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ABSTRACT
Significant increase in high-resolution satellite data requires more
productive analysis methods to benefit data scientists. Interactive
exploration is essential to productivity since it keeps the user en-
gaged by providing quick responses. This paper addresses the pro-
gressive zonal statistics problem that given big satellite data, an
aggregate function, and a set of query polygons, zonal statistics
computes the aggregate function for each query polygon over raster
data. Efficiently querying complex polygons, reading high resolu-
tion pixels and process multiple polygons simultaneously are three
main challenges. This work introduces Viper, an interactive explo-
ration pipeline to overcome these challenges and achieve require-
ments. Viper uses a raster-vector index to bootstrap the answer
with an accurate result in a short time. Then, it progressively refines
the answer using a priority processing algorithm to produce the
final answer. Experiments on large-scale real data show that Viper
can reach 90% accuracy or higher up-to two orders of magnitude
faster than baseline algorithms.
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1 INTRODUCTION
There is an ever growing amount of high-resolution satellite data
available for analysis by data scientists. NASA EOSDIS archive is
expected to reach nearly 250 petabytes by 2025. Planet Labs gathers
more than 15TB of daily satellite data. Users explore these datasets
by running queries over regions of interest. One fundamental query
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is zonal statistics which takes satellite data, a set of query polygons,
and an aggregate function, and computes the aggregate function
over pixel values within each query polygon. For example, com-
pute the average vegetation cover index over each farmland. This
problem has many applications in satellite data exploration and
analysis [31], computation of soil moisture in agricultural fields [7],
areal interpolation [24], wildfire combating [34], and others [32].

In recent studies, efforts have been made to optimize zonal statis-
tics for large-scale satellite data. However, through our interactions
with data scientists exploring such data, we discover their need for
rapid results that closely approximate the final answer, enabling ef-
fective guidance of data exploration. This renders batch processing
techniques inadequate [12, 31]. Additionally, they emphasize the
importance of accurate results to avoid unbounded errors, render-
ing approximate approaches impractical [2, 3]. Consequently, this
paper focuses on a progressive query processing approach that ful-
fills both requirements. It initially generates an approximate answer
and subsequently refines it until an exact answer is attained.

Unfortunately, running zonal statistics progressively while ex-
ploring large satellite data encounters three challenges. First, there
is a computational overhead when dealing with complex query
polygons that have up-to tens of thousands of segments per query
polygon, e.g., country borders. Second, there is a disk IO overhead
to read pixel values from high-resolution satellite data with billions
of pixels, e.g., 30-meter and 3-meter resolution data. Third, there is
a scalability challenge when processing thousands of query poly-
gons simultaneously. These challenges result in extended query
processing time that impedes user productivity.

Efforts have been attempted to address this problem but have
yet to tackle all challenges. Some methods only focus on the first
challenge by utilizing approximation and GPU acceleration [42, 45].
These methods are limited in scale to high-resolution rasters due
to memory and disk overhead. Other techniques only address the
second challenge using raster indexes [5, 8, 11, 18, 19, 22, 26, 30, 35]
that comprise pre-aggregated results but are limited to rectangular
queries or simple polygons. In addition, all the above methods do
not address the third challenge as they answer one query polygon
at a time and do not scale to thousands of query polygons.

To overcome these limitations and challenges, this study intro-
duces Viper, an interactive exploration framework with progressive
query answering over arbitrarily complex query polygons and large
satellite data. Figure 1 demonstrates the key concept. The bottom
part shows a baseline approach that achieves interactivity by pro-
cessing one query polygon at a time, resulting in a long wait time
before fetching an answer with reasonable quality. On the top, the
proposed method considers all queries collectively to produce a
quality answer quickly and refine it until obtaining an exact answer.

Viper operates in two phases that overcome challenges and limi-
tations. Phase I assembles a light-weight on-the-fly index for query
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Figure 2: Sequence of output tuples for polygons

polygons to enable rapid initial results with large satellite data and
complex polygons. Viper bootstraps the quick answer within sec-
ondswith the help of an offline one-time process, which constructs a
query-independent raster index. This index maximizes computation
sharing to process thousands of query polygons simultaneously and
minimizes disk IO by reading pre-aggregated blocks of data. Phase
II employs a novel priority-based query processing approach. It
emphasizes on processing thousands of query polygons at the same
time while fetching higher accuracy results early on. This method
prioritizes more significant portions of the data, enhancing accu-
racy within a short timeframe and continuously improving until
the exact answer is achieved.

Experiments on real data with hundreds of billions of pixels
and tens of thousands of complex query polygons show that Viper
achieves up-to 95% accuracy 40 times faster than the baseline. It
also completes the processing up-to 16 times faster than baselines
on high-resolution data. Furthermore, Viper only adds less than 1%
disk and memory overhead to achieve these results. Contributions
of Viper are summarized into three points. (1) Defines interactive
exploration of zonal statistics. (2) Develops an on-the-fly index
based on raster index, which helps to fetch an answer quickly.
(3) Establishes priority order of query complex polygons and rasters
that provides high accuracy early on.

This paper is organized as follows. Section 2 describes prelimi-
nary and problem definitions. Sections 3-4 detail implementations
of index and interactive exploration approaches. Section 5 presents
experimental analysis. Section 6 discusses related work. Section 7
concludes the work.

2 OVERVIEW
This section defines the problem and provides an overview.

2.1 Preliminary Definitions
Definition 2.1 (Raster Layer). A two-dimensional grid of pixels

with 𝑤 columns and ℎ rows that is associated with a rectangular
region on earth, e.g., Figure 2. A transformation function, grid-
to-world (G2W), maps pixel locations on the grid to geographic
locations, e.g., longitude and latitude. Each pixel has a numeric
value for the area of earth it covers, e.g., temperature.

Definition 2.2 (Tile Grid). A tile grid groups raster pixels into
equal-size and non-overlapping ranges of pixels called tiles. For
example, the grid in Figure 2 has four tiles, each containing four
pixels.

Definition 2.3 (Query Polygons (𝑃 )). A set of polygons that define
geographical regions of interest. Each polygon 𝑝 ∈ 𝑃 is represented
as a pair ⟨𝑝𝑖𝑑 , 𝑔𝑒𝑜𝑚𝑒𝑡𝑟𝑦⟩, where 𝑝𝑖𝑑 is a unique ID and geometry is a
sequence of points that define one outer ring and zero or more inner
holes. Figure 2 shows three polygons; the polygon with 𝑝𝑖𝑑 = 1 has
one hole while others have no holes.

Definition 2.4 (Aggregate function (𝑓 )). is a user-provided alge-
braic function that is applicable on pixel values, e.g., a query might
calculate the sum of water areas or average temperature.

2.2 Problem Definition
This paper addresses the progressive zonal statistics problem. Zonal
statistics problem is defined with a given raster layer 𝑟𝑜 , a set
of query polygons 𝑃 , and an aggregate function 𝑓 , the goal is to
compute aggregate functions for all pixels in each query polygon.
Similar to previous studies [12, 31], a pixel is considered inside
a polygon if its center lies inside. Figure 2 shows three polygons
where the matching pixels are highlighted correspondingly.

This paper focuses on progressive answer which delivers zonal
aggregation results as a sequence of ⟨𝑝𝑖𝑑 , 𝑣𝑎𝑙𝑢𝑒⟩, where 𝑝𝑖𝑑 is the
query polygon ID and value is a partial aggregation, i.e., an aggre-
gation of some overlapping pixels of 𝑝𝑖𝑑 . These partial answers
need to be further aggregated using the provided aggregate func-
tion to get the final answer. Figure 2 provides answers in a table
of ⟨𝑝𝑖𝑑 , 𝑣𝑎𝑙𝑢𝑒⟩ pairs. Notice how the same 𝑝𝑖𝑑 is repeated multiple
times. One tuple in the answer might represent multiple pixels,
e.g., ⟨1, 31⟩ represents a partial aggregate of four pixels with values
10, 13, 6, & 2. The sum of all values in the answer per 𝑝𝑖𝑑 is the
same as the sum of all overlapping pixels in the input. The order of
the answer tuples does not affect its correctness. Query polygons
could intersect with each other, this paper uses non-overlapping
examples to provide a clearer view.

2.3 Proposed Approach Overview
The key idea to achieve interactive exploration in this work, is
delivering progressive answers in a short time. This study uses a
hybrid raster-vector index to speed up the calculation. It processes
this index with a novel raster-vector method that provides an accu-
rate result quickly and refines it until an exact answer is reached.
Further, it adds a prioritization method so that the refinement step
achieves high accuracy as soon as possible.

Figure 3 provides a high-level overview of the proposed method.
Before any query process, the original input raster layer 𝑟𝑜 is aggre-
gated into a low-resolution layer 𝑟𝑙 by applying the user-provided
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Figure 3: System flow pipeline
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Figure 4: Raster index: aggregate pixels

aggregate function 𝑓 on a fixed-size window. Figure 4 illustrates
an example where the original raster 𝑟𝑜 is of size 8 × 6, 𝑓 is the
summation function, and 𝑠 = 2. Each 2 × 2 block is aggregated into
a single pixel, termed Superpixel. To ensure an exact and efficient
answer during the refining phase, each original pixel in 𝑟𝑜 must
overlap with a single superpixel in 𝑟𝑙 , and the tile grid of 𝑟𝑙 to per-
fectly align with the tile grid of 𝑟𝑜 . To achieve both, we set 𝑠 to a
common factor of the tile size of 𝑟𝑜 . For example, if the tile size is
128, we can use 𝑠 = 32 or 𝑠 = 64.

When the user provides a query, Viper first processes the low-res
layer 𝑟𝑙 with all query polygons to find all low-res pixels are fully
inside query polygons to bootstrap the answer. Further, it updates
the query polygons to avoid double-aggregation of the regions in
low-res pixels as detailed in Section 3. The second step processes
the remaining regions of the query polygons using the original
raster 𝑟𝑜 . We introduce a prioritization method that processes 𝑟𝑜 in
an order that helps in reaching high-accuracy quickly while still
achieving an exact answer at the end as described in Section 4.

3 VIPER RASTER-VECTOR INDEX
This section describes the first part of the query processing. Given
a set of query polygons, it computes an initial partial answer by
processing the low-res raster layer 𝑟𝑙 . This paper focuses on simul-
taneous processing of a large number of query polygons efficiently.
To address that, we provide a novel raster-vector index that is
constructed and processed on-the-fly. In this stage, it is crucial to
identify the superpixels that are entirely inside query polygons.
When working on a low-resolution layer, it is vital to exclude pixels
beyond the bounds of polygons to avoid inaccurate results. Unlike
existing work that produces an approximate answer [12, 42, 45], the
partial answer this step provides can be further refined to produce
the exact answer shown in the next section.

A straight-forward approach is to treat each superpixel as a rec-
tangle and use ST_Contains from PostGIS for polygon-in-polygon
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Figure 5: Polygon with one hole inside. Representation of
intersections, vertices as both float and integer format. The
hatched pixel is fully inside.

test with each query polygon, but it is very inefficient. Existing
scan-line-based polygon filling algorithms [12, 45] find pixels whose
centers are inside query polygons, but we need to find the pixels
are completely contained in query polygons. Traditional scanline-
based algorithms used in graphics fail to detect any parts of the
geometries that fall between the horizontal scan lines, e.g., the
small hole in pixel (3, 1) in Figure 5. This section offers a different
algorithm to find pixels that are fully inside query polygons while
optimizing for multiple query polygons. In the rest of this section,
we first formalize the conditions that make a pixel fully inside a
polygon, then describe how to compute them efficiently for a large
number of query polygons.
Pixel-in-polygon Conditions. For a rectangular pixel to be fully
inside a polygon, it must satisfy three conditions:
(1) A pixel corner is inside the polygon, e.g., top-left corner.
(2) Pixel boundaries and polygon boundaries do not intersect.
(3) None of the polygon vertices is inside the pixel.

Figure 5(a) gives an example of a polygon with one hole on a
raster layer. Each pixel is identified by a (𝑐𝑜𝑙𝑢𝑚𝑛, 𝑟𝑜𝑤) pair. The
pixels (0, 0), (0, 1), (0, 2) are not contained since their top-left corner
is not inside the polygon (condition 1). Pixels (2, 2), (3, 2), (4, 2)
have a corner inside the polygon but pixel boundaries and polygons
boundaries intersect (condition 2). Pixel (3, 1) satisfies the first two
conditions but fails with condition 3 since vertices of the hole
(depicted by green squares) are inside the pixel. Only the hatched
pixel (2, 1) satisfies all three conditions. In contrast, systems that
use scanline algorithm [12, 45] only tests the first condition to find
all pixels have their center inside the polygon. Some approximate
techniques [36] will consider the cell (3, 1) as interior if they do
not consider small holes.
Efficient Computation with Sorted Lists. This part describes
a preliminary yet efficient method for computing all pixels inside
query polygons based on the definition above. This work utilizes
the grid structure of pixels to speed up tests. This method is simple
to implement as it relies mainly on binary search in sorted lists.

First, we clarify definitions used as illustrated in Figure 5. Hori-
zontal intersections, depicted by yellow +marks, is a set of ⟨𝑝𝑖𝑑 , 𝑥,𝑦⟩
tuples where each tuple indicates an intersection between the
boundary (or a hole) of the polygon with id 𝑝𝑖𝑑 and the horizontal
grid lines of the pixel. Vertical intersection, depicted by blue ×marks,
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are the intersections between polygon boundaries and the vertical
grid lines. Finally, corners, depicted by green squares □, is the set of
polygon vertices and is part of the input. These three intersections,
all formatted as a set of ⟨𝑝𝑖𝑑 , 𝑥,𝑦⟩, can be computed efficiently in
almost linear time in terms of the number of query polygon vertices.
To do that, we scan each query polygon, one segment at a time,
and compute the intersection between this line segment and both
horizontal and vertical grid lines. Each intersection consists of two
line segments and is computed in constant time.

These three sets help find all pixels completely inside query
polygons as detailed next. First, sort the horizontal and vertical
intersection lexicographically by (𝑦, 𝑝𝑖𝑑 , 𝑥) and (𝑥, 𝑝𝑖𝑑 , 𝑦), respec-
tively. Such sort orders allow efficient search for intersections using
binary search for a specific polygon. We build a kd-tree, or any
spatial index, on pixel corners. Next, to test condition 1, we scan
horizontal intersections in order and find horizontal segments in-
side the polygon as depicted by the yellow crosses in Figure 5. To
test condition 2, we use the sorted horizontal and vertical intersec-
tions to search along the four edges of each pixel for intersections
that belong to the same polygon. Finally, to test condition 3, we
run a range search on the set of polygon vertices to find any vertex
being tested inside the pixel. We omit the implementation details
for brevity since we propose a more optimized algorithm.

This algorithm is simple to implement as it does not require
complex geometric computations. Constructing the three sets is
linear time if one polygon segment intersects with a few grid lines,
which generally holds for real data. Sorting is 𝑂 (𝑛 log𝑛) where 𝑛
is the number of polygon vertices which is proportional to the size
of each set. Each pixel requires 𝑂 (log𝑛) for the binary searches
and the tree search. Thus, this algorithm requires a running time of
𝑂 (𝑤 · ℎ · log𝑛 + 𝑛 log𝑛), where𝑤 and ℎ are the width and height
of the raster layer in terms of the number of pixels.
Optimized Computation with On-the-fly Index. The algorithm
depicted above has two shortcomings. First, it has a significant
memory overhead for keeping lists of intersections where each co-
ordinate is represented as a floating-point number. Second, frequent
binary and tree search for each pixel slows executions. This part
proposes an optimized in-memory structure for the intersections to
address these drawbacks. The key idea is to convert all intersections
from floating-point representation (𝑥,𝑦) to integer representation
(𝑖 = ⌊𝑥⌋, 𝑗 = ⌊𝑦⌋) as shown in Figure 5(b). That is, horizontal in-
tersections move to the left, vertical intersections move up, and
polygon vertices move to the top-left. The cell at (4, 2) gives an
example of the three types of adjustments. Several intersections
might be squished into one location, which the figure indicates by
a subscript, e.g., the pixel at (4, 3) has two coincident intersections
of each type. Further, we compact horizontal intersections by com-
bining each pair of intersections into a single tuple ⟨𝑝𝑖𝑑 , 𝑗, 𝑖1, 𝑖2⟩ to
indicate that the segment (𝑦, 𝑖1) − (𝑦, 𝑖2) is inside the polygon 𝑝𝑖𝑑 .
Such representation helps to store each intersection location as a
single integer in the range [0,𝑤 × ℎ] where𝑤 and ℎ are the raster
width and height in pixels, respectively. We redefine the three sets
of intersections to form raster-vector index as follows.

The horizontal intersections is a list of intersection ranges in
the form ⟨𝑝𝑖𝑑 , 𝑗, 𝑖1, 𝑖2⟩ sorted lexicographically by ( 𝑗, 𝑝𝑖𝑑 , 𝑖1). The
vertical intersections and polygon vertices are each represented as a
set of intersections in the form ⟨𝑝𝑖𝑑 , 𝑖, 𝑗⟩ stored as a hash set. Notice

Algorithm 1: Check Pixel Fully Inside Polygons
Input :𝐻 Sorted horizontal ranges [ ⟨𝑝𝑖𝑑 , 𝑗, 𝑖1, 𝑖2 ⟩ ],

𝑉 Vertical intersections set {⟨𝑝𝑖𝑑 , 𝑖, 𝑗 ⟩},
𝐶 Polygon vertices set {⟨𝑝𝑖𝑑 , 𝑖, 𝑗 ⟩}

Output :Pixels: list ⟨𝑝𝑖𝑑 , 𝑖, 𝑗 ⟩ of fully inside pixels
1 𝑘2 ← 0
2 for 𝑘1 = 0 to |𝐻 | do
3 (𝑝𝑖𝑑 , 𝑗, 𝑖1, 𝑖2 ) ← 𝐻 [𝑘1 ]
4 while 𝑘2 < |𝐻 | and 𝐻 [𝑘2 ] ≺ 𝐻 [𝑘1 ] do
5 𝑘2 + +
6 while 𝑘2 < |𝐻 | and 𝐻 [𝑘2 ] .𝑝𝑖𝑑 == 𝑝𝑖𝑑 and 𝐻 [𝑘2 ] . 𝑗 == 𝑗 + 1

and 𝐻 [𝑘2 ] .𝑖1 < 𝑖2 do
7 for 𝑖 =𝑚𝑎𝑥 (𝑖1, 𝐻 [𝑘2 ] .𝑖1 ) + 1 to𝑚𝑖𝑛 (𝑖2, 𝐻 [𝑘2 ] .𝑖2 ) do
8 if ⟨𝑝𝑖𝑑 , 𝑖, 𝑗 ⟩ ∉ 𝑉 and ⟨𝑝𝑖𝑑 , 𝑖 + 1, 𝑗 ⟩ ∉ 𝑉 then
9 if ⟨𝑝𝑖𝑑 , 𝑖, 𝑗 ⟩ ∉ 𝐶 then
10 Pixels ≪ ⟨𝑝𝐼𝐷, 𝑥, 𝑦⟩
11 if 𝐻 (𝑘2 ) .𝑖2 < 𝑖2 then
12 𝑘2 + +
13 else
14 break
15 return 𝑃𝑖𝑥𝑒𝑙𝑠

that vertical intersections and vertices store each intersection only
once, even if multiple intersections get snapped to the same integer
location. It will be clear shortly how we still guarantee an exact
answer with this new representation.

Algorithm 1 gives the pseudo-code of the proposed algorithm.
The algorithm starts in line 1 by initializing two pointers 𝑘1 and 𝑘2
on the horizontal intersections list. 𝑘1 is used to find ranges that
satisfy condition 1 and 𝑘2 is used to test the bottom edge of each
pixel for condition 2 while avoiding a range search. The loop in
line 2 scans all horizontal ranges satisfying condition 1. Then, the
loop in line 4 advances the second pointer 𝑘2 to the first range on
the next row that overlaps with the current range horizontally and
belongs to the same polygon. This step utilizes the existing sort
order and defines the ordering operator ≺ as follows:

𝑎 ≺ 𝑏 ⇐⇒ 𝑎. 𝑗 < 𝑏. 𝑗 + 1 ∨ (𝑎. 𝑗 = 𝑏. 𝑗 + 1∧
(𝑎.𝑝𝑖𝑑 < 𝑏.𝑝𝑖𝑑 ∨ (𝑎.𝑝𝑖𝑑 = 𝑏.𝑝𝑖𝑑 ∧ 𝑎.𝑖2 < 𝑏.𝑖1)))

With this definition, the loop in line 4 advances 𝑘2 until the first
range in the next row ( 𝑗 + 1) that horizontally overlaps with the
current range pointed by 𝑘1. For example in Figure 5, if 𝑘1 points
to the range ⟨ 𝑗 = 1, 𝑖1 = 1, 𝑖2 = 4⟩, then 𝑘2 will point to the range
⟨ 𝑗 = 2, 𝑖1 = 1, 𝑖2 = 4⟩. The pixels in the horizontal intersection
of both ranges satisfy condition 1 and half of condition 2, i.e., the
top and bottom edges are clear of intersections. Remember that
multiple ranges could be in the next row (pointed by 𝑘2). Thus,
the loop in line 6 iterates over all those overlapping ranges. To
complete the test of condition 2, we need to ensure no intersections
along the left and right edges of the pixel. The for loop in line 7
iterates over all pixels that overlap the two ranges and check the
vertical intersections set. Notice that we do not care where the exact
intersection is or whether there is more than one intersection which
makes the hash set perfect for this test in constant time as shown
in line 8. Next, line 9 tests condition 3 in constant time using the
corners hash set. Finally, the pixel is added to the output 𝑃𝑖𝑥𝑒𝑙𝑠 list
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𝑡5

𝑡0 𝑡1 𝑡2

𝑝𝑖𝑑 𝑂𝐴 𝑝𝛿 𝑝𝜋

1 14 0.29 0.71
2 6 0.0 1.0
3 5 0.0 1.0

𝑡𝑖𝑑 Polygons 𝑡𝜋

0 𝑝1 0.71
1 𝑝1, 𝑝2 2.71
2 𝑝2 1.0
5 𝑝2, 𝑝3 2.0

Figure 6: Polygon progress and priority, and tile priority

if all three conditions pass. The only remaining step is to advance
𝑘2 if the range it points to will not overlap with future horizontal
ranges by this polygon, i.e., 𝐻 (𝑘2) .𝑖2 > 𝐻 (𝑘1).𝑖2. Otherwise, we do
not advance that range since it could be used in the next iteration
when 𝑘1 is advanced by one.
Polygon Adjustment: We use the above algorithm to find all su-
perpixels in the low-res raster 𝑟𝑙 that are completely inside the
query polygons. The partial aggregates for the matching superpix-
els are added to the output. To ensure that the regions covered by
the superpixels will be excluded in the next-phase, we adjust the
polygons by subtracting the regions covered by these superpixels.
Rather than running a complex polygon difference operation, we
utilize the fact that the superpixels are completely contained in the
polygon, making it easy to add holes to existing polygons without
doing any complex geometric tests. Thus, we run the object delin-
eation algorithm [29] to create rings around matching superpixels
and just add them as holes to corresponding query polygon.

4 VIPER PROGRESSIVE QUERY
This section describes the second step. Given updated query poly-
gons and the high-res (original) raster 𝑟𝑜 , it uses the scanline
method [12] to progressively refine the answer until an exact an-
swer is reached. The main contribution of this part is to prioritize
the processing order to reach higher accuracy early on.

Notice that the scanline zonal statistics method was designed
for batch processing and not progressive queries. However, since it
processes one tile at a time, we can easily adapt it by producing the
output immediately after processing each tile to ensure progressive
answer. Thus, whenever it finds a pixel (𝑥,𝑦,𝑚) to be inside a
polygon 𝑝𝑖𝑑 , we emit the value (𝑝𝑖𝑑 ,𝑚). The drawback of this
straight-forward adaptation is that it might start by processing tiles
that do not benefit the overall progressive answer. It would be better
for the query answer to prioritize a tile that contains polygons that
were never processed over another tile that contains polygons that
were partially processed. Therefore, this work provides a priority
processing method that tries to reach higher accuracy early on by
prioritizing tiles. First, we start by defining priority and then we
show how it improves the scanline method.

Definition 4.1 (Polygon Progress). Polygon progress 𝑝𝛿 ∈ [0, 1] is
defined as the ratio of processed polygon area to the overall area of

Algorithm 2: Priority Tile Processing
Data: Intersection Array: 𝐼 = [ ⟨𝑡𝑖𝑑 , 𝑝𝑖𝑑 , 𝑥, 𝑦⟩ ]

Polygon array 𝑃 = [ ⟨𝑂𝐴, 𝑡𝑖𝑙𝑒𝑠 ⟩ ]
Tile array𝑇 = [ ⟨𝑡𝜋 , 𝑡𝑖 ⟩ ]

1 while true do
2 𝑡𝑖𝑑 = argmin{𝑇 [𝑡𝜋 ] }
3 return if𝑇 [𝑡𝑖𝑑 ] .𝑡𝜋 = 0
4 𝑇 [𝑡𝑖𝑑 ] .𝑡𝜋 = 0
5 Load tile 𝑡 with ID 𝑡𝑖𝑑 from 𝑟𝑜

6 Initialize a hashtable 𝑃𝑃 for new polygon pixels as
num-new-pixels

7 for 𝑖 ∈ 𝐼 [𝑇 [𝑡𝑖𝑑 ] .𝑡𝑖 ..𝑇 [𝑡𝑖𝑑 + 1] .𝑡𝑖 ] do
8 output ≪ (𝑖 .𝑝𝑖𝑑 , 𝑡 .get-pixel(𝑖 .𝑥, 𝑖 .𝑦) )
9 num-new-pixels + +

10 𝑃𝑃 [𝑖 .𝑝𝑖𝑑 ] = num-new-pixels
11 for (𝑝𝑖𝑑 , num-new-pixels) ∈ 𝑃𝑃 do
12 Remove the processed tile 𝑡𝑖𝑑 from 𝑃 [𝑝𝑖𝑑 ] .𝑡𝑖𝑙𝑒𝑠
13 diff-priority=num-new-pixels/𝑃 [𝑝𝑖𝑑 ] .𝑂𝐴

14 for 𝑡𝑖𝑑 ∈ 𝑃 [𝑝𝑖𝑑 ] .𝑡𝑖𝑙𝑒𝑠 do
15 𝑇 [𝑡𝑖𝑑 ] .𝑡𝜋− = diff-priority

the polygon.

Polygon progress: 𝑝𝛿 =
processed area

polygon area (OA)

We avoid using actual polygon areas, since we process query
polygons in pixels, we might never reach exactly 100% progress.
Thus, we represent original area (OA) of the polygon in terms of
the number of original pixels (𝑟𝑜 ) in the polygon. This number can
be easily calculated as we compute the intersections of the scanline
process so it does not add a significant overhead. The processed
area is incremented by one for each matching pixel of 𝑟𝑜 and by
𝑠2 for each matching superpixel of 𝑟𝑙 . Figure 6 illustrates three
query polygons with the low-res raster on the left and the original
raster on the right. The query areas are 14, 6, and 5, respectively.
The hatched cell indicates one superpixel that is fully inside the
polygon 𝑝1 on lower-res raster. The right image shows updated
polygons over the high-res raster 𝑟𝑜 , where each tile groups four
pixels of 𝑟𝑜 . After processing the superpixel inside 𝑝1, the progress
is 4/14 = 0.29. The polygons 𝑝2 and 𝑝3 are not processed yet so
they have a progress of zero.

Definition 4.2 (Polygon Priority). Priority of a polygon 𝑝𝜋 is 1−𝑝𝛿 .

Polygon priority is also in the range [0, 1]. The higher the value
is, the more important it is to process this polygon because only a
few pixels were processes at that point. In Figure 6, the priority of
the polygons 2 and 3 is 1.0 since none of their pixels were processed
while the priority of polygon 1 is 1 − 0.29 = 0.71

Definition 4.3 (Tile Priority). The priority of a tile 𝑡𝜋 is the sum
of all polygon priorities that have at least one pixel in this tile.
Tile priority: 𝑡𝜋 =

∑
𝑝∩𝑡≠∅ 𝑝𝜋

Figure 6 shows the priority of four of the nine tiles. 𝑡0 contains
only one polygon so its priority is equal to that of 𝑝1. 𝑡2 overlaps
both 𝑝1 and 𝑝2 so its priority is 0.71 + 1.0 = 1.71. 𝑡5 overlaps both
𝑝2 and 𝑝3 which makes its priority equal to 2.0. This means that
𝑡5 is the tile with the highest priority which makes sense because
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processing it will produce some result for both 𝑝2 and 𝑝3 which
have zero progress. The proposed priority algorithm processes tiles
from highest to lowest priority instead of the default order by tile
ID. After processing each tile, the algorithm efficiently updates tile
progress to reflect the new polygon progress.

Algorithm 2 gives the pseudo-code of the priority processing
algorithm which takes three inputs, 𝐼 , 𝑃 , and 𝑇 . 𝐼 is the list of
intersections (𝐼 ) calculated by the scanline algorithm and ordered
by tile ID. 𝑃 is the list of polygons that record the overall area
(𝑂𝐴) for each polygon and the list of overlapping tiles. 𝑇 is a list
that records the priority of each tile (𝑡𝜋 ) and the index of the first
intersection in 𝐼 for the tile 𝑡𝑖 . Arrays 𝑃 and 𝑇 are indexed by the
polygon ID 𝑝𝑖𝑑 and tile ID 𝑡𝑖𝑑 , respectively. These structures can
be easily initialized during the processing of superpixels and the
calculation of the intersections array 𝐼 but we omit this part for
brevity. This algorithm runs in a loop that processes one tile at a
time as follows. First, line 2 finds the tile with the highest priority.
While a max-heap can find that tile efficiently, we found that using a
simple array is more efficient since updating the heap is very costly.
A max-heap reduces the cost of finding the tile with highest priority
from 𝑂 (𝑛) to 𝑂 (log𝑛) but increases the update cost from 𝑂 (𝑘) to
𝑂 (𝑘 log𝑛), where 𝑘 is the number of updated tiles. We found that
the number of updated tiles is generally large enough to make the
max-heap ineffective. If the highest priority is zero, the algorithm
terminates as there are no more tiles to process. Otherwise, the tile
is loaded from disk to start processing (line 5).

In line 6, we initialize a hashmap to keep track of the number
of pixels processed in each polygon which we use to update the
priorities. The for loop in line 7 loops over all the intersections for
this tile, progressively outputs all matching pixels, and increments
the number of pixels for each polygon. After processing the tile,
we set its priority to zero to mark it as done. Then, the for loop in
line 11 loops over the map of processed polygons (𝑃𝑃 ) to update the
priority. Line 12 removes the processed tile from the list of tiles in
this polygon to reduce the size since this tile will not be considered
anymore. Line 13 computes the reduction in the priority of the
polygon given the number of new pixels processed for it. Then, the
for loop in line 14 updates the priority of all matching tiles. After
that, the algorithm repeats to find the next tile to process.

5 EXPERIMENTS
This section provides a comprehensive experimental evaluation
on the performance of this work. Section 5.1 describes the experi-
mental setup with the system environment, datasets, and baseline
model. Section 5.2 describes the overall comparison of accuracy and
performance. Sections 5.3 and 5.4 study the effect of each proposed
component, superpixel aggregation and prioritization, individually.
Section 5.5 details tuning analysis for different cases.

5.1 Setup
We run all experiments on a single machine with Intel Xeon E3-
1220 v5 3.00GHz quadcore processor, 64GB RAM, and 2TB HDD
on Ubuntu 16.04.2 applied Java 1.8.0_102.

The proposed technique is compared to Raptor [31] zonal statistic
on a single machine. Raptor was not designed to produce progres-
sive results so we modified it to produce partial results. This work

Table 1: Raster Data

Dataset file size resolution (pixels)
MERIS 7.8GB 129,600×64,800

Treecover 560 GB 1,296,001×493,200
Table 2: Query Polygons

Dataset # query polygons # segments #𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑠
𝑞𝑢𝑒𝑟𝑦

ZIP code 33,144 52,894,188 1,560
US Counties 3,108 51,638 17
US States 49 165,186 3,371
World 284 3,817,412 13,442
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Figure 7: Progress accuracy for large query polygons

focuses on single machine experiments to best study the effect of
computation saving and prioritization. Extending this implemen-
tation to parallel environments is left for future work. Prior work
showed that Raptor is the most efficient method for zonal aggrega-
tion over arbitrary polygons [31]. Other techniques are limited to
rectangular queries or solve a different problem. ACT is the closest
we found since it speeds up point-in polygon queries, it lacks of
scalability according to [33].

The main performance metric we use is running time and ac-
curacy over time. We compute four aggregate functions as results:
minimum, maximum, sum, and count. At each timestamp, we cal-
culate the current accumulated results by adding new found values.
This experiment uses only the sum for accuracy analysis for con-
sistency. Mean percentage error (MPE) is measured and reported
along running time. In the formula below, 𝑠𝑢𝑚𝑝𝐼𝐷 represents cur-
rent accumulated sum for each polygon and the 𝑠𝑢𝑚 is the ground
truth final sum for corresponding polygon.

MPE =
1
𝑛

𝑛∑︁
𝑝𝑖𝑑=1

|𝑠𝑢𝑚𝑝𝑖𝑑 − 𝑠𝑢𝑚 |
𝑠𝑢𝑚

Accuracy = 1 −MPE
Tables 1 and 2 list the datasets and query polygons. This section fo-
cuses on large satellite data such as MERIS and Treecover with high
resolution indicating the massive number of pixels, and each pixel
stores one value as integer. The query polygons are ordered from
the smallest geographical area (ZIP Code) to the highest (World
countries).

5.2 Baseline Comparison with Viper
This experiment shows the performance and accuracy comparison
between Viper and Raptor. Figures 7- 9 plot the accuracy as a func-
tion of time. Since all methods are exact, they start with an accuracy
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Figure 8: Progress accuracy for medium query polygons
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Figure 9: Progress accuracy for medium query polygons
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Figure 10: Effect of superpixels with large query polygons

of zero and end with an accuracy of one. These figures provide two
ways to compare methods. First, the curve that reaches an accuracy
of 1.0 earlier requires less overall processing time. Second, a steep
curve that grows faster provides better progressive result since it
provides higher accuracy quickly.

Figure 7 shows the performancewith large query polygons. Viper
yields faster running time and better progress. The reason is that the
big query polygons match with many super pixels that help Viper
to lower the running time and get a big jump in accuracy briefly.
As the raster resolution increases, the gain is even higher. With
high-resolution data, Viper reaches 95% accuracy in 378 seconds
and 100% accuracy in a little over 1,000 seconds. In comparison,
Raptor reaches 95% in 15,426 seconds and 100% in 16,883. Also the
effect of the super pixels is evident as it gives Viper a big boost at
the beginning to reach 80% accuracy is less than 30 seconds.

Figure 8 shows the performance with medium query polygons,
US states. We can observe a similar behavior but the gain starts to
decrease since query polygons now match with fewer super pixels.
In Figure 9, the US county dataset still yields a better performance
with the high resolution raster but it becomes slower with the
medium resolution raster due to matching fewer super pixels. No-
tice that in this case the baseline takes only seven second anyway so
there is actually very little room for improvement. In conclusion, as
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Figure 11: Effect of superpixels for medium query polygons
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Figure 12: Effect of superpixels on small query polygons
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Figure 13: Effect of prioritization for large queries

the query polygons get bigger and the raster resolution get higher,
Viper can provide significantly better performance.

5.3 The effect of superpixel aggregation
This section focuses on the effect of superpixel aggregation on the
accuracy. We compare two variations of Viper, Viper-SP applies
super pixel aggregation and prioritization, and Viper-NSP which
applies only the prioritization. Viper-SP uses the same experimental
aggregation size and vector data as in the previous experiments.
Figures 10-12 show the accuracy improvement over time.

It is evident that Viper-SP gains an initial advantage from process-
ing superpixels, e.g., Figures 10 and 11. This behavior is amplified
for high-resolution raster and big query polygons, e.g., Figure 10
with Treecover and World datasets where Viper-SP reaches 90% in
200 seconds while Viper-NSP takes 17,000 seconds to reach 90%.
On the other extreme, if we have a lower-resolution raster and
many small polygons, e.g., MERIS and ZIP code in Figure 12, the
superpixel aggregation adds some overhead with no significant
benefit. In this case, Viper-NSP can be more efficient.

5.4 Effect of prioritization
This experiment focuses on the effect of prioritization in progres-
sive query results. We compare two variations of Viper, Viper-pt
applies super pixel aggregation and prioritization, and Viper-np
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Figure 14: Effect of prioritization over medium queries

Table 3: Aggregated Raster Index Overhead

Dataset Aggregation size (𝑠) File size Overhead %
MERIS 32×32 125MB 1.565%
MERIS 64×64 31MB 0.391%
MERIS 128×128 7.8MB 0.0978%
MERIS 256×256 1.97MB 0.0245%

Treecover 64×64 2.3GB 0.392%
Treecover 128×128 0.58GB 0.0979%
Treecover 256×256 145MB 0.0245%

which applies only the super pixel aggregation but no prioriti-
zation. Figures 13-15 show the accuracy improvement over time.
There are two goals of this experiment. The first is to study the
effect of prioritization on improving the accuracy. The second is to
evaluate the overhead processing time of prioritization.

Figures show Viper-pt ramps up the accuracy much faster due
to the effect of prioritization. In Figure 13, it reaches 90% accuracy
in about 223 seconds as compared to 748 seconds with no priority
when querying high-resolution data, Treecover. Although the gap
between these two methods narrows while working on smaller
polygons such as US county in Figure 14, the priority still benefits
and it reaches 80% accuracy in about 150 seconds as compared to
250 seconds with no priority. Both techniques get the same initial
boost from super pixels but the prioritization gives Viper a second
boost showing its importance for progressive query answering.

From the performance perspective, we notice that the processing
overhead depends heavily on the number of query polygons. For
world and county datasets where we have up-to a few thousand
query polygons, the overhead is minimal. Although in Figure 13
Viper with priority technique on MERIS and world polygons still
can observe overhead, the priority already provides 97% accuracy
when Viper-np reaches 100% accuracy. With nearly 33K query
polygons in the ZIP code dataset in Figure 15, the overhead starts
to be significant. In addition, due to the relatively small size of ZIP
code polygons, they match with few super pixels which leaves more
data to process in the original dataset which adds to the overhead of
prioritization. In summary, these experiments show clear advantage
of prioritization on accuracy. The overhead starts to be significant
only if have tens of thousands of small query polygons.

5.5 Breakdown
Table 3 shows the storage overhead of the raster index, i.e., the pre-
aggregated raster. For each raster, we show the percentage overhead
as the aggregation size varies. The smaller the aggregation size,
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Figure 16: Normalized memory usage in different resolutions
Treecover and vectors, comparison with baseline

the more the superpixels will be created which means a higher
overhead. Also, notice that each superpixel contains four floating-
point values, min, max, sum, and count, which add up to 16 bytes.
As the table shows, the storage overhead ranges from 0.02% to 1.6%
when the aggregation size ranges from 256 to 32. This shows that
the storage overhead is minimal.

Figure 16 shows the memory overhead of the raster-vector index
that Viper uses. This includes both the new raster-vector index that
find superpixels that are completely contained in query polygons
as well as the Raptor index that find pixels with centers in query
polygons. Since these two indexes are used in separate phases,
we report the maximum of the two. The 𝑥-axis shows varying
spatial index sizes and query polygons. Also, to put the numbers in
perspective, we normalize all numbers by dividing by the size of
the baseline Raptor index. Any numbers that are below the red line
indicate a lower memory overhead of Viper. In the figure, for almost
all the cases, Viper significantly reduces the memory overhead as
compared to Raptor. The reason is that the matching superpixels
require only a small memory overhead and they also reduce the
query polygon complexity due to the added holes which reduce
the size of the Raptor index used with the original raster. Further,
by comparing Viper-pt to Viper-np, we see that the overhead of
pioritization is minimal. Similar to previous experiments, ZIP codes
query polygons add an additional overhead due to the small query
polygon size and the large number of queries.

Figures 17-20 show the time breakdown into two steps, superpixel
and priority tiles. For clarity of the chart, we limit the range of the
𝑦-axis and we include the overall time at the top for reference.
As the aggregation size increases, the superpixel time decreases
while the priority tile time increases. First, as the aggregation size
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Figure 17: Effect of aggregation size with small queries
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Figure 18: Effect of aggregation size with medium queries

increases, we have fewer superpixels which reduces the superpixel
processing time. In addition, a larger aggregation size means bigger
superpixels which results in fewer matches of completely contained
superpixels. This means that the query polygons will match more
original pixels which increases the tile prioritization time. Together,
these two observations result in a trade-off that allows us to tune
the aggregation size to reduce the overall running time.

6 RELATEDWORK
This section summarizes the related to zonal statistics problem. We
summarize indexes that assists with zonal statistics and interactive
approaches for spatial data exploration.

6.1 Spatial Indexing
Zonal statistics algorithms have three types: vector, raster, and
raster-vector [31]. Vector methods use point-in-polygon queries
with pixel-to-point conversion. Raster methods process polygons
by converting them to raster. Raster-vector methods combine raster
and vector data without conversion. This section covers spatial
indexes for optimizing these algorithms.
Vector indexes can be built on point or polygon datasets. Spatial
indexes like R-tree [16], Quad-tree [14], and other specialized in-
dexes [9, 17] suffer from high memory usage [33]. Techniques like
Data cube [15] and works [19, 22, 35] modify traditional indexes
for partial aggregates and rectangular range queries. Methods that
support arbitrary polygons [20, 42] are limited to one polygon at a
time and suffer from the overhead of pixel-to-point conversion.
Raster indexes build a hierarchical structure such as a quad-tree
or grid structure and precomputes partial aggregates to speed up
zonal aggregation [5, 11, 30]. CCQ-Tree [48] utilizes GPU to speed
up the query processing. All these indexes are limited to processing
rectangular queries and can only process one query range at a time.
Raster-vector indexes are built based on both raster and vec-
tor datasets. Raptor [31] builds an on-the-fly index to speed up
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Figure 19: Effect of aggregation size with large queries
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Figure 20: Effect of aggregation size with very large queries

the raster-vector join but does not provide any partial aggregates.
IDEAL [36] rasterizes vectors and keeps track of spatial relationship
between raster and vector but suffers from excessive storage for
raster layers [12] and processes one query polygon at a time which
limits its performance.

Our approach belongs to hybrid raster-index structure. It dis-
tinguishes itself from existing methods by speeding both the pixel
selection and aggregation steps. Our method has two unique ad-
vantages. First, it is the only one optimized to aggregate a large
number of queries rather than a single query polygon. Second, it is
the only progressive method continuously updating the results to
support interactive exploration of big satellite data.

6.2 Interactive Approaches
Interactive spatial data exploration systems require to achieve high
accuracy answers in a short time. These methods can be categorized
into approximation, query result caching, hardware acceleration,
and progressive methods.
Approximate query processing (AQP) trades off the accuracy
for lower latency. Standard methods include sampling and region
filtering. Sampling methods [1–3, 44] provide sampled data or esti-
mated results interactively. Region filtering [4] approximates results
with different geometric shape filters. Works [19, 26, 42] comprises
multi-resolution aggregation layers, continuously filtering cells by
MBR with pixel values. Other works [46, 49] provide an approxi-
mated result after polygon rasterization. Approximate results are
not always acceptable, especially when the error is not bounded.
Further, all these methods process one query polygon at a time.
Query result caching techniques cache the results of frequent
queries as optimization. SpaceOdyssey[23] use an adaptive index to
detect hot query spot, while this method drawback with redefining
the index structure each query time. HQfilter[27] contributes to
reducing data processing time by filtering out empty query results
but restricted to rectangular MBR.
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Hardware acceleration, such as GPU, is one method. Works [9, 10,
45, 47] use GPUs to optimize point-in-polygon query but are limited
by time and memory usage in converting high-resolution rasters
into vectors. GPU also is unsuitable for dealing with extensive
satellite data that can only be stored on disk.
Progressive querymethods provide early results as the query runs
and refine the results until execution finishes. We call a method that
returns an exact answer at the end an exact progressivemethod, oth-
erwise, it is an approximate progressive method. Progressive merge
join [8] is an exact method but is limited to rectangular ranges.
Approximated progressive work as pCube [25] also only have rect-
angular filter. Progressive query implemented with visualization as
[43] does not provide exact answer. Other works [13] either solve
progressive chunks with approximation or [41] focus on image
progressive refine. Works [6, 21, 28, 37? –40] are continuous query
algorithms and take moving data stream, which is a different prob-
lem. These works have two differences from our method. First, they
focus on streaming systems with a limited time window while we
consider all the data. Second, they are main-memory techniques
which assume that most of the data is in-memory while our method
is disk-based and can scale beyond the memory size.

Our approach aims to realize an interactive exploration through
progressive outputs. We contribute by supporting arbitrary poly-
gons, outputting aggregation values as progressive feedback, and
providing an exact final answer.

7 CONCLUSION
This paper presents an interactive exploration method on large
satellite data, through progressive query processes separated into
two phases. Before any query process, a lower resolution raster is
constructed as raster index. First step queries the low-res raster
layer and query polygons with an on-the-fly raster-vector index.
The second step queries the higher resolution layer with another
on-the-fly raster-vector index, and refines results with a priority
order unlit obtaining exact answer. The experimental analysis of
real datasets shows the proposed algorithm provides high accuracy
results quickly, especially for the combination of high resolution
rasters and big polygons.
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