 
yes when prompted and manually input the ORI and TER.

>5077
>50
>0
>yes **no to use OriLoc
0
2107299

After these following steps have been completed, CDMAP-SOA 
will have the requisite information needed to count contexts and 
automatically estimate mutation rates for the chromosome, for 
each replichore (on both strands), and generate high-resolution 
heatmaps that can be accessed by a lattice (Fig. 2). Once the run 
is complete, all SOA output files will be placed into the 
CDMAP_Output/Output_Directory that was designated by the 
user. Upon request, these data can be interfaced into CDVIS for 
further analysis. If the user wants to perform a direct correlation 
between the rates from different organisms or experiments, they 
can invoke CDMAP-MOA using the following command: 

Rscript CDMAP_MultiOrganism_Analysis.R

CDMAP-MOA will perform a Pearson’s correlation between the 
context-dependent mutation rates for all SOA runs located within 
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the specified Output_Directory, sort the organisms by GC content, 
and generate a high-resolution correlation heatmap for downstream 
analysis (Fig. 3a). An in-depth description of the files generated, infor
mation on the directory structure, and a full technical document can 
be found in the CDMAP technical document which can be found in 
the package, as well as at the github repository (https://github. 
com/DLP-Informatics/CDMAP/blob/main/Documentation/CDMAP_ 
Technical_Documentation.docx).

Conclusion
CDMAP is a toolkit designed to streamline the analysis of context- 
dependent mutations from genomic sequence data. While 
CDMAP has been benchmarked on bacterial MA data sets with a 
single replication origin, CDMAP is capable of analyzing linear 
chromosomes, including viral, archaeal, and eukaryotic data 
sets with the caveat of manually inputting the ORI. Determining 
the ORI in nonprokaryotic chromosomes can be done in a few dif
ferent ways, including replication profile construction via deep se
quencing methods (Xu et al. 2012). In addition, CDMAP can not 
only be applied to mutation datasets but also to silent sites from 
population sequencing. The application of CDMAP on data from 
natural populations and integration into CDVIS can assist re
searchers in exploring how spatiotemporal variation in mutation 
rate can drive genome evolution.

Data availability
The CDMAP source code is freely available for noncommercial 
academic use at https://github.com/DLP-Informatics/CDMAP; 
genomic data can be accessed at NCBI from the Accession num
bers in Supplementary Table 1. Visualization data are also avail
able at CDVIS for viewing at: wsunglab.com:3000

Supplemental material is available at G3 online.
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