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Abstract

Coarse-grained modeling and efficient computer simulations are critical to the study of
complex molecular processes with many degrees of freedom and multiple spatiotemporal
scales. Variational implicit-solvent model (VISM) for biomolecular solvation is such a
modeling framework, and its initial success has been demonstrated consistently. In
VISM, an effective free-energy functional of solute-solvent interfaces is minimized, and
the surface energy is a key component of the free energy. In this work, we extend VISM
to include the solute mechanical interactions, and develop fast algorithms and GPU
implementation for the extended variational explicit-solute implicit-solvent (VESIS)
molecular simulations to determine the underlying molecular equilibrium conformations.
We employ a fast binary level-set method for minimizing the solvation free energy of
solute-solvent interfaces and construct an adaptive-mobility gradient descent method
for solute atomic optimization. We also implement our methods on the integrated GPU.
Numerical tests and applications to several molecular systems verify the accuracy,
stability, and efficiency of our methods and algorithms. It is found that our new
methods and GPU implementation improve the efficiency of the molecular simulation
significantly over the CPU implementation. Our fast computational techniques may
enable us to simulate very large systems such as protein-protein interactions and
membrane dynamics for which explicit-solvent all-atom molecular dynamics simulations
can be very expensive.

Keywords: Binary level-set method, GPU implementation, variational implicit-solvent
explicit-solute model, Coulomb-field approximation, molecular mechanical interactions.
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» 1 Introduction

s Computer simulations are basic tools in the study of complex biomolecular processes with
2 multiple temporal and spatial scales and many-body interactions. Efficiency and computational
5 costs, however, are bottlenecks in such simulations for large systems with long time scales of
a1 biological interest. Examples of such systems include protein-protein interactions, membrane
» dynamics, and aggregation of biopolymer networks. The development of coarse-grained
;3 biophysical and mathematical modeling, together with fast numerical algorithms and computer
s implementation, is therefore critical to the success of computational studies of complex
35 biomolecular systems.

36 Implicit-solvent models are a class of coarse-grained models in which solvent is efficiently
s treated in comparison with explicit-solvent all-atom molecular dynamics simulations. In
s recent years, variational implicit-solvent model (VISM) has shown its initial success in
3 efficient modeling of biomolecular conformations and recognition. VISM is a mesoscale
w0 description of the solvation of charged molecules, particularly biomolecules such as proteins,
a in an aqueous environment [6,7]. The central quantity of such a model is a macroscopic
2 free-energy functional of all possible solute-solvent interfaces each of which separates the
23 solute molecules from the aqueous solvent (i.e., water or salted water). Minimizing such
« a functional leads to an equilibrium molecular conformation that is often metastable, and
s the corresponding minimum free energy. The free energy consists mainly of the solute-
s solvent interfacial energy, solute-solvent van der Waals (vdW) interaction energy, and the
s electrostatic interaction energy that can be described by a continuum electrostatics model.
s Implemented by the level-set method, a numerical method for interface motion, VISM
s is capable of capturing qualitatively or semi-quantitatively many key features of charged
so molecular processes, such as the dry and wet solvation states and the effect of electrostatic
si interactions, and providing reasonably good estimates of the solvation free energy [3,11,12,
2 25,30,33,34]. We note that several other solvation models have been developed [1,20, 24].

53 In this work, we extend VISM to include the flexibility of solute atoms, and develop fast
s« algorithms and GPU implementation for the extended variational explicit-solute implicit
s solvent (VESIS) simulations of molecular conformational change and binding process. This
s study is motivated by our recent work that couples VISM with Monte Carlos (MC) method
s to simulate the binding of proteins p53 and MDM?2 that are treated as rigid bodies, where
s each MC move is followed by a solvation free-energy calculation [32]. A new and fast binary
5o level-set algorithm that we have developed enables us to carry out such intensive MC-VISM
o0 simulations with hundreds of thousands MC moves. Clearly, the rigid-body approximation
s1 can hardly make our MC-VISM simulations reach the final p53-MDM2 bound complex.
2 However, explicit-solvent all-atom molecular dynamics (MD) simulations starting from our
63 MC-VISM conformations reach quickly to the final complex. It is therefore naturally for us
e« to further develop our mesoscale molecular simulation approach to allow the solute atoms to
s move around as in the real system. This is what we do in our current study.

66 Our main results include the following:
e (1) We extend VISM to include the solute-solute atomic interactions with a usual force
68 field to construct our VESIS model. Such interactions include the mechanical bonding,



69

70

71

72

73

74

75

76

7

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

101

102

103

104

105

106

107

108

109

110

111

bending, and torsion, vdW interactions modeled by Lennard-Jones (LJ) potentials,
and the electrostatic interactions by Coulomb’s law. The coupling between these solute
interactions and the implicit solvent is through the solute-solvent interactions described
by a sum of integrals over the solvent region, summing over all the solute atoms.

(2) We design an adaptive-mobility gradient descent optimization method to relax all the
solute atoms, and couple it with our fast binary level-set method to minimize the VESIS
free-energy functional.

(3) We implement our methods and algorithms on the integrated GPU, and test our code
to verify its accuracy, stability, and efficiency.

(4) We apply our VESIS model and GPU implementation to simulate several molecular
systems, including the protein BphC and the protein complex p53-MDM2, to demonstrate
the significant improvement of efficiency of our new algorithms and implementation over
the CPU implementation.

First introduced in [32], the binary level-set method is based on the approximation of
surface area of an interface separating two regions by the convolution of the characteristic
functions of these regions with a compactly supported kernel. This combines two steps,
diffusion and threshold, in the method of threshold dynamics [23] (cf. also [8,26-29]) into
one step. An energy functional of the interface that includes the surface area and other
related quantities can then be expressed as the sum over finite-difference gird cells. Cells in
the two regions separated by the interface are marked by —1 and and +1. Equivalently, the
interface is determined by a binary level-set function taking the value —1 or +1 on all the
grid cells. The approximated total free-energy value can then be expressed as the sum of
those values over all the grid cells. When a given interface is spatially perturbed, the energy
change only occurs from those cells around the interface. The method then proceeds with
flipping the cells (i.e., changing the sign of the binary level-set function on the cells) near the
interface and only accept the change of sign when the energy is decreased. The algorithm
is seemingly simple yet is significantly more efficient than the classical continuous level-set
method [32]. A key factor contributing to such efficiency is that the flipping is done only
locally around the interface instead of globally in the computational box [10, 18, 19].

Our new, adaptive-mobility gradient descent optimization method is designed to efficiently
optimize a multi-variable objective function that may have many local minima and saddle
points and that the gradient may vary significantly. The method is of the type of the
gradient descent. But the descent is not uniform for all the iteration steps. Instead, mobility
constants are adaptively changed during the iteration steps. This way, one may speed up
the convergence.

In section 2, we describe our VESIS modeling framework. In section 3, we present our
fast binary level-set method for interface motion and adaptive-mobility optimization method
for relaxing atomic positions, as well as the simulation algorithm. Section 4 is devoted
to the description of our GPU implementation. In section 5, we present the numerical
tests and applications to several molecular systems, and demonstrate the efficiency of our
methods and implementation. Finally, in section 6, we draw conclusions and discuss our
future work. Appendix collects some calculations and formulas that are used in our modeling
and numerical methods.
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2 A Variational Explicit-Solute Implicit-Solvent Model

We consider a few molecules immersed in an aqueous solvent (i.e., water or salted water). This
system of molecular solvation is confined spatially in a bounded region  C R?; cf. Figure 1.
We assume that there are N atoms of these solute molecules, located at ry,...,ry € Q and
carrying partial charges @)1, ..., Qxy, respectively. A closed surface I' inside 2 and enclosing
all the solute atoms r; (1 < i < N) is called a solute-solvent interface or dielectric boundary.
Such an interface, which may have several disjoint connected components, divides the entire
solvation region 2 into two parts. One is the solute region, denoted 2, (m stands for
molecule), which is the interior of the surface I'; and the other is the solvent region, denoted
Q. (w stands for water) and defined by Q,, = Q\ Q, (a bar denotes the closure of a set).

= -

Figure 1: A schematic view of a solvation system with explicit solute and implicit solvent.
The entire system region € is divided by a solute-solvent interface into the solvent region €,
and the solute region €, containing all the solute atoms at r; (1 < i < N). Two different
solute-solvent interfaces are shown. One is a tight interface I'ygnt (solid line) and the other
a loose interface I'joose (dashed line).

Our basic assumption is that an experimentally observed equilibrium solvation system is
determined by its solute-solvent interface and solute atomic positions that together minimize
an effective free-energy functional [4]

GIT,R] = Gyisu[T, R] + G [R], (2.1)

over all possible solute-solvent interfaces I" and solute atomic positions R = (rq,...,ry).
Here, the first part is the solvation free energy approximated by the VISM free energy and
the second part is the solute-solute interaction potential or force field.

The VISM free energy is given by [6,7,30, 33|

Gvism [T, R] = yArea (T') + py, Z/ IE?(ht' —1;|)dV;

R3\Qyy
Qi(r
Z lr — ;|3

n 1 1 /
327‘(‘250 Ew R3\Qm

dv;. (2.2)
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The first term here is the solute-solvent interfacial energy, where 7, is the surface tension
constant. The second term describes the van der Waals (vdW) type interactions between the
solute atoms located at r; (1 < i < N) and solvent molecules that are treated as a continuum,

where py, is the bulk solvent density and each UIEZJ) is a Lennard-Jones (LJ) potential of the

o - 2:[(2)" - (2)]. 2

where the length parameter ¢ and energy parameter € can depend on individual solute
atoms. The last term in (2.2) is the Coulomb-field approximation (CFA) of the electrostatic
interaction energy, where ¢y is the vacuum permittivity, and e, and e, are the relative
permittivities of the solvent and solute, respectively. Note that the integrals in (2.2) are over
the region R3 \ €,,,, instead of 2, which is bounded. This is to account for the long-range
effect of the vdW and Coulomb interactions.

We remark that one can include more terms in the VISM free energy. However, to keep
our numerical implementation robust, we shall focus on this version of VISM free-energy
functional.

The solute-solute interaction potential in (2.1) is given by

E Azg Tij — TO’L] + E 'ij z]k - 902]k>

(4,5,k)

+ Z ZC’ + cos(nT; ki — Yn)] —i—Z fr” 24730'?17" (2.4)
wlij

(i,4,k,1) n=0 (4,5)

Here, the first three terms account for the mechanical interaction energy from bonded solute
atoms. The first term is the bonding energy of solute atoms, where the sum is taken over all
pairs (i, j) of bounded solute atoms, 7;; = |r; — r;|, and r¢;; and A;; are the corresponding
equilibrium distance and spring constant, respectively. The second term in (2.4) is the
bending energy of solute atoms, where the sum is taken over all triplets (i, j, k) such that
both pairs of solute atoms (r;, r;) and (r;,ry) are bonded. For such a triplet, 6, is the angle
between the vectors r; —r; and ry — r;, Oy, € [0, 7] is the corresponding equilibrium angle,
and B is a constant parameter. The third term in (2.4) accounts for the torsion energy of
solute atoms [15]. The sum is taken over all quadruples (4, j, k, ) such that (r;,r;), (rj,rg),
and (ry,r;) are all bonded. For such a quadruple (¢, 7, k,[), 7 is the torsion angle that is
the angle between the plane determined by (r;,r;,r;) and that determined by (r;,ry, 1), n
is the multiplicity, v, is the phase factor, and all (), are constants.

The last two terms in (2.4) account for the interaction energies from non-bonded solute
atoms indicated by (i,7) in the summation. The fourth term is the solute-solute vdW
interaction energy, where each UL(iJ’j )is an LJ potential of the form (2.3). The last term is
the solute-solute Coulomb interaction energy.
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3 Numerical Methods

We minimize the free-energy functional G[I', R] defined in (2.1) numerically by an iteration
scheme. Each iteration step consists of two parts. In the first part, we fix the solute atomic
positions and minimize numerically the VISM solvation free-energy functional (2.2) by a
binary level-set method to obtain an optimal solute-solvent interface. In the second part, we
fix the interface obtained in the first part, and minimize the energy functional G[I", R] that
is a multi-variable function of the solute atomic positions R = (ry,...,ry) by an adaptive-
mobility gradient descent method. The binary level-set method was introduced and used
in our rigid-body MC-VISM simulations of protein binding [32]. Here, we briefly recall the
method, referring to [32] for more details. We also describe in details our new, adaptive-
mobility gradient descent optimization method for minimizing the function G[I', R] with T
fixed. We present our step-by-step algorithm at the end of this section.

3.1 A Binary Level-Set Method

We set the solvation system region to be Q = (—L, L)? for some L > 0. The side length L is
chosen to be large enough so that the region € includes all the solute atoms r; (1 <i < N)
whose geometrical center can be shifted to the origin, if necessary; cf. Figure 1. This region
Q) is also our computational box. We cover it by a uniform finite-difference grid of size h.
A solute-solvent interface I' = 0€)y, is approximated by a binary level-set function ¢ that is
defined on all the grid cells with ¢ = —1 and ¢ = +1 on cells interior and exterior to I,
respectively.

We discretize the VISM solvation free-energy functional (2.2) with all the solute atoms
fixed at r; (1 <i < N). Let us first rewrite this functional as

Gvism[I', R] = ypArea (T) +/ U(r)dV; +/ U(r)dV;, (3.1)
O\ R3\Q
where
1 LN N Qi -
= Dy — 1 N DA 2
—F Z (jr =i +327r250 <5W 5m> ZZI v —r;|? (3:2)

Approximation of the surface energy. The surface area of the solute-solvent interface
I can be expressed as [32]

Area(T’ CO / / (
XEQm JyEeQw
1 -1
Co = (/ / K(y) dyds)
0 JB(0,1)N{ys>s}

is a constant, B(0, A) for any A > 0 is the ball centered at the origin 0 with radius A, and
y3 is the third component of the position vector y. The kernel function K = K(x) (x € R?)

) dydx + O(6%) for 0<6<1, (3.3)

where
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is chosen to be non-negative, compactly supported in the closure of the unit ball B;(0) of
R3, and spherically symmetric (i.e., it is a function of |x|). In our implementation, we set
K(x) = sin®(r|x]) if [x| < 1 and 0 elsewhere. The small parameter § > 0 is the rescaled
kernel radius, defined as the radius of the ball of the support of K (|x]|/d).

Discretization of the VISM free energy in the solvation region. By employing
the center-point numerical integration rule, one can discretize the double-integral in (3.3)
with an optimal choice & = Av/h, where A > 0 is a constant. Consequently, we obtain the
following expression of an approximation of the surface energy, the first term in (3.1) [32]:

oArea (1) = 200 ™ ST s — ) + O,

X €0m X, EQw
Ik —x;|<AVhR

where x; € (0, and x;, € Q, are the centers of grid cells in €, and €, respectively. The
second term in (3.1) can be approximated by the center-point integration rule:

/ U(r)dV, =h* > U(x;) + O(h).
O\ Nppretl
Therefore, these approximations and (3.1) lead to the approximation

C
GVISM [F R o 0 Z Z K(Xj — Xk)

XJGQ XL EQw
|k —%;|<AVR

+BP Y URX) + Ulr) dv,. (3.4)

Xj EQw RB\Q

The last integral can be written analytically as iterated integrals using the spherical coordinates
and evaluated by one-dimensional numerical quadrature; cf. [5].

Flipping grid cells to decrease the energy. Given a solute-solvent interface defined
by a binary level-set function, we relax its VISM free energy (3.4) by flipping the grid cells,
i.e., by changing the sign of the binary level-set function on the grid cells. The flipping is
only done for grid cells that around the interface. This is because that any grid cells centered
at x; € Q, and x;, € Q,, with [x; — x| > AV do not contribute to the first term in (3.4).

We pick up a grid cell that is immediate next to be the interface, flip its sign, and calculate
the change of the approximate energy based on (3.4). Note that the last term in (3.4) does
not change if we flip a grid cell. If the cell is centered at x; € {1y,, so the sign of the cell is
—1, then the flip of the cell leads to the change of energy

Coh Coh?
A(Goory)j = L2 X Y KX - x) - %Aj S K(xy—x) + Ulxy). (3.5)
XEEQm X EQw
[xx—x;|<AVR < —x; |[<AVR
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Otherwise, if the cell is centered at x; € €2, so the sign of the cell is +1, then the flip of the
cell leads to the change of energy

4 4
AGu)y = 2 S K x-S K %) - Ulg). (30)
X €EQw Xk EQm
|x—x;|<AVR I3 —x;|<AVR

After calculating A(Gsoly); by flipping grid cells near the interface, we put A(Gsoy); in a
Min-Heap. We flip the grid cell with the smallest A(Ggoly); in the heap if A(Ggoly); < 0.
With the new interface, we add energy changes for new grid cells near the new interface
to the heap, delete old grid cells in the heap which are not near the new interface, update
A(Gsorv); for old grid cells near the new interface in the heap, then we sort the Min-Heap.
This flipping process stops until all A(Gsorv); > 0, indicating the energy reaches a minimum.

Initial surfaces. Our method for minimizing the VISM free-energy functional is of
steepest descent type. It starts with an initial surface and iteratively moves it with the free
energy decreased in each step of the iteration. The final free-energy minimizing surface is a
local minimizer of the functional and depends on the initial surface. Different initial surfaces
can lead to different (meta)stable equilibrium conformations that are of interest; see Figure 1.
In order to capture multiple local minimizers, we often use two types of initial surfaces. One
is a loose initial surface that can be a large sphere enclosing all the solute atoms. The other
is a tight initial surface that wraps up all the solute atoms tightly with vdW radii. Such a
surface is the zero level-set of the continuous function

p(r) = min (|r —ri —d),

where d; > 0 is the vdW radius of the ith solute atom located at r; (i = 1,--- ,N). The
binary level-set function for the surface can then be obtained by setting its value at the
center of a grid cell to be the sign of p-value at that center. Figure 2 shows a tight surface
constructed by both a continuous and the corresponding binary level-set function.

Figure 2: A tight initial solute-solvent interface constructed as the union of vdW spheres
centered at solute atoms (black dots) by a continuous level-set function (Left) and a binary
level-set function (Right), respectively.



w 3.2 Adaptive-Mobility Gradient Descent Method for the Relaxation
108 of Solute Atoms

With a fixed solute-solvent interface I', we minimize the free energy G[I', R] defined in (2.1),
(2.2), and (2.4) as a function of R = (ry,...,ry) by solving for a steady-state solution to
the system of the gradient descent equations

W =—-My(V,, GI,R]),, n=1,--- N, [1=1,23, (3.7)
10 where (a); denotes the [th component of a vector a € R3 (1 < < 3) and all M,; > 0 are
20 constants (called mobility constants). The formula of the gradient V, G[I',R] is given in
20 (A.1) in Appendix. We use the forward Euler method to solve these equations iteratively
202 with a fixed time step.
203 Due to the complex molecular interactions of an underlying system, the gradient of
20 G[I',R] can vary significantly with solute atoms and with different components. If the
205 mobility constant M,,; is too large, then the motion of the particle r,, in its gradient descent
26 direction may possibly overshoot and increase the free energy. If M, is too small, the
27 free energy may decrease very slowly. To improve the stability and efficiency, we therefore
28 adaptively change the mobility constants M,,; in each step of iteration based on the magnitude
200 of gradient and the total free-energy value.
210 In our implementation, the mobility constants are chosen to be wM, where the “base”
o mobility w is updated in each interaction step of the forward Euler method and M is also
a2 adjustable. The adjustment of M is based on the decrease or increase of the energy with
213 a high energy threshold. It is controlled by a relative energy value 0G* > 0 depending on
24 iteration steps, and a shrinking parameter « € (0, 1) that shrinks M if the energy increases
25 too much and too often tracked by a counting number N, which has a threshold value N7,,.
a6 Initially, we set M =1 and N = 0.
Given all the atomic positions after a forward Euler iteration step, with some M > 0
and 0 < Ny < N2, and the corresponding energy G[I', R] calculated and denoted Go1q. We

cnt?

calculate all the gradient of G[I', R] at those positions and set

1
maxi<m<n,1<k<s (Ve (G[TR])i|

(3.8)

w =

217 We then move the atomic positions in one time step by the forward Euler iteration for solving
28 (3.7) with all M,; = wM. We also calculate the energy for the new atomic positions and
a9 denote it by Grew. If Ghew < Goa, then we accept the moved solute atomic positions, do
20 not change the value of M, increase N, by 1, and continue the iteration. If G,ew > Goua,
21 then we choose the threshold dG* to be some fraction of G,q and consider two cases. If
2 Ghew = Goq + 0G*, then we do not update the atomic positions but shrink M to M := aM
23 reset Ny = 0 and start over with the next iteration step. If Ghew < Gog + 0G*, then we
224 check the counting number N,z and consider two cases:

25 (1) If Nepe>NZ,, which means that the same M has been used for N, times, then we do

226 not accept the new positions, shrink M to M := aM, and reset N, = 0.
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(2) If Newe < N2, we accept the new atomic positions, keep the same M, and increase

nt»

Ncnt by 1

Note that N, is the number of steps where the same M is used consecutively. In our
implementation, we choose a = 1/v/2, N*. = 5, and §G* to be 5% of Goq.

3.3 Numerical Algorithm

Step 1. Initialization. Input all the model parameters from (2.2)—(2.4). In particular, position

N solute atoms with the center of geometry at the origin by a coordinate translation
if necessary. Set the computational box Q = (—L, L)? and discretize the box with a
uniform finite-difference grid. Set an initial binary level-set function ¢(© to define the
initial solute-solvent interface I'°, solute region 0 and solvent region Q9.

Set counter N, = 0, count tolerance Nj, = 5, an initial uniform mobility constant
M = 1, and the time step dt = 1. Set the initial iteration number k& = 0 and k.=
3000. Set the shrinking parameter ov = 1/4/2. Set the error tolerance Tol; = le-4 for

the gradient and Toly = le-5 for atomic positions update.

Step 2. Get the optimal solute-solvent interface I'**! with atomic positions R¥ by the binary

level-set method.

Step 2.1. Calculate by (3.5) and (3.6) the change of solvation free energy A(Gyolv); on
all grid cells next to the interface I'*. Sort solvation energy change A(Gyoly) jin a
Min-Heap.

Step 2.2. Flipping Process:
while (Smallest A(Gyorv); < 0) do

Flip : flip the corresponding grid cell with smallest A(Ggoy);-
Update : check for new grid cells next to the new interface, calculate A(Gsoly);
for new grid cells, and update A(Ggoly); for old grid cells in the heap.
Sort : sort solvation energy change A(Gsolv); in a Min-Heap.
endwhile
Step 2.3. Define I'**! to be the optimal solute-solvent interface from the flipping process.

Step 3. Update the solute atomic positions by solving the system of equations (3.7).

Step 3.1. Calculate by (A.1) the gradient V, G[I**1 R*] for alln =1,--- , N.

Step 3.2. Test the convergence. If absolute values of V, G[I'**1 RF] for each solute
atom in each coordinate < Toly, then stop the algorithm.

Step 3.3. Update positions of all moving solute atoms according to equation (3.7) and
(3.8). Calculate the total free energy change dG[I*™1 R*1] = G+ RF 1] —
G[TFL R*]. Set 6G* = 5%G[TF1 RH].

Step 3.4. Check the total free energy change:
if (6G[TFHL R > §G*) or ( New > N7, and 0 < §G[IFFL, R < 5G¥)

Put all moving solute atoms back to RF.
M = aM, N, =0, go to Step 3.3.

else

Nent = Neng + 17

endif

10
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Step 4. Calculate the absolute error AG[[**!, R¥1], and relative error AG[[*1 R¥ 1.

Step 5. Test the convergence. If either AG[I'*+1 RF+1], < Tol, or AG[TF+, RFF1],, < Tol,
stays continuously for 100 steps, or if the number of iterations reaches to k.., stop
the algorithm. Otherwise, go to Step 2.

We remark that there are two error tolerances and stopping criteria: One is a small
tolerance le-4 for the gradient descent for updating the solute atomic positions. The other
stop criterion is a small tolerance of relative difference or absolute difference of the total
free energy. In our experiments, we set the relative difference stop criterion to be 1le-5,
and absolute difference stop criteria to be le-5. To avoid the situation that the free energy
functional decreases slowly because of small mobility factor M,;, we determine that the
system stops only when the relative difference stop criterion or the absolute difference stop
criterion is satisfied continuously for 100 steps.

4 GPU Implementation

In this section, we discuss the parallel implementation of aspects of our free-energy functional
minimization algorithm for the fast execution of our programs.

Parallel computing concerns strategies for performing simultaneous computations, usually
through the use of multiple processors. This approach has become more and more important
as the abilities of individual processors reach their limits under Moore’s law. Integrated
GPUs are nearly ubiquitous in today’s client devices such as laptops and desktops. Much
like dedicated GPUs, the integrated GPUs are also capable of general-purpose computation
in addition to the traditional graphics role. Furthermore, modern integrated GPUs work the
same way as those dedicated cards with the exception that they use system memory that is
shared with the CPU [9]. The recent advent of the use of the graphics processing unit (GPU)
for general purpose parallel computing, instead of traditionally multiple central processing
units (CPU’s), has allowed for algorithms that can take advantage of its high throughput
and hundreds or thousands of cores to achieve new heights in speed. This has, for example,
revolutionized the subject of deep learning in artificial intelligence.

We introduce parallel programming, using OpenCL, employing the integrated GPU for
operations in our free-energy functional minimization algorithm. The operations that are
particularly amenable to this kind of parallelization are usually made up of a large number
of smaller, simpler ones, to take advantage of the large number of cores in the GPU that,
alternatively, must work in lockstep. We find such operations in our computations of the
LJ and CFA of the electrostatics in the VISM free energy (2.2), the solute-solute interaction
energy (2.4), and all of their derivatives, combined in (A.1). We separate the parallelization
into two cases that are treated differently, one handling VISM LJ and electrostatic terms, and
their derivatives, and the other handling solute-solute interaction terms and their derivatives.

For the first case, we begin by describing the procedure introduced in [32] for the LJ and
CFA contributions, though in more general terms. These contributions notably both contain

integrals of the form
[ sy
R3\Qun
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where f has some complexity in the computation of its values; in the case of LJ, f(r) =
SN Ups(Jr — 1), which requires some computation when the number of solute atoms is
large. With far-field approximations handling the integral outside the computational box €2,
numerical quadrature for the rest takes the general form

> anf(ri)Axy,

kel

where x;, are grid points of a grid in {2, and for some o, € R. This summation is computationally
intensive as f needs to be evaluated over the grid; in fact, in our problem this needs to
be performed each time step, when the atoms move. A GPU parallel implementation is
introduced in [32] to handle the evaluation of f over the grid which parallelizes over the grid
points, passing out the computation of f at each to the cores. This works especially well
because there of the large number of grid points, typically hundreds of thousands or millions,
the GPU cores can work on. Note, in the parlance of OpenCL, the grid points form the
work-items, which are instead known as threads under CUDA.

We apply this idea here not only to LJ and electrostatic terms, but also to their derivative
terms found in the gradient of the VISM free-energy (A.1). These terms also have integrands
that grow in complexity with the number of solute atoms, thus slowing down computations
in the case of large numbers of moving atoms. Thus, the same parallelization techniques can
be adopted to improve runtimes.

For the solute-solute interaction terms and their derivatives, no integration is present
and no grid points are involved. Instead, all terms involve a summation of some interaction
between solute atoms. Consider, for example, a system’s solute-solute LJ interactions:

YD Uns(lrs =),

1<i<N j#i

For our parallel implementation, we consider separately the terms

> Urns(rs = 1),

J#

and parallelize by passing out these computations for each 1 < ¢ < N to the cores. Note,
however, there are far fewer solute atoms, typically in the hundreds or thousands, compared
to the hundreds of thousands or millions of grid points. Thus, the parallelization may not
be as efficient in comparison with that of our first case.

One additional note is that while double-precision machine numbers and their arithmetic
are commonly available in CPU architectures, they are not universally supported on GPU’s,
where, for traditional graphical purposes, single-precision has been adequate. And though
more and more GPU architectures now do support double-precision, due to the expansion
of GPU’s for general purpose computing, single-precision and even half-precision arithmetic
operations are still used for faster calculations. The drawback in the use of single-precision
instead of double-precision is in increased round-off error. This especially is of concern
when performing a large number of operations, where round-off errors can accumulate to
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intolerable levels. In our application, we find such large numbers of operations in our sums,
with sums over solute atoms, which can be in the thousands, and over grid points, which can
be in the millions. For our sums, we adopt the strategy of summing-by-pairs [31], a binary
tree-based approach to order the operations in such a way as to reduce round-off error.
In our applications, we find this to result in a nearly negligible amount of error compared
to double-precision results, allowing us to take advantage of the speed afforded by single-
precision computations. In future work, we may consider computing with mixed-precision
machine numbers to better balance round-off error and speed.

As we shall show below (cf. Tables 2, 3, and 7), the combined results of our choices
in parallelization and operation orders for sums for single-precision arithmetic significantly
improve in runtimes even in comparison to a ported CPU parallelization, where the program
for parallelization using the GPU instead uses available CPU cores. In addition, the table
reveals that there are few negative effects in our use of single-precision machine numbers
rather than double-precision. Our resulting parallel GPU implementation serves as the
linchpin of our computations, as without it, we would not be able to obtain results in any
reasonable amount of time due to the requirements of the moving atoms.

All calculations are performed on a 2017 iMac, with 3.50 GHz Intel (R) Core (TM) i5-
7600 CPU, and the integrated GPU is AMD Radeon Pro 575, where the maximum number
of compute units is 32. In our work, all sequential computations are executed on 1 CPU
core, and all parallel computations are executed on the integrated GPU with OpenCL 1.2
using all 32 compute units.

5 Numerical Experiments and Applications

We first apply the binary level-set method and its GPU implementation to two molecular
systems with fixed solute particles, a system of two parallel charged plates, and the protein
BphC, and show that the binary level-set method is accurate in qualitatively reproducing the
known results of those two systems. We then consider the full application of our model and
numerical methods to two small molecular systems, a two-particle system and the ethane
molecule, to show the convergence of our algorithm. Finally, we study the p53-MDM2 binding
process with solute mechanical interactions to demonstrate the efficiency of our methods and
GPU implementation. Table 1 summarizes the continuum model parameters used in all these
numerical computations.

Table 1: Model parameters.

’ Parameter ‘ Symbol ‘ Value ‘ Unit ‘
temperature T 298 K
solvent number density Pw 0.0333 A3
surface tension Yo 0.174 | kgT/ A?
solute dielectric constant €m 1
solvent dielectric constant Ew 80
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5.1 Free-energy minimization with fixed solute atoms

We consider two molecular systems each with fixed solute atomic positions, and apply the
binary level-set method with GPU implementation to minimize the solvation free-energy
functional (2.2) of solute-solvent interfaces I' with all atomic positions r; (1 < i < N)
fixed. Both systems have been studied extensively with continuous level-set method and
CPU computations [30,33,35]. Here we show the qualitative accuracy, and efficiency, of our
new algorithm and implementation.

Two parallel charged plates. Each of these two plates consists of 6 x 6 C'Hy atoms with a
square length of about 3 nm. The two plates are placed at a center-to-center distance d. In the
following, we investigate how (a) the capillary evaporation, (b) the hydrophobic attraction,
and (c) a possible hysteresis in the free energy are affected by charging up the plates. To
this end, we assign central charges ¢; and ¢» to the first and second plates, respectively, with
lg1] = |g2|- The total charges of these two plates are 36¢; and 36¢s, respectively. We study
like-charged and oppositely charged plates by choosing the values of (¢1, ¢2) to (+0.2e, +0.2¢),
and (+0.2e, —0.2¢). The atom-water LJ parameters are ¢ = 0.262 kT, 0 = 3.15365 A, and
the atom-atom LJ are ¢ = 0.265 kg1 and o = 3.54 A.

We first investigate the VISM surfaces of the two plates at different distances with the like-
charge (+0.2e, +0.2¢e) with different initial configurations. Figure 3 shows a few snapshots
of stable 3D equilibrium solute-solvent surfaces of the two parallel charged plates system
obtained by the binary level set VISM calculations with loose or tight initial interface at
d= 9121, d=13 1401, and d = 16 A. In the top row of Figure 3, with the loose initial interface,
a stable capillary bubble remains between the two charged parallel plates at d = 9A and
d=13 fi, and the bubble becomes tighter along the enlarging distance. At d = 16 fi, the
bubble disappears. Comparatively, with the tight initial interface, the equilibrium state is
wet at d =94, d = 13/01, and d = 16 A.
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d=9 A loose d=13 A loose d=16 A loose

d=9 A tight d=13 A tight d=16 A tight

Figure 3: Stable 3D equilibrium solute-solvent surfaces of the two parallel charged plates
obtained by the binary level set VISM calculations with loose (top row) or tight (bottom
row) initial interface at d = 9 A d=13A, and d = 16 A. Atomic charges are (+0.2e,+0,2e).

We now examine the potential of mean force (PMF) of the two-plate system with respect
to the plate-plate separation distance d. This is the VISM free-energy value as a function
of d, with an additive constant such that the free energy is 0 at the infinite plate-plate
separation. For a given d, we may have two VISM free-energy minimizing solute-solvent
interfaces corresponding to a tight and a loose initial surface, respectively. We denote by
G\p,?sfM(d) the corresponding minimum free energy of one of the two branches, and denote
by GERE (d), G (d), and GP™(d) the components of the PMF, corresponding to the first,
second, and third terms in (2.2), respectively. Precise definition is given in Appendix.

Figure 4 displays the bimodal behavior and hysteresis of the two different PMF branches
stemming from the equilibria of wet and dry states, i.e., the VISM free-energy minimizing
surfaces corresponding to initial tight and loose surfaces. Atomic charges considered here are
(40.2e,-0,2¢) and (+0,2e, +0,2e), respectively. We can see that like-charged and oppositely
charged plates give different free-energy branches and hysteresis. For the like-charged cases
in Figure 4, a strong hysteresis is presented for 8 < d < 15A. For the oppositely charged
plates, strong hysteresis is presented for 6 < d < 8A.
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Figure 4: Different parts of the PMF of the two parallel charged plates with respect to the
separation distance d, with loose and tight initial surfaces. (a) The geometrical part Ggg;ﬁn.

(b) The vdW part ijfinva. The solute-solute vdW interactions are excluded in the curves in
the main frame but included in those in the inset. (c¢) The electrostatic part Gg;f . The
solute charge-charge interactions are excluded in the curves in the main frame but included
in those in the inset. (d) The total PMF GP%. The values of (+0.2¢, —0,2¢) with tight
initial interface are used as reference values to show the difference.

In Table 2, we show a comparison of the calculation speed and different parts of the
free energy using the binary level-set method between GPU single precision code and CPU
double precision code of the two charged parallel plates system. Three different grid sizes are
shown. We can observe that the results for free-energy estimates from CPU double precision
code and GPU single precision code are nearly the same. The improvement of speed using
GPU can be obtained by comparing the time. The cost time of CPU code is around 5 times

of the GPU code with three different grid sizes.

The protein BphC. In this example, we consider biphenyl-2, 3-diol-1, 2-dioxygenase (BphC),
an enzyme protein (PDB code: 1dhy).

The functional unit of this protein is a homo-octamer, and each subunit consists of
two domains. We set up a series of configurations where the two domains are increasingly
separated from d = 0 to d = 20 A apart, perpendicular to their interface. The domain
separation d is chosen here to be the reaction coordinate. Note that the zero domain
separation corresponds to the native configuration in the crystal structure.
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Table 2: Comparison of GPU (single precision) and CPU (double precision) for free energy
(kpT) and its components of two parallel charged plates with different charges (+0.2¢, —0, 2¢)
at distance d = 10A. The unit of time is second.

Grid Total Energy Surface Energy | vdW Energy CFA Total Time
Points | GPU CpPU | GPU | CPU GPU | CPU GPU CpPU | GPU | CPU
723 1 -2099.5 | -2099.5 | 631.8 | 631.8 -98.3 | -98.3 |-2632.9 | -2633.0 | 0.6 3.0
1443 | -2090.8 | -2090.8 | 640.3 | 640.3 -979 | -97.9 | -2633.1 | -2633.2 | 4.0 21.2
2883 | -2082.0 | -2082.0 | 648.3 | 648.3 | -110.4 | -110.4 | -2619.9 | -2619.9 | 29.9 | 163.9

Three pairs of stable equilibrium solute-solvent interfaces of BphC at d = 8 fi, d=12 fi,
and d = 16 A with tight or loose initial interfaces are presented in Figure 5. The top row
is with the loose initial interfaces, and the bottom row is with the tight initial interfaces.
We observe that the equilibria of the loose initial interface wrap the two domains of BphC
at d = 8 A and d = 12 A, and the equilibria surface becomes tighter along the increasing
distance. At d = 16 /01, the interfaces of two domains separate, changing to the wet state. In
contract, with the tight initial interface, all equilibria states are wet.

In Figure 6, different parts of the PMF of BphC with respect to the separation of two
domains, fromd =0tod = 20A obtained by our binary level set calculations using tight and
loose initial surfaces are displayed. These PMF's exclude the solute-solute vdW interactions.
We observe the bimodal hydration behavior: the branches of different parts of the PMF of
BphC between 4 A and 14 121, indicating that initial interfaces can strongly affect the PMF

of BphC.

— 8A loose — 124 loose — 164 loose

® O ¢

— 8A tight = 124 tight d = 16A tight

Figure 5: Stable 3D equilibrium solute-solvent surfaces of the BphC system obtained by the
binary level set VISM calculations with loose (top) or tight (bottome) initial interface at
d=8A,d=12A, and d = 16 A.
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Figure 6: Different parts of the PMF of BphC with respect to the domain separations, with

loose and tight initial surfaces. (a) The geometrical part G2t . (b) The vdW part G

The solute-solute vdW interactions are excluded in the curves in the main frame but included
in those in the inset. (¢) The electrostatic part ngcf . The solute charge-charge interactions
are excluded in the curves in the main frame but included in those in the inset. (d) The
total PMF GL ¢ f. The solute-solute vdW interactions are excluded in the curves in the main

frame but included in those in the inset.

In Table 3, we show a comparison of the calculation speed and different parts of the free
energy with the binary level-set method between GPU single precision code and CPU double
precision code of the BphC. Three different grid sizes are shown. We observe that the results
from CPU double precision code and GPU single precision code are nicely consistent. With
the grid size of 502, 1003, and 2003, the time cost of CPU code is around 15 times, 78 times,
and 216 times correspondingly to the time cost of the GPU code.

5.2

In this section, we conduct numerical experiments on two molecuales that are treated as
nonpolar systems (i.e., no charges) to demonstrate the efficiency of our free-energy minimization
algorithm.

Explicit-solute implicit-sovent free-energy minimization

A two-atom molecule. We consider an artificial molecular system of two atoms. The
solute-water LJ parameters are 0 = 3.57 A and ¢ = 0.431 kgT. We additionally assume
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Table 3: Comparison of GPU (single precision) and CPU (double precision) for free energy
(kpT) and its components of BphC with the native configuration in the crystal structure.
The unit of time is second.

Grid Total Energy Surface Energy vdW Energy CFA Total Time
Points | GPU CpPU GPU | CPU GPU CpPU GPU CpPU | GPU | CPU
50° | 52133.7 | 52134.2 | 1588.2 | 1588.2 | 53116.8 | 53117.4 | -2571.2 | -2571.3 | 4.1 60.6
100° | 52251.8 | 52252.3 | 1658.3 | 1658.3 | 53130.4 | 53131.0 | -2537.0 | -2537.0 | 4.9 | 381.1

200° | 52303.7 | 52304.2 | 1654.3 | 1654.3 | 53146.7 | 53147.3 | -2497.3 | -2497.3 | 13.5 | 2911.0

that the two atoms are bonded, with the spring constant in the bond stretching energy
A =800 kT /A2 We set the computational box to be (—8,8)3 A3,

We design two sets of experiments on the optimization process and equilibria with different
initial configurations. In the first set of experiments, Experiment 1.1.a and Experiment 1.1.b,
we set the equilibrium bond length ry = 3 A. In the second set of experiments, Experiment
1.2.a and Experiment 1.2.b, we set the equilibrium bond length ry = 8 A. In each set of
experiments, we test two types of initial configurations. In Experiment 1.1.a and Experiment
1.2.a, we place initially the two solute atoms far away from each other so that their distance
is much larger than the equilibrium bond length. We place the two solute atoms at positions
(7,0,0) and (—7,0,0), respectively. In Experiment 1.1.b and Experiment 1.2.b, we place
initially the two solute atoms very close to each other so that their distance is smaller than
the equilibrium distance. Specifically, we place the two solute atoms initially at positions
(0.5,0,0) and (—0.5,0,0), respectively.

In Figure 7, the minimization processes of Experiment 1.1.a and Experiment 1.1.b are
displayed. The red dots represent two atoms, and the blue segment represents the bond. In
the top row of Figure 7, we can see that initially surface consists of two disconnected spheres,
then two atoms get closer, and spheres merge, until the system reaches an equilibrium state.
In the bottom row of Figure 7, initially, the two atoms are very close to each other, then the
atoms are pushed apart due to the force from strong bonding energy, the interface is moved
accordingly, and then the system reaches to an equilibrium state.

We observe from Table 4 that that atoms have the exact same positions and free energy
in the equilibrium from the two experiments 1.1.a and 1.1.b, indicating that the molecular
system in the two simulations reached the same equilibrium.
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Figure 7: The free-energy minimization for a two-atom system. Top: Experiment 1.1.a.
The snapshots are taken at (a) initial stage step 0, (b) step 5, (c) step 10, and (d) step 63,
reaching nearly the steay state. Bottom: Experiment 1.1.b. The snapshots are taken at (e)
initial stage step 0, (f) step 2, (g) step 4, and (h) step 53, reaching nearly the steay state.

Table 4: Comparison of experiments 1.1.a and 1.1.b of a two-atom system.

Experiment Initial position Final position Bond length | Free Energy
1.1.a (7,0,0) (-7,0,0) | (1.50,0,0) | (-1.498,0,0) 3.00 21.85
1.1.b (0.5,0,0) | (-0.5,0,0) | (1.50,0,0) | (-1.498,0,0) 3.00 21.85
464
— — — —
(a) (b) (c) (d)
465
— ~— — —
(e) (f) () (h)

Figure 8: The free-energy functional minimization algorithm for a two-atom system. Top:
Experiment 1.2.a. The screenshots are taken at (a) initial stage step 0, (b) step 2, (c) step5,
and (d) the steay state step 62. Bottom: Experiment 1.2.b. The screenshots are taken at
(e) initial stage step 0, (f) step 3, (g) step 7, and (h) the steay state step 64.
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Figure 8 shows the minimization processes of Experiment 1.2.a and Experiment 1.2.b. In
the top row of Figure 8, we can see that initially surface consists of two disconnected spheres,
then two atoms get closer, until the system reaches an equilibrium state. Comparing with
the equilibrium of Experiment 1.1.a, the spheres are not merged due to a larger bond length
8A. In the bottom row of F igure 8, initially, the two atoms are very close to each other,
then the atoms are pushed apart due to the force from strong bonding energy, the interface
moves and then splits apart, then the system reaches to an equilibrium state with which the
interface consists of two separate spheres. Table 5 shows that the two experiments 1.2.a and
1.2.b reach the same equilibrium.

Table 5: Comparison of Experiments 1.2.a and 1.2.b of a two-atom system.

Experiment Initial position Final position Bond length | Free Energy
1.2.a (7,0,0) (-7,0,0) | (4.00,0,0) | (-4.00,0,0) 8.00 33.93
1.2.b (0.5,0,0) | (-0.5,0,0) | (4.00,0,0) | (-4.00,0,0) 8.00 33.93

An ethane molecule. We consider an ethane molecule CyHg in water and take from
[13,14,17] the solute atomic positions and force field parameters. Other parameters are as
follows: the carbon-water LJ parameters o = 3.4767 A and e = 0.2311 kgT, the hydrogen-
water LJ parameters o = 3.1017 A and £ = 0.0989 kgT, the carbon-carbon LJ parameters
o =34A and ¢ = 0.344 kgT, the carbon-hydrogen LJ parameters o = 3.025 A and ¢ =
0.147kgT, and the hydrogen-hydrogen LJ parameters o = 2.650 A and ¢ = 0.063 kzT.

In the ethane molecule, each atom is connected to other atoms through bonding, bending,
and torsion structure. The effect of vdW interaction energy among unbonded pairs of solute
atoms is relatively less important when compared with molecular mechanical interactions, so
in our simulation experiment of the ethane molecule, we neglect the vdW interaction energy
among unbonded pairs of solute atoms.

We design three different initial configurations of the ethane molecule from its equilibrium:

e In Experiment 2.1.a, we stretch all hydrogen-carbon bonds to be 2A.

e In Experiment 2.1.b, we stretch or shrink all hydrogen-carbon bonds such that hydrogen-

carbon bonds have the length of 1 A, 1.25A,1.5A,1.75 A, 2 A, and 2.25 A.

e In Experiment 2.2, we introduce a small fluctuation, then rotate one set of three

hydrogen-carbon bonds 50 degrees with respect to the carbon-carbon bond.

In Table 6, the bond lengths of hydrogen-carbon bonds and the carbon-carbon bond in
their equilibrium of Experiment 2.1.a, Experiment 2.1.b, and Experiment 2.2 are compared.
It is clear that in the equilibrium, all hydrogen-carbon bonds in three experiments have the
same length, which is consistent with the reference length of hydrogen-carbon bond 1.093 A.
The carbon-carbon bond in each of the three experiments is the same as the reference length
1.508 A. This verifies the accuracy of our free-energy minimization algorithm.
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Table 6: Comparison of bond lengths (A) of ethane in equilibrium from different initial
configurations. Remark: H3, H4, and H5 are hydrogen atoms bonded with the carbon atom
C1, H6, H7, and H8 are hydrogen atoms bonded with the carbon atom C2.

Experiments Experiment 2.1.a Experiment 2.1.b Experiment 2.2
Bond list Initial Length ‘ Final Length | Initial Length ‘ Final Length | Initial Length ‘ Final Length
C1-H3 2 1.093 1 1.093 1.090 1.093
C1-H4 2 1.093 1.25 1.093 1.090 1.093
C1-H5 2 1.093 1.5 1.093 1.090 1.093
C2-H6 2 1.093 1.75 1.093 1.090 1.093
C2-H7 2 1.093 2 1.093 1.090 1.093
C2-H8 2 1.093 2.25 1.093 1.090 1.093
C1-C2 1.77 1.508 1.77 1.508 1.540 1.508

Figure 9 displays the snapshots of minimization process of Experiment 2.2. The red
dots represent carbon atoms, the blue dots represent the hydrogen atoms, the light blue
segments and green segments represent the hydrogen-carbon bonds, and the black segment
represents the carbon-carbon bond. It is captured that during the relaxation, the set of
three hydrogen-carbon bonds rotated back to their equilibrium, and all hydrogen-carbon
bonds have the same length. Free energy of steady state in Experiment 2.1.a is 3.692 kgT,
the free energy of steady state in Experiment 2.1.b is 3.685 kgT', and the free energy of
steady state in Experiment 2.2 is 3.687 kgT". Thus, the three experiments get to the same
equilibria. We remark that the free energy here does not include the vdW interaction energy
among unbonded pairs of solute atoms.

Figure 9: The free-energy minimization for ethane from Experiment 2.2. Snapshot taken at
step 0 (Left), step 200 (Middle), and step 1500, reaching to a steady state (Right).

In Figure 10, we plot the free energy vs. iteration steps in numerical computations for
Experiment 2.1.a and Experiment 2.2. In Experiment 2.1.a, initially, the free energy is very
large, that is because the stretch or shrink of the initial bond length causes a large value of
the bonding energy. We can see that the free energy decays very fast in the first few steps,
which is caused by the dominant force from the bonding energy. It takes around 1000 steps
to adjust positions of solute atoms in ethane molecule to reach the equilibrium. In contract,
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Figure 10: The free energy (kgT') vs. the computational step in the free-energy minimization
for an ethane molecule in Experiment 2.1.a and Experiment 2.2. First 15 (50) computational
steps are specified in the inset of each subfigure.

the initial free energy of Experiment 2.2 in Figure 10 is a relatively small value, as we only
introduced a small fluctuation to the initial atomic positions and the rotation of a set of three
hydrogen-carbon bonds did not cause large free energy change. We observe that the rate
of free-energy change at around the 3rd step and 200th computational step becomes slower
and slower, which indicates that our free-energy minimization algorithm was adjusting the
suitable mobility factor M during the minimization process. Although the initial free energy
is small, it takes more than 1400 steps to rotate the hydrogen-carbon bonds back to the right
position and reach the equilibrium.

5.3 Simulation of protein-protein interactions

In this section, we choose a biologically important and realistic system, the p53/MDM?2
protein complex, and investigate the binding behavior using our free-energy minimization
model and algorithm. To make the calculations of molecular movement easier, the receptor
protein MDM2 here is fixed.

We use the CHARMM36 force field [2,16,21,22] for our VISM simulations for the binding
of p53 and MDM2.

Table 7 shows the solvation free energy and its components obtained by our VISM
simulations for the bound complex p53/MDM2, and the computational times of the simulations
with the GPU single precision and the CPU double precision, respectively.

During those simulations, we relax the relative difference stop criterion and absolute
difference stop criteria to be le-3, just for the efficiency comparison of the GPU code and
the CPU code. We set the initial configuration of p53/MDM2 to be a tight initial interface
for atomic position with small fluctuations of p53/MDM2 in the bound complex, where the
bound complex is taken from the Protein Data Bank (PDB code: lycr.pdb). It can be
observed in Table 7 that the difference between GPU code with single precision data type
and CPU with double precision data type is less than 1%, but the cost time of CPU is more
than 78 times, and 307 times slower than the cost time of GPU with number of grid points
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Table 7: Comparison of GPU (single precision) and CPU (double precision) for free energy
(kpT) and its components of p53/MDM2 in the steady state. The unit of time is minute.

Grid | Total Energy | Surface Energy | vdW Energy CFA Total Time
Points | GPU | CPU | GPU | CPU | GPU | CPU | GPU | CPU | GPU | CPU

50% | -214.0 | -212.0 | 800.7 | 802.7 | -453.1 | -453.0 | -561.6 | -561.7 | 10.0 | 784.7
1003 | -157.3 | -159.1 | 833.8 | 834.0 | -441.9 | -440.6 | -549.2 | -552.4 | 16.7 | 5128.6
200% | -140.9 - 836.5 - -434.4 - -543.0 - 62.6 -

We further investigate the binding behavior of p53 and MDM2 with our free-energy
minimization method and algorithm. Note that, here we use a grid size h = 0.5 /i, the
relative difference stop criterion and absolute difference stop criterion are le-5. We construct
the initial configuration with a tight initial interface by pulling p53 away from the MDM?2
pocket in the bound complex along the line passing through the geometrical centers.

In Figure 11, a few snapshots of numerical results of p53/MDM2 are displayed, showing
the minimization process. The position of the protein MDM2 is fixed, positions of p53
atoms are adjusted by the free-energy minimization process. We color each piece of surface
according to whether its closet solute atom comes from MDM2 (red) or p53 (blue) to show
the relative positions of MDM2 and p53. In the initial configuration, the protein p53 and
the receptor protein MDM?2 are separated as we can observe a hole between them; that is a
small region filled with water. In the process, the relative positions of p53 and MDM2 are
adjusted, pb3 and MDM2 become closer and closer. In the equilibrium, the hole disappears,
and the two proteins are combined together.

v

Figure 11: The free-energy minimization for p53/MDM2. The snapshots are taken at (
initial stage, i.e., step 0, (b) step 100, (c) step 200, and (d) step 377, reaching nearly the
steady state. Note that, in order to show the relative positions of MDM2 and p53, we color
each piece of surface according to whether its closest solute atom comes from MDM2 (red)
or p53 (blue).

6 Conclusions

This work presents the development of a GPU parallel free-energy minimization method and
algorithm with the fast binary level-set method and an adaptive-mobility gradient descent
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method for the variational explicit-solute implicit-solvent (VESIS) molecular simulations.

Minimization of the free-energy functional determines an equilibrium interface and an equilibrium

molecular structure.

Our free-energy minimization is an iterative process with two stages. In the first stage,
we fix solute atoms, then minimize the solvation free energy to obtain an optimal solute-
solvent interface. In the second stage, with a fixed interface, we relax the solute atoms using
a gradient descent type method. The proposed minimization algorithm is implemented in
parallel on GPUs with single precision.

We have presented a series of numerical experiments and have demonstrated the accuracy
and efficiency of our numerical methods and algorithm for the free-energy minimization. In
particular, our numerical experiments of potentials of mean force for two charged systems, two
charged parallel plates, and the protein BphC, have shown that VISM with the binary level-
set method can capture well the sensitive response of capillary evaporation to the charge in
hydrophobic confinement and the polymodal hydration behavior. Moreover, our numerical
experiments for small molecular systems, the two-atom system and an ethane molecule,
have demonstrated that our algorithm can capture topological changes of the solute-solvent
interfaces as well as describe the equilibrium molecular structure. A key application of our
algorithm is for large biomolecular simulations. We have applied our free-energy minimization
method and algorithm to a realistic system, the p53/MDM2 protein complex. Our model
and method describes the relaxation process of the binding of these two molecules.

To verify the performance of our algorithm with the parallel implementation on the
integrated GPU, we have compared for different molecular systems our computational results
and computational times with both of the CPU with double precision and the GPU with
single precision. We observe that the GPU implementation is much more efficient than the
CPU implementation. The GPU with single precision combining the pairwise summation
can efficiently limit the grow of round-off errors. For small molecular systems such as the
two charged parallel plates the computational time with the CPU is around 5 times of that
with the GPU. For a relatively large molecular system, such as p53/MDM2, and fine finite-
difference grids, our GPU implementation works especially well, reaching a speed about 100
times faster than that of the CPU implementation. In the meantime, both implementations
lead to the same minimum free energies and even their individual components.

To speed up the computations further, our immediate next step is to construct a hybrid
CPU-GPU architecture to combine CPU parallel computing and the integrated GPU parallel
computing together. For the CPU parallel computing, we can use a standard domain
decomposition approach. The communication between sub-domains is based on the message-
passing interface (MPI). Additionally, we would like to explore the high performance efficiency
and good scaling of parallel computing on dedicated GPUs.

With our fast algorithm and GPU code, we can now carry out flexible VESIS-Monte
Carlo simulations for the binding of two proteins in which both the solute-solvent interface
and the set of solute atomic positions change in each step of the Monte Carlo move.
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Appendix

Gradient of G[I',R|. Fix n with 1 <n < N. We have

1 /1 n
Ve, GIILR] = 8m2s, (5 B _> /W (Z Qr —r|? ) (!r ?rnlg’) W

=1

Ul (e, — SV + 3 5uGl (e — 1) L
+p0/ sw(|r r|)’rn I" +Z elec |I‘ r]|)|ri—rj\
W (7])/
y r, — I'j r, — I'j
ZémU |ri—rj\)m+Z5mz4¢j(|7’ij—7"oij’)m
(4.9) (4.9)
+ Z vrn Wbend (ria ry, rk) + Z vrn Wtorsi0n<ri7 r;, I, rl)> (Al)

(Z7]7k:) (Z7]7k7l)

where 9,; = 1 if n =i and 0 otherwise.

Force calculations of molecular mechanical interactions. For fixed r;,r;, and ry,
denote the vector from r; to r; by q;; = r; — r; for any 7 and j and the length of q;; by
¢;i = |d;ji|. We have

Vo Whend (i, Ty, Tk) = Biji(0ijk — 00iji) Vo bije, n=1,7,k,

where

Vrlez]k = ( . L q;; — q]k’) )

sin 0 qj-’iqj'k 45iq5k
1 Qji - Ajk 1
V. 0;p = — L — Qi |
R sinfy ( Cetii  Gidik

1 1 0, 1 0, ;
Vrjeijk = ( N COSQ Jk) Lji + - COSQ ]k Ljk| -
S eijk qjiq5k 4j; qji45k djy,

Recall for for fixed r;,r;, i, and r; that

6

Wtorsion(ri> rj7 Iy, rl) - Z Cn[]- + COS(TLT - ¢n)]7

n=0

where 1, is the phase factor, which is introduced to shift the zero of the torsion potential.
The phase angles 1, are usually chosen so that terms with positive C),, has minima at 180°
(i.e., for odd n, ¥, = 0° and for even n, 1), = 180° ). We denote

d1 = qij, 92 = Qjk, A3 = Qki,
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u=dq; Xqz, V=4q2XqQs,
u-v

T = Tijk, N =Njju=cosT = af[v|’

Cn - Cn,z’jkl; n = 17273747576'
Due to the fact that ¢, = 0° or 180°, we derive

Ve VVtorsion(ri; r;, Ty, I‘l)
= Vi, A[(C cos(y1) — 3C5 cos(1h3) + 5C5 cos()s))
+ A(4C;5 cos(1hy) — 160y cos(thy) + 36C¢ cos(1bg)) + A*(12C5 cos(1p3) — 60C' cos(1s))
+ A3(32C, cos(thy) — 192C¢ cos(vg)) + A*(80Cs cos(t5)) + A®(192Cs cos(is))],

where
Vi A = =V A,
VrjA = VA —Vg,A,
Vi, A= Vg, A= VA,
VA =V, A,
and
o a_ (@ x V= (v x v
4 luf?|v| ’
VoA (—a1 x v)[u]* + (u-v)(q: x u) N (g3 x W)|v|* = (u-v)(qs X v)
& luf|v| luf[v[? ’
voOA (—q2 x W)|V[]* + (u-v)(q2 X v)
& luf[v|?

s0 Potentials of Mean Force. The potential of mean force (PMF) is a general term for the
so1 effective interaction between solutes that stems from direct solute-solute interactions and
sz that is mediated by the solvent. It is usually defined with respect to a reaction coordinate as
sz the difference between the free energy of solvated state at a given coordinate d and that at
s0s & fixed, reference coordinate d,.r. Here, we recall the definition of PMF for our VISM [30].
For a solute-solvent interface I, we denote by Ggeom|I'], Gvaw[l'], and Gepec[I'] the first,
second, and last term in Gyism[I'] (2.2), respectively. Fix now a finite coordinate d. Denote
by I'4 a corresponding VISM optimal surface, i.e., a stable equilibrium solute-solvent interface
minimizing locally the VISM solvation free-energy functional. We define the (total) PMF to
be the sum of its separate contributions
Gt (d) = Ghia(d) + Ghiyy(d) + Ghec (d),

geom elec

where

Gpmf (d) = Ggeom [Fd] - Ggeom [Foo]7

geom
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Here a quantity at oo is understand as the limit of that quantity at a coordinate d’ as d’ — oo.
The double-sum terms above are the solute-solute vdW and charge-charge interactions.

As d becomes large, the VISM optimal solute solvent interface I'y becomes the union of
two separate VISM optimal solute-solvent interface I'; and I';;, both independent of d. They
are obtained by minimizing the VISM free energy functional for the corresponding groups
of fixed, solute atoms. If we denote by Gr, and Gr,, the corresponding minimum VISM
free energies for these individual groups of atoms, then Gr,, = Gr, + Gr,, Similarly, each
component of the VISM free energy is the sum of that for the two groups of solute atoms,
i.e., G in the above equation can be replaced by Ggeom, 01 Gyaw O Geec-
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